
PHYSICAL REVIEW B 106, 155409 (2022)

Long-lived qubit entanglement by surface plasmon polaritons in a Weyl semimetal
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We investigate spontaneous entanglement of two qubits mediated by nonreciprocal surface plasmon polaritons
(SPPs) in a Weyl semimetal. In the absence of external magnetic fields, the topology of the Weyl semimetal
even gives rise to nonreciprocal SPPs that are topologically protected and reside inside the photonic gap. We
utilize this nonreciprocal SPP as a mediator of entanglement of two spatially separated qubits. Our two main
findings are (1) the nonreciprocal SPP gives better quantum entanglement than the reciprocal one, and (2) the
entanglement achieved in the Weyl semimetal is sufficiently long lived compared to the entanglement using SPPs
in conventional metals.
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I. INTRODUCTION

Entanglement, which corresponds to the inseparability of
quantum states between some quantum objects, is one of the
fundamental concepts in quantum computing and quantum
communication (or quantum key distribution) technologies. In
the entangled state, the quantum state of one object influences
the others, regardless of the distance between them. Using
entanglement, the number of information embedded in the
quantum system increases, thus improving the computation
speed. Furthermore, long-distance entanglement is of great
interest for developing efficient quantum circuits that require
the information to transmit between spatially separated com-
ponents [1–5].

Recently, researchers have realized the long-distance
entanglement between qubits by employing photons and
plasmons as the mediator of the entanglement [1,6,7]. In
particular, when the qubits are coupled chirally with an en-
vironment, the entanglement becomes more robust than the
case of achiral coupling, since the coupling of qubits with
the environmental degrees of freedom can become reduced. In
the case of chiral coupling, the coupling strengths of a qubit
with the forward and backward modes of the environment are
different [8]. The chiral coupling with the environment thus
also provides less decoherence of the system [7–9]. A perfect
chiral coupling may emerge in the nonreciprocal environment,
where the qubits only couple to one degree of freedom of
the environment [7]. The nonreciprocal environment has been
realized in magnetized metals, where the surface plasmon
polaritons (SPPs) propagate only in one direction perpendic-
ular to the direction of bias voltage [7,10–12]. In particular,
if the qubits are arranged at the interface between a magne-
tized metal and an opaque medium, the qubits only couple
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to the nonreciprocal SPPs, thus increasing the degree of
entanglement [7]. Furthermore, researchers recently have
shown that the chiral coupling by a nonreciprocal photonic
environment increases the efficiency in energy transport be-
tween quantum emitters [13,14]. The increase in efficiency
originated from the larger cooperative decay rate between
emitters than that of a reciprocal environment that increases
the coupling between emitters. However, an external magnetic
field must be applied to obtain a nonreciprocal environment.
Such a requirement, in practice, is inconvenient for quantum
circuitry.

In this work, to avoid the requirement of external mag-
netic fields, we propose a Weyl semimetal as the intrinsic
nonreciprocal environment. The Weyl semimetal is a three-
dimensional metal having separated Dirac cones due to the
broken symmetry [15–17]. In the case of broken time-reversal
symmetry, the Dirac cones are separated in the wave vector
as shown in Fig. 1(a) [15–18]. Due to the topology of the
Weyl semimetal, the Hall current appears even without an
applied magnetic field [18,19]. The intrinsic Hall conductivity
makes the Weyl semimetal an optically anisotropic medium
that supports nonreciprocal SPP, similar to the magnetized
metal [20–24]. Some examples of the Weyl semimetal include
pyrochlore (Eu2Ir2O7) [25], TaAs [26], TaP [27], EuCd2As2

[28], and NbAs [29]. It is noted that the bulk plasmon and
SPP frequencies of the Weyl semimetal lie within the tera-
hertz (THz) region, in contrast to those of conventional metal,
which mostly lie in the visible range [18,24,30]. Thus the
use of SPP in the Weyl semimetal opens up the possibility
to control the dynamics of qubits within THz frequency.

The rest of this paper is organized as follows. In Sec. II,
we start by investigating the bulk photonic dispersion inside
the Weyl semimetal and obtaining the dispersion of SPP. We
consider the interface between the normal metal and the Weyl
semimetal. We found that there exists nonreciprocal SPP in-
side the common photonic band gap. Then, in Sec. III we
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consider the open system consisting of two qubits, SPP, and
the interaction between them. To understand the dynamics of
the qubits, we derive the master equation within the Markov
approximation. Finally, the entanglement is measured by so-
called concurrence that is derived from the master equation. In
Sec. IV, we show that the entanglement is more robust in the
case of nonreciprocal SPP compared to that of the reciprocal
one. Furthermore, since we work in the THz frequency, the
decoherence rate is lower than that of the higher frequency,
which gives a longer lifetime of the entanglement. Summary
and perspectives are given in Sec. V.

