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High-energy Landau levels in graphene beyond nearest-neighbor hopping processes:
Corrections to the effective Dirac Hamiltonian
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We study the Landau level spectrum of bulk graphene monolayers beyond the Dirac Hamiltonian with linear
dispersion. We consider an effective Wannier-like tight-binding model obtained from ab initio calculations that
includes long-range electronic hopping integral terms. We employ the Haydock-Heine-Kelly recursive method to
numerically compute the Landau level spectrum of bulk graphene in the quantum Hall regime and demonstrate
that this method is both accurate and computationally much faster than the standard numerical approaches used
for this kind of study. The Landau level energies are also obtained analytically for an effective Hamiltonian
that accounts for up to third-nearest-neighbor hopping processes. We find an excellent agreement between both
approaches. We also study the effect of disorder on the electronic spectrum. Our analysis helps to elucidate the
discrepancy between theory and experiment for the high-energy Landau level energies.
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I. INTRODUCTION

The pioneering experimental reports [1,2] on the unique
features of the quantum Hall (QH) effect in graphene systems
played a key role in establishing the remarkable massless
Dirac electronic properties of this material [3–5]. Subsequent
investigations on QH effects in graphene continued to produce
fascinating results, such as Klein tunneling [6,7], fractional
quantum Hall effect [8,9], and Hofstadter butterflies [10,11],
to name a few, attracting a lot of attention to the field (see, for
instance, Ref. [12] for a recent review).

In addition to electronic transport properties, graphene
under strong magnetic fields also shows unique spectral prop-
erties under strong magnetic fields. The graphene Landau
levels have been theoretically predicted [4,13] to follow

εN = sgn(N )h̄ωc

√
|N |, (1)

where N is the Landau level (LL) index, ωc = vF
√

2eB/h̄ is
the cyclotron frequency, B is the magnetic field strength, and
vF stand for the electron Fermi velocity for B = 0.

The LL spectrums have been experimentally measured
by transmission [14,15] and scanning tunneling spectroscopy
[16,17] for both exfoliated and epithaxial graphene. These
studies have verified the

√
BN dispersion to a good ap-

proximation. A systematic transmission spectroscopy study
[18] focused on the high-energy LL showed deviations from

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

εN predicted by Eq. (1). The puzzle is that the disagree-
ment with the experimental data persists even when one
improves the theoretical description by accounting next-to-
nearest-neighbor hopping processes.

It should be stressed that, while the massless Dirac Hamil-
tonian has been shown to be very effective in describing
a variety of low-energy electronic graphene properties, the
theoretical modeling for higher energies is not unique. The
standard approach uses density functional theory (DFT) cal-
culations to obtain a tight-binding model based on Wannier
orbitals that contain an arbitrary range of hopping terms that
fit the nonlinear features of the dispersion relation [19–24].

Another possibility for the discrepancy between theory and
experiment is disorder, which is ubiquitous in graphene [25].
Numerical investigations have studied the broadening of the
Landau subbands [26], but there is no systematic study of the
corresponding disorder-induced peak shifts. We examine this
issue with emphasis on the large |N | limit.

Our analysis uses the Haydock-Heine-Kelly (HHK) recur-
sive method [27–29], also called the Haydock method, an
order N [30] real-space computational approach developed to
study local spectral functions. It transforms an arbitrary sparse
Hamiltonian matrix in a tridiagonal form and evaluates the
diagonal Green’s function by a continued fraction expansion,
avoiding the need to solve the full eigenvalue problem. The
HHK method has been successfully used to compute the local
density of states (LDOS) of different compounds [31,32] and
more recently in the study of carbon nanotubes [33,34] and
disordered graphene systems [35–37].

In addition to its efficiency, another attractive feature of
the HHK method is that, since it relies on the concept of
nearsightedness [38], it does not use periodic boundary con-
ditions [39]. Hence, it can be applied to study local spectral
properties of disordered systems, quasicrystals [40,41], and
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systems with very large primitive unit cells, such as twisted
graphene layers and two-dimensional (2D) systems under re-
alistic magnetic fields B. Surprisingly, the HHK method has
only been employed once in a case where B �= 0, namely, in
the investigation of Hoftstadter butterfly energy gaps in square
lattices [42]. To the best of our knowledge, so far no one has
realized that the method is also fast and very accurate (as we
show) for the study of discrete QH spectra.

Regarding our results, we numerically show that the large-
|N | LL spectrum analytical solution of the continuum (long
wavelength) effective graphene Hamiltonian is very accu-
rate up to |N | � 25 and B = 25 T. We include DFT-fitted
third-nearest hopping matrix elements into the graphene tight-
binding model Hamiltonian and show that agreement between
theory and experiment is significantly improved.

