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We study the properties of one-dimensional topological superconductors under the influence of generic
boundary conditions mimicking the coupling with external environments. We identify a general four-parameter
classification of the boundary effects and show that particle-hole and reflection symmetries can be broken or
preserved by appropriately fixing the boundary parameters. When the particle-hole symmetry is broken, the
topological protection of the edge modes is lost due to the hybridization with the external degrees of freedom.
We assess the robustness of the edge modes in the various regimes by considering different quantifiers of
topological properties. In particular, we investigate the resilience of the long-distance, edge-to-edge quantum
mutual information and squashed entanglement, measuring the nonlocal correlations of the Majorana excitations.
Besides their relevance for the open dynamics of topological systems, these results may provide a useful guide
to the appropriate embedding of low-dimensional topological systems on nanodevices in realistic conditions.
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I. INTRODUCTION

In the last two decades, topological states of matter
and topological materials have been subject to intense in-
vestigation, both for their importance in the understanding
of fundamental quantum matter and their potential role in
technological applications [1–9]. In particular, topological
superconductors, hosting non-Abelian edge states known as
Majorana zero modes (MZMs), are considered among the
most promising systems for the implementation of fault-
tolerant topological quantum computers [10–14], as different
experiments have provided preliminary evidence of MZMs
and their signatures [15,16].

The theoretical idea of realizing and store quantum infor-
mation using MZMs dates back to the seminal work by Kitaev
[17]. In his pioneering contribution, Kitaev proposed a model
describing a one-dimensional spinless p-wave superconductor
able to sustain unpaired Majorana excitations. These modes,
protected by the particle-hole symmetry [6], localize at the
edges of the system and maintain topological robustness
against local perturbations. Several proposals have followed
on such footsteps in order to identify different condensed
matter platforms for the engineering of p-wave pairing. Key
ingredients to realize an emerging p-wave pairing are the
superconducting proximity effect between an s-wave super-
conductor and the surface of a topological insulator [18]
or, more conveniently, the superconducting proximization
of semiconducting heterostructures. In the latter case, plat-
forms with strong spin-orbit coupling such as InAs and InSb
nanowires [19], semiconducting thin films with broken time-
reversal symmetry [20], and one-dimensional semiconducting
nanowires with Rashba spin-orbit coupling and Zeeman field
effect [21,22] have been proposed.

Boundary conditions play a relevant role in determining
the presence or the absence of MZMs. Indeed, topological
systems with periodic boundary conditions (PBCs) cannot
feature unpaired Majorana modes, while for systems with
open boundary conditions (OBCs), topologically protected
modes nucleate at the system edges in topologically ordered
phases. When applicable, the bulk-edge correspondence [23]
assures that knowledge of a system with PBCs provides infor-
mation on the presence of topological modes at the edges of
the corresponding system with OBCs. Besides particle-hole
symmetry, a relevant role in such correspondence is played
by the reflection symmetry that takes a coordinate x into −x.
The topological correspondence between systems with OBCs
and PBCs holds when homogeneous couplings are involved,
thus ensuring that the system with OBCs is invariant under
coordinate reflection. Robustness of the MZMs has been also
demonstrated in the presence of disorder effects [24–37] and
in models with long-range hopping terms [38–41]. Situations
exhibiting MZMs also exist in which the bulk topological
invariant cannot be employed [42,43].

The presence of Majorana fermions is typically revealed
by signatures that are characteristic of topologically ordered
phases [44–50]. In particular, the presence of Majorana bound
states can be detected, for instance, by tunneling spectroscopy
[51–58] or by using interferometric devices able to identify
the anomalous 4π -periodic Josephson effect [59,60].