II. THE BULK PHOTONIC DISPERSION
AND SPP DISPERSION

Let us begin by considering the propagation of light inside
a Weyl semimetal. The electric displacement vector of a Weyl
semimetal is given as follows [16,18,31]:

D = ε0ε∞

(
1 − ω2

p

ω2

)
E + ie2

4π2 h̄ω
(∇θ ) × E, (1)

where ε∞ is the background dielectric constant, ωp is the bulk
plasmon frequency of the Weyl semimetal, and θ is called
the axion angle, which is determined by the separation of
the Weyl nodes in the momentum space of the electron. The
coefficient in the first term of Eq. (1) is the conventional Drude
permittivity, while the second one comes from the intrinsic
Hall conductivity of the Weyl semimetal that is given in terms
of axion angle [16,31]. For the case of broken time-reversal
symmetry, the axion angle is defined as θ = 2b · r, with b
is the wave vector separating the Weyl nodes. It is noted
that in the case of b = 0, we obtain the Dirac semimetal.
Let us take the separation in the y direction, thus we have
θ = 2by. Therefore Eq. (1) can be cast compactly as a matrix
equation as follows:⎡

⎣Dx

Dy

Dz

⎤
⎦ = ε0

⎡
⎣ ε1 0 iε2

0 ε1 0
−iε2 0 ε1

⎤
⎦

⎡
⎣Ex

Ey

Ez

⎤
⎦, (2)

from which the dielectric tensor can be read as

ε̄ = ε0

⎡
⎣ ε1 0 iε2

0 ε1 0
−iε2 0 ε1

⎤
⎦, (3)

where

ε1(�) = ε∞

(
1 − 1

�2

)
(4)

ε2(�) = ε∞

(
�b

�

)
. (5)

Here we express ε1 and ε2 in terms of dimensionless quanti-
ties,

� ≡ ω

ωp
, �b ≡ e2b

2π2ε0 h̄ωpε∞
. (6)

For simplicity, we simply write εi(�) as εi.
The bulk photonic band is obtained by solving the Maxwell

equations. In the matrix form, the source-free Faraday and

b

E
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FIG. 1. (a) The electronic energy dispersion of the Weyl
semimetal. The Weyl nodes are separated by the wave vector b.
(b) Illustration of SPP propagating on the interface between the Weyl
semimetal (WSM) and a normal metal (NM). The electromagnetic
field of an SPP decays in the z direction and propagates in the x
direction. We also illustrate the qubits separated by a distance d . The
qubits are placed above the WSM with a distance Z .

Ampere laws are expressed as follows [10,11]:[
0 −k×

k× 0

][
E
H

]
= ωM(ω)

[
E
H

]
, (7)

where M(ω) is defined as follows:

M(ω) =
[
ε̄(ω) 0

0 μ0 Ī

]
, (8)

where Ī is the 3 × 3 identity matrix and k = (kx, 0, kz ) is the
wave vector of the photon. Here we take the photon propa-
gation in the xz plane, thus ky = 0. We define kz = k cos φ

and kx = k sin φ, where k is the magnitude of the photon wave
vector and the angle φ corresponds to the angle of propagation
that is measured from the z axis.

We solve numerically the secular equation in Eq. (7) for ω

as a function of photon wave vector k. In Fig. 2, we show �

as a function of Q ≡ kc/ωp of a photon propagating inside
the Weyl semimetal with the wave vector in the xz plane.
There are three distinct branches. The lowest and the highest
branches correspond to the transverse magnetic (TM) waves
that are separated by a band gap �b at k = 0, while the middle
branch corresponds to the transverse electric (TE) wave. The
wave function of two TM branches are expressed identically

/
p

Q kc/ p

6 4 2 0 2 4 6
0.50
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FIG. 2. The frequency of bulk photon propagating inside the
Weyl semimetal with xz plane of propagation. Here we use �b = 0.5.
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with distinction in their frequencies as

fk
TM =

[
ETM

HTM

]
=

[
−H0

ω
(ε̄)−1(k × ŷ)

H0ŷ

]
, (9)

while that for the TE wave is

fk
TE =

[
ETE

HTE

]
=

[
E0ŷ

E0

ωμ0
(k × ŷ)

]
. (10)

It is noted that in the case of the TE wave, � is determined
solely by ε1. We check it easily by looking at Eq. (2) and fk

TE.
Since the TE wave has only an electric field component in the
y direction, thus the displacement vector is only given by Dy =
ε1(ω)Ey, which depends only on the Drude permittivity of the
Weyl semimetal, ε1(ω). Thus � is simply given by �TE =√

1 + Q2/ε∞.
Similar to the electronic system, the photonic band struc-

ture might possess a topological phase, which is characterized
by the Chern number. Silveirinha has formulated the defini-
tion of the Chern number for continuous media that is used
to classify the topology of the media [11]. In particular, he
showed that the interface between trivial and nontrivial media
hosts surface states of photon or SPP that are topologically
protected [10,11]. The dispersion of the SPP lies inside the
common band gap, and thus it would not decay into radiation
to the surrounding media. More importantly, he pointed out
that the bulk-edge correspondence also applies in the continu-
ous media, that is, the difference in the Chern number between
the two media corresponds to the number of surface states
[11,32].