This paper is organized as follows. In Sec. II, we present
the model Hamiltonian we use to describe the electronic
properties in graphene, namely, a tight-binding Hamiltonian
that accounts for up to third-nearest-neighbor hopping pro-
cesses. Next, we discuss disorder effects and review the
self-consistent Born approximation (SCBA) predictions for
the shifts in the LL subband peak energies and widths. Finally,
we briefly present the main steps of the implementation of the
HHK method, discuss its computational cost, and benchmark
its accuracy. In Sec. III we present our results. We expand
previous analytical results for εN and show that, despite the
approximations involved (discussed in Appendix), the agree-
ment with the numerical values is remarkable. We further
show that the inclusion of third-nearest-neighbor matrix el-
ements helps to improve the agreement between theory and
experiment and that disorder plays a minor role. We summa-
rize our conclusions in Sec. IV.

II. THEORY AND METHODS

A. Model Hamiltonian

The tight-binding Hamiltonian that describes the electronic
structure of graphene monolayers reads [3,20]

H =
∑
i, j

(ti jc
†
i c j + H.c), (2)

where ti j stands for the hopping matrix element between
the Wannier electronic orbitals centered at the carbon sites i
and j. Most studies consider only first-nearest-neighbor hop-
ping processes, a simple model that is able to describe the
low-energy properties of bulk graphene [3,25]. Tight-binding
parametrizations based on DFT [19,21,22,24] show the neces-
sity to including hopping terms beyond first nearest neighbors
for a more accurate modeling of the electronic dispersion, par-
ticularly when addressing higher energies. Here, we consider
first t (1), second t (2), and third t (3) nearest-neighbor hopping
terms. Within this approximation it is convenient to write the
graphene Hamiltonian in a sublattice matrix representation
that in reciprocal space reads [4,43]

Hk ≡
(

t (2)|γk|2 t (1)γ ∗
k + t (3)γ ′

k

t (1)γk + t (3)γ ′∗
k t (2)|γk|2

)
, (3)

with

γk ≡ 1 + eik·a2 + eik·(a2−a1 ) (4)

and

γ ′
k ≡ 1 + ei2k·a2 + ei2k·(a2−a1 ), (5)

where a1 = √
3a0êx and a2 = √

3a0/2(êx + √
3êy) are the

primitive vectors honeycomb lattice and a0 = 1.4 Å is the
carbon-carbon bond length [3]. The first- and third-nearest-
neighbor hopping terms, which connect different sublattices
[3,4], correspond to the off-diagonal matrix elements, while
the second-nearest hoppings are related to the diagonal
ones. This apparent correspondence between even-odd nearest
neighbors and diagonal off-diagonal matrix elements breaks
down for fourth nearest neighbors and beyond [23]. In Eq. (3)
we neglect a constant diagonal term that shifts the energy
spectrum by −3t (2).

The energy dispersion reads

εkλ = t (2)|γk|2 + λ|t (1)γk + t (3)γ ′∗
k |, (6)

where λ labels the valence (λ = −1) and conduction bands
(λ = +1). Note that the second-neighbors hopping contribu-
tions do not depend on λ and thus break the electron-hole
symmetry.

The presence of an external magnetic field B can be ac-
counted for by the Peierls substitution [44,45], that is, by the
transformation

ti j −→ ti j exp

[
i
e

h̄

∫ R j

Ri

dr · A(r)

]
, (7)

where Rn is the lattice vector associated with the site n, and
e is the electron charge. Here, we choose the vector potential
A(r) = (0, Bx, 0) that gives a magnetic field B = ∇×A = Bêz

perpendicular to the graphene layer.

B. Numerical method

We compute the Landau level spectra using the HHK
recursion technique [27–29]. The latter has been developed
to calculate the local properties of electronic systems rep-
resented on a basis of localized (orthogonal) states |i〉, like
the one used in the tight-binding Hamiltonian of Eq. (2).
The HHK method provides a very efficient O(N ) recursive
procedure to transform a given Hamiltonian matrix into a
tridiagonal one that is much more amenable for numerical cal-
culation. As mentioned in the Introduction, the HHK method
has been successfully used to compute the LDOS of contin-
uous spectra of several systems [31–37]. Here, we use it to
compute the LDOS of a Hamiltonian with discrete eigenval-
ues.

Let us quickly review the main ingredients of the HHK
method before discussing its use in computing the graphene
Landau level spectrum.

