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Electrically driven spin resonance (EDSR) is an established tool for controlling semiconductor spin qubits.
Here, we theoretically study a frequency-mixing variant of EDSR, where two driving tones with different
drive frequencies are applied, and the resonance condition connects the spin Larmor frequency with the sum
of the two drive frequencies. Focusing on flopping-mode operation of a single electron in a double quantum dot
with spin-orbit interaction, we calculate the parameter dependence of the Rabi frequency and the Bloch-Siegert
shift. A shared-control spin qubit architecture could benefit from this bichromatic EDSR scheme, as it enables
simultaneous single-qubit gates.
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I. INTRODUCTION

The spin degree of freedom of an electron confined in
a quantum dot naturally defines a qubit [1]. Spin qubits in
semiconductors [2], such as germanium [3] or silicon [4],
are promising candidates for the building block of a future
scalable fault-tolerant quantum computer due to the long qubit
lifetimes, the high gate fidelities beyond the error-correction
threshold [5–7] and the small footprint. In spite of these ad-
vantages, in terms of the number of qubits, the state-of-the-art
spin qubit quantum processor [8–10] lags behind supercon-
ducting and trapped-ion-based quantum processors.

A conventional way of realizing a single-qubit gate for
a spin qubit is electron spin resonance (ESR). There, the
electron is illuminated by an ac magnetic field [11]. If the
frequency of the field ω is matching with the qubit splitting
ωsplit, then the spin performs coherent Rabi oscillation. It
is technically demanding to selectively address qubits with
magnetic field at nanoscale, therefore it is more convenient to
replace the magnetic driving by electric dipole spin resonance
(EDSR) technique, where the electric field couples to the spin
via spin-orbit coupling [12], hyperfine interaction [13], or a
magnetic-field gradient [14]. Using an ac electric field also
simplifies the device: instead of extra microwave antennas,
EDSR is triggered by modulating the gate voltages of the
quantum dots. EDSR can be further enhanced in the flopping-
mode configuration, i.e., when a single electron in a double
quantum dot is tuned to the charge tipping point [15,16].

Rabi oscillation occurs not only at the fundamental res-
onance, ω = ωsplit, but also when the driving field is a
subharmonic of the qubit splitting, ω = ωsplit/N with N ∈ Z+.
Subharmonic Rabi oscillation [17,18] has been widely inves-
tigated in the literature and has been observed experimentally
in electrically driven quantum dots [19–22]. Besides sub-
harmonic excitation, two-photon spin transition can also be
realized by bichromatic excitation, i.e., by multiplexing two

distinct ac fields with frequencies ω and ω̄. This bichromatic
excitation induces Rabi oscillation if the frequencies satisfy
the resonance condition ω + ω̄ = ωsplit. In this case, the qubit
transition is caused by the interplay of the two ac fields.

Bichromatic driving is a widely used experimental tech-
nique [23–25], in particular, when orthogonal radio frequency
and microwave magnetic fields are applied [26–29]. In this
paper, we focus on bichromatic driving such that the two
frequencies are of the same order of magnitude, similar to
the experiment in Ref. [30], where Landau-Zener transition
in a double quantum dot was induced by bichromatic electric
driving.

What are the advantages and disadvantages of bichromatic
driving? A disadvantage is a reduced Rabi frequency, as a
bichromatic transition is a second-order effect in the drive
strengths. An advantage, as we argue below, is that it opens
up new opportunities for selective addressing and gate par-
allelization in a 2D qubit array with shared control. Another
potential advantage is that bichromatic control requires lower
driving frequencies compared to the fundamental resonance.
This can be a beneficial feature, as in common experimental
setups, the attenuation of the drive signal in the GHz range
increases with increasing frequency.

To expose these opportunities, we envision and describe
two setups, as shown in Fig. 1, both hosting a 2D quantum-dot
array. The first setup, see Fig. 1(a), features vertically arranged
double quantum dots (black disks), each holding a single
electron. This setup is inspired by the architecture proposed
in Ref. [31]. Qubits (grey ellipses) are defined by the charge
or spin degree of freedom of the electrons, and their high
degree of uniformity is assumed. Two sets of long and straight
plunger gates (red and blue) control the on-site energies of the
quantum dots. Red and blue plunger gates are perpendicular to
each other, and qubits are located above the intersection points
of the plunger gates. (These are only quasi-intersection points,
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FIG. 1. Bichromatic driving used for selective qubit addressing
in 2D qubit array. (a) Vertical arrangement, inspired by Ref. [31].
Qubits (grey ellipses) are defined by the charge or spin of single
electrons confined in double quantum dots (black dots). Selective
qubit addressing is realized by bichromatic driving, where ac volt-
ages with frequency ω and ω̄ are applied on two orthogonal plunger
gates (blue and red lines). If ω + ω̄ matches the qubit splitting,
then only the qubit at the intersection of the two driven gates (i.e.,
the central qubit in the figure) performs Rabi oscillations. Electron
confinement might require further gates that are not drawn here.
(b) Lateral arrangement, inspired by Ref. [32]. When performing
single-qubit gates, the grey barrier gates allow hybridization between
quantum dots, while the black ones do not. Qubits are defined by the
charge or spin of electrons confined in a double quantum dot. The
qubit addressed by bichromatic driving is represented by the two grey
disks. On-site energy is controlled by the diagonal plunger gates.
Selective addressing of the grey qubit is realized by bichromatic
driving, where ac voltages with frequency ω and ω̄ are switched on
two orthogonal plunger gates (red and blue lines). If ω + ω̄ matches
the qubit splitting, then only the selected (grey) qubit is controlled.

because the plunger gates do not touch each other.) Note that
each plunger gate controls the on-site energies of the line
of quantum dots located above the gate. Here, electric-field-
induced selective addressing of a single qubit can be realized
by switching on ac voltages with frequency ω and ω̄ on two
orthogonal plunger gates. If the sum of the two frequencies
matches the qubit splitting, then, because the electric field is
well localized, only the selected qubit above the intersection
point of the plunger gates is addressed, as shown in Fig. 1(a).

Another setup, featuring a lateral arrangement of dou-
ble quantum dots, motivated by the crossbar architecture of

Ref. [32], is shown in Fig. 1(b). Both proposals will be dis-
cussed below, in Sec. V.

In both shared-control schemes outlined above and de-
picted in Fig. 1, parallelization of single-qubit gates on
different qubits is a challenge. We show here that multiplexing
different frequencies on the plunger gates opens the possibility
to realize different single-qubit gates on every qubit in a par-
allel way. A similar multiplexing technique was used recently
for parallel dispersive readout in a quantum dot array [33].

The rest of the paper is arranged as follows. In Sec. II and
in the Appendix, we review the many-mode Floquet theory,
and apply it to calculate the resonance condition and the
Rabi frequency for magnetic-field-induced bichromatic elec-
tron spin resonance. Then, two sections are devoted to present
our analytical and numerical results for electric-field-induced
bichromatic driving of an electron defined in a double quan-
tum dot. In Sec. III the control of a charge qubit, while in
Sec. IV, the control of a spin qubit is discussed. In Sec. V,
we analyze 2D qubit arrays in more detail, and as a main
result, we show how bichromatic driving enables selective
qubit addressing and quantum-gate parallelization. In Sec. VI
we summarize our results.

