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Phase diagram of Rydberg-dressed atoms on two-leg triangular ladders
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Dressed Rydberg atoms in optical lattices are a promising platform for the quantum simulation of intriguing
phenomena emerging in strongly interacting systems. Relevant to such a setup, we investigate the phase
diagram of hard-core bosons in a triangular ladder with next-to-nearest-neighbor interaction along each leg and
nearest-neighbor interactions without hopping between the legs. For weak interactions, Abelian bosonization
predicts a spin density wave and a fully gapless Luttinger liquid phase. Such liquids transition to a “spin-locked”
cluster Luttinger liquid at strong interactions along each leg, as predicted by cluster bosonization. Interestingly,
the competition with the zigzag interaction generates a charge density wave, a “polarized holonic” phase, and a
crystalline phase at the filling 2/5, that we address via a semiclassical perturbative approach. Exact diagonaliza-
tion and density matrix renormalization group simulations confirm the predictions and further characterize the
phases and their transitions.
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I. INTRODUCTION

Over the last ten years, ensembles of ground-state atoms
laser coupled to Rydberg states in optical lattices have shown
outstanding aptitudes for realizing strongly interacting quan-
tum dynamics under controlled and tunable experimental
conditions [1–7]. For example, a weak coupling between the
ground state and the Rydberg states [8–11] (the Rydberg
dressing) generates an effective long-range two-body inter-
action with a short-range plateau (the soft-shoulder potential
[12]) and a power-law tail (van der Waals). The range of
the plateau may reach a few microns such that probing the
single-site level is easier than conventional cold atom sys-
tems operating in Hubbard-like regimes. For a single scalar
bosonic field in one dimension (1D), such an interaction in-
duces exotic critical behavior such as cluster Luttinger liquids
(CLL), where the Luttinger theorem is inapplicable [13], and
supersymmetric (SUSY) quantum critical points [14]. In two-
dimensional (2D) systems, it is associated with anomalous
dynamics and glassy behavior [15,16].

Constrained dynamics is instead relatively unexplored in
mixed dimensional settings, in particular ladder systems. Such
geometries are particularly interesting, as they have been
recently realized in experiments [17]. In a previous work
along this direction, we considered square ladder lattices for
dressed Rydberg atoms at filling ν = 2/5, with the two legs
interacting, and without interleg hopping [18]. Such geometry
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effectively couples two SUSY theories at a fine-tuned point
separating a Tomonaga Luttinger liquid (TLL) and a CLL. All
phases and transitions involved in the phase diagram surpris-
ingly appear as soon as the two chains interact. Both the TLL
and CLL are “spin locked” and the critical point extends into
a Gaussian phase transition line, a possibly SUSY conformal
transition, and a partially gapped phase in between.

In this work we extend this exploration to triangular lattice
geometries. Such a setting is the minimal geometry where
geometric frustration, interaction clustering, and kinetic dy-
namics can compete. Our main result is the phase diagram of
the system that is schematically depicted in Fig. 1: It is con-
siderably richer than—and fundamentally different from—the
square lattice case. The ability to manipulate the coupling of
the two SUSY conformal field theories by, e.g., increasing the
range of the interleg interaction, would be useful to inves-
tigate SUSY phenomenology [19,20]. By using a triangular
geometry, we show that as soon as the range is extended,
only a single, potentially SUSY, transition exists between the
spin-locked TLL and CLL. In contrast, we show the existence
of three phases exclusive to strong coupling, establishing the
setup as a promising platform to study commensurability in
extended Hubbard models.

We first present the model in Sec. II. We also present the
phase diagram for small intrachain interaction in this section,
as it can largely be expected from past literature. In Sec. III we
identify the rest of the phase diagram, minus one phase, using
numerical simulations. The last phase is difficult to identify
using these simulations, so we provide a semiclassical pertur-
bative approach to help in Sec. IV. We conclude the study
in Sec. V. Appendixes A, B, and C provide analytical and
numerical details necessary to identify the phase diagram for

2469-9950/2022/106(15)/155411(13) 155411-1 ©2022 American Physical Society

https://orcid.org/0000-0001-6822-2337
https://orcid.org/0000-0001-9974-1260
https://orcid.org/0000-0002-3707-8587
https://orcid.org/0000-0001-5338-4181
https://orcid.org/0000-0002-2672-6913
https://orcid.org/0000-0002-2306-7895
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.155411&domain=pdf&date_stamp=2022-10-12
https://doi.org/10.1103/PhysRevB.106.155411


PIERRE FROMHOLZ et al. PHYSICAL REVIEW B 106, 155411 (2022)

FIG. 1. (a) The system of Rydberg-dressed hardcore bosons on a
two-leg triangular lattice with intraleg soft-shoulder interaction (V )
of range 2, anisotropic interleg interactions (U,U1), and intrachain
nearest-neighbor hopping (t). (b) The rich landscape of the phases
of the triangular ladder system for a filling of 2/5 with U1 = U . For
U/t > 0, the phase diagram consists of c = 2 Tomonaga-Luttinger
liquid (2TLL), c = 1 spin density wave (SDW), c = 1 charge den-
sity wave (CDW), c = 1 cluster Luttinger liquid (CLL), polarized
holonic (PH) phases, and fully gapped cluster crystal (CC) (see text)
as marked in the figure. Different lines correspond to different phase
transitions as depicted in the legend. At U = 0 (red line) the two
legs are independent and display c = 1 + 1 TLL and c = 1 + 1 CLL
phases separated by c = 3 supersymmetric point (red crossed dot).

small interchain coupling announced in Sec. II. Appendix D
provides the cumbersome computation details for Sec. IV.

II. THE TRIANGULAR LADDER MODEL

We study a triangular ladder of spinless hard-core bosons at
ν = 2/5 filling [on average two filled sites for every five sites
in each chain, see Fig. 1(a)]. Such a filling supports clustering
in the classical limit. The Hamiltonian of the system reads

H = −t
∑
i,�

(b†
i,�bi+1,� + H.c.) + U

∑
i

ni,+ni,−

+ U1

∑
i

ni,+ni+1,− + V
∑
i,�

rC∑
j=1

ni,�ni+ j,�. (1)

where b†
i,� is the creation operator for hard-core bosons on site

i of chain � = ± and ni,� = b†
i,�bi,�. t is the intrachain hopping,

U and U1 are the anisotropic nearest-neighbor interchain inter-
action amplitude, and V is the intrachain interaction amplitude
of range rC ∈ N. As there is no interchain tunneling, the
U (1) charge of each leg is conserved separately such that the
Hamiltonian Eq. (1) is U (1) × U (1) symmetric. Densities are

tuned by the loading scheme. For simplicity, we take rC = 2
and U1 = U unless otherwise stated.

We now briefly summarize the phase diagram at weak
coupling, which is obtained using both weak-coupling
bosonization and cluster bosonization. These approaches
closely follow previous works [13,14,18]. We thus refer to
Appendixes A and B for the analytical details of the approach,
and only present its results below.