It was shown that the photon Chern number inside a metal
is not trivial when a magnetic field is applied, due to the
breaking of the time-reversal symmetry [10,11]. In this case,
the dielectric tensor has off-diagonal terms due to the Hall
conductivity. Let us show that the Weyl semimetal has a
nontrivial topology that occurs due to the anomalous Hall
conductivity. The Chern number is defined as follows [11]:

Cn = 1

2π

∮
k=∞

Ak · dl − 1

2π

∮
k=0+

Ak · dl, (11)

= lim
k→∞

(Aφk) − lim
k→0+

(Aφk), (12)

where Ak is the photon Berry connection. The Berry connec-
tion is determined by the wave function given in Eqs. (9) and
(10). The Berry connection is defined as [10,11]

Ak = Re[if∗
k · ∂ω(ωM(ω))∇kfk]

f∗
k · ∂ω(ωM(ω))fk

, (13)

where M(ω) is a matrix defined by ε̄(ω) and μ0 in Eq. (8).
By introducing the matrix M(ω), the normalization factor in
Eq. (13) [denominator of Eq. (13)] corresponds to the energy
density of the electromagnetic wave. When we use a polar
coordinate, Aφ is given as follows:

Aφ = Re
[
iE∗ · ∂ω(ωε̄(ω)) 1

k ∂φE + iH∗ · μ0
1
k ∂φH

]
E∗ · ∂ω(ωε̄(ω))E + H∗ · μ0H

. (14)

In going from Eq. (11) to (12), we use that Ak does not depend
on φ and Ak in the radial direction vanishes. As shown in

FIG. 3. (a) The frequency of TM bulk photon propagating inside
the Weyl semimetal and the frequency of SPP at the interface be-
tween the Weyl semimetal and normal metal. Here the bulk plasmon
frequency of the normal metal (silver) is 293ωp (9.6 eV). (b) Fre-
quency plot similar to (a), but for the bulk plasmon frequency of
the normal metal of 5ωp. (c), (d) Frequency plot similar to (a) and
(b), respectively, but we use the Dirac semimetal [�b = 0, instead
of the Weyl semimetal (�b �= 0)]. The inset in (c) is the frequency
difference between the frequency of the SPP and the bulk TM photon.
The order of 	� is 10−4, and 	� increases with increasing Q. Here
we use �b = 0.5.

Appendix B, Aφk ≈ − 2ε1ε2

ε2
1+ε2

2
which gives the Chern number

+(−)1 for the upper (lower) TM branch. We note that Aφk
vanishes at k → ∞ so that the Chern number comes from
k → 0 contribution. In Figs. 3(b) and 3(c), we show the band
structure for the TM wave together with the calculated Chern
number. Nontrivial Chern number for the branch below the
band gap gives us a clue about the possible existence of SPP
when the Weyl semimetal is attached to a trivial material. This
shows that the Weyl semimetal is intrinsic photonic topolog-
ical material, since we do not need to apply a magnetic field
for the nontrivial Chern number. It is noted that the total Chern
number of the two branches is always zero. Similarly, in the
case of normal metal without ε2 and of TE wave, we only have
one branch with a trivial Chern number. It is noted that we do
not consider the nonlocality of the dielectric function when we
calculate the Chern number as is usually performed to obtain
an integer Chern number for the lower branch [10,11,33].
However, we obtain integer Chern numbers for both branches,
which we prove analytically in Appendix B. From the cal-
culation, we infer that the functional form of ε2 of the Weyl
semimetal (WSM), which is simply given by 1/ω [Eq. (5)],
allows the integer Chern number even without considering
nonlocality.

To exploit this topological SPP, we attach the Weyl
semimetal to a normal metal as shown in Fig. 1(b). The normal
metal has a larger bulk plasmon frequency than that of the
Weyl semimetal. This structure gives 	Cn = 1, which means
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that there is a band of unidirectional SPP lying inside the
common band gap, which is similar to the case of magnetized
metal. To derive the dispersion of SPP, we define the electro-
magnetic field of the SPP in both media. Inside the normal
metal (z > 0), we have the following fields:

H (1)
y (x, z) = H (1)

0 eiqxe−κ1z, (15)

E (1)
x (x, z) = iκ1H (1)

0

ωε0εm
eiqxe−κ1z, (16)

E (1)
z (x, z) = − qH (1)

0

ωε0εm
eiqxe−κ1z, (17)

where q is the wave vector of SPP and εm is the Drude
permittivity for the normal metal. Inside the WSM (z < 0),
the fields are given as follows:

H (2)
y (x, z) = H (2)

0 eiqxeκ2z, (18)

E (2)
x (x, z) = H (2)

0

ωε0

1

ε2
1 − ε2

2

(−iκ2ε1 + iε2q)eiqxeκ2z, (19)

E (2)
z (x, z) = H (2)

0

ωε0

1

ε2
1 − ε2

2

(κ2ε2 − ε1q)eiqxeκ2z. (20)