The above detection methods are particularly relevant
in the context of complex geometries involving normal-
superconductor interfaces [21,61–67]. In these structures two
terminals, playing the role of source and drain, are coupled
to the system of interest in order to directly monitor the tran-
sition to a topologically ordered phase [68–70]. Under this
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condition, the effect of coupling of the topological system
with the source/drain electrodes needs to be modeled and in-
vestigated by considering boundary conditions different from
the hard-wall confinement associated with OBCs. In fact,
hard-wall confinement is neither desirable nor possible in
realistic experimental conditions, and thus generic boundary
conditions have to be considered. The Kitaev-type modeling
of such contexts incorporates information on the external
environment via generalized boundary conditions. Impos-
ing generalized boundary conditions is expected to provide
a consistent picture of open topological systems whenever
nonequilibrium current flows are either absent or can be con-
sidered negligible.

Thus motivated, in the present work we investigate the
physics of Kitaev chains in the presence of generic boundary
conditions. We derive a general four-parameter classification
of the boundary effects and demonstrate that particle-hole and
reflection symmetries can either be broken or be preserved de-
pending on the values taken by the boundary parameters. We
investigate systematically the robustness of the edge modes
under the influence of the different boundary conditions by
using several estimators, including the long-distance edge-to-
edge entanglement measuring the nonlocal correlation of the
Majorana excitations [71,72].

The paper is organized as follows. In Sec. II we introduce
the tight-binding equations of a Kitaev chain coupled to prox-
imized electrodes under the influence of generalized boundary
conditions, and we show that particle-hole and reflection sym-
metries can be broken by appropriately setting the boundary
terms without directly acting on the chain parameters. In
Sec. III we report relevant results of various numerical studies
in which, by looking at different physical quantities, we inves-
tigate systematically the conditions for the presence of MZMs.
Among the quantities investigated, we show that a special role
is played by the topological entanglement between the system
edges. In Sec. IV we draw our conclusions and discuss some
future outlook, while in Appendices A and B we report on the
technical details and the mathematical tools used throughout
the paper.

II. KITAEV CHAIN WITH GENERALIZED BOUNDARY
CONDITIONS

The Kitaev chain model describes spinless fermions sub-
ject to a p-wave superconducting pairing and constrained to
move along a one-dimensional lattice. The time evolution of
the on-site fermionic wave function ψn is described by the
equation

ih̄∂tψn = −μσzψn − tσz(ψn+1 + ψn−1)

+ i�σy(ψn+1 − ψn−1), (1)

where σx,y,z denote the Pauli matrices and n ∈ {1, . . . , L}
specifies the position along the chain. The tight-binding pa-
rameters t , �, μ define, respectively, the nearest-neighbor
hopping, the superconducting pairing, and the chemical
potential. The Nambu spinor ψn = (un vn)T provides infor-
mation about the quasiparticle weight so that un and vn are
the particle and hole components of the wave function at the
nth lattice site. The OBC hard-wall confinement constraint

amounts to imposing ψ0 = ψL+1 = 0 at the two chain ends
in Eq. (1). The above choice is appropriate in order to inves-
tigate the topological properties of an isolated Kitaev chain
under the associated bulk-edge correspondence. On the other
hand, hard-wall confinement only seldom models correctly
the actual experimental conditions; in most cases, either un-
avoidable or desired couplings with the environment have
to be taken into account; as a result, one needs to impose
generalized boundary conditions (see for instance [73,74]).
In fact, the Kitaev chain model supplemented with deformed
boundary conditions precisely incorporates information on the
external environment. This method, which shares similari-
ties with a self-energy approach proposed in Refs. [75,76],
allows us to investigate an open topological system when
the nonequilibrium effects induced by a current flow are
either negligible or absent. The latter condition is surely
met when the electrodes-system hybridization dominates over
other concurrent effects. The coupling of the Kitaev chain
with the environment can be addressed by means of gener-
alized boundary conditions, namely ψ0 = Mlψ1 and ψL+1 =
MrψL, which depend on environmental wave functions ψ0

and ψL+1. The coupling between the sites belonging to the
environment, labeled by n = 0 and n = L + 1, and the two
ends of the chain is illustrated in panel (b) of Fig. 1. The
boundary properties are completely described by the auxiliary
matrices Ml and Mr . In general, the latter are unknown a
priori, even though their structure can be at least partially
determined by imposing suitable physical constraints. In or-
der to implement such constraints, let us introduce generic
complex-valued matrices in particle-hole space:

Ml =
(

al bl

cl dl

)
, Mr =

(
ar br

cr dr

)
. (2)

By resorting to such generalized boundary conditions in
Eq. (1), we obtain a set of deformed tight-binding equations.
They differ from those of the Kitaev chain with OBCs by a
local renormalization of the edge potentials. These boundary
effects are clearly evident by considering the deformed equa-
tions for the wave functions ψ1 and ψL of two chain ends:

ih̄∂tψ1 = −(μσz + Nl )ψ1 − tσzψ2 + i�σyψ2,

ih̄∂tψL = −(μσz + Nr )ψL − tσzψL−1 − i�σyψL−1. (3)

We see that the dynamics depends on the boundary poten-
tials −Nl = −(tσz + i�σy)Ml and −Nr = −(tσz − i�σy)Mr

which vanish when OBCs are considered (i.e., when Ml/r =
0). The fermionic statistics dictates that Nl and Nr be diagonal
matrices in particle-hole space and thus Eq. (2) takes the form

Ml =
(

al −�
t dl

−�
t al dl

)
, Mr =

(
ar

�
t dr

�
t ar dr

)
. (4)

A further constraint comes from conservation of probability,
which is expressed by the continuity equation, ∂tρn + Jn+1 −
Jn = 0, relating the probability density ρn = |un|2 + |vn|2 and
the probability current density

Jn = 2t

h̄
Im

[
ψ

†
n−1

(
σz − i

�

t
σy

)
ψn

]
. (5)

In the stationary regime, Jn is a conserved quantity. In particu-
lar, when nonequilibrium effects induced by a current flow are
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FIG. 1. Panel (a): Scheme of a Kitaev chain coupled to an environment modeled by a pair of superconducting leads. Panel (b): Tight-
binding representation of the system. Panel (c): Effective chain model with generalized boundary conditions. Table (d): A paradigmatic set of
generalized boundary conditions. Breaking or conservation of the particle-hole (PH) and reflection (R) symmetry is determined by the choice
of the pertinent boundary parameters. The a parameter is fixed at the reference value a = 4/5.

negligible or absent, Jn = 0 for each site index n. This condi-
tion is fulfilled both by the model with generalized boundary
conditions and by the Kitaev chain with OBCs; this allows an
appropriate comparison between systems with OBCs and sys-
tems with generalized boundary conditions. Exploiting Eq. (5)
with n = 1 and n = L + 1, we get

J1 ∝
(

1 − �2

t2

)
(|u1|2Im[a∗

l ] − |v1|2Im[d∗
l ]),

JL+1 ∝
(

1 − �2

t2

)
(|uL|2Im[ar] − |vL|2Im[dr]). (6)

Since J1 and JL+1 have to vanish for any choice of parameters
and for any quantum state of the chain, it follows that Ml and
Mr are real-valued matrices with general expression given in
Eq. (4). Accordingly, the boundary potentials, see Eq. (3), are
related to the real-valued matrices as follows:

Nl = ε

(
al 0
0 −dl

)
, Nr = ε

(
ar 0
0 −dr

)
, (7)

where ε = (t2 − �2)/t . Crucially, by acting on the form
of Nl and Nr , it is possible to selectively preserve reflec-
tion and particle-hole symmetry. Reflection symmetry is lost
when Nl �= Nr , while, depending on the choice of parameters,
particle-hole symmetry can be preserved or broken. In particu-
lar, particle-hole symmetry is preserved for traceless boundary
potentials (i.e., Tr[Nl ] = Tr[Nr] = 0).