II. BICHROMATIC ELECTRON SPIN RESONANCE

ESR is an established method to coherently control the spin
quantum state of an electron. In the presence of an external
magnetic field with strength B, the energy of the two spin
states are split by ωsplit = gμBB, where g is the g factor and
μB is the Bohr magneton. In case of monochromatic driv-
ing, a perpendicular ac magnetic field with amplitude Bac

and driving frequency ω induces coherent Rabi oscillation
in the weak-driving limit B � Bac, if the resonance condi-
tion gμBB = h̄ω is fulfilled. In that case, the spin coherently
evolves with the Rabi frequency �Rabi, mono = gμBBac

2h̄ .
The above description is based on the rotating-wave ap-

proximation, which is a standard technique to satisfactorily
describe Rabi oscillations in ESR. However, fine details of the
dynamics in the weak-driving limit, and pronounced effects
in case of stronger driving, such as the Bloch-Siegert shift,
the Bloch-Siegert oscillations, and subharmonic resonances
[34] are not captured by this approximation; for those cases,
Floquet theory is often used instead [35]. Floquet technique
reformulates the spin dynamics in terms of the eigenvalue
problem of an infinite, time-independent matrix. Furthermore,
when two degenerate Floquet levels are weakly coupled to the
other Floquet levels, a Schrieffer-Wolff transformation yields
a 2×2 matrix, allowing to read off the Rabi frequency and the
resonance condition.

In bichromatic ESR, two ac magnetic field components are
applied, characterized by their drive strengths Bac and B̄ac, and
the corresponding drive frequencies ω and ω̄. This system can
be handled by the so-called many-mode Floquet theory [36],
which is the generalization of single-mode Floquet theory
in the presence of multiple periodic fields. This technique
was used for a bichromatic ESR [37], where both ac fields
are orthogonal to the static field, but in such case only an
odd number of photons could be involved in the transition.
To realize two-photon bichromatic ESR one ac field must
have a component that is longitudinal (parallel) to the static
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field. This phenomenon was investigated theoretically [38,39]
when the bichromatic driving consists of a longitudinal radio-
frequency field and a transverse microwave field.

In this section, we derive a formula for the Rabi frequency
and a formula of the resonance condition, the latter incorpo-
rating the Bloch-Siegert shift. We focus on a special case of
bichromatic ESR, when the Bac field is longitudinal (parallel),
and B̄ac field is orthogonal, to the static magnetic field, further-
more, both frequencies are of the same order of magnitude.
The corresponding Hamiltonian reads

H (t ) = 1
2 gμBBσz + 1

2 gμBBac cos (ωt )σz

+ 1
2 gμBB̄ac cos (ω̄t )σx, (1)

where σx, σz are Pauli matrices in the spin subspace.
First, we apply many-mode Floquet theory in presence

of two ac magnetic fields to find the solution of this time-
dependent Hamiltonian. As it is presented in details in
Appendix A, this theory leads to an eigensystem problem of
an infinite, so-called Floquet matrix. It is instructive to regard
the Floquet matrix of the undriven system as the unperturbed
case, and consider the contribution of the driving fields to the
Floquet matrix as a perturbation. If ω + ω̄ matches the qubit
splitting, then the unperturbed Floquet matrix has double-
degenerate eigenstates. Next step, we choose one of these
doublets, and restrict our analysis to the weak-driving regime,
where {Bac, B̄ac} � B. The two highlighted unperturbed Flo-
quet levels are only weakly coupled to the rest of the matrix
by the driving terms, hence an effective 2×2 Hamiltonian can
be derived by a second-order Schrieffer-Wolff transformation.

The resulting effective Hamiltonian describes complete
Rabi oscillations with frequency

�Rabi,bi = (gμB)2BacB̄ac

4h̄2ω
, (2)

if the resonance condition is fulfilled

ω + ω̄ = ωsplit + ωBS, (3)

where

ωBS = ωsplit(gμBB̄ac)2

4h̄2ω(2ωsplit − ω)
. (4)

For the detailed calculation, follow Appendix B. These for-
mulas are valid, if the frequencies and amplitudes are of
the same order of magnitude: ω ∼ ω̄, Bac ∼ B̄ac, furthermore,
|ω − ω̄| � �Rabi,bi. The latter implies that taking the limit
ω = ω̄ in our formulas does not give correct results for
the monochromatic half-harmonic (two-photon) resonance; a
similar effect is discussed in Sec. IV B. The reason for this
limitation is the following: During the perturbative analysis of
the bichromatic driving we assume, that ω + ω̄ is matching
with the qubit splitting, but 2ω and 2ω̄ are not. If ω and ω̄ are
very close to each other, then 2ω and 2ω̄ are almost matching
with qubit splitting, therefore we have to take into account the
corresponding extra terms during the perturbative calculation.

The bichromatic Rabi frequency is proportional to the
product of the strength of the two driving fields. It implies
that the coherent oscillation is induced only by the interplay
of the two ac fields. The bichromatic Rabi frequency is given
by a second-order formula, which is an order of magnitude

smaller than the fundamental monochromatic Rabi frequency.
It indicates that the bichromatic control of spin qubit is much
slower than the standard monochromatic control, which is
a drawback of this technique. As another consequence, the
power broadening of the resonance peak is smaller in case of
bichromatic driving, hence more precise tuning of the driving
frequencies is required to set the resonance.

As shown in Eqs. (3) and (4), the right-hand side of the
resonance condition is shifted by ωBS, which is a second-order
positive correction, known in the literature as the drive-
strength-dependent Bloch-Siegert shift. It is of the same order
of magnitude as the bichromatic Rabi frequency, therefore
this must be considered while tuning the system into the
resonance.

III. BICHROMATIC DRIVING OF THE CHARGE QUBIT

In this section, we derive and discuss the properties of
the electric field-induced bichromatic resonance for a charge
qubit. Note that such a setup has been investigated in the
experiment in Ref. [30], where a charge qubit was modulated
simultaneously by two different ac electric fields. Subhar-
monic microwave resonances were already demonstrated for
charge qubit defined in quantum-well structures [40,41]. The
terminology in this section refers to vertical double-dot ar-
rangement drawn in Fig. 1(a), but the model applies equally
well to the lateral arrangement of Fig. 1(b) as well.

A charge qubit is defined on a single-electron double quan-
tum dot by the following Hamiltonian:

Hcharge = t0τ1 + ε

2
τ3, (5)

where ε is the detuning, and t0 is the tunneling amplitude.
Furthermore, τ1, τ2, τ3 are Pauli matrices acting on the basis
states, that the electron occupies the top or bottom quantum
dot. The energy splitting of the charge qubit is h̄ωsplit =√

4t2
0 + ε2. To describe the modulation of the gate voltage of

the bottom quantum dot with frequency ω and ω̄, we augment
the Hamiltonian via the modulated detuning by the following
term:

HE =
(

edFac

2
cos ωt + edF̄ac

2
cos ω̄t

)
τ3, (6)

where the distance between the quantum dots in a charge qubit
is denoted by d , and the amplitude of the ac electric fields are
Fac and F̄ac. For compact notation, we introduce new variables,
Eac = edFac and Ēac = edF̄ac. In contrast to the bichromatic
ESR discussed in Sec. II, here, the Hamiltonian Eq. (6) and
consequently, the formula for the Rabi frequency [Eq. (10)]
and for the Bloch-Siegert shift [Eq. (11)] are invariant under
the exchange of the two ac fields, i.e., Eac, ω ↔ Ēac, ω̄.