The recursion method starts by targeting a given state |0} =
| j〉. The method generates a hierarchy of states |n} based on
the three-term recursion relations [27–29],

H |n} = an|n} + bn|n − 1} + bn+1|n + 1}, (8)

with the recursive coefficients

an = {n|H |n}, (9)

bn+1 = ‖(H − an)|n} − bn|n − 1}‖, (10)
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and the orthogonal basis element

|n + 1} = 1

bn+1
[(H − an)|n} − bn|n − 1}], (11)

where b0 = 0 and | − 1} = 0. Thus, by construction, the
Hamiltonian matrix in the orthogonal basis {|n}} is tridiago-
nal. In turn, the basis functions |n} can be expressed in terms
of Wannier-like states | j〉,

|n} =
P∑

i=1

Ani|i〉. (12)

Here, we assume that the electronic wave functions are a
superposition of P states centered at the atomic sites i and
the atomic orbitals are orthogonal to each other, in line with
the tight-binding model of Eq. (2).

The diagonal Green’s function for the seed state |0} is given
by continued fraction [27–29]

G00(ε) = {0| 1

ε − H
|0}

= 1

ε − a0 − b2
1

ε − a1 − b2
2

ε − a2 − b2
3

. . .

,
(13)

expressed in terms of the matrix elements of the tridiagonal
Hamiltonian in the basis |n}. The LDOS at any site j can be
written as

LDOS( j, ε) = − 1

π
Im Gr

j j (ε)

≡ − 1

π
lim

η→0+
[Im Gj j (ε + iη)]. (14)

In practice, a finite η serves as a convenient regularization
parameter. For continuous spectra, setting η ≈ 2D/M, where
D is the bandwidth, guarantees a nice smooth approximation
to LDOS( j, ε) [27].

For pristine systems, due to translational symmetry, the
LDOS( j, ε) at any j is proportional to the (total) density of
states (DOS) ρ(ε) [46]. In our calculations we fix j at the
center of the honeycomb lattice of size P.

In previous applications [31,32,42] it has been observed
that for a sufficiently large M, the recursive coefficients con-
verge towards their asymptotic values, namely, aM → a∞ and
bM → b∞. The asymptotic value of a∞ is associated with the
center of the energy band ε0, namely, ε0 = a∞/2 [27,28]. In
graphene systems, a∞/2 corresponds to the Dirac point en-
ergy. For the nearest-neighbor tight-binding Hamiltonian, the
center band energy is ε0 = 0 and all an coefficients are zero.
In this case, by inspecting Eq. (13), one immediately finds that
G00(ε) = −G00(−ε). This implies that the LDOS( j, ε) has
electron-hole symmetry for any j and ρ(ε0) = 0, a condition
that defines the so-called Dirac points [3]. When t (2) �= 0, the
coefficients an are no longer zero, the Dirac points are en-
ergy shifted, and the electron-hole symmetry is broken. These
simple properties are in line with well-established literature
results [3], as they should be.

TABLE I. Tight-binding hopping parameter sets in electron volts.

Parametrization t (1) (eV) t (2) (eV) t (3) (eV)

A [3] −2.7
B [19] −3.0 0.3
C [22] −3.0933 0.19915 −0.16214

Let us now apply the HHK method to graphene systems.
We begin showing results of the LDOS for bulk graphene in
the absence of external magnetic fields. Throughout this paper
we use the tight-binding parameters given in Table I.

The optimal number of iterations M depends on P, the size
of the system chosen to represent the bulk, as well as on the
desired accuracy. A detailed analysis about the dependence of
the HHK method accuracy on M for continuum spectra can be
found in Ref. [28]. For graphene in the absence of a magnetic
field, we find that M ≈ √

P guarantees good accuracy. At the
end of this section we study the accuracy for the case where
B �= 0.

Figure 1 shows the LDOS of a graphene monolayer ob-
tained from the HHK method for P = 2.5×107 carbon atoms
and M = 5000 iterations. We have contrasted the latter with
ρ(ε) computed by a direct numerical evaluation of ρ(ε) =

1
ABZ

∑
k δ(ε − εkλ), where εkλ is given by Eq. (6) and the

wave vectors k are sampled over the Brillouin zone of area
ABZ. By accounting for the normalization factor that relates
LDOS( j, ε) with ρ(ε), we observe a good agreement within
the numerical precision imposed by the regularization pa-
rameter η. We find that differences are only appreciable, as
expected, at the band edges as well as at the van Hove singu-
larities.