Particle-hole symmetry is a fundamental consequence of
any noninteracting mean field theory of superconductivity. For
this reason, it would be tempting to impose that boundary
potentials preserve this symmetry. However, experimental ev-
idence supports the existence of mechanisms responsible for
the breaking of this symmetry. Among them, we mention the
quasiparticle poisoning, which is a noninteracting mechanism,
and the ubiquitous electron-boson interactions in supercon-
ductors [77]. Thus, when the effective model of a Kitaev
chain coupled to an environment is considered, generalized
boundary conditions with particle-hole symmetry breaking
cannot be neglected. In this way we obtain a four-parameter
(symmetry-based) classification of the boundary effects.

Distinct boundary conditions can be related to specific cou-
plings of the system with the environment. In particular, under
particle-hole symmetry, general boundary conditions can orig-
inate from tunneling couplings (eventually asymmetric) with
the electrodes [78]. On the other hand, boundary conditions

breaking the particle-hole symmetry can be associated with
boson-assisted tunneling phenomena [77]. Similar asymme-
tries can be observed when a current flows through the system
under finite bias conditions [54]. Furthermore, studies exist
suggesting that particle-hole symmetry can be broken in the
presence of pairing potential modulations, which are for in-
stance related to a finite momentum of the Cooper pair [79].
Interestingly, a finite superfluid velocity is also induced in
superconducting systems subject to a charge current, being the
latter a typical nonequilibrium effect.

Thus, the use of boundary potentials which break particle-
hole symmetry within the Bogoliubov–de Gennes theory
appears to be appropriate within the framework of the effec-
tive description of an open quantum system. In this respect,
even though the generalized boundary conditions obtained in
the present work have been derived under the assumption of
Jn = 0, we expect that some elements typical of a moderate
nonequilibrium condition are retained. Indeed, the response of
a system in moderate nonequilibrium conditions and subject
to a (linear-response) current essentially depends on quantum
averages over unperturbed zero-current states (i.e., the equi-
librium condition), being the latter the main motivation of our
expectation.

III. RESULTS

Hereafter, we present a comprehensive analysis of the fate
and robustness of topological order in a Kitaev chain model
subject to generalized boundary conditions. In view of the
high dimensionality of parameter space, we focus on four
choices of the parameters, see the table in panel (d) of Fig. 1,
identified by the labels No. 1, ..., No. 4 and belonging to
distinct symmetry classes. Each choice is specified by set-
ting appropriate values of al,r and dl,r and corresponds to
the breaking or conservation of the particle-hole and/or the
reflection symmetry. In this way we can identify four sym-
metry classes, namely PH/R (No. 1), PH/R (No. 2), PH/R
(No. 3), and PH/R (No. 4). Importantly, once a specific
symmetry class has been assigned, we have verified that the
results do not feature qualitative differences with those ob-
tained with a different choice of parameters within the same
class.

A prominent feature related to the topological order is
the presence of zero-energy modes localized at the system
boundaries. In order to monitor this signature, in Fig. 2,
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FIG. 2. Panels (a) to (d): Energy spectrum of a Kitaev chain with generalized boundary conditions, as a function of the chemical potential
μ. Panels (e) to (h): Spatial spread of the subgap modes at fixed chemical potential μ = 0.5. The energy eigenvalues pertaining to each subgap
mode are reported inside the inset. Each panel refers to the boundary conditions reported in table (d) of Fig. 1. The remaining parameters have
been fixed as t = 1, � = 0.3, and L = 51.

panels (a)–(d), we show the evolution of the energy spectrum
of the chain as a function of the chemical potential μ. We
observe that zero-energy modes appear for μ � 2t when the
particle-hole symmetry is preserved [panels (a) and (b)]. On
the other hand, the energy of such modes becomes finite and
positive when particle-hole symmetry is broken [panels (c)
and (d)]. In the latter case, an exact degeneracy of the subgap
modes persists, see panel (c), until the reflection symmetry is
also broken, see panel (d). Positive subgap energy levels, see
panels (c) and (d), are induced by the positive sign of the a
parameter; we have also verified that the sign of the subgap
energy levels is inverted if we consider negative values of the
a parameter and suitable values of the chemical potential, as
reported in Appendix B. At a closer inspection of panels (c)
and (d), we see that particle-hole symmetry breaking mainly
affects the subgap energy levels, while the bulklike band struc-
ture remains substantially unaffected.