With a unitary transformation, this model can be mapped to
a bichromatic ESR model, where the ac fields have the same
polarization. For a general value of the detuning ε, the ac fields
have both longitudinal and orthogonal components that lead to
Rabi oscillation as described in the previous section. However,
for ε = 0, both ac fields are orthogonal, which allows only odd
number of photon processes. Therefore, the bichromatic Rabi
frequency vanishes at the charge degeneracy point (ε = 0).
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In case of satisfying the following conditions:

{Eac, Ēac} � h̄ · {ωsplit, ω, ω̄}, (7)

Eac ∼ Ēac, (8)

�Rabi,bi � |ω − ω̄|, (9)

we can use the same calculation method as in the previous
section to derive the Rabi frequency

�Rabi,bi = EacĒact0ε

2h̄4ωω̄ωsplit
, (10)

and the Bloch-Siegert shift

ωBS = t2
0

h̄4ωsplit

(
E2

ac

ω2
split − ω2

+ Ē2
ac

ω2
split − ω̄2

)
, (11)

for bichromatic driving. The resonance condition is the same
as in Eq. (3).

From a quantum computing perspective, it is important to
perform fast Rabi oscillations as fast single-qubit gates. Hence
we analyze the parameter dependence of the Rabi frequency
induced by bichromatic driving. Beyond the trivial option, to
increase the driving strength, in an experiment it is feasible to
control the detuning and the difference of the ac frequencies.
Due to the resonance condition, the sum of the two ac frequen-
cies are fixed, but the difference is a freely variable parameter.
According to Eq. (10) the bichromatic Rabi frequency is pro-
portional to ∼ 1

ωω̄
, hence this Rabi frequency has a minimum,

when the ac frequencies are close to each other. The larger
the difference in ac driving frequencies, the larger the Rabi
frequency of the charge qubit. However, this difference cannot
be arbitrarily large, because we need to satisfy the condition
of Eq. (7).

How to set the detuning ε to maximize the Rabi frequency?
The bichromatic Rabi frequency is proportional to ε, therefore
in the charge degeneracy point (ε = 0) we cannot drive the
charge qubit in the bichromatic way. This is in contrast with
the monochromatic driving of the charge qubit, where the
charge degeneracy point is the optimal detuning point that
maximizes the Rabi frequency. If the ratio of the two ac
frequencies is fixed, then the bichromatic Rabi frequency is
proportional to ε

ω3
split

, which has a maximum at ε = ±√
2t0.

Similar to the bichromatic ESR, the Bloch-Siegert shift and
the Rabi frequency are given by second-order expressions.
Hence, the power broadening of the resonance is comparable
to the Bloch-Siegert shift, hence it should be relatively easy to
measure the latter in an experiment.

IV. BICHROMATIC DRIVING OF THE FLOPPING-MODE
SPIN QUBIT

In this section, as a third and last example for the bichro-
matic driving, we present bichromatic EDSR. As a concrete
example we study the manipulation of a flopping-mode spin
qubit by bichromatic electric field. In a flopping-mode spin
qubit, a spinful electron is trapped in a double quantum dot
and the spin state is split by a homogeneous magnetic field.
The spin qubit can be controlled by ac electric field, if an
inhomogeneous magnetic field is applied, or if the spin-orbit

interaction is significant. In this section, we focus on the
latter one. In case of monochromatic driving, flopping-mode
electric-dipole spin resonance was already studied theoreti-
cally [15,42] and also demonstrated experimentally [16].

A. Flopping-mode spin qubit

In a flopping-mode spin qubit, the spin and charge dy-
namics of the electron can be described by the following
Hamiltonian:

Hflop = t0τ1 + ε

2
τ3 + 1

2
h̄(ωz + δωzτ3) ⊗ σz + h̄τ2 ⊗ �σ,

(12)

where the first two terms were already defined in Eq. (5).
Here, we introduce h̄ω0 =

√
4t2

0 + ε2. In our model, we take
into account the g factor difference between the two dots,
therefore the Hamiltonian contains a dot-independent Zee-
man energy h̄ωz = gsμBB and a dot-dependent antisymmetric
Zeeman energy h̄δωz = gaμBB, where gs/a = g2±g1

2 are the
symmetric and the anti-symmetric components of g-factors,
defined from the g factors g1 and g2 of the bottom and
top quantum dots, respectively. As before, μB is the Bohr-
magneton, B is magnetic field directed in the z axis, and σx, σy,
and σz are Pauli matrices in the spin subspace. τ matrices
are already defined after Eq. (5). The last term of Eq. (12)
describes spin-dependent tunneling due to the spin-orbit in-
teraction [43–45]. In general, it can be characterized by three
independent parameters � = (�x,�y,�z ). However, as we
show below, in the leading-order results, only the combination
�SO =

√
�2

x + �2
y of these parameters appears.

In the following perturbative calculation, we assume this
hierarchy between the parameters,

�z � �SO ∼ δωz � (ω0 − ωz ), (13)

where the spin-orbit interaction �SO and the dot-dependent
Zeeman-energy δωz are taken into account as perturbations.
This condition can be satisfied for certain host materials,
e.g., for electrons in silicon, where �SO is around a few
μeV, and the g-factor antisymmetry is small, ga � gs [46].
However, for other host materials with large intrinsic spin-
orbit coupling strength and strong g-factor differences, such
as germanium, the condition Eq. (13) is violated, and our
perturbative results are inaccurate. Nevertheless, we carry out
the perturbative description, because it provides a simple,
intuitive physical picture, and yields analytical results that can
serve as benchmarks for future numerical and experimental
studies. Note that our perturbative results apply to electronic
qubits in silicon only if the energy splitting associated to
the valley degree of freedom[4] exceeds the energy scales
of Eq. (12).

In Fig. 2 the spectrum of the Hamiltonian Eq. (12) is
shown as a function of detuning ε. If the condition Eq. (13) is
fulfilled, then the bands, in leading order, can be labeled by the
spin and the charge configurations of the states. We focus on
the case 2t0 > h̄ωz, and define the flopping-mode spin qubit
basis states as the ground state and the first excited state of the
Hamiltonian. The energy splitting of the flopping mode qubit
h̄ωsplit is dominated by the dot-independent Zeeman term.
However, the antisymmetric Zeeman energy and the spin-orbit
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FIG. 2. Energy levels of the flopping-mode Hamiltonian as a
function of the detuning. The flopping-mode spin qubit with splitting
ωsplit is formed by the two lowest energy states. On the right-hand
side we show the dominant charge (ground or excited) and spin
(up or down) configurations of the states. Parameters: t0 = 21 μeV,
h̄ωz = 24 μeV, h̄�SO = 2 μeV, h̄δωz = 0 μeV, and h̄�z = 0 μeV.

coupling strength gives first-, second-, and third-order correc-
tions to that,

ωsplit ≈ ωz − ε

h̄ω0
δωz − 2ωz

ω2
0 − ω2

z

�2
SO

+ 2δωzε
(
t2
0 δω2

z + h̄2ω2
0�

2
z

)
h̄3ω5

0

. (14)

For a consistent description of the resonance condition, we
need the third-order expansion in Eq. (14), since the leading-
order result for the bichromatic Rabi frequency is also of third
order, see next subsection.