Let us now consider the case of a pristine graphene sheet
under an external perpendicular magnetic field B. The elec-
tronic spectrum becomes discrete and strongly degenerate,
forming a sequence of Landau levels. Figure 2(a) shows the
graphene LDOS for the tight-binding parametrizations A, B,
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FIG. 1. Graphene LDOS (in arbitrary units) as a function of the
energy ε (in electron volts) calculated with the HHK method for
the tight-binding Hamiltonian parametrizations A, B, and C. We set
ε0 = 0 for better visualization.
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FIG. 2. (a) LDOS (in arbitrary units) vs ε (in electron volts)
for B = 25 T, η = 0.1 meV, and M∗ = 1500 for the tight-binding
parametrizations A (red), B (blue), and C (green line). (b) Accuracy
of the LL energies 
εN = |εM

N − εM∗
N | as a function of the number

of iterations M for the tight-binding parametrization A. Here, εM∗
N

stands for the energy of the N th Landau level converged to a preci-
sion better than δ = 10−8 eV.

and C computed with the HHK method for B = 25 T, P =
2.25×106, M = 1500, and η = 0.1 meV. Due to the finite η,
the LL are broadened and become Lorentzian distributions
whose energy peaks (obtained by fitting) are associated with
the LL energies εN . Here, we chose η � |εN − εN−1|, guaran-
teeing that the |N | � 30 lowest LL peaks are nicely resolved.

Figure 2(b) shows the convergence of the Landau level
energies εN as a function of M for a lattice size of P =
2.25×106, B = 25 T, η = 0.1 meV, and the tight-binding
parametrization A. Throughout this paper we set the absolute
numerical precision to δ = 10−8 eV. We find that by setting
M∗ = 1500, the accuracy of εN is better than δ for |N | � 30.
Figure 2(b) shows that the LL energies εN converge rapidly
to their asymptotic values as the number of iterations M in-
creases. The results indicate that the number of iterations M
necessary to obtain a given precision δ scales as M ≈ √|N |.

Let us now benchmark the HHK results against another
well-established method to compute the LL energies [47]. The
most straightforward numerical solution solves the eigenvalue
problem for supercells with periodic boundary conditions
whose size are dictated by the magnetic field strength and
the phases of the Peierls substitution [48]. Here, the com-
putation of the LL spectra involves the diagonalization of
matrices of dimension ∼9.07×104/B[T] [49], which is com-
putationally very costly for realistic values of the magnetic
field. Alternatively, Ref. [47] proposed to consider systems
with an infinite ribbon geometry where, by a suitable gauge
choice, the magnetic field is encoded in the hopping terms
transversal to the ribbon, preserving a “free” dynamics in
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FIG. 3. Accuracy of the LLs energies 
εN = |εGRN
N − εM∗

N |, for
graphene nanoribbons with zigzag edges as a function of their width
W = (3NW /4 − 1)a0.

the longitudinal direction. In this way, the primitive unit cell
has NW sites that depend linearly on the ribbon width W .
The k-space domains where the bands are flat, corresponding
to energies εGNR

N , are associated with bulk Landau levels,
namely, εN ≈ εGNR

N . The accuracy relies on W/�B � 1, where
�B = √

h̄/eB ≈ 26
√

B[T] nm.
We consider graphene nanoribbons with zigzag edges for

which W = (3NW /4 − 1)a0. Figure 3 shows the convergence
of εN as a function of NW . In this approach, an accurate
assessment of εGNR

N , with negligible interedge hybridization,
requires increasing W (or NW ) for larger |N |, with a com-
putational cost that scales with N3

W . We note that by finding
an optimized truncated basis set with Nopt < NW , one can
significantly reduce computational time, but the number of
operations of such a procedure still scales as N3

opt. Thus, by
comparing Figs. 2(b) and 3 and recalling that the HHK is an
O(M ) method, one concludes that the HHK method is rather
unexpensive.

C. Disorder

Several studies have addressed the effects of disorder in
graphene in the quantum Hall regime [26,50–53]. Here, our
goal is to obtain insight on disorder effects in the DOS of
large |N | Landau subbands, particularly on their energy peaks,
rather than studying the specifics of a given experimental
setup. For this reason we consider a simple model that cap-
tures the main features of disorder in graphene, namely, the
Anderson disorder model. The on-site energy ui is assumed to
be uniformly distributed between −U and +U , that is, with
zero mean 〈ui〉 = 0 and variance 〈〈u2

i 〉〉 = U 2/3. This model
describes the short-range disorder regime [50,52,53] where
the impurities scattering range is much smaller than the lattice
constant and, thus, impurity scattering mixes the ξ = 1 (or K)
and the ξ = −1 (or K ′) valley spinors.