The red line (U = 0) in Fig. 1(b) corresponds to two de-
coupled chains [13,14]. The phase diagram of a single chain
displays a TLL for 0 < V/t � 5.7, and a CLL for V/t � 5.7.
Both the TLL and the CLL have a central charge c = 1. They
are separated by a SUSY conformal phase transition point
of central charge c = 3/2 at V/t � 5.7 identified numerically
[14].

By adding the interaction (U ) between two of these chains,
we obtain the rest of the phase diagram as shown in Fig. 1(b).
We map the leg index to a SU(2) spin-1/2 degree of free-
dom to use the Hubbard model formalism and vocabulary
[12,21,22]. When U > 0, the phase diagram displays a spin
density wave (SDW) TLL with c = 1 and a fully gapless TLL
with c = 2 (2TLL) at weak coupling when U/t � 5V/2t � 1
and 5V/2t � U/t � 1, respectively. These two are separated
by a Berezinskii-Kosterlitz-Thouless (BKT) transition.

For strong shoulder potential (V/t � 5.7), we show that the
phase is a spin-locked CLL with c = 1 for U �= 0. We predict
the separation of the SDW and the CLL by a single phase tran-
sition line of central charge c = 3/2 extending from the c = 3
SUSY critical point. The value of this central charge hints
that this phase transition line might itself be supersymmetric.
This behavior contrasts with the square ladder geometry [18]
where the SDW and CLL are separated by two transitions and
one Luttinger liquid phase instead. As we will now show, the
separation by a single transition occurs as soon as U,U1 > 0.
Furthermore, the phase diagram Fig. 1(b) near the SUSY
point is qualitatively unchanged for any U1/U > 0 justifying
focusing on U1 = U for simplicity.

III. NUMERICAL SIMULATIONS

We confirm these predictions and explore the large U/t
regime using both exact diagonalization (ED) [23] for a sys-
tem of ten sites with periodic boundary condition and infinite
density matrix renormalization group (iDMRG) techniques
[24–31].

A. Phase diagram of the regime U = U1

We first characterize the system using iDMRG to effec-
tively access the system directly at the thermodynamic limit.
The set χ th value of the bond dimension of the matrix-product
state ansatz for the iDMRG simulation introduces a maxi-
mal length-scale (sometimes referred to as correlation length
[32]) ξχ beyond which any correlation decays exponentially
[33–35]. By computing the bipartite von Neumann entangle-
ment entropy Sχ , we obtain the phase diagram in Fig. 2.

Besides contours compatible with the weak U/t predic-
tions (when visible), the simulation predicts three additional
phases at larger U/t . Anticipating their identification, we find
a charge density wave (CDW) TLL phase at intermediate U/t .
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FIG. 2. (a) The entanglement entropy S and (b) the sum of the
absolute values of derivatives with respect to the system parameters
U/t and V/t in the (U/t,V/t ) plane. The quantities are computed
by the iDMRG algorithm with bond dimension χ = 256. The BKT
and 2TLL ↔ CDW transitions are too narrow to stand out when
χ = 256.

When U/t � 1 and V/t � 0.34, we find a fully gapped cluster
crystal (CC). When U/t � 3.1 and V/t � 0.34, we find a
polarized holonic (PH) phase.

To identify and characterize the (gapless) phases and phase
transitions, we compute the central charges c of each by eval-
uating how Sχ scales with ξχ using [36–38]

Sχ = c

6
ln ξχ + b′, (2)

where b′ is a nonuniversal constant. We thereby extract c = 1
for the CLL, SDW, and CDW phases, while c = 2 for the
2TLL phase. We refer to Appendix C for both the associated
scalings of entanglement entropy and correlation functions
characterizing these phases by their leading instabilities.

Moreover, following the method used in Refs. [18,31], we
identify the c = 3/2 SDW ↔ CLL, Gaussian c = 2 SDW
↔ CDW, and the c = 1 CDW ↔ CC phase transitions [see
Fig. 3(a)]. We expect the BKT phase transition between the
SDW and the 2TLL phases by analogy with the square case.
The sudden discontinuities in Sχ seen in Fig. 3(b) indicate that
the direct CDW ↔ CLL transition is of the first order type.
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FIG. 3. (a) The scaling of the entanglement entropy Sχ with
the correlation length ξχ according to Eq. (2) for different phase
transitions. We have tracked the transitions by fixing U/t = 1 (for
SDW ↔ CLL), U/t = 3.5 (for SDW ↔ CDW), U/t = 4.5 (for
CDW ↔ CC), and varying V/t (see Ref. [18]). (b) The variations
of the entanglement entropy Sχ across the CDW ↔ CLL transition
for different bond dimensions χ . The sudden jumps in Sχ suggest
the transition to be first order.
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FIG. 4. (a) The entanglement entropy S and (b) sum of the abso-
lute values of its derivative with respect to the system parameters U/t
and V/t in the (U/t,V/t ) plane for U1 = U/10. The c = 3/2 phase
transition is clearly visible while only an imprint of the Gaussian
transition, existing for U1 = 0, is present. The quantities are com-
puted by the iDMRG algorithm with bond dimension χ = 256.

As the iDMRG simulations do not converge properly in the
PH phase due to frustrations originating from strong repulsive
interaction in the triangular geometry, we cannot characterize
the PH phase or the PH ↔ CC and PH ↔ CDW phase transi-
tions from the iDMRG results. Therefore, to characterize both
the PH and the CC phases, we use a semiclassical strong-
coupling approach, completed by exact diagonalization when
possible.

We note that the 2TLL ↔ CDW transition is too narrow
to be well studied numerically. It is also too deep in the
intermediate interaction regime to be approached by pertur-
bative techniques, hence the dotted lines in Fig. 1(b) represent
extrapolations of the analytical and numerical results.

B. Anisotropic regime U > U1 close to the supersymmetric
critical point

We now study the phase diagram in the vicinity of the
supersymmetric (SUSY) c = 3 critical point at V/t ∼ 5.7 and
U = U1 = 0 as U1 is tuned from 0 (square geometry) to
U > 0. We observe that as soon as U1 > 0 (U1 = U/10 in our
simulation), the charge density wave (CDW) phase existing in
the square geometry [18] vanishes (see Fig. 4). Along with the
phase, the c = 2 Gaussian phase transition existing between
the spin density wave (SDW) and the CDW vanishes as well.
We interpret this result as the nonzero triangular term being
relevant for these parameters, preventing the phase transition
and deforming the SDW phase into the SDW(α) (see Ap-
pendix A).

While no Gaussian transition appears in our simulation, a
more detailed study in its vicinity shows that a remnant of it
still exists (see Fig. 5). Such observation is compatible with
a spin gap reaching a local finite minimum corresponding to
both a correlation length ξχ and entanglement entropy Sχ

reaching a local maximum. The absence of a sharp peak
(present for the transition in the square case, see Ref. [18])
confirms the absence of the transition.