Before discussing the bichromatic Rabi oscillation, first
we review the monochromatic Rabi oscillation, when the
qubit is controlled by a single sinusoidal electric field, HE =
Eac
2 cos(ωt )τ3. If the frequency of the ac electric field matches

the splitting of the flopping-mode spin qubit, i.e., ω = ωsplit,

then a fundamental monochromatic Rabi oscillation is trig-
gered. In case of weak driving

Eac/h̄ ∼ �SO ∼ δωz (15)

the corresponding Rabi frequency can be derived by a second-
order perturbative calculation

�Rabi,mono = 2t0ωz�SO

h̄2ω0
(
ω2

0 − ω2
z

)Eac. (16)

This formula implies that the interplay of the electric field
and the spin-orbit interaction is required for monochromatic
electrical control of the flopping-mode spin qubit. The Rabi
oscillation can be sped up by tuning the system to the charge
degeneracy point (ε = 0). If the tunneling amplitude t0 is
large compared to the Zeeman splitting, then the different
spin states are hardly hybridized, and the electric control is
ineffective. Hence, for fast electrical control, the charge-qubit
splitting ω0 should be tuned slightly above the Zeeman split-
ting ωz.

In case of the fundamental resonance, the Bloch-Siegert
shift is negligible, because it gives only a higher-order correc-
tion to the resonance condition.

Note that our formula for the Rabi frequency Eq. (16)
at ε = 0 is almost identical to Eq. (3) of Ref. [15]. Minor
difference arises from the fact that our model incorporates
spin-orbit interaction, whereas the model in Ref. [15] de-
scribes an inhomogeneous magnetic field.

B. Bichromatic driving

As one of our main results, we now present our perturbative
analytical expressions for the Bloch-Siegert shift and for the
Rabi frequency, for the case when the flopping-mode spin
qubit is controlled by bichromatic ac fields with frequency
ω and ω̄ according to Eq. (6). We impose the condition of
Eqs. (7)–(9), (13), and (15). If the frequencies of the electric
fields satisfy the resonance condition ω + ω̄ = ωsplit + ωBS,
then the flopping-mode spin qubit performs Rabi oscillations
with the Rabi frequency

�Rabi,bi = t0εωz
(
ω2 − ωωz + ω2

z − 3ω2
0

)
h̄4ω0

(
ω2

0 − ω2
)(

ω2
0 − ω2

z

)(
ω2

0 − (ωz − ω)2
)�SOEacĒac, (17)

with a corresponding Bloch-Siegert shift

ωBS = εt2
0

(
3ω2

0 − ω2
)

h̄5ω3
0

(
ω2

0 − ω2
)2 δωzE

2
ac + εt2

0

(
3ω2

0 − (ωz − ω)2
)

h̄5ω3
0

(
ω2

0 − (ωz − ω)2
)2 δωzĒ

2
ac. (18)

These formulas were derived by the same technique as in the
previous sections: many-mode Floquet-theory combined with
Schrieffer-Wolff transformation.

Let us discuss the relevant features of our key analyti-
cal results Eqs. (17) and (18). The proportionality �Rabi,bi ∼
�SOEacĒac signals that a third-order perturbation theory was
used during the derivation, and the Rabi oscillation is the
result of the interplay of the spin-orbit interaction and the
electric fields. The x and y components of the spin-orbit
interaction are key ingredients of the coherent spin rotation,

because besides that no other spin flopping term is built in our
model.

On-site energy detuning ε is one of the tunable parameters
in an experiment, hence we plot the Rabi frequency as a func-
tion of the detuning in Fig. 3. Here we support our analytical
result (solid blue) with numerical results (red points) obtained
via solving the time-dependent Schrödinger-equation with the
Runge-Kutta method. According to Eq. (17), the Rabi fre-
quency is zero in the charge degeneracy point, and it has a
maximum at a finite energy detuning, where ε is of the order
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FIG. 3. Bichromatic Rabi frequency as function of detuning for
the flopping-mode spin qubit. Blue-solid line: Analytical result (17).
Red dots: Result from the numerical simulation, where ω̄ was
optimised numerically for each ε value to obtain complete Rabi
oscillations. Parameters: t0 = 21 μeV, h̄ωz = 24 μeV, h̄�y = 2 μeV,
h̄�x = h̄�z = 0 μeV, h̄δωz = 0 μeV, ω = 0.7ωsplit, and Eac = Ēac =
2 μeV.

of t0 and ωz. For the exact position of the maximum we need
to maximize the analytical formula (17) with respect to ε.

From an experimental viewpoint, setting the working point
at the vicinity of the maximum has two advantages: first, it
ensures a high Rabi frequency; second, the Rabi frequency is
insensitive to charge noise at this point in first order, which
fosters long-lived Rabi oscillations in the presence of charge
noise.

In case of bichromatic driving, the resonance condition
fixes the sum of ω and ω̄, but there is a freedom to divide the
sum between ω and ω̄. In Fig. 4, the Rabi frequency is plotted
as a function of this division, namely, as a function of ω. Here,
the analytical results are also tested against numerically exact
solutions of the time-dependent Schrödinger equation. The

FIG. 4. Bichromatic Rabi frequency as function of the frequency
of one of the driving fields, ω. Blue-solid line: Analytical result
(17). Red dots: Result from the numerical simulation, where ω̄ was
optimised numerically for each ω value to obtain complete Rabi
oscillations. Parameters: ε = 21 μeV, t0 = 21 μeV, h̄ωz = 24 μeV,
h̄�SO = 2 μeV, �z = 0 μeV, h̄δωz = 0 μeV, and Eac = Ēac = 2 μeV.

FIG. 5. Bichromatic Bloch-Siegert shift as function of the
strength of one of the two electric fields Eac. Blue solid line: An-
alytical result (18). The other electric field strength is fixed, Ēac =
2 μeV. The remaining parameters: h̄ωz = 24 μeV, h̄�y = 2 μeV,
h̄�x = h̄�z = 0 μeV, ε = 30 μeV, t0 = 21 μeV, h̄δωz = 3 μeV, and
ω = 0.7ωsplit . ωsplit was determined numerically, ωsplit/(2π ) =
5.36026 GHz. ω̄ was optimised numerically for each Eac value to
obtain complete Rabi oscillations.

figure shows that for an experimentally motivated parameter
set, the Rabi frequency is hardly controllable by changing
the division; only a slight increase of the Rabi frequency is
observed as the difference |ω − ω̄| is increased.