We compare our numerical simulation with analytical
results. In a pioneering work, Shon and Ando [50] used
the SCBA to calculate self-energy impurity average � in
graphene for different kinds of disorder. For short-range
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impurities [50],

�(ε) = γ 2

4

Nc∑
N=−Nc

1

ε − εN − �(ε)
, (15)

where

γ 2 = 〈〈u2
i 〉〉nimp

π�2
B

(16)

is the parameter characterizing the disorder scattering strength
and nimp denotes the impurity concentration. The cutoff Nc is
introduced to account for the finite bandwidth.

Contrary to the constant spacing of LL in two-dimensional
electron gas systems, in graphene the spacing decreases
with h̄ωc/

√|N |. This feature makes the evaluation of �(ε)
somewhat more involved than in the standard case [53]. In
the limit of weak scattering strength γ 2 � 1 and consider-
ing the usual inequalities |ε − εN |, |�| � εN and |ε − �| <

h̄ωc/
√|N | that correspond to isolated LL subbands, the den-

sity of states is given by [53]

DOS(ε) = 2

πγ 2

√
γ 2(1 − χ ) − [ε − εN (1 − χ )]2, (17)

where

χ = γ 2

(h̄ωc)2 ln (D/εN ), (18)

and D = h̄ωc
√

Nc is a Debye-like energy cutoff. The DOS is
a sequence of semicircles (or better, elliptical shapes) with
maxima at εN (1 − χ ) and full width at half maximum �N =
γ
√

3(1 − χ ). Hence, disorder induces a 
N = −χεN shift in
the LL subband peaks. Note that by taking χ = 0, one recov-
ers the simple single-isolated subband approximation found in
Ref. [50].

III. RESULTS

In this section we use the HHK method to study the LL
energies εN , as a function of |N |, the external magnetic field
B, and disorder. We also compare the results with the experi-
mental data [18].

A. Landau levels in pristine graphene

The analysis of the LL spectra measured in Ref. [18] re-
ports a discrepancy between the analytical approximation for
εN and the corresponding experimental values. The problem
has been attributed to the model Hamiltonian truncation to
second-nearest-neighbor hopping terms. Here, we expand the
original theoretical analysis by accounting for third- nearest-
neighbor terms and compare our results both with numerical
calculations and with the experimental data.

The dispersion relation of graphene can be expressed as
a power series in q, defined as q = k ∓ K, where ±K cor-
respond to γ±K = γ ′

±K = 0 that defines the so-called Dirac
points. The external magnetic field is accounted for by mini-
mal substitution, � = h̄q + eA.

By using canonical quantization and the approximations
suggested in Ref. [4] (see Appendix for details), we write the

energies of the LLs in the large |N | limit up to third-nearest-
neighbor hopping as

ε̃N = ε̃
(1)
N + ε̃

(2)
N + ε̃

(3)
N , (19)

where the first two terms,

ε̃
(1)
N ≈ sgn(N )h̄ωc|N |1/2

(
1 − 3

8

a2
0

�2
B

|N |
)

, (20)

ε̃
(2)
N ≈ h̄ωc

t (2)

|t (1)|
3√
2

a0

�B
|N |

(
1 − 3

4

a2
0

�2
B

|N |
)

, (21)

were obtained in Refs. [4,18]. Our derivation expands the
latter results to account for t (3), namely,

ε̃
(3)
N ≈ −sgn(N )h̄ωc

2t (3)

t (1)
|N |1/2

(
1 − t (3)

t (1)
− 59

32

a2
0

�2
B

|N |
)

.

(22)
Note that the subleading terms in the above expansions give
minor corrections, since a0/�B = 5.4×10−3

√
B[T] is small

for B fields within the experimental reach.
In what follows we show that Eqs. (20)–(22) give an ex-

cellent approximation to the LLs energies obtained from the
tight-binding Hamiltonian of Eqs. (2) and (7).

Figure 4(a) compares the analytical ε̃
(1)
N with the numer-

ical HHK results ε
(1)
N = εHHK

N for the first-nearest-neighbor
tight-binding Hamiltonian, namely, the parametrization A.
The insert shows the relative deviation |
εN/εHHK

N | versus N ,
where 
εN = εHHK

N − ε̃
(1)
N . The agreement is very good with

a relative deviation smaller than 2.3×10−4 for |N | < 25. The
results indicate that 
εN ∝ |N |5/2, a scaling corresponding to
terms related to q3 that have been neglected in the momentum
expansion, see Appendix.