Here κi is the decay constant of the fields in the z direction. By
substituting Ex(x, z) and Ez(x, z) to the electromagnetic wave
equation we obtain the expression for κi as follows:

κ1 =
√

q2 − (ω/c)2εm, (21)

κ2 =
√

q2 + (ω/c)2ε2
2/ε1 − (ω/c)2ε1. (22)

The dispersion of the SPP can be obtained by substituting
Eqs. (15)–(20) to the boundary conditions which state that
the tangential electric and magnetic fields are continuous at
the boundary. Let us consider that E (1)

x (x, 0) = E (2)
x (x, 0) and

H (1)
y (x, 0) = H (2)

y (x, 0). Thus we have the following equation:

κ1

εm
= 1

ε2
1 − ε2

2

(−κ2ε1 + ε2q). (23)

In Figs. 3(a) and 3(b) we show the dispersion of SPP (dash-
dotted line) together with the bulk photonic bands for the TM
wave. The common band gap is bordered by the two dashed
lines. The frequency range of the common band gap (�gap) is
given by

1 < �gap < 1/2
(
�b +

√
4 + �2

b

)
. (24)

It is important to note that ωp of the Weyl semimetal lies
within the THz range. For example, in the case of Eu2Ir2O7,
ωp = 66 THz, which corresponds to a frequency of 10 THz. In
(a) we use silver for the normal metal whose bulk plasmon fre-
quency is 293ωp (9.6 eV), while in (b) we use a normal metal
with a bulk plasmon frequency of 5ωp that is closer to the ωp.
In both cases we found a nonreciprocal SPP branch inside the
common band gap that corresponds to 	Cn = 1. Therefore the
frequency of the SPP lies also in a THz range, which can be
used to entangle qubits whose transition frequency is in a THz
range. It is noted that we look at the solutions having real κi,
which means that the fields decay in both media.

The dispersion of SPP tends to saturate near the bulk plas-
mon frequency of metal [30]. The dispersion of SPP in (a) is
steeper than that in (b), since the bulk plasmon frequency of
the normal metal is much higher in (a) than that in (b). Since
the SPP originates from the contrast of the topological invari-
ance between the two media, the SPP is robust against any
disorders on the surface [10,12]. On the other hand, SPP that
appears in the interface between two trivial media might not
be robust against disorder. Let us take the interface between
a normal metal and a Dirac semimetal by setting ε2 = 0. The
dielectric tensor of the Dirac semimetal is similar to that of a
normal metal, and thus it is a trivial medium. Nevertheless, we
obtain the SPP that satisfies the boundary conditions. The dis-
persions of bulk photon and the SPP are given in Figs. 3(c) and
3(d). There is no common band gap (the band gap is defined
only for the normal metal), and the dispersion of SPP appears
above ωp but lower than the frequency of bulk plasmon of
the normal metal so that ε1 has the opposite sign with εm. In
particular, the SPP is reciprocal. In (c), the dispersion of SPP
is close to the dispersion of the bulk photon, while in (d) it
is close to the bulk photon at small Q. The dispersion is also
steeper in (c) than that in (d), since the dispersion saturates at
a much higher frequency in (c).

III. THE QUBIT DYNAMICS AND ENTANGLEMENT

In this section we will consider the coupling of a quantum
emitter with the nonreciprocal SPP in the Weyl semimetal.
The coupling is given by the spontaneous emission of the SPP
by the quantum emitter. The quantum emitter is represented
by a two-level system or qubit. Since we focus on the energy
range within the common band gap, the quantum emitter
couples only to the SPP, not to the bulk photon. The coupling
of a qubit with the SPP enables the possibility to entangle
two qubits separated by a distance where the SPP acts as a
mediator. This phenomenon has been studied in the case of
plasmonic wave guide [1] and also in the case of magnetized
metal [7].

Let us consider a system consisting of SPP and two qubits.
The qubits are placed on the top of the Weyl semimetal by
a distance Z as shown in Fig. 1(b). We set Z to be 1 nm.
To measure the entanglement between the qubits, we first
calculate the occupation of the qubits. Let us write down the
Hamiltonian as follows [7,34]:

H =
2∑

i=1

h̄ω0σ
+
i σ−

i +
∑

k

h̄ωk

(
a†

kak + 1

2

)
+ HI

= HS + HE + HI , (25)

where we consider that the system consists of two qubits with
Hamiltonian HS , the environment is the SPP with Hamiltonian
HE , and the interaction between the qubit and SPP is given
by Hamiltonian HI . σ+

i and σ−
i are the raising and lowering

operators of each qubit, while a†
k and ak are the creation and

annihilation operators of the SPP with wave vector k. Let us
now consider the interaction between a qubit with the SPP.
The interaction Hamiltonian is derived as follows [7,34–36]:

HI =
∫

dr�†(r, t ) d · E �(r, t ), (26)
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where d is the dipole moment of the qubit, and �(r, t ) is the
field operator of an electron in the two-level system.