The numerical results in Fig. 4 reveal the limitations of our
analytical method. In the center of the graph, the stand-alone
numerical data point illustrates the breakdown of perturbation
theory in the range ω ≈ ω̄, where the condition Eq. (9) is
violated. Note that the numerically obtained Rabi frequency
is approximately twice as large as the analytical result indi-
cates; the numerical result can be recovered by an appropriate
perturbative description of the half-harmonic resonance [34].
At the edges of the plot, where the condition Eq. (7) is vio-
lated, the discrepancy between the analytical and numerical
result increases. For even more extreme values of ω, the Rabi
oscillations become distorted (not shown).

The proportionality ωBS ∼ δωzE2
ac in Eq. (18) signals that

the leading order term of the Bloch-Sigert shift is derived by
third-order perturbation theory, similarly to the formula (17)
of the Rabi frequency. These two quantities are of the same or-
der in the small parameters, i.e., the drive-strength-dependent
shift of the resonant condition is as significant as the power
broadening. According to Eq. (18) the Bloch-Sigert shift is
due to the interplay of the g factor antisymmetry and the
electric field. If the g-tensors are symmetric in the two dots,
i.e., ga = 0, then the Bloch-Siegert shift will be a fourth-order
effect and can be neglected. In Fig. 5, the analytical result
of the Bloch-Siegert shift Eq. (18) is verified by numerical
simulation.

Let us close this subsection by discussing the role of phase
shifts in the ac electric fields. So far, we investigated the
scenario when the two ac fields are switched on in-phase, i.e.,
both fields have the maximal value at t = 0. Even if we take
into account the phases of the driving fields, described by the
Hamiltonian

HE = 1
2 (Eac cos (ωt + φ) + Ēac cos (ω̄t + φ̄))τ3, (19)
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the resulting Rabi frequencies are insensitive to the phase
shifts φ and φ̄. However, different phase shifts result in dif-
ferent single-qubit gates. (In the description of bichromatic
ESR in Appendix B we take into account these phase shifts.)

C. Charge noise

As we have shown above, Rabi oscillations due to bichro-
matic driving are slower than those due to monochromatic
driving, if the drive strengths are the same. In this subsec-
tion, we show the consequence that bichromatic EDSR is
rather sensitive to charge noise. In particular, we illustrate
the reduction of the visibility of bichromatically induced Rabi
oscillations due to charge noise.

Electrical potential fluctuation is one mechanism responsi-
ble for the damping of Rabi oscillations. Here, we model this
type of noise as a random quasistatic fluctuation of the on-site
detuning. Quasistatic means that the value of the detuning is
assumed to be fixed for each measurement run, but changes
randomly between the subsequent measurement runs. This
type of noise leads to imperfect Rabi oscillations due to two
reasons: (i) The Rabi frequency �Rabi(ε) itself depends on
the detuning. (ii) The fluctuation detunes the system from the
resonance condition, hence the qubit is driven off-resonantly.
If the ac electric field frequencies ω and ω̄ are calibrated
resonantly before the measurement at the value of detuning ε0,
then for an other ε realization the driving will be off-resonant
with a frequency detuning of ωoff(ε) = ωsplit(ε) + ωBS(ε) −
ωsplit(ε0) − ωBS(ε0).

For a certain ε realization, the probability that the popula-
tion of the system is in its excited state is given by

P(t, ε) = �2
Rabi(ε)

�2
Rabi(ε) + ω2

off(ε)
sin

[
1

2
t
√

�2
Rabi(ε) + ω2

off(ε)

]2

.

(20)

For simplicity, the probability distribution of ε is assumed as
a Gaussian distribution with mean value ε0 and standard de-
viation σε . The averaged excited state occupation probability
is derived by averaging over the on-site energy in Eq. (20),
yielding

P(t ) =
∫ ∞

−∞
dεP(t, ε)

1√
2πσε

e
− (ε−ε0 )2

2σ2
ε . (21)

The damping rate of P(t ) is characterized by its maximal value
F = maxt P(t ), which we call the fidelity. In fact, this quantity
describes the fidelity of a π rotation around the x axis (i.e., an
X gate), if this gate is acting on the ground state.

The damped Rabi oscillation P(t ) is plotted in Fig. 6 for
different strength of charge noise and g-factor asymmetry. The
P̄(t ) was calculated using Eq. (21), where P(t, ε) was eval-
uated numerically, solving the Schrödinger-equation for 100
different ε values evenly distributed in [ε0 − 4σε, ε0 + 4σε]
interval, approximating the integral with a sum.

A key observation is that a relatively small charge
noise σε = 0.2 μeV Ref. [47], even in a symmetric dou-
ble quantum dot ga = 0, decreases the fidelity significantly,
to approximately 0.9 (red triangles in Fig. 6). Furthermore,
the frequency detuning ωoff(ε) depends strongly on the an-
tisymmetric Zeemann term δωz, because the leading order

FIG. 6. Damping of the Rabi oscillation due to charge noise
and g-factor asymmetry. Frequency ω̄ was optimised numeri-
cally to maximize the fidelity, yielding ω̄/(2π ) = 1.73442 GHz
for δωz = 0 (red curve), and ω̄/(2π ) = 1.71347 GHz for h̄δωz =
0.5 μeV (black curve). The remaining parameters: t0 = 21 μeV,
ε0 = 30 μeV, h̄ωz = 24 μeV, h̄�y = 2 μeV, h̄�x = h̄�z = 0 μeV,
Eac = Ēac = 2 μeV, and ω = 0.7 ωsplit. Splitting frequency ωsplit was
calculated from Eq. (14). Marks on lines are only guides to the eye.

ε-dependent term of both the Bloch-Siegert shift and the qubit
splitting is proportional to δωz. Therefore, the damping rate
increases significantly, when the g factors are different in the
quantum dots. This is shown by the black curve in Fig. 6,
where small g-factor difference leads to a fidelity less than 0.8.
Observation of bichromatic Rabi oscillation requires reduced
charge noise and a reduced asymmetry of the g factors.

Charge-noise resilience can be improved by tuning the
system into dynamical sweet spots, where, up to leading order,
both the Rabi frequency and the frequency detuning ωoff(ε)
are insensitive to the charge noise. We should note that the idle
sweet spot, where the system is protected against dephasing,
differs from the dynamical one. The former one is at the
charge degeneracy point ε = 0, where we cannot drive the
system, because the Rabi frequency is zero. For monochro-
matic driving, a careful analysis of the sweet spots were done
in Ref. [15], while for bichromatic driving this could be a
subject of future work.

V. APPLICATIONS

Shared control of a 2D spin qubit array, as envisioned
in Ref. [32], provides a strong, square-root reduction (Nc ∝√

Nq) of the number of control lines Nc with respect to the
qubit count Nq. Furthermore, such a setup could serve as a
platform for fault-tolerant quantum computing [48]. In this
section, we highlight the advantages of electric field-induced
bichromatic driving in a 2D grid of semiconducting quantum
dots with shared control.

Instead of building up separate control lines to each
quantum dot, shared control is envisioned by a crossbar ar-
chitecture [31,32]. In such a setup, on-site energies of the
quantum dots can be controlled by a parallel set of long
plunger gates, in such a way that one plunger gate controls
a row or a column of quantum dots. In the vertical and lat-
eral arrangements, sketched in Fig. 1, there are two sets of
long and straight parallel plunger gates, the two sets being
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perpendicular to each other. As discussed below, bichromatic
driving enables selective addressing and parallelized single-
qubit gates in such 2D qubit arrays.