Figure 4(b) contrasts the analytical ε̃
(2)
N second-nearest-

neighbor contribution to the LL spectrum with its numerical
counterpart ε

(2)
N . The latter is defined as ε

(2)
N ≡ εN − ε

(1)
N ,

where εN and ε
(1)
N are computed numerically. Both are ob-

tained using the tight-binding parameter set B, but for the
calculation of ε

(1)
N we set t (2) = 0 to single out the second-

nearest-neighbor contribution. The insert shows |
εN/εHHK
N |

versus N , 
εN = εHHK
N − ε̃

(1)
N . Here 
εN is ∼1.01×10−3 eV

for |N | � 25. The origin of 
ε (2) is the small discrepancy
between the constant diagonal term that shifts the energy spec-
trum by −3t (2) (t (2) = 0.3 eV, see Table I) in the analytical
approach and the HHK results, where the shift is −0.899 eV.

Finally, Fig. 4(c) compares ε̃
(3)
N with ε (3). Here, we define

ε
(3)
N = εN − ε

(1)
N − ε

(2)
N , where we use the HHK method to

compute εN with the parameter set C and ε
(1)
N + ε

(2)
N by taking

t (3) = 0. The results indicate that the third-nearest-neighbor
contributions to εN are nicely described by the leading |N |1/2

term. Here, in distinction to the first nearest neighbors, the de-
viation is 
ε ≈ |N |3/2 but still small, |
εN/εHHK

N | � 5×10−2

for |N | � 25.
Let us now compare our results with the experimental data

[18]. Figure 5(a) shows that, since to leading order εN ≈
|N |1/2, all tight-binding parametrizations correctly capture the
main trend of εN . In Figs. 5(b) and 5(c) we show εHHK

N − ε
exp
N

for the conduction and the valence bands. We find that the
parametrization B (up to second-nearest-neighbor hopping)
considered in Ref. [18] shows the most agreement with the
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FIG. 4. Comparison between the analytical contributions to ε̃N

and HHK results for a pristine graphene monolayer with B = 25 T:
(a) first neighbor contribution, (b) second neighbor contribution,
and (c) third neighbor contribution. The insets show the devia-
tion between the HHK results and the analytical approximation,
|
εN/εHHK

N |, see text for details.

experimental data, with |εHHK
N − ε

exp
N | ∝ |N |3/2. This explains

the effectiveness on the extra arbitrary “W” parameter used
in Refs. [4,18] to obtain a good fit. The parametrization C (up
to third-nearest-neighbor hopping) gives the best results, but
still shows some deviations from the experiments. We stress
that the tight-binding parameters are fits of DFT calculations
to εk for B = 0 and not to the LL energies εN .

B. Disordered graphene

Let us now investigate the effect of disorder in the
LL spectrum of bulk graphene. We briefly address the
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FIG. 5. (a) The Landau levels spectrum as a function of
√|N |

for the tight-binding parametrizations A, B, and C (see Table I)
and B = 25 T. The experimental data are obtained from Ref. [18].
Deviation between the computed and the experimental LL energies,
εHHK

N − ε
exp
N , for the (b) conduction and (c) valence bands.

disorder-induced LL broadening �N , but our main interest is
the energy shift 
N .

Disorder breaks translational invariance and the sites are
no longer equivalent. By involving the ergodic hypothesis one
identifies the ensemble average of the LDOS at a given system
site with the DOS of the disordered system. In this study,
the ensemble averages involve 104 disorder realizations. We
use η = 0.5 meV as the regularization parameter. This choice
guarantees that η � �N for the disorder strengths we study
and thus has a negligible effect on the results.

Since the short-range disorder effects on the DOS are not
expected to depend on the tight-binding parameters, here we
only consider the parametrization A. The SCBA equation,
Eq. (15), can be numerically solved by a simple iteration
starting with a given initial value of the self-energy. We
have introduced a Debye-like cutoff Nc = 1342 and start the
self-consistent loop with an initial self-energy of Im �(ε) =
1 meV. The iteration converges very rapidly.

Figure 6 compares the HHK with the SCBA results for
the DOS(ε) of graphene at B = 25 T for different disorder
strengths, namely, 〈〈u2

i 〉〉 ≈ 0.02 and 0.08. The Landau sub-
bands are broadened and shifted toward the zero-energy in
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FIG. 6. DOS (in arbitrary units) vs ε (in electron volts) of dis-
ordered graphene monolayers for the tight-binding parametrization
A and B = 25 T obtained by the HHK method and the SCBA for
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i 〉〉 ≈ 0.02 and (b) 0.08. Enlargement of the subband DOS
for (c) 〈〈u2

i 〉〉 ≈ 0.02, N = 0; (d) 〈〈u2
i 〉〉 ≈ 0.02, N = 10; and (e)

〈〈u2
i 〉〉 ≈ 0.08, N = 0.

the presence of on-site disorder with the exception of the
zero-energy subband, which is only broadened, as shown by
Figs. 6(a) and 6(b).