The c = 3/2 phase transition between the spin-locked clus-
ter Luttinger liquid (CLL) and the SDW phases remains. The
phenomenological understanding of this phase transition as
the sign inversion of the mass of an effective Majorana field
existing at the SUSY point for the square geometry [18] holds
as well for the triangular geometry.
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FIG. 5. The variations of the entanglement entropy S with re-
spect to V/t for various U/t and U1 = U/10. The quantities are
computed by the iDMRG algorithm with bond dimension χ = 512.
The SDW to CLL phase transition is sharp, whereas the remnant
of the Gaussian phase transition is not (compared to, e.g., Fig. 5 in
Ref. [18]).

IV. STRONG INTRACHAIN COUPLING

To provide analytical predictions for the large U regime,
we use a perturbative strong coupling approach where t/U is
the perturbation. Semiclassically in the limit U → ∞, both
the geometry and the strong intrachain interaction segment
the ladder into polarized domains. Each domain sees one leg
of the ladder hosting atoms while the opposite leg is empty.
States displaying such domains as in Figs. 6(a) and 6(b) gener-
ate the effective Hilbert space at strong coupling. The filled leg
of the ladder within a domain may host (quasi)holes, which
we call polarized holons: these holons freely propagate within
the domain, and may hop from one domain to the next at no
energy cost. The density of such holons fh and the density of
domain walls fw is fixed by the filling ν, such that

fw + 2 fh = 2 − 4ν, (3a)

0 � fw � Min(2ν, 2 − 4ν). (3b)

When V/t is negligible, configurations that maximize the
density of holons and minimize the number of domains are
favored energetically as the holons can delocalize both within

FIG. 6. (a) The cartoon picture of the PH phase and example of
a semiclassical state of the effective Hilbert space when U → ∞.
The ladder is divided into polarized segments (here, only two with
periodic boundary conditions). These segments are separated by
domain walls (in red). Holes in the segments are holons (in yellow).
Holons can belong to the cohort of a domain wall, like for the left
domain wall on the picture. Arrow: example of hopping. (b) The
cartoon picture of the CC phase. (c) One semiclassical configuration
of the CLL phase.

and beyond a domain. It is the polarized holonic (PH) liq-
uid. Instead, for larger V , small but numerous domains (i.e.,
clusters in that case) are energetically favored. Deprived of
the propagating holons, the system is fully gapped. We denote
this regime as the cluster crystal. When V � 2U , the strong U
coupling approach breaks down.

To derive these results, we first obtain the perturbative
Hamiltonian at second order in perturbation in t2/U with
V = 0. Restricted to the effective Hilbert space of the strong
coupling, the perturbative Hamiltonian is

H |res = t
L∑

i=1

∑
�

(b†
i,�bi+1,� + H.c.)

− 2t2

U

∑
i

(ni,+ni+2,− + ni,−ni+1,+). (4)

In this Hilbert space, the first term of Eq. (4) corresponds
to the hopping of one particle two sites further along the
zigzag if there are immediately at least three consecutive
empty sites in the direction of the hopping [see Fig. 6(a)].
These three consecutive holes constitute the holon. When a
holon is immediately followed by other holons (its cohort),
each of these extra holons adds two holes along the zigzag.
In this formulation, the first term of Eq. (4) simply describes
the hopping of free holons. The second term of Eq. (4) is a
chemical potential for succession of exactly two empty sites.
The polarization of the ladder changes across such a structure:
it is a domain wall. A domain wall can also accompany a
cohort of consecutive holons, each of them adding two holes
along the zigzag. By convention, we consider that the domain
wall is always at the left of the cohort.

To rewrite the effective model in terms of holons and do-
main walls, we require a creation and annihilation operator for
both the holons (h†

i and hi) and the domain walls (w†
i and wi).

It is possible to derive the explicit expression for both the den-
sities of holons (nhi) and domain walls (nwi) (see Appendix D).
The existence of these densities implies the existence of the
associated creation and annihilation operators. Using these
operators, we define the basis of the effective Hilbert space
such that

h†
i |0i〉 = |1i〉, hi|1i〉 = |0i〉, (5a)

h†
i |1i〉 = 0, hi|0i〉 = 0, (5b)

w
†
i |Xi〉 = |wiXi〉, wi|wiXi〉 = |Xi〉, (5c)

with X = 0 or 1, and {hi, h†
i } = {wi,w

†
i } = 1. For simplic-

ity we assume that the holonic and domain walls operators
commute, essentially treating them as decoupled degrees of
freedom. Such approximation is justified a posteriori, by com-
paring our findings to numerics.

Using these operators, we obtain a phenomenological ex-
pression for the perturbative Hamiltonian from which we
deduce an estimate of the energy levels as a function of the
average density of domain walls and holon. The Hamiltonian
is

H |res ∼ t
L∑

i=1

[w†
i h†

i+1wi+1hi + h†
i w

†
i+1hi+1wi
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+ h†
i hi+1(1 − nw,i+1) + h†

i+1hi(1 − nw,i+2)]

− 2t2

U

∑
i

w
†
i wihih

†
i . (6)

In Eq. (6) the first four terms describe the hopping of holons
depending on the proximity of a wall. When no wall is nearby,
the hopping holon is unimpeded. When a holon hops across
a wall, the holon and wall exchange places. The last term
in Eq. (6) counts the number of walls without cohort. As a
consequence, a wall effectively moves only through scattering
with a holon. All walls hop one site when a holon propagates
along the entire ladder. Due to this difference in scale of
the two momenta, we work under the assumption that the
two variables are independent to estimate the spectrum of the
Hamiltonian. We take 〈nhi〉 = fhL and 〈nwi〉 = fwL. We find

〈H |res〉/2tL = t

U
fw( fh − 1) − 1

π
(1 − fw ) sin(π fh)

− 2

π2
sin(π fh) sin(π fw/2). (7)

Equation (7) highlights competition between holons and do-
main walls. When U/t > 2π/[5 sin(π/5)] ∼ 2.14, the phase
is the polarized holonic liquid with c = 1. Such a small value
of U/t is beyond the validity of the strong-coupling approach
which explains the difference with the value of ∼3.1 observed
in Fig. 2. Third order corrections in U/t and higher allow the
transformation of two domain walls of small domains into one
holon and vice versa.