In the vertical arrangement shown in Fig. 1(a), the double
dots are perpendicular to the plane of the 2D array. This may
be created by a 3D-fabrication technique [31]. An alternative
setup, inspired by Ref. [32], is shown in Fig. 1(b). There, the
2D-quantum dot array is defined by the barrier gates shown
as horizontal and vertical lines in Fig. 1(b). Upon performing
flopping-mode single-qubit gates, the grey barrier gates al-
low hybridization of the neighboring quantum dots, while the
black ones do not. As a result, we get a grid of separated dou-
ble dots. Each double dot is occupied by an electron, which
hybridizes between the quantum dots, as it is shown with grey
disks in Fig. 1(b) for one of double dots. This platform can be
operated as an array of charge qubits or flopping-mode spin
qubits. In the former case, the qubit is defined by the location
of the electron, while in the latter case the qubit is defined by
the spin of the electron. Detuning in the double quantum dot
can be controlled by the dc voltage at the diagonal plunger
gates, while single-qubit gates can be realized by ac voltage at
those plunger gates.

A. Selective addressing

In the shared-control qubit arrays shown in Fig. 1, the
selective addressing of the qubits can be achieved using
bichromatic driving, when ac voltages with different frequen-
cies (ω and ω̄) are applied on two perpendicular control lines.
If the sum of the two frequencies matches the qubit splitting,
then only the qubit at the intersection point of the ac-driven
control lines is controlled. The nature of the single-qubit gate
is set by the duration and phase of the ac pulses. The corre-
sponding Rabi frequencies were calculated for a charge qubit
in Sec. III, and for a flopping-mode spin qubit in Sec. IV.

The advantage of the selective addressing with bichromatic
driving is that this method works reliably even if the qubits are
uniform. For example, there is no need for local control of the
Zeeman splitting, which would be required when addressing a
single qubit with a monochromatic field. A potential disadvan-
tage of bichromatic driving, as compared to monochromatic
driving with similar strength, is the relative slowness of single-
qubit gate.

B. Parallelization

Combining bichromatic driving with frequency multi-
plexing opens the opportunity of parallelization, i.e., the
simultaneous realization of different single-qubit gates on
each qubit of the 2D array. This is illustrated in Fig. 7,
where qubits (disks) are identified by their row and column
indices. Qubits in the first row are driven bichromatically
by frequencies ω1 and ω̄1 satisfying the resonance condition
ω1 + ω̄1 = ωsplit. In our example, different single-qubit gates
can be performed simultaneously on each qubit of this first
row by appropriately choosing the duration and initial phase
of the ac pulses on the vertical control lines. We can control
qubits in the second row with the same technique, but we need
other driving fields (ω2 and ω̄2) to avoid harmful crosstalk.

In general, in an N×N qubit grid, 2N different frequencies
ω1, ω2, . . . ωN and ω̄1, ω̄2, . . . ω̄N are required for a complete
parallelization, such that these frequencies fulfill the reso-

1,1 1,2

2,1 2,2

FIG. 7. Parallelization of single-qubit gates in a 2D-qubit array
with shared control. Blue (red) qubits in the first (second) row are
driven bichromatically by the blue (red) ac fields. By an appropriate
choice of the durations (τ1,1, . . . , τ2,2) and the initial phases of pulses
through the vertical control lines, any combination of single-qubit
gate is achievable. The voltage on the vertical-control lines is the
sum of ac voltage pulses with different frequencies.

nance condition in pairs, ωi + ω̄i = ωsplit. This can be realized
such that a monochromatic ac field is applied on the hori-
zontal control lines, and the sum of N pulses with different
frequencies is applied on the vertical control lines. Setting the
pulse durations (τ1,1, . . . , τ2,2 in Fig. 7) and the initial phases
of the pulses appropriately, any combination of simultaneous
single-qubit gates is achievable.

To avoid harmful crosstalk, we need to ensure that the
interplay of the electric fields with frequencies ωi and ω̄ j

(i �= j) do not drive the qubits. Because of the relatively small
power broadening (low Rabi frequency) of the bichromatic
resonance, it is relatively easy to find such a set of drive
frequencies for small N . However, this task becomes more
challenging and frequency crowding becomes an issue as the
setup is scaled up by increasing N .

We numerically demonstrate the parallelization in a 3×3
qubit grid, where the flopping-mode spin qubits are uniform,
with parameters ε = 30 μeV, t0 = 21 μeV, h̄ωz = 24 μeV,
h̄�SO = 2 μeV, h̄�z = 0 μeV, and h̄δωz = 0 μeV. Starting
each qubit from the ground state, in our simulations we
find each qubit flipped with at least 99.5% fidelity, if the
parameters of the pulses are chosen in the following way:
Eac = 2 μeV for every pulse; τ1,i = 1543 ns, τ2,i = 1564 ns,
τ3,i = 1615 ns (i ∈ {1, 2, 3}); ω1/(2π ) = 4.62483 GHz,
ω̄1/(2π ) = 1.15620 GHz, ω2/(2π ) = 4.04677 GHz,
ω̄2/(2π ) = 1.73430 GHz, ω3/(2π ) = 3.46874 GHz, and
ω̄3/(2π ) = 2.31230 GHz.

Here, we describe how the numerical parameters above,
yielding the protocol for simultaneous high-fidelity quantum
gates, were constructed. A similar line of thought can be
followed when designing qubit experiments with bichromatic
shared control. First, we choose half of the drive frequencies
according to ω̄1 = 0.2 ωsplit, ω̄2 = 0.3 ωsplit, ω̄3 = 0.4 ωsplit.
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These choices imply the initial values for the frequencies ω1,
ω2, and ω3 (e.g., ω1 = 0.8 ωsplit), and the pulse durations τi, j .
The initial values of the pulse durations are estimated from
the bichromatic Rabi frequency, see Eq. (17). Starting from
these initial values of ωi and τi, j we fine-tune these values to
optimize the spin-flip probability, which we compute by nu-
merically solving the time-dependent Schrödinger equation.

The above-described way of parallelization requires high-
precision control of frequencies and pulse durations. If the
frequencies are detuned from the optimal point (see above) by
a few tens of kHz, then the fidelity drops by a few percent.
For example, if the driving frequencies are given with less
digits, ω1/(2π ) = 4.6248 GHz, ω2/(2π ) = 4.0468 GHz, and
ω3/(2π ) = 3.4687 GHz, the fidelity drops to 97.3–97.7%.
The Rabi-oscillation is accompanied by the so-called Bloch-
Siegert oscillation, i.e., a fast and small amplitude oscillation
is added to the sine curve of the probability vs. time function.
In case of our high fidelity optimization we took into account
the Bloch-Siegert oscillation, therefore, the pulse durations
are given by nanosecond precision.