Figures 6(c)–6(e) compare the HHK with the SCBA den-
sity of states of different LL subbands. The SCBA predicts a
semicircular (or, more precisely, elliptical) shaped DOS(ε) for
all N . For integer quantum Hall (IQH) systems with quadratic
dispersion, it is well established that the DOS of the N = 1
subband has a Gaussian-like shape [54] and the semicircular
DOS is expected for N � 1. Our results show large devi-
ations from the SCBA independent of N . This observation
is consistent with previous numerical investigations of the
DOS in graphene at the QH regime [26] and deserves further
investigation.

Figure 7 shows the disorder renormalization of the Landau
level subband peak energies 
N . We define 
HHK

N as the dif-
ference between the ensemble average 〈εHHK

N 〉 and the pristine
value εHHK

N . The 
SCBA
N can be obtained from the numerical

solution of Eq. (15) or evaluated from the approximation given
by Eq. (17). The agreement is very good.

The results show that disorder contributes to the increase
in the deviation between theory and experiment. However, for
realistic disorder strengths, 
N is very small.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have studied the large |N | Landau level
spectrum of graphene monolayers beyond the first-nearest-
neighbor tight-binding approximation and the effective
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FIG. 7. Renormalization of the LL subband peak energy 
N as
function of N for 〈〈u2

i 〉〉 ≈ 0.02, 0.08, and 0.19. The black and red
symbols correspond to the numerical results of HHK and SCBA,
respectively, and the blue symbol corresponds to the analytical pre-
diction of Ref. [53].

low-energy Dirac Hamiltonian. The study has two goals,
namely, to discuss the effect of different kinds of hopping
processes to the high-energy LLs in graphene and to introduce
an efficient numerical method for this analysis.

Regarding the methodology, our results show that the
HHK method [27–29] is very efficient for the computa-
tion of the LDOS of graphene in the QH regime. This
method has a long record of success, but to the best of
our knowledge has not been used to study discrete spectra.
Our paper shows that the HHK method is very accurate,
and since it is an O(N ) approach, it is computationally
much faster than other methods found in the literature
[47,49].

As for the large-|N | LL spectrum, we show that the
analytical solution of the continuum (long wavelength) effec-
tive graphene Hamiltonian is very accurate up to |N | � 25
and B = 25 T. We find that by including third-nearest hop-
ping processes into the tight-binding model Hamiltonian the
agreement between theory and experiment is significantly
improved. Although the tight-binding parameters can vary
depending on the methodology employed to extract them from
DFT calculations, the variations are small and we expect our
results to be robust.

We also analyzed the effect of disorder. We find a very
good agreement between numerical simulations and the
SCBA for the disorder-induced renormalization of the LL
subband energy peaks 
N . For realistic disorder strengths, 
N

gives a small correction to εN and thus does not impact our
conclusions. Interestingly, our simulations indicate that even
for large-|N | the subband DOS does not show a semicircular
shape, at odds with the theoretical studies of 2D electron
gas systems in the QH regime [55–58]. We believe this issue
deserves further investigation.

We expect the HHK method to be useful for the analysis of
the LDOS of other QH 2D systems, and since it does not rely
on periodic boundary conditions, it can also used in the study
of quasicrystals [40,41] and fractal lattices [59].
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APPENDIX: LANDAU LEVELS IN GRAPHENE:
ANALYTICAL APPROACH

As mentioned in the main text, the low-energy spectrum
of graphene is obtained by expanding the phase factors γ and
γ ′ in powers of q up to the third order in q. For the series
expansion, it is convenient [43] to use γ → γ exp (ik · δ3) and
γ ′ → γ ′ exp (i2k · δ3), where δ3 = −a0êy. These changes do
not affect the dispersion relation and render more symmetric
expressions to work with [43]. Thus, the expansions of the
phase factors read

γ ξ
q ≈ − ξ

3a0

2
(qx + iξqy)

+ 3a2
0

8
(qx − iξqy)2 + ξ

3a3
0

16
|q|2(qx + iξqy), (A1)

γ ′ξ
q ≈ − ξ3a0(qx + iξqy)

+ 3a2
0

2
(qx − iξqy)2 + ξ

3a3
0

2
|q|2(qx + iξqy), (A2)

where ξ = ±1 denotes the valley index and |q|a0 � 1 guar-
antees the accuracy of the approximation.