Similarly, we obtain the contribution of the shoulder poten-
tial to the estimated energy levels using the holons and domain
walls reformulation. We find (see Appendix D)

〈HShoulder〉/V L

= 2 − 4 fh − 4 fw + 2 f 2
h − 1

π2
sin2(π fh)

− 1

2π2
sin(π fh) sin(2π fh) + 4 fh fw + 1

2
f 2
w. (8)

The full estimate of the energy levels is the sum of Eqs. (7) and
(8). Because of Eq. (3a), the maximal domain wall density is
twice the maximal holon density, such that Eq. (8) unilaterally
favors the domain walls over the holons. A transition thus
occurs when the contribution of Eq. (8) dominates over the
contribution from Eq. (7). When U → ∞, this transition is
predicted at V/t ∼ 0.33 and observed at V/t ∼ 0.34 in Fig. 2.
Higher order corrections effectively introduce a repulsion be-
tween domain walls. When the density of domain walls is
maximized, a pattern spontaneously breaking the translation
symmetry emerges, and the system goes into the CC phase.

By comparing the energy of semiclassical configuration of
the CC pattern as in Fig. 6(b) ECC = 2V and of a CLL state
minimizing U as in Fig. 6(c) (not included in the restricted

Hilbert space) ECLL = V + 2U when t = 0, we predict the
end of the CC phase at V = 2U . Due to the existence of the
CDW phase (CDW are not included in the restricted Hilbert
space), the transition occurs at smaller V < 2U for finite U .

We extract the order parameter OCC associated with the CC
phase using the structure factor:

S(q, k) = 1

L2

∑
j, j′

∑
�,�′

〈n j,�n j′,�′ 〉e−i[q+k(�−�′ )]( j− j′ ). (9)

In the CC phase at ν = 2/5, S(q, k) displays a sharp peak
at momenta q = 2π/5, k = 2π/5 [see Fig. 7(a)]. Subtract-
ing the disconnected contribution from S(q, k), we define
the order parameter OCC = S(2π/5, 2π/5) − 4/25 of the CC
phase. Figures 7(b) and 7(c) show the variation of the order
parameter along the CC ↔ PH and the CC ↔ CDW phase
transitions, respectively. The sharp changes in OCC across the
CC ↔ PH transition, even for a small system size as L = 10,
strongly hint that this transition might be first order in nature.

V. CONCLUSIONS

We have determined the phase diagram of a triangular
ladder of hardcore bosons at ν = 2/5 filling with next-to-
nearest-neighbor longitudinal interaction and no transversal
hopping. The model is inspired by experimental setups using
Rydberg atoms loaded in an optical lattice [17], where most
of the regimes we propose are in principle accessible. Similar
physics shall be accessible in dressed regimes in tweezers
[39]. The tunneling between the chains can be crucially sup-
pressed by leveraging on the comparatively large quadratic
Zeeman shifts from chain to chain. Alternatively, one can use
a high potential barrier between the chains.

We have seen that the extension of the range of the in-
terleg interaction immediately redesigns the vicinity of the
supersymmetric point with respect to the square ladder case.
In particular, a single phase transition line, likely to be a
supersymmetric one, separates the weak and strong intrachain
interacting regimes at weak interchain interaction. The extra
range only deforms the neighboring SDW and spin-locked
CLL instead. Such results illustrate the difficulty in control-
ling the coupling between two supersymmetric field theories
like in the square case as power-law tails always exist in
realistic systems. Instead, the CLL phenomenology is robust
to the interleg interaction range extension.

The strong coupling limit is also richer in the triangular
geometry: a CDW appears at intermediate U/t , and the PH
and gapped translation symmetry breaking CC emerge at large
U/t , compared to the square case. The gapless PH is qualita-
tively unchanged by varying the range of the interaction or the
filling. Instead, the CC disappears as soon as the filling (2/5
here) is changed or the interaction range is further extended
akin to gapped phases in half-filled Hubbard models. We thus
expect a plethora of other CC patterns for other ranges of V
and matching commensurate filling, separated at incommen-
surate filling by both standard and cluster Luttinger liquid
phases. The phenomenology of the extended Hubbard model
at any filling and at strong coupling is thus more complex than
the sole clusterization of the degrees of freedom but involves
instead the coexistence of phases with both clustered and
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FIG. 7. (a) The structure factor S(q, k) [Eq. (9)] in the CC phase (U/t = 5,V/t = 1.5) as a function of the momenta q and k. S(q, k) attains
a sharp peak at q = 2π/5, k = 2π/5 as highlighted by the blue circle. (b) and (c) The order parameter OCC (see text) along the the CC ↔ PH
and the CC ↔ CDW phase transitions, respectively. (a) and (c) Obtained from iDMRG simulations with bond dimension χ = 256, while (b) is
obtained from ED calculations for a system with ten sites.

Luttinger bosonic excitations separated by uncommon (e.g.,
supersymmetric) phase transitions.

The code used to obtain the data presented in the paper is
directly adapted from Ref. [41].
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APPENDIX A: WEAK COUPLING APPROACH

Using the Abelian bosonization [42,43] method, we study
the phase diagram of the triangular ladder model in the
weak coupling regime. Specifically, after reformulating the
description of the system in terms of fermions using a Jordan-
Wigner transformation, we take the continuous limit of the
discrete model, and linearize it around the Fermi points.
To the obtained chiral Dirac fermions, we then apply the
standard Abelian bosonization relations to finally derive the
sine-Gordon model of two compact bosons. Using a con-
formal renormalization scheme at first loop, we deduce the
asymptotes of the renormalization group equations depending
on the initial conditions. We therefore obtain the outline of the
phase diagram at weak coupling. By computing correlation
functions associated with each asymptote, we identify each
phase of this diagram. Using this approach, we predict the
gapless 2TLL and the SDWz

α phases separated by a BKT
phase transition.

We perform a Jordan-Wigner transformation to use
fermionic degrees of freedom and notions associated with

Hubbard-like models:

bi,� =
(

δ�,+eiπ
∑i−1

j=1 n j,+ci,+

+ δ�,−eiπ
∑N

k=1 nk,+eiπ
∑i−1

j=1 n j,−ci,−

)
, (A1)

where bi,� is the hard-core bosonic annihilation operator on
site i and leg � = ±. The fermionic annihilation operators
ci,� obey the standard anticommutation relations. The parti-
cle number operators are ni,� = c†

i,�ci,� = b†
i,�bi,�. After the

transformation, the triangular ladder Hamiltonian Eq. (1) is
unchanged:

H = H0 + HU + HU1 + HV , (A2)

with

H0 = −t
∑
�=±

∑
i

(c†
i,�ci+1,� + H.c.), (A3a)

HU = U
∑

i

ni,+ni,−, (A3b)

HU1 = U1

∑
i

ni,+ni+1,−, (A3c)

HV = V
∑
�=±

rc∑
r=1

ni,�ni+r,�, (A3d)

where we take rC = 2 unless otherwise specified.
We then linearize the model Eq. (A2) around the Fermi

points (at momentum ±kF ) in the weak coupling regime after
taking the continuum limit by introducing the right- and left-
moving Dirac fermion fields

ci,� ∼ ψR,�(x = i) + ψL,�(x = i), (A4a)