VI. CONCLUSIONS

In conclusion, we have analysed bichromatic EDSR, that
is, electrically driven spin resonance with bichromatic driving.
Our paper focuses on a single electron in a double quantum
dot with spin-orbit interaction, operated as a flopping-mode
spin qubit. We have found that the Rabi frequency is maxi-
mized, and hence the single-qubit gate times are minimized,
at a nonzero detuning from the charge-qubit tipping point. We
have also found that a g-factor difference between the dots (or
more generally, the inhomogeneity of the effective magnetic
field felt by the electron) causes two significant effects: (i)
It induces a significant Bloch-Siegert shift of the resonance
frequency, which is comparable to the power broadening,
and (ii) It enhances the adversary effect of charge noise. We
have also highlighted that bichromatic EDSR, combined with
advanced frequency multiplexing techniques, enables simul-
taneous single-qubit gates in a crossbar-based shared-control
spin qubit architecture. We envision that our results will foster
the design and interpretation of future experiments on multi-
qubit registers with shared control.
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APPENDIX A: MANY-MODE FLOQUET THEORY

In order to calculate the Rabi frequencies of spin rotations
and the corresponding drive-dependent shift of the reso-
nance, the so-called Bloch-Siegert shift, we have to solve the
initial-value problem suggested by the Hamiltonian defined in
Eq. (1). Because of the bichromatic driving we are not able to
solve this using the simple rotating wave approximation, in-

stead we use the so-called Floquet theory, which was applied
for solving the Schrödinger equation with monochromatic
driving first by Shirley in Ref. [35]. The Hamiltonian describ-
ing the system is required to be periodic in time, but it was
shown that the calculation can be extended to polychromatic
driving [36]. Here we briefly review this extension of the
Floquet theory for bichromatic driving. The time-dependent
Schrödinger equation in matrix form is (h̄ = 1)

i
d


dt
= H
, (A1)

where H is the Hamiltonian

H = H0 + V cos (ωt + φ) + V̄ cos (ω̄t + φ̄). (A2)

H0 is the Hamiltonian of the unperturbed, generally d-level
system, with eigenstates |α〉 and eigenvalues Eα , where α ∈
{0, 1, . . . , d − 1}, V and V̄ are the operators that describe the
driving of the system. The problem is that this Hamiltonian is
not always periodic in time. This can be solved if we introduce
a frequency δω, such that

ω = Nδω, ω̄ = N̄δω, N, N̄ ∈ Z+. (A3)

We can choose this δω to be arbitrarily small, so that integers
N and N̄ can be found and will give the ω and ω̄ frequencies
with any desired precision. With the introduction of this new
frequency δω the Hamiltonian becomes periodic with period
T = 2π/δω and we can apply the Floquet method. The solu-
tion of Eq. (A1) can be written in the form


(t ) = �(t )e−iQt , (A4)

where Q is represented by a constant, diagonal matrix, with
diagonal elements qα , furthermore, �(t ) is represented by
a periodic matrix with period T . If we expand the �(t ) in
Fourier series we get


αβ (t ) =
∞∑

n=−∞



(n)
αβ einδωt e−iqβ t , (A5)

where 

(n)
αβ denotes the Fourier component, the greek letter

indices refer to the matrix elements of the solution 
. The
Hamiltonian is also expanded in Fourier series

Hαβ =
∞∑

n=−∞
H (n)

αβ einδωt . (A6)

With the substitution of the Fourier expansions in the
Schrödinger equation we get recursion relations for the 


(n)
αβ .

These relations are equivalent with an eigenvalue equation

d−1∑
γ=0

∞∑
k=−∞

(
H (n−k)

αγ + nδωδαγ δkn
)



(k)
γ β = qβ


(n)
αβ . (A7)

This is the eigenvalue equation of the so-called Floquet
Hamiltonian HF , which is now time-independent but in return
infinite-dimensional. The Floquet Hamiltonian is defined the
following way:

〈αn|HF |βm〉 = H (n−m)
αβ + nδωδαβδnm. (A8)

The |αn〉 states are called the Floquet states and form an
orthonormal basis. The time-evolution operator U (t, t0) can
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be written as

Uβα (t, t0) =
∞∑

n=−∞
〈βn|e−iHF (t−t0 )|α0〉einδωt . (A9)

This HF Hamiltonian contains in its definition the δω pa-
rameter, so it is not useful for calculations in this form. It was
shown that the HF can be decomposed into block-diagonal
form containing HF,0, HF,p1 , HF,p2 ...blocks [36]. The HF,0

block is defined through the subspace G0 spanned by the basis
set {|αm〉}, where m is an integer, which can be represented
as nN + n̄N̄ , n and n̄ are arbitrary integers. The other blocks
are defined in a similar way, the subspaces Gp are spanned by
{|α, p + m〉}, where p is an integer, which cannot be written as
nN + n̄N̄ . In every subspace we can define the Floquet block
if we relabel the |αn〉 state as |αpnn̄〉,

〈αpnn̄|HF,p|βpkk̄〉
= H (n−k,n̄−k̄)

αβ + (pδω + nω + n̄ω̄)δαβδnkδn̄k̄ . (A10)

The H (n,n̄)
αβ Fourier component can be calculated if we use the

Hamiltonian defined in Eq. (A2),

H (n,n̄)
αβ = Eαδαβδn,0δn̄,0 + Vαβ

2
(eiφδn,1 + e−iφδn,−1)δn̄,0

+ V̄αβ

2
(eiφ̄δn̄,1 + e−iφ̄δn̄,−1)δn,0, (A11)

where Vαβ = 〈α|V |β〉, V̄αβ = 〈α|V̄ |β〉. The time-evolution
operator in Eq. (A9) contains the |α0〉 vector, so it is sufficient
to consider only the HF,0 block of the HF Hamiltonian. We can
denote the |βpkk̄〉 as |βkk̄〉, because we know that p = 0. The

time-evolution operator becomes

Uβα (t, t0) =
∞∑

n=−∞

∞∑
n̄=−∞

〈βnn̄|e−iHF,0(t−t0 )|α00〉ei(nω+n̄ω̄)t .

(A12)

The HF,0 Hamiltonian describes the transitions as the Hamil-
tonian defined in Eq. (A2) does, but it is time-independent.
For convenience we denote the HF,0 Hamiltonian as HF . For a
more detailed investigation of the structure of the Hamiltonian
see Ref. [36].

APPENDIX B: CALCULATION OF BICHROMATIC ESR

In weak-driving limit, when {Bac, B̄ac} � B is fulfilled,
a perturbative description of the multi-photon transitions is
possible. Using time-independent Schrieffer-Wolff transfor-
mation [49], also known as quasidegenerate perturbation
theory [50] we can reduce the infinite-dimensional Floquet
Hamiltonian, HF , to an effective 2×2 Hamiltonian, which
describes the bichromatic transition up to second order in
the ac magnetic fields. The V cos ωt and V̄ cos ω̄t driving
terms of the Hamiltonian described in Eq. (A2) are considered
perturbations.

The set of eigenfunctions of the Floquet Hamiltonian can
be divided into weakly interacting subsets A and B, and we
are only interested in the set A, which will describe the two-
photon transition. The quasi-degenerate perturbation theory is
a time-independent unitary transformation, which transforms
the Hamiltonian into a new one, which consists of two blocks,
one corresponding to the set A, the other one to the set B.
These two blocks are independent from each other, meaning
that the transformed Hamiltonian is block-diagonal up to a
given order in the perturbation.