The electric field of SPP is given by the quantized electric
field as follows [1,35]:

E(r, t) = i
∑

k

√
h̄ω

2ε0S
uk(z)akeikx−iωt + H.c., (27)

where S is the area of the quantization of SPP, and uk(z)
represents the polarization of the SPP. Since the qubits are
placed on the top of the Weyl semimetal, uk(z) is expressed
as follows [35]:

uk(z) = αe−κ1z

(
x̂ − k

iκ1
ẑ
)

. (28)

By taking the rotating wave approximation, the total interac-
tion Hamiltonian is expressed as follows:

HI =
2∑

i=1

∑
k

(g∗
kia

†
kσ

−
i e−i(ω0−ωk )t + gkiakσ

+
i ei(ω0−ωk )t ), (29)

where the coupling constant gki is defined as

gki = −i

√
h̄ω

2ε0S
uk(z) · d12eikri . (30)

Here ri is the position of a qubit i and d12 = ∫
drφ1(r)dφ2(r)

is the dipole moment matrix element, where φi(r) is
the wave function of an electron in the energy level
i. The α factor in Eq. (28) is obtained by calcu-
lating the total energy of the SPP and expressing it
in the form of harmonic oscillator energy [35]. We
have α−2 as

(α2)−1 = 1

2κ1

[
ε̃m

(
1 + k2

κ2
1

)
+ ω2

c2

∣∣∣εm

κ1

∣∣∣2
]

+ 1

2κ2

[
ε̃1

(
1 +

∣∣∣∣ κ2ε2 − kε1

−κ2ε1 + kε2

∣∣∣∣
2)

+ ω2

c2

∣∣∣∣ ε2
2 + ε2

1

−κ2ε1 + kε2

∣∣∣∣
2
]
, (31)

where ε̃i(ω) is defined by

ε̃i(ω) = ∂

∂ω
ωεi(ω). (32)

The occupation of the qubits is governed by the master
equation, which is the time evolution of the density operator
of the system. For the spontaneous entanglement, the master
equation [37] of our system is given as follows:

∂tρ(t ) = − i

h̄
[HS, ρ(t )]

− 1

h̄2

{∑
i j

(�i j[σ
+
i , σ−

j ρ(t )] + �∗
i j[ρ(t )σ+

j , σ−
i ])

}
.

(33)

By defining the bases |d〉 = |e1, g2〉 , |u〉 = |g1, e2〉 , |g〉 =
|g1, g2〉 , |e〉 = |e1, e2〉, where gi and ei correspond to the
ground and excited states of qubit i, and the operations

σ+
i |gi〉 = |ei〉, σ+

i |ei〉 = 0, σ−
i |ei〉 = |gi〉, and σ−

i |gi〉 = 0,
we obtain the following matrix elements for the density op-
erator for the two-qubit system:

ρ̇dd = − 1

h̄2 (2Re(�)ρdd + �12ρud + �12ρdu)

ρ̇uu = − 1

h̄2 (2Re(�)ρuu + �21ρdu + �∗
21ρud )

ρ̇ud = − 1

h̄2 (2Re(�)ρud + �21ρdd + �∗
12ρuu)

ρ̇du = − 1

h̄2 (2Re(�)ρdu + �12ρuu + �∗
21ρdd )

ρ̇gg = − 1

h̄2 (−2Re(�)(ρdd + ρuu) − �12ρud

− �21ρdu − �∗
12ρdu − �∗

21ρud ), (34)

where � = �ii. Here we assume that the system is initially at
the state |d〉. The �i j parameter given in units of (eV)2s is the
total coupling constant of a qubit with the environment and is
expressed as follows:

�i j = lim
η→0

∑
k

∫ ∞

0
dsei(ω0−ωk )s−ηsgkig

∗
k j

=
∑

k

gkig
∗
k j

[
πδ(ω0 − ωk ) + i

ω0 − ωk

]
. (35)

It is noted that the �i j parameter in Eq. (35) is derived quan-
tum mechanically since we express the electric fields of the
SPP in terms of field operators. However, the evaluation of the
coupling constant can also be done classically by considering
the pole contribution of the electromagnetic Green’s tensor
[7]. Archambault et al. have previously shown the equivalence
of both methods in their paper [35].

In the case of nonreciprocal SPP, we do not have left-
going SPP. The �i j parameter corresponds to the excitation
of qubit i and relaxation of qubit j, meaning that a SPP is
propagating from qubit j to i. If we take r2 > r1, then �12

corresponds to the left-going SPP while �21 corresponds to
the right-going SPP. Since we do not have left-going SPP, thus
we can set �12 = 0 in the differential equations (34). Similar
to the results for the magnetized metal [7], the solutions for
the nonreciprocal case are

ρdd = e
−

2Re(�)t

h̄2
ρuu = t2 |�21|2

h̄4 e
−

2Re(�)t

h̄2

ρud = −t
�21

h̄2 e
−

2Re(�)t

h̄2
ρdu = ρ∗

ud . (36)

To measure the entanglement, we use the so-called concur-
rence function C introduced by Wootters [38]. The C function
has a value ranging from 0 for the unentangled state to 1 for
the completely entangled state. In our system, the C function
is expressed as

C = 2|ρdu| = 2|ρud |. (37)
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FIG. 4. The concurrence for the Weyl semimetal (dashed line)
and the Dirac semimetal (solid line) as a function of normalized
time T = 2�t/h̄2, where � is defined for each material. The bulk
plasmon frequency of the normal metal is (a) 5ωp and (b) 293ωp.
The frequency for both cases is � = 1.1.