ψr,� = 1√
2πa0

Ur,�eirkF xei
√

π
2 [rφc−θc+�(rφs−θs )]. (A4b)

ψr,� is the associated right (r = R as an index, r = +1 when
in the exponential) and left (r = L, r = −1 respectively)
moving fermionic field in the continuous limit close to the
Fermi points, a0 = 1 is the lattice spacing, Ur,� are the Klein
factors such that {Ur,�,Ur′,�′ } = 2δr,r′δ�,�′ , and kF = πν/a0 is
the Fermi momentum with ν = 2/5 being the filling factor
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for each chain. The bosonic fields φc, φs, θc, and θs are the
charge and spin fields and their respective dual fields. After
bosonization, each term in Eqs. (A3a)–(A3d) splits into the
spin and charge sector as

H0 ∼ vF

2

∫
dx[(∂xθc)2 + (∂xφc)2]

+ vF

2

∫
dx[(∂xθs)2 + (∂xφs)2], (A5a)

HU ∼ U

2π

∫
dx(∂xφc)2 − U

2π

∫
dx(∂xφs)2

+ U

2π2

∫
dx cos(

√
8πφs), (A5b)

HU1 ∼ U1

2π

∫
dx(∂xφc)2 − U1

2π

∫
dx(∂xφs)2

+ U1[1 + cos(2πν)]

2π2

∫
dx cos(

√
8πφs)

+ U1 sin(2πν)

2π2

∫
dx sin(

√
8πφs), (A5c)

HV ∼ V [2 − cos(2πν) − cos(4πν)]

π

∫
dx(∂xφc)2

+ V [2 − cos(2πν) − cos(4πν)]

π

∫
dx(∂xφs)2,

(A5d)

with vF = 2t sin(πν). The full Hamiltonian displays the spin-
charge separation:

H = Hc + Hs, (A6a)

Hc = vc

2

∫
dx

(
Kc(∂xθc)2 + 1

Kc
(∂xφc)2

)
, (A6b)

Hs = vs

2

∫
dx

(
Ks(∂xθs)2 + 1

Ks
(∂xφs)2

)

− g0

4π2

∫
dx cos(

√
8πφs − α), (A6c)

where Hc is the bosonized Hamiltonian of the charge sector,
and Hs is the sine-Gordon Hamiltonian of the spin sector. We
find

Ks = 1√
1 + g‖

2πvF

, (A7a)

vs = vF

√
1 + g‖

2πvF
, (A7b)

vsKs = vF , (A7c)

Kc = 1√
1 + 2g

πvF

, (A7d)

vc = vF

√
1 + 2g

πvF
, (A7e)

vcKc = vF , (A7f)

and

g = U + U ′

2
+ V [2 − cos(2πν) − cos(4πν)], (A8a)

g‖ = −2U − 2U1 + 4V [2 − cos(2πν) − cos(4πν)],

(A8b)

g0 = −2
√

(U + U1)[U + U1 + 2U1 cos(2πν)] + U 2
1 ,

(A8c)

α = arctan

(
U1 sin(2πν)

U + U1[1 + cos(2πν)]

)
modulo 2π.

(A8d)

Based on the zeroth loop approach, the cosine perturbation
in Eq. (A6c) is irrelevant as soon as Ks > 1 (i.e., g‖ < 0). In
this regime the spin gap nonetheless opens because of the first-
loop corrections to the renormalization group equations [42]

dg‖
dl

= 1

2π
g2

0,
dg0

dl
= 1

2π
g0g‖,

dα

dl
= 0, (A9)

which predict a BKT phase transition from gapless 2LL to
SDWz(α) with a spin gap, when g‖ > −|g0|. In other words,
the zeroth loop predicts the 2TLL ↔ SDW transition at
V = 5U/2, whereas the first loop renormalization predicts

the transition at V = 4−2
√

4−√
5

10 U . Such a result means that
the characterization of each phase should be sharp above and
below both predicted transition lines, but more arduous in be-
tween as the partial gap is weaker. Such a phenomena explains
why the detection of the BKT phase transition is more difficult
in numerical simulations. We draw the V = 5U/2 line on the
phase diagram as it is below this line that a simulation likely
mistakenly confuses the SDW for the 2TLL.

In the SDWz(α) phase the spin field is fixed at φs(α) =
α√
8π

+ √
π
8 modulo(

√
π
8 ) by the spin gap. The corresponding

order parameter is

Oα = sin(
√

2πφs − α/2) (A10a)

= Otriplet0
cos(α/2) − Osinglet sin(α/2), (A10b)

with α ∈ [0; 2π/5] as U1/U ∈ [0; ∞) and where Otriplet0
is

the “triplet 0” and Osinglet is the singlet order parameter [44].
When α = 0 (U1 = 0), this order parameter corresponds to the
contribution of the spin sector to the 2kF spin-density-wave
operator

Oz
SDW = Sz(x) − 1√

2π
∂xφs(x)

= cos(
√

2πφc + 2kF x) sin(
√

2πφs), (A11)

where Sz(x) the continuous limit of the spin operator

1

2

∑
�,�′=±

c†
x,�σ

z
��′cx,�′ ∼ Sz(x), (A12)

with σ z
��′ the Pauli matrix along the z direction. The associated

correlation function in SDWz(α) phase is〈
Oz

SDW(x)Oz
SDW(y)

〉
∼ sin2(

√
2πφs(α)) cos(2kF |x − y|)|x − y|−Kc , (A13)
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which is also the correlator with the longest range, such that
the SDWz(α) is the dominant instability in the system.

In 2TLL phase, both 2kF momentum CDWs and SDWs in-
stabilities are in competition. The order parameter associated
with CDW is defined as

OCDW = ρ(x) −
√

2

π
∂xφc(x), (A14)

where ρ(x) is the continuous limit of the density operator∑
�=±

c†
x,�cx,� ∼ ρ(x). (A15)

The correlation functions associated with both CDW and
SDWz are〈

OCDW(x)OCDW(y)
〉 ∼ cos(2kF |x − y|)|x − y|−(Kc+K∗

s ),

(A16a)〈
Oz

CDW(x)Oz
CDW(y)

〉 ∼ cos(2kF |x − y|)|x − y|−(Kc+K∗
s ),

(A16b)

with K∗
s = 1, the renormalized Luttinger parameter as the

SU(2) symmetry emerges asymptotically.