The energy dispersion relation in power of |q|a0 is obtained
by combining the relations (A1), (A2), and (6). As a result,
the energy dispersion up to third-nearest-neighbor hopping is
conveniently written as

ελξq = ε
(1)
λξq + ε

(2)
ξq + ε

(3)
λξq, (A3)

where

ε
(1)
λξq ≈ λh̄v

(1)
F |q|

[
1 − ξ

a0|q|
4

cos (3ϕq)

]
, (A4)

ε
(2)
ξq ≈ h̄v

(1)
F

t (2)

|t (1)|
3a0

2
|q|2

[
1 − ξ

a0|q|
2

cos (3ϕq)

]
, (A5)

ε
(3)
λξq ≈ λh̄v

(1)
F

2t (3)

t (1)
|q|

[
cos (2ϕq) + t (3)

t (1)

− ξa0|q|
(

3

4
cos (ϕq) + t (3)

t (1)
cos (3ϕq)

)]
. (A6)

The term cos(3ϕq) is remnant of the symmetry of the under-
lying lattice and gives rise to the so-called trigonal warping
[3,4]. We note that the third-nearest-neighbor hopping terms
modify the standard Fermi velocity v

(1)
F = 3a0t (1)/2h̄.

We include the magnetic field in the Dirac Hamiltonian by
minimal substitution, that is, by replacing the canonical mo-
mentum p = h̄q by the kinetic momentum, � = p + eA(r).
The ansatz remains accurate as long as the lattice spacing is
much smaller than the magnetic length, �B = √

h̄/eB, a condi-
tion fulfilled even by the most intense magnetic field currently
produced in laboratory [4]. It is convenient to express the

operator � in terms of harmonic-oscillator ladder operator,
namely [4,18],

â = �B√
2h̄

(�x − i�y) and â† = �B√
2h̄

(�x + i�y), (A7)

with [̂a, â†] = 1. With the help of standard canonical quanti-
zation rules, one writes the Dirac Hamiltonian in the presence
of an external magnetic field B = Bêz as [18]

H ξ
B ≡

(
h′

ξ h†
ξ

hξ h′
ξ

)
, (A8)

where the diagonal element is

h′
ξ ≈ h̄ωc

t (2)

|t (1)|
3√
2

a0

�B

[̂
a†â − ξ

1

2
√

2

a0

�B
(̂a†3 + â3)

− 3

8

a2
0

�2
B

(̂a†â)2

]
(A9)

and the off-diagonal ones are

hξ ≈ ξ h̄ωc

[(̂
a† + 2t (3)

t (1)
â

)
− ξ

a0√
2�B

(
â2

2
+ 2t (3)

t (1)
â†2

)

− a2
0

�2
B

(
1

4
â†2â + 2t (3)

t (1)
â†â2

)]
, (A10)

where ωc = √
2v

(1)
F /�B is the cyclotron frequency.

Here, we are interested in the |N | � 1 limit. Thus, to a
good approximation we can neglect 1/N corrections related
to the ordering of the ladder operators [4,18] and approximate
(̂a†̂a)2 ≈ â†2̂a2 ≈ â2̂a†2.

Hence, solving the eigenvalue equation in two spinors
H ξ

BψN = εNψN , where ψN = (uN , vN )T , the eigenvalue equa-
tion for the second spinor component becomes [4]

hξ h†
ξvN � (εN − h′

ξ )2vN . (A11)

There are terms in h′
ξ and hξ h†

ξ that do not commute with

N̂ = â†̂a. One solves Eq. (A11) by perturbation theory, which
is justified by noting that the corrections are proportional to
a0/�B small parameter. With this treatment, trigonal warping
is taken into account at leading order. After some algebra, we
can write the energies of the LLs in the large |N | limit up to
third-nearest-neighbor hopping as

εN = ε
(1)
N + ε

(2)
N + ε

(3)
N . (A12)

Note that εN is independent of the valley ξ index. The first two
terms,

ε
(1)
N ≈ sgn(N )h̄ωc|N |1/2

(
1 − 3

8

a2
0

�2
B

|N |
)

, (A13)

ε
(2)
N ≈ h̄ωc

t (2)

|t (1)|
3√
2

a0

�B
|N |

(
1 − 3

4

a2
0

�2
B

|N |
)

, (A14)

were obtained in Refs. [4,18]. Our derivation expands the
latter results to account for t (3), namely,

ε
(3)
N ≈ −sgn(N )h̄ωc

2t (3)

t (1)
|N |1/2

(
1 − t (3)

t (1)
− 59

32

a2
0

�2
B

|N |
)

.

(A15)
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