Only a finite part of the Hamiltonian gives contribution up
to a given order in the perturbation. The matrix elements of
the HF Hamiltonian

〈αnn̄|HF |βkk̄〉 = (Eα + nω + n̄ω̄)δαβδnkδn̄k̄ + Vαβ

2
(eiφδn−k,1 + e−iφδn−k,−1)δn̄k̄ + V̄αβ

2
(eiφ̄δn̄−k̄,1 + e−iφ̄δn̄−k̄,−1)δnk . (B1)

If we take the Hamiltonian of the ESR described in Eq. (1), we can write the 8×8 part of the HF , which is sufficient to calculate
the Rabi frequency up to second order in the perturbation,

HF =

β=1 β=0 β=1 β=0 β=1 β=0 β=1 β=0
k=1 k=1 k=0 k=0 k=1 k=1 k=0 k=0
k̄=0 k̄=0 k̄=0 k̄=0 k̄=1 k̄=1 k̄=1 k̄=1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

. . . −
ωsplit

2
+ω 0 −

gμBBac

4
eiφ 0 0

gμBB̄ac

4
e−iφ̄ 0 0 . . .←α=1, n=1, n̄=0

. . . 0
ωsplit

2
+ω 0

gμBBac

4
eiφ

gμBB̄ac

4
e−iφ̄ 0 0 0 . . .←α=0, n=1, n̄=0

. . . −
gμBBac

4
e−iφ 0 −

ωsplit

2
0 0 0 0

gμBB̄ac

4
e−iφ̄ . . .←α=1, n=0, n̄=0

. . . 0
gμBBac

4
e−iφ 0

ωsplit

2
0 0

gμBB̄ac

4
e−iφ̄ 0 . . .←α=0, n=0, n̄=0

. . . 0
gμBB̄ac

4
eiφ̄ 0 0 −

ωsplit

2
+ω+ω̄ 0 −

gμBBac

4
eiφ 0 . . .←α=1, n=1, n̄=1

. . .
gμBB̄ac

4
eiφ̄ 0 0 0 0

ωsplit

2
+ω+ω̄ 0

gμBBac

4
eiφ . . .←α=0, n=1, n̄=1

. . . 0 0 0
gμBB̄ac

4
eiφ̄ −

gμBBac

4
e−iφ 0 −

ωsplit

2
+ω̄ 0 . . .←α=1, n=0, n̄=1

. . . 0 0
gμBB̄ac

4
eiφ̄ 0 0

gμBBac

4
e−iφ 0

ωsplit

2
+ω̄ . . .←α=0, n=0, n̄=1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. (B2)

155412-10



ELECTRICALLY DRIVEN SPIN RESONANCE WITH … PHYSICAL REVIEW B 106, 155412 (2022)

For convenience we denote the α = 0, n = 0, n̄ = 0,

β = 0, k = 0, k̄ = 0 element of the HF as HF 00. The 2×2
effective Hamiltonian that will describe the two-photon transi-
tion consists of elements HF 00, HF 01, HF 10, and HF 11. The
second-order correction of the effective Hamiltonian

HF
[2]
mm′ = 1

2

∑
l �=m,m′

HFmlHF lm′

(
1

Em − El
+ 1

Em′ − El

)
,

(B3)
where Em, El , El ′ are diagonal elements of the Floquet Hamil-
tonian. We can get the Rabi frequency through calculating the
second order correction of the HF 01 off-diagonal element, be-
cause |HF

[2]
01 | = �Rabi,bi

2 . Using Eq. (B3) and the approximate
condition of the resonance, HF 00 = HF 11, we can calculate
the HF

[2]
01 , because only the l = −2 and l = 3 cases give

contribution to the sum. The result is

�Rabi,bi = (gμB)2BacB̄ac

4h̄2ω
. (B4)

In order to calculate the Bloch-Siegert shift we have two
calculate the second order corrections two the diagonal ele-
ments of the effective 2×2 Hamiltonian, HF

[2]
00 ,HF

[2]
11 . We

could carry out this calculation using a well chosen 8×8
matrix, just like we did before, but it is not necessary. For the
first diagonal element the Eq. (B3) that describes the second
order correction gets simplified to

HF
[2]
00 =

∑
l �=0

|HF 0l |2
E0 − El

. (B5)

This sum can be evaluated without arranging the
〈αnn̄|HF |βkk̄〉 elements in a matrix. The HF 0l is the
〈000|HF |βkk̄〉 element, the l �= 0 condition means that the
β, k, k̄ indices cannot be zero at the same time, but we do
not indicate this fact in the next equation. The Em diagonal
element can be indexed in fact with three indices,

Em = Eα + nω + n̄ω̄ = Eαnn̄, (B6)

where α ∈ {0, 1}, E0 = ωsplit

2 , E1 = −ωsplit

2 . The sum reformu-
lated

HF
[2]
00 =

1∑
β=0

∞∑
k=−∞

∞∑
k̄=−∞

|〈000|HF |βkk̄〉|2
E000 − Eβkk̄

. (B7)

Using Eq. (B1) the sum can be calculated, the result is

HF
[2]
00 = (gμB)2B̄2

ac

16

(
1

ω
+ 1

ω + 2ω̄

)
. (B8)

The second-order correction to the other diagonal element can
be calculated similarly,

HF
[2]
11 =

1∑
β=0

∞∑
k=−∞

∞∑
k̄=−∞

|〈111|HF |βkk̄〉|2
E111 − Eβkk̄

. (B9)

This yields

HF
[2]
11 = − (gμB)2B̄2

ac

16

(
1

ω
+ 1

ω + 2ω̄

)
. (B10)

The effective 2×2 Hamiltonian that describes the transition
Heff ,

Heff =
(

ωsplit

2 + HF
[2]
00 −�Rabi,bi

2 e−i(φ+φ̄)

−�Rabi,bi

2 ei(φ+φ̄) −ωsplit

2 + ω + ω̄ + HF
[2]
11

)
.

(B11)
Note that the off-diagonal element of the effective Hamil-

tonian has a complex phase, it means that in the corotating
frame the qubit state vector rotates around an axis that lies in
the x-y plane and forms an angle of (φ + φ̄) with the x axis.
The frequency of the rotation is the Rabi frequency calculated
in Eq. (B4).

The resonance condition is that the two diagonal elements
are equal,

ω + ω̄ = ωsplit + HF
[2]
00 − HF

[2]
11 . (B12)

The term next to the ωsplit is the drive-dependent shift of the
resonance, the Bloch-Siegert shift. Using Eqs. (B8), (B10),
and the condition ω + ω̄ ≈ ωsplit, we get the Bloch-Siegert
frequency Eq. (4).

The calculation in the case of charge and flopping-mode
spin qubit is similar, the only additional step is a basis trans-
formation into energy basis of the undriven system before
applying the Floquet theory. The basis transformation of the
charge qubit Hamiltonian can be carried out exactly, while the
transformation of the flopping-mode spin qubit Hamiltonian
can be handled perturbatively, where the term describing the
spin-orbit interaction and the g-factor antisymmetry are con-
sidered perturbations, so a hierarchy between the parameter
holds as Eq. (13) suggests.
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