APPENDIX B: CLUSTER BOSONIZATION APPROACH

The low-energy effective theory of a single chain (U =
U1 = 0) at strong coupling V � t is effectively described
by cluster bosonic fields, i.e., density fluctuations of perfect
cluster configuration of particles. To derive this result, we use
the cluster bosonization approach. In the continuum limit, the
bosonic field operators are expressed as [14,18]

ψ� (x) = e− i
√

π

σ
θ ′
�(x)

√
ν − 1√

πσ
∇φ′

�(x)

×
+∞∑

q=−∞
αq,�e−i2q[πxνσ−√

πφ′
�(x)] (B1)

and the particle density operator as

ρ�(x) =
(

ν − 1√
πσ

∇φ′
�(x)

)

×
+∞∑

q=−∞
Aq,�e−i2q[πxσν−√

πφ′
�(x)]. (B2)

φ′
�(x) is the fluctuation above a perfect cluster configuration

on chain �. θ ′
�(x) is defined as the conjugate variable of ∇φ′

�(x)
such that [

θ ′
�(y),

1

π
∇φ′

�′ (x)

]
= iδ�,�′δ(x − y). (B3)

Aq,� = A∗
−q,� and αq,� are the nonuniversal constants that

strongly depend on the microscopic details of the system.
σ = M/N with M and N being the number of clusters and
particles, respectively.

In the absence of the interchain interactions U and U1, we
have two decoupled chains with the soft-shoulder interaction
V acting within each chain. Using the cluster bosonization,

the Hamiltonian of each chain is mapped to the Hamiltonian
of free massless cluster bosons [13,14]

HV,t ∼
∑
�=±

v

2

∫
dx[(∇ϕ′

�)2/K + K (∇θ ′
�)2], (B4)

where K is the cluster-Luttinger parameter. Since the top and
bottom chains are identical, we have K+ = K− = K and v+ =
v− = v. By dropping the constants and only keeping the most
relevant terms, the mapping for the U interaction is [18]

HU ∼ U
∫

dxρ+(x)ρ−(x)

≈ g(0)
U

∫
dx∇ϕ′

+(x)∇ϕ′
−(x)

+ g(1)
U

∫
dx cos{

√
4π [ϕ′

+(x) − ϕ′
−(x)]}, (B5)

with g(0)
U = U |A0|2

πσ 2 and g(1)
U = 2ν2U |A1|2. Similar calculations

for U1 interaction gives

HU1 ∼ U1

∫
dxρ+(x)ρ−(x + a0)

≈ g(0)
U1

∫
dx∇ϕ′

+(x)∇ϕ′
−(x)

+ g(1)
U1

∫
dx cos{

√
4π [ϕ′

+(x) − ϕ′
−(x)]}

− g(2)
U1

∫
dx sin{

√
4π [ϕ′

+(x) − ϕ′
−(x)]}, (B6)

with

g(0)
U1

= U1|A0|2
πσ 2

, (B7a)

g(1)
U1

= 2ν2U1|A1|2 cos(2πnσa0), (B7b)

g(2)
U1

= 2ν2U1|A1|2 sin(2πnσa0). (B7c)

Using the spin and charge cluster bosonic fields

ϕ′
� = ϕ′

c + �ϕ′
s√

2
, θ ′

� = θ ′
c + �θ ′

s√
2

, (B8)

with � = ±, the total Hamiltonian for the triangular ladder
H = HV,t + HU + HU1 is

H = vc

2

∫
dx

(
Kc(∇θ ′

c)2 + 1

Kc
(∇ϕ′

c)2

)

+ vs

2

∫
dx

(
Ks(∇θ ′

s )2 + 1

Ks
(∇ϕ′

s)2

)

+ g
∫

dx cos(
√

8πϕ′
s − α), (B9)

with

g =
√(

g(1)
U + g(1)

U1

)2 + (
g(2)

U1

)2
, (B10a)

α = arctan

(
−g(2)

U1

g(1)
U + g(1)

U1

)
, (B10b)
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FIG. 8. The behavior of the entanglement entropy Sχ with respect to the correlation length ξχ for the bond dimensions χ ∈ [64, 1280]
in different phases, namely (a) 2TLL, (b) SDW, (c) CDW, and (d) CLL. The thin green lines correspond to the fits [see Eq. (2)] in the range
χ ∈ [64, 384], while the thick blue lines correspond to the fits for χ ∈ [512, 1280].

Kc = K√
1 + (g(1)

U +g(1)
U1

)K

v

, (B10c)

vc = v

√
1 +

(
g(1)

U + g(1)
U1

)
K

v
, (B10d)

Ks = K√
1 − (g(1)

U +g(1)
U1

)K

v

, (B10e)

vs = v

√
1 −

(
g(1)

U + g(1)
U1

)
K

v
. (B10f)

As the effective cluster Hamiltonian Eq. (B9) is formally
similar to the bosonized Hamiltonian Eq. (A6), we conclude
that two phases are possible (g > 0). If the spin mass is
irrelevant, then one possible phase is a CLL with c = 2. If
instead the mass is relevant, then the second possible phase
is a spin-locked CLL with c = 1. The microscopic details
of the coarse-graining realized with the cluster bosonization
are hidden within the A�,q and α�,q coefficients, preventing
their estimations. In consequence, the relevancy of the mass is
only accessible by the numerical simulations. The simulations
we perform show that c = 1 and therefore that the mass is
relevant.

APPENDIX C: NUMERICAL RESULTS ON THE PHASES
AT WEAK AND INTERMEDIATE INTERCHAIN

COUPLING STRENGTHS

By the means of iDMRG simulations, we now numerically
analyze different phases that appear at weak and intermediate
interchain coupling (U/t) strengths, i.e., the 2TLL, the SDW,
the CDW, and the CLL phases. To this end, we first extract the
central charge c for these phases by fitting the bond dimension
χ -dependent entanglement entropy Sχ as a function of the
χ -dependent correlation length ξχ using the relation Eq. (2)
[36–38]. In Fig. 8 we plot the scaling of Sχ with respect to
ξχ in these phases as we increase the bond dimension from
χ = 64 to 1280. Clearly, all these phases, except the 2TLL,
have central charge c = 1 indicating gapped spin sectors while
the charge sectors remain gapless as in the case for square

geometry [18]. In the 2TLL phase, c = 2 signifies that both
sectors are gapless.

We characterize each phases with c = 1 phases by analyz-
ing correlation functions of the form

CO(R) = 〈OjOj+R〉 − 〈Oj〉〈Oj+R〉, (C1)

where Oj is a local operator. When the distance R is greater
than the correlation length ξχ , all correlations trivially decay
exponentially, restricting the validity of the computed correla-
tion function to R ≈ ξχ at maximum.

Instead of considering the spin correlation function CSz

[where Sz
j = (n j,+ − n j,−)/2] and the charge correlation func-

tion Cn [where n j = (n j,+ + n j,−)], we find that the bond-spin
correlation CBS and the bond-charge correlation CBC are more
suitable to characterize the SDW and the CDW phases. Within
each of the pairs (CSz , CBS ) and (Cn, CBC ), the correlation are
largely indistinguishable in theory when the charge sector is
not gapped [44]. The bond operators are defined as

BS
j = (

(b†
j,+b j+1,+ + H.c.) − (b†

j,−b j+1,− + H.c.)
)
/2,

(C2a)

BC
j = (b†

j,+b j+1,+ + b†
j,−b j+1,− + H.c.).