The modes profile is shown in Fig. 2, panels (e)–(h), at
fixed chemical potential μ = t/2. For all symmetry classes,
one invariably obtains localized modes with tails decaying
inside the bulk. Moreover, the decay of the edge modes
inside the bulk is quite insensitive to the symmetry class
considered. A closer analysis shows that the modes profile
loses definite parity when reflection symmetry is broken, as
shown in panels (f) and (h). Furthermore, the simultaneous
breaking of the particle-hole and reflection symmetry, see
panel (h), completely disentangles the subgap modes which
appear to be localized at different edges of the chain. Despite
their localized character, the latter are nontopological modes
strongly hybridized with the environment. The disentangle-
ment of subgap modes [panel (h) of Fig. 2] is consistent with

results obtained for a Kitaev chain under the effect of a charge
current (see Fig. 8 of Ref. [54]); similar effects have been also
obtained in the context of a non-Hermitian model of a two-leg
Kitaev ladder (see Fig. 4 of Ref. [76]).

The degree of hybridization can be quantified by study-
ing the site-dependent charge density, qn = |un|2 − |vn|2, as
reported in Fig. 3, panels (a)–(d). Majorana modes are neu-
tral subgap excitations and thus deviation from this condition
provides indications about the degree of hybridization. The
charge neutrality condition is guaranteed when particle-hole
symmetry is preserved, see panels (a) and (b) of Fig. 3, so
that the total charge density Q = ∑L

n=1 qn vanishes for both
subgap modes.

When particle-hole symmetry is broken, see panels (c) and
(d) of Fig. 3, a nonvanishing charge appears at the chain
boundaries; in particular, the negative sign of the total charge
density Q provides evidence of the holelike hybridization of
the edge modes. These charged modes originate from strongly
hybridized Majorana excitations which have lost their topo-
logical protection due to the breaking of the particle-hole
symmetry. The type of hybridization, either electronlike or
holelike, or equivalently the sign of the charge acquired by the
end modes, is hardly predictable. It is an emerging property
of the entire system which depends on the spectral properties
and on the specific set of the chain parameters, as discussed in
detail in Appendix A.

Degradation of the topological properties can be also quan-
tified by using the total Majorana polarization (PM) [42,80–
83], which measures the quasiparticles’ weight in Nambu
space. The total Majorana polarization can be written in
terms of the site-dependent Majorana polarizations pM

n [80,82]
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FIG. 3. Panels (a) to (d): Site-dependent charge density of the subgap modes. The insets in panels (a) and (b) show details of the
corresponding behaviors. Panels (e) to (h): Local Majorana polarization of the same modes. The total charge densities and the total Majorana
polarizations are reported, respectively, in the insets of panels (a) to (d) and of panels (e) to (h). Each panel refers to the boundary conditions
reported in table (d) of Fig. 1. The remaining parameters have been fixed as μ = 0.5, t = 1, � = 0.3, and L = 51.

according to the expression PM = ∑L
n=1 pM

n . Genuine Ma-
jorana modes, labeled by j ∈ {1, 2}, are characterized by
opposite polarization values, namely PM

1 = 1 and PM
2 = −1,

while pM
n is a peaked function at the system edges. The above

features originate from the impossibility of isolating a Majo-
rana monopole.