IV. QUBIT ENTANGLEMENT BY
THE NONRECIPROCAL SPP

To calculate C, let us determine �i j for our system. Since
the SPP propagates unidirectionally in the x direction, we set
ky = 0 and only the summation in kx ≡ q is considered as
follows:

�i j =
∑

q

gqig
∗
q j

[
πδ(ω0 − ωq) + i

ω0 − ωq

]

= Lx

2π

∫
dqgqig

∗
q j

[
πδ(ω0 − ωq) + i

ω0 − ωq

]
(38)

= h̄

4πε0Ly

∫
dq ωq|uq(z) · d12|2e−iq(r j−ri )

×
[(

∂ωq

∂q

)−1

q=q0

πδ(q0 − q) + i

ω0 − ωq

]
, (39)

where q0 is the wave vector of SPP for ωq = ω0. Here, Ly

is the sample width, which we set to be Ly = 1 μm. The
qubits are separated by a distance of d = 2π/q0. By using the
contour method for evaluating the second integral in Eq. (39)
with contour given by an infinitesimal half-circle around ω0,
we found that the result of the first and second integrals in
Eq. (39) are the same so that �i j is given as follows:

�i j = h̄

2ε0Ly
Fi j (ω0, q0), (40)

where

Fi j (ωq, q) = ωq|uq(z) · d12|2e−iq(r j−ri )

(
∂ωq

∂q

)−1

. (41)

By substituting Eq. (40) into Eq. (36), we can evaluate C
[Eq. (37)] as a function of time. It is noted that � ≡ �ii is
real valued as given by Eq. (41). We consider an ideal SPP,
in which the damping of SPP is neglected. Thus the distance
between two qubits appears as a phase in Eq. (41) which does
not affect C.

In Fig. 4 we show C as a function of T ≡ 2�t/h̄2 using
SPP in the Weyl semimetal (dashed line) and in the Dirac
semimetal (solid line) at the same � = 1.1. In the case of the
Dirac semimetal, the SPP is not unidirectional, as shown in
Figs. 3(d) and 3(e). In this case we evaluate �i j in Eq. (35)

0 2 4 6 8 10
T

0.0

0.2

0.4

0.6

0.8

1.0

(t
)

dd

gg

uu

Tr( )

FIG. 5. The matrix elements of the density matrix of the qubits
as a function of T for the case of the Weyl semimetal (dashed lines)
and the Dirac semimetal (solid lines). The bulk plasmon frequency
of the normal metal is 5ωp and � = 1.1.

for the reciprocal case by using the polar coordinate [see
Appendix A]. The concurrence has the same formula as that
of the nonreciprocal case, but ρud is solved numerically from
Eq. (34). In Fig. 4(a), we show C for the case of a normal
metal with the bulk plasmon frequency of 5ωp and (b) 293ωp

(9.6 eV). In both cases the maximum C for the Weyl semimetal
is of e−1 = 0.37, which occurs at T = 1. From Eq. (36), we
understand that the maximum C occurs at T = 1 with ampli-
tude of (|�21|/�)e−1. Furthermore, from Eq. (40) we found
that �21 = � exp[−iq0(r j − ri)], which gives the maximum C
of e−1. Similar to the previous work on the magnetized metal
[7], the reciprocal SPP gives lower C for the same frequency.
To understand this result, we plot the matrix elements of ρ(t )
as a function of T in Fig. 5 for reciprocal (solid line) and
nonreciprocal (dashed line) cases. In both cases, ρdd , which
is the density of the initial state, decays as a function of T
at a similar speed. However, ρgg, which is the density of the
relaxed state for both qubits, increases faster for the reciprocal
case. It means that the excited SPP in the reciprocal case
leaves the system faster compared with that in the nonre-
ciprocal case. In the case of nonreciprocal case, the excited
SPP from qubit 1 can only be directed toward qubit 2, which
increases the probability of exciting qubit 2. The probability
that the qubit 2 is excited is represented by ρuu. As we can see,
ρuu in the nonreciprocal case is much higher than that in the
reciprocal case, which means that the coupling between qubits
is also more significant in the nonreciprocal case giving better
C. It is noted that in both cases the trace of ρ(t ) is always equal
to unity (red lines).