(C2b)

Figures 9(a) and 9(b) show these bond correlation func-
tions in the SDW and the CDW phases for R � 200 <

ξχ=2048. Clearly, in the SDW phase, the bond-spin correlation
function CBS follows power law and the bond-charge cor-
relation CBC decays exponentially with the distance R. The
opposite is observed in the CDW phase. The frequencies of
the oscillations in the algebraically decaying correlations can
be obtained by fitting the the data to the following formula:

C(R) ∼ cos (kR)R−β. (C3)

Figures 9(c) and 9(d) show such fits for the bond-spin and
the bond-charge correlations, respectively, in the SDW and
CDW phases. In both cases, the numerical fits show that the
frequency of oscillations are k = 2kF = 2π/5 as expected
from the analysis of Appendix A.
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FIG. 9. The behaviors of (a) the bond-spin correlation function
CBS (R) = 〈BS

j B
S
j+R〉 − 〈BS

j 〉〈BS
j+R〉 and (b) the bond-charge correla-

tion function CBC (R) = 〈BC
j BC

j+R〉 − 〈BC
j 〉〈BC

j+R〉 as functions of the
distance R in the SDW and CDW phases. Here both axes are in
the logarithmic scale. (c) and (d) The power-law fits [according to
Eq. (C3)] of the bond-spin and bond-charge correlations, respec-
tively, in the SDW and CDW phases.

In the case of the CLL phase, since the leading instabilities
are clustered, we look at the spin correlation CSz and charge
correlation Cn functions. Figure 10 shows the evolution of
these correlation functions with respect to the distance R to-
gether with their Fourier transform. As expected in the CLL
phase, both correlation functions decay following a power
law. By analyzing the Fourier transforms, we extract the two
primary frequencies of the oscillations as k = 2kF = 4π/5
and k = 3kF /2 = 3π/5. k = 3kF /2 is the cluster Fourier mo-
mentum appearing in Eq. (B2) that translates the specific
cluster instability of the Luttinger liquid. Like in the square
ladder [18], we interpret the other major frequencies such as
k = 2kF as due to the pollution of the signal by subdomi-
nant SDW or CDW instabilities. Interestingly and unlike the
square geometry, these frequencies are present in both spin
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FIG. 10. The behaviors of (a) the spin correlation function
CSz (R) = 〈Sz

jS
z
j+R〉 − 〈Sz

j〉〈Sz
j+R〉 and (c) the charge correlation func-

tion Cn(R) = 〈njn j+R〉 − 〈nj〉〈nj+R〉 as functions of the distance R in
the CLL phase (U/t = 1,V/t = 5). The subplots (b) and (d) depict
the Fourier transform of the spin correlation and charge correlation
functions, respectively.

and charge correlation functions, translating the deformation
due to the added range of U .

APPENDIX D: STRONG U COUPLING THEORY
IN THE TRIANGULAR LADDER

We present here the details of the semiclassical approach
to the holonic polarized and the cluster crystal phases.

1. Densities of holons and domain walls

It is possible to get formulas for both the domain walls
and holon densities. Because holons can form cohorts, these
densities are nonlocal operators preventing the formulas from
being easily used. To obtain them, we define the projectors:

Pi− = ni−(1 − ni+), (D1a)

Pi+ = ni+(1 − ni+1 +), (D1b)

Mi− = (1 − ni−)(1 − ni+), (D1c)

Mi+ = (1 − ni+)(1 − ni+1 −), (D1d)

Di− = (1 − ni−)ni+, (D1e)

Di+ = (1 − ni+)ni+1 −. (D1f)

Using Eqs. (D1), we define the quasilocal projector Pi and the
total projector P onto the effective Hilbert space of strong U
coupling as

Pi = (Mi−1 + + Di−1 + + Pi−1 +)(Mi + + Di +
+ Pi +) − Pi−1 +Pi +, (D2a)

P = ⊗iPi. (D2b)

Using Eqs. (D1), we obtain the density of domain walls
by summing over the projectors on one domain wall state
for all cohorts. We note w

/
i (w\

i ) a domain wall with its first
empty site on rung i and separating a domain with the leg +
populated on the left (right) and the leg − populated on the
right (left). Their respective density operator are

n/
wi = Pi−1 +Di + + Pi−1 +Mi+Di+1 + + · · ·

= Pi−1 +

(
Di +

+
L−4∑
k=0

Mi+Mi+1 + · · · Mi+k +Di+k+1 +

)
, (D3a)

n\
wi = Pi−Di+1 − + Pi−Mi+1−Di+2 − + · · ·

= Pi−

(
Di+1 −

+
L−5∑
k=0

Mi+1 −Mi+2 − · · · Mi+k+1 −Di+k+2 −

)
,

(D3b)

for periodic boundary conditions. We also define the total
density of domain walls

nw,i = n/
wi + n\

wi−1. (D4)

We obtain the holon densities in a similar manner. We
define the two quantities
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nhi+ = Pi−1 +(1 − ni+)Di+1 − + Pi−1 +(1 − ni+)Mi+1 −Di+2 − + Pi−2 +Mi−1 +(1 − ni+)Di+1 + + · · ·
+ 1

2
[Pi−1 +Mi+Di+1 + + Pi−1 −Mi−Di+1 − + · · · ] (D5a)

=
∞∑

k=0

k∑
l=0

Pi−1−l +
l∏

m=1

Mi−m +(1 − ni+)
k−l∏
r=1

Mi+r −Di+(k−l )+1 −

+ 1

2

[ ∞∑
k=0

k∑
l=0

Pi−1−l +
k∏

m=0

Mi−l+m +Di+(k−l )+1 + +
∞∑

k=0

k∑
l=0

Pi−1−l −
k∏

m=0

Mi−l+m −Di+(k−l )+1 −

]
, (D5b)

nhi− =
∞∑

k=0

k∑
l=0

Pi−1−l −
l∏

m=1

Mi−m +(1 − ni−)
k−l∏
r=1

Mi+r−1 +Di+(k−l ) +

+ 1

2

[ ∞∑
k=0

k∑
l=0

Pi−1−l −
k∏

m=0

Mi−l+m −Di+(k−l )+1 − +
∞∑

k=0

k∑
l=0

Pi−2−l +
k∏

m=0

Mi−l+m−1 +Di+(k−l ) +

]
. (D5c)

that would correspond to the densities of holons in a domain polarized on leg + and −, respectively. When the holon belongs
to the cohort of a domain wall, there is an ambiguity in these definitions. This ambiguity explains the factor 1/2 (chosen
conventionally). This ambiguity is lifted when defining holons independently of the leg (as it should), e.g., for nh,i = nhi+ + nhi−
when the holon belongs to the cohort of a domain wall \ or no cohort of a domain wall and nh,i = nhi−1+ + nhi− otherwise. The
holon density is then

nhi =
∞∑

k=0

k∑
l=0

Pi−1−l +
l∏

m=1

Mi−m +(1 − ni+)
k−l∏
r=1

Mi+r −Di+(k−l )+1 −

+
∞∑

k=0

k∑
l=0

Pi−1−l −
l∏

m=1

Mi−m +(1 − ni−)
k−l∏
r=1

Mi+r−1 +Di+(k−l ) +

+
∞∑

k=0

k∑
l=0

Pi−1−l +
k∏

m=0

Mi−l+m +Di+(k−l )+1 + +
∞∑

k=0

k∑
l=0

Pi−2−l −
k∏

m=0

Mi−l+m−1 −Di+(k−l ) −. (D6)

From the densities Eqs. (D3) and (D6), we deduce the existence of the (nonlocal) creation and annihilation operator for both
holons (h†

i and hi) and domain walls (w†
i and wi).