The site-dependent Majorana polarizations pM
n and the Ma-

jorana polarizations PM
j of the subgap modes are reported

in panels (e) to (h) of Fig. 3. Systems with particle-hole
symmetry and generalized boundary conditions, see panels
(e) and (f), feature subgap modes with polarization values
comparable to those of the Kitaev chain with OBCs. When
the particle-hole symmetry is broken, see panels (g) and (h),
the Majorana polarization is lowered and we observe a net
loss: |PM

1,2| < 1. Moreover, the site dependence of pM
n is not

heavily perturbed by the generalized boundary conditions.
At a close inspection of panels (e)–(g), we observe that the
relation PM

1 + PM
2 = 0 is invariably respected. When both

reflection and particle-hole symmetries are broken, see panel
(h) of Fig. 3, a residual topological charge PM

1 + PM
2 ∼ 0.02

is induced. Majorana polarization losses and residual topolog-
ical charges are signatures of the hybridization of the Kitaev
chain with the environmental degrees of freedom and cannot
be observed in isolated systems such as a Kitaev chain with
OBCs.

So far we have discussed important features of topological
subgap states. Some of the mentioned features however are
not always necessarily associated with Majorana modes. For
instance, zero-energy subgap excitations can emerge in the
physics of Andreev bound states [84–87]. Moreover, a trivial
superconducting phase can host charge-neutral quasiparti-
cles [88–90]. These observations show the need to identify
unequivocal signatures of topological order. For systems
where the bulk-edge correspondence applies, an unambigu-
ous signature of a topologically ordered phase is provided

by topological invariants [91] which count the number of
inversions between valence and conduction bands [92]. In the
absence of translational invariance and whenever the bulk-
edge correspondence does not hold, alternative approaches
are needed to identify the topological nature of the edge
modes.

One such approach relies on the determination of the
unique nonlocal quantum correlations that are established
in a topologically ordered phase between the system edges.
Indeed, such topological nonlocal edge-to-edge correlations
are faithfully quantified by a specific measure of bipartite
entanglement [93,94], the squashed entanglement (SE) E0

SQ
between the edges, obtained by a suitable quadripartition of
the system, and by its natural upper bound, the edge-to-edge
quantum conditional mutual information (QCMI) I(4), as re-
cently shown in Refs. [71,72]. The edge-edge QCMI provides
an upper bound on the long-distance, edge-edge squashed
entanglement obtained by four-partitioning the system into
the two edges and a bipartition of the bulk. The QCMI upper
bound on the SE is then obtained by a suitable combina-
tion of reduced von Neumann entropies stemming from the
quadripartition; this combination squashes out the classical
contributions leaving only the genuinely quantum ones. Being
the topological order encoded in the edges, the edge-edge SE
E0

SQ identifies unequivocally the topologically ordered phases,
also fulfilling all the criteria of a genuine nonlocal order
parameter [71,72]. In particular, the edge-edge SE assumes
the quantized value E0

SQ = log 2/2, i.e., half of the maximal
Bell-pair entanglement, at the exact ground-state topological
degeneracy point, μ = 0, for a Kitaev chain with OBCs host-
ing genuine Majorana modes, and remains constant at this
quantized value throughout the entire topologically ordered
phase, up to μ = 2t .

The edge-edge QCMI I(4) realizing the natural upper bound
on E0

SQ is expressed in terms of the reduced von Neumann
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FIG. 4. Panel (a): Sketch of the chain quadripartition exploited to compute the edge-to-edge quantum conditional mutual information I(4)

and the quantized unit of topological squashed entanglement E 0
SQ between the edges. The bulk is partitioned in two subsystems C1 and C2 with

LC1 = 1, while the two remaining parts of the chain are the edges, denoted by A and B. Panel (b): Behavior of the ratio I(4)/E 0
SQ as a function of

the chemical potential μ. The different curves correspond to the different choices of generalized boundary conditions reported in table (d) of
Fig. 1. The size L of the chain and the size Le of the edges have been fixed, respectively, at L = 51 and Le = L/3 = 17. The inset magnifies
the differences between the Kitaev chain (KC) with OBCs and the cases No. 1 and No. 2. Panel (c): Behavior of the ratio I(4)/E 0

SQ as a function
of the boundary length Le. Panel (d): Behavior of the ratio I(4)/E 0