In Fig. 6 we show C for the case of the Weyl semimetal
as a function of time t for several values of �. In (a) we use
a normal metal with the bulk plasmon frequency of 5ωp. The
peak of C moves toward smaller t with increasing � since �i j

increases. Even though the maximum entanglement is reached
faster for larger �, the entanglement decays faster compared
with that for smaller �, as shown by Eq. (40). It is noted since
the frequency of SPP in the Weyl semimetal is within the THz
region, �i j is much smaller than that for SPP in the conven-
tional metal, which lies at a much higher frequency (visible
region). Thus we expect a longer lifetime of the entanglement.
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FIG. 6. The concurrence for the Weyl semimetal for several val-
ues of � as a function of t . The bulk plasmon frequency of the normal
metal is (a) 5ωp and (b) 293ωp.

The lifetime of the entanglement is understood as the time it
takes before C asymptotically reaches zero [39]. For instance,
in Fig. 6(a) the lifetime of the entanglement is within 10−6 s
compared with that of 10−8 s for magnetized metal [7]. When
we keep �, the lifetime can be increased by increasing the
bulk plasmon frequency of the normal metal. In Fig. 6(b) we
show the case for normal metal with bulk plasmon frequency
of 293ωp (9.6 eV). The lifetime of the entanglement is much
longer than in (a). The increase in the lifetime is caused by the
decrease of α. The square of α, which is given by Eq. (28),
has a unit of inverse length that determines the volume for
the quantization of the SPP energy. In particular, this length
corresponds to the effective length of SPP in the perpendic-
ular direction to the surface [34,35]. When we increase the
dielectric constant of the normal metal, the intensity of the
electric field inside the normal metal becomes much reduced
due to the screening. However, since the energy should be
normalized to the energy of the harmonic oscillator for a
fixed number of SPP n, which depends only on the frequency
[h̄ωq(n + 1/2)], the intensity of the electric field inside the
Weyl semimetal would be increased to compensate the large
screening in the normal metal. The increase in the electric
field intensity inside the Weyl semimetal would increase the
effective length of SPP. As a result, α would decrease and �i j

becomes smaller, leading to a longer lifetime of the entangle-
ment.

In Fig. 7(a) we show �/h̄ given in units of eV as a func-
tion of � for several �b. As shown in Eq. (24), the band
gap increases with increasing �b. In Fig. 7(a) the range of
� corresponds to the band gap for the case of �b = 1.5.
Since we consider only the SPP inside the common band
gap, then there are discontinuities for �/h̄ for �b < 1.5. As
we can see, �/h̄ increases with increasing �b for a fixed
�, which means that the lifetime of entanglement becomes
shorter, but the peak of entanglement is reached faster. The
increase of � originates from the decrease of the group ve-
locity of the SPP when �b is increased, as shown by the
dispersion of SPP for �b = 0.5 and 1.5 given in Figs. 7(b)
and 7(c), respectively [see Eq. (41)]. The decrease in the
group velocity leads to the increase in the density of states
of the SPP, leading to the enhancement of the qubit coupling
with SPP.

(a)

10 5 0 5 100.5

1.0

1.5

2.0

Q

SPP

(b)

10 5 0 5 100.5

1.0

1.5

2.0

Q

SPP

b= 1.5
b= 0.5

(c)

1.0 1.2 1.4 1.6 1.8 2.0

10 12

10 11

10 10

10 9

10 8

/
 [

eV
]

b= 0.5

b= 1

b= 1.5

FIG. 7. (a) �/h̄ given in eV as a function � for several �b values.
In this plot we use a normal metal with the bulk plasmon frequency
of 10ωp. The frequency of TM bulk photon propagating inside the
Weyl semimetal and the frequency of the SPP for (b) �b = 0.5 and
(c) �b = 1.5.

V. CONCLUSIONS

We have evaluated the entanglement of two qubits medi-
ated by the nonreciprocal SPP on the surface of the Weyl
semimetal. The SPP becomes nonreciprocal even without
the presence of applied magnetic fields. The nonreciprocity
originates from the intrinsic Hall conductivity of the Weyl
semimetal. By solving the master equation for the density
matrix elements of the qubits, we found that the nonreciprocal
SPP gives better entanglement than the reciprocal one found
in the Dirac semimetal. Furthermore, we can utilize the SPP
in the Weyl semimetal to control the qubits whose transition
frequency is within the THz range. Although the system takes
a longer time to reach maximum entanglement compared
with the case of conventional metals, the entanglement here
also has a longer lifetime. For a fixed frequency and bulk
plasmon frequency of the Weyl semimetal, the lifetime of the
entanglement can be changed by modifying the permittivity of
the adjacent material or changing the separation of the Weyl
nodes.
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APPENDIX A: FORMULATION
OF �i j FOR RECIPROCAL SPPs

The �i j parameter for reciprocal SPPs can be derived sim-
ilarly to that for the unidirectional SPPs given in Eq. (38).
In this case, we use the polar coordinate for q to obtain
the �i j :

�i j =
∑

k

gkig
∗
k j

[
πδ(ω0 − ωk ) + i

ω0 − ωk

]

= Lx

2π

Ly

2π

∞∫
0

kdk

2π∫
0

dφgkig
∗
k j

[
πδ(ω0 − ωk ) + i

ω0 − ωk

]