2. Estimation of the energy level

We rewrite the perturbative Hamiltonian Eq. (4) using h†
i , hi, w

†
i , and wi to estimate the energy levels as a function of the

average densities fh and fw. The perturbative Hamiltonian is

H = t
L∑

i=1

[h†
i hi+1(1 − nw\,i ) + h†

i w
\†
i+1hi+1w

\
i + h†

i hi+1(1 − nw/,i+1) + h†
i w

/†
i+2hi+2w

/

i+1

+ h†
i+1hi(1 − nw\,i+1) + w

\†
i h†

i+1w
\
i+1hi + h†

i+1hi(1 − nw/,i+2) + w
/†
i+1h†

i+2w
/

i+2hi]

− 2t2

U

∑
i

[nw\,i(1 − nh,i+1) + nw/,i(1 − nh,i+1)], (D7)

leading to the phenomenological Eq. (6) when simplifying
the details concerning the range that have no influence on
the estimation. For simplicity, we considerholons independent
from domain walls to obtain an effective Hamiltonian for each
by averaging over the holons or the domain walls separately.
We have

Hh � |α|
L∑

i=1

(eiθh†
i hi+1 + H.c.)

+β
∑

i

(nh,i − 1), (D8a)

Hw � |γ |
L∑

i=1

(eiφw
†
i wi+1 + H.c.)

+ δ
∑

i

nw,i + 2tLRe(γ ), (D8b)

with

α = t
(〈1 − nw,i+1〉 + 〈w†

i+1wi〉
)

(D9a)

= |α|eiθ , (D9b)
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β = 2t2

U
〈nw,i〉,

γ = t〈h†
i+1hi〉

= |γ |eiφ, (D9c)

δ = −t (〈h†
i−1hi−2〉 + 〈h†

i−1hi〉)

− 2t2

U
〈1 − nh,i〉. (D9d)

By diagonalizing the Hamiltonian Eqs. (D8) and building the
eigenstates as a product state of holonic and domain wall
mode, we get the hopping averages (e.g., 〈w†

i+1wi〉) such that

α = t (1 − fs) + 2t

L
ei(φ−π− π

L ) sin
(

π
2 fw

)
sin

(
π
L

) , (D10a)

β = 2t2 fw
U

, (D10b)

γ = t

L
ei
(
θ−π− π

L

)
sin(π fh)

sin
(

π
L

) , (D10c)

δ = −2t

L
cos

(
θ − π − π

L

)
sin(π fh)

sin( π
L )

− 2t2

U
(1 − fh), (D10d)

φ = θ − π − π/L [2π ],

(D10e)

tan(θ ) = sin(θ − 2π
L )

cos(θ − 2π
L ) + L sin(π/L)

sin(π fw ) (1 − fw )
. (D10f)

Equations (D10e) and (D10f) always (only) admit θ = φ +
π = 0 [2π ] as a solution when L → ∞. We then obtain
Eq. (7) by averaging Eq. (6) over both holons and domain
walls successively and using Eqs. (D10) in the limit L → ∞.

3. Phenomenological shoulder potential

We provide the expression of the shoulder potential and its
contribution to the estimate of the energy level for rc = 3. The
method is identical to Appendix D 2, but must be carried term
by term. It is diagonal in the basis of domain walls and holons
so there are no higher order corrections in V . Starting with

HShoulder =
∑
i,�

rc∑
r=1

Vrni,�ni+r,�, (D11)

the shoulder potential is rewritten as

HShoulder − L(V1 + V2 + V3) = −(V1 + 2V2 + 3V3)
∑

i

n\
w,i − (2V1 + 3V2 + 4V3)

∑
i

n/
w,i

− 2(V1 + V2 + V3)
∑

i

nh,i + V1

∑
i

nh,inh,i+1 + V2

∑
i

nh,inh,i+2 + V3

∑
i

nh,inh,i+3

+ (V1 + V2 + V3)
∑

i

n/
w,inh,i+1 + (V1 + V2 + V3)

∑
i

n\
w,inh,i+1 + (V2 + V3)

∑
i

n/
w,inh,i+2

+ (V2 + V3)
∑

i

n\
w,inh,i+2 + (V2 + V3)

∑
i

nh,in
/

w,i+2 + (V2 + V3)
∑

i

nh,in
\
w,i+1

+V3

∑
i

n/
w,inh,i+3 + V3

∑
i

n\
w,inh,i+3 + V3

∑
i

nh,in
/

w,i+3 + V3

∑
i

nh,in
\
w,i+2

+ (V2 + 2V3)
∑

i

(n/
w,in

\
w,i+1 + n\

w,in
/

w,i+2),+V3

∑
i

(n/
w,in

\
w,i+2 + n\

w,in
/

w,i+3) (D12a)

∼ −1

2

∑
i,l

(1 + 2l )Vlnw,i − 2
∑

i,l

Vlnh,i +
∑

i,l

Vlnh,inh,i+l + 2
∑

i,l

∞∑
m=l

Vmnw,inh,i±l

+ (V2 + 2V3)
∑

i

(n/
w,in

\
w,i+1 + n\

w,in
/

w,i+2) + V3

∑
i

(n/
w,in

\
w,i+2 + n\

w,in
/

w,i+3), (D12b)

where Eq. (D12b) is the phenomenological approximation of Eq. (D12a). The contribution of the shoulder potential to the energy
levels follows:

〈HShoulder〉 = L
∑

l

Vl − L

2

∑
l

(1 + 2l )Vl fw − 2L
∑

l

Vl fh + L
∑

l

Vl

(
f 2
h − 1

lπ2
sin(π fh) sin(lπ fh)

)

+ L
∑

l

(2l − 1)Vl fm fw + L(V2 + 3V3) f 2
w/2. (D13)

When V1 = V2 = V and V3 = 0, we find Eq. (8). Within the scope of the approximation, we see that longer-range interactions
than next-to-nearest neighbors or a more realistic potential for V� fitting, e.g., V/[1 + (�/rc)6] would not qualitatively change
Eq. (D13) and hence Eq. (8).
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