= h̄

8π2ε0

∞∫
0

kdk

2π∫
0

dφωk|uk(z) · d12|2e−ik cos φ(r j−ri )

×
[(

∂ωk

∂k

)−1

k=k0

πδ(k0 − k) + i

ω0 − ωk

]
(A1)

= h̄

8π2ε0

∞∫
0

dk G(k, ωk )

×
[(

∂ωk

∂k

)−1

k=k0

πδ(k0 − k) + i

ω0 − ωk

]
, (A2)

where G(k, ωk ) is defined as

G(k, ωk ) ≡ kωk

∫ 2π

0
dφ|uk(z) · d12|2e−ik cos φ(r j−ri ). (A3)

The integration of the first term inside the bracket in Eq. (A2)
can be done easily by substituting ωk with ω0 and k with k0,
which is the wave vector of the SPP with energy ω0. Thus we
obtain

h̄

8π2ε0

∫ ∞

0
dk G(k, ωk )

(
∂ωk

∂k

)−1

k=k0

πδ(k0 − k)

= h̄

8πε0
H (k0, ω0), (A4)

where

H (k, ωk ) ≡
(

∂ωk

∂k

)−1

k=k0

G(k, ωk ). (A5)

The integration of the second term inside the bracket in
Eq. (A2) is done by using the contour integral with contour
along an infinitesimal half-circle around ω0:

h̄

8π2ε0

∫ ∞

0
dk

iG(k, ωk )

ω0 − ωk

= h̄

16π2ε0

∫ ∞

−∞
dωk

(
∂ωk

∂k

)−1 iG(k, ωk )

ω0 − ωk

= h̄

16π2ε0

(
∂ωk

∂k

)−1

k=k0

iG(k0, ω0) × −iπ

= h̄

16πε0
H (k0, ω0). (A6)

Thus the �i j for the reciprocal case is given by the summation
of Eqs. (A4) and (A6).

APPENDIX B: THE CALCULATED CHERN NUMBER

The expressions of electric fields are given as follows:

Ex = 1

ωε0

1

ε2
1 − ε2

2

(ε1k cos φ + iε2k sin φ)

≡ �(ε1k cos φ + iε2k sin φ), (B1)

Ez = 1

ωε0

1

ε2
1 − ε2

2

(iε2k cos φ − ε1k sin φ)

≡ �(iε2k cos φ − ε1k sin φ), (B2)

where we take H0 to be unity and define � ≡ 1
ωε0

1
ε2

1−ε2
2
. To find

the Aφ as defined in Eq. (14) of the manuscript, we calculate
the derivative of the fields as follows:

∂φEx = �(−ε1k sin φ + iε2k cos φ), (B3)

∂φEz = �(−iε2k sin φ − ε1k cos φ). (B4)

Since ∂φH vanishes, only the electric fields determine the Aφ .
The derivative of material matrix for the dielectric function
can be expressed as follows:

∂ωωε̄ = ε0

⎡
⎣ ∂ωωε1 0 i∂ωωε2

0 ∂ωωε1 0
−i∂ωωε2 0 ∂ωωε1

⎤
⎦

= ε0

⎡
⎣ε̃1 0 0

0 ε̃1 0
0 0 ε̃1

⎤
⎦. (B5)

It is noted that ωε2 is constant in ω since the for WSM ε2 ∝
1/ω. Thus the derivative of material matrix for the dielectric
function is diagonal. Then we have

Re

[
iE∗ · ∂ω(ωε̄(ω))

1

k
∂φE

]
= −2�2ε0ε̃1kε1ε2. (B6)

The normalization can be calculated easily and is given by

E∗ · ∂ω(ωε̄(ω))E + H∗ · μ0H = �2ε0ε̃1k2(ε2
1 + ε2

2

) + μ0.

(B7)

Thus Aφk is given by

Aφk = − 2�2ε0ε̃1ε1ε2k2

�2k2ε0ε̃1
(
ε2

1 + ε2
2

) + μ0
≈ − 2ε1ε2(

ε2
1 + ε2

2

) . (B8)

At a large wave vector, for the upper branch, the frequency
approaches infinity and ε2 → 0, giving vanishing Aφk. For the
lower branch, the frequency approaches ωp at a large wave
vector, which makes ε1 = 0, which also gives vanishing Aφk.
Therefore the Chern number is determined only by the Aφk at
k → 0.

The Chern number is expressed as

Cn = lim
k→0

2ε1ε2(
ε2

1 + ε2
2

) . (B9)
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Cn is an integer when ε1 = ±ε2, which occurs at the following
frequencies:

�± = 1
2

( ± �B +
√

�2
B + 4

)
. (B10)

In fact, the �± are nothing but the frequencies of the upper
(+) and lower (−) branches at k = 0, respectively. In the
case of �B = 0.5 as is used in the manuscript, �+ = 1.28
and �− = 0.78. Therefore the Chern number is an integer for
both branches. Cn = −1 for the lower branch since ε1 < 0
at k = 0, and Cn = +1 for the lower branch since ε1 > 0
at k = 0.
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