SQ as a function of the chain length L [color codes as in panel (b)]. The red
horizontal lines in panels (c) and (d) mark the maximum quantized value log 2/2 that is reached by E 0

SQ at the exact ground-state topological
degeneracy point, μ = 0, for a Kitaev chain with OBCs hosting genuine Majorana modes. In all panels the Hamiltonian hopping and pairing
amplitudes are fixed at t = 1 and � = 0.3.

entropies as follows:

I(4) = SAC1 + SBC1 − SABC1 − SC1 , (8)

where SXY denotes the von Neumann entropy computed on
the many-body ground state of the reduced system running
on sites belonging to the parts X and Y . The four different
labels A, B, C1, and C2 identify the four parts in which the
chain is quadripartite. A and B refer to the two edges, while
the bulk is bipartite into two parts C1 and C2. The latter is the
part of the bulk which is traced out in the beginning to leave
the reduced ground state of the three remaining parts, so it
does not appear in the definition of I(4), while the remaining
part of the bulk C1 separates the two edges. The true edge-
edge SE is then obtained taking the infimum of I(4) over all
possible states of ABC1. Both the edge-edge SE and the edge-
edge QCMI are insensitive to the relative lengths of the two
parts of the bulk and thus, without loss of generality, we can
set LC1 = 1, while also taking symmetric edges LA = LB = Le.
Details on the system partition are illustrated in panel (a) of
Fig. 4.

In panel (b) of Fig. 4 we report the behavior of the ratio be-
tween the edge-edge QCMI I(4) and the maximum quantized
value of the edge-edge SE E0

SQ as a function of the chemical
potential μ, for boundary conditions belonging to the distinct
symmetry classes listed in table (d) of Fig. 1. The behavior of
I(4)/E0

SQ as a function of μ for a Kitaev chain with OBCs is
also reported for comparison. The plots show that the I(4) vs
μ curves closely match the curve corresponding to a Kitaev
chain with OBCs as long as the particle-hole symmetry is
preserved. When this symmetry is broken (brown and purple
curves), the I(4) vs μ curves feature a significant deviation
from the step-jump behavior characterizing the particle-hole
symmetric case. In particular, the simultaneous breaking of
both the particle-hole and reflection symmetry (purple plot)

induces a complete degradation of the topological properties
which is signaled by the vanishing of I(4) for μ � 2t . In the
close neighborhood of μ ≈ 2t , we observe a revival of the
nonlocal correlation, signaled by a peak in the I(4) vs μ curve;
this phenomenon is induced by the mitigation effects of the
gap closure anticipating the transition to the topologically
trivial phase.

We have carried out the study reported in panel (b) of Fig. 4
by setting the length of the boundary subsystems A and B
at Le = L/3; it is of course possible to show that indeed the
results are not affected by the specific partition strategy. In
panel (c) of Fig. 4 we analyze the behavior of the ratio I(4)/E0

SQ
as a function of Le for a Kitaev chain with OBCs of length
L = 51, which is used as reference system to compare the
different partition strategies. The aforementioned curves show
that the edge-edge QCMI I(4) reaches the quantized value
E0

SQ = log 2/2, expected for a Kitaev chain hosting genuine
Majorana modes, exactly at Le = L/3. With the mentioned
choice for the partition procedure, the nonlocal correlations
captured by I(4) and E0

SQ are not affected by finite-size effects,
as shown in panel (d) of Fig. 4, proving the robustness of the
edge-edge entanglement.

The results reported in panel (b) of Fig. 4 clearly imply
that, as long as μ < 0.7t , nonlocal correlations of a Kitaev
chain in the symmetry class PH/R are comparable to those
of a standard Kitaev chain with OBCs. On the other hand,
the simultaneous breaking of the particle-hole and the inver-
sion symmetry (symmetry class PH/R) originates a complete
degradation of the topological nonlocal correlations, as sig-
naled by the vanishing of the edge-edge QCMI and thus of
the edge-edge SE. From the experimental side, the above
findings suggest that a symmetric coupling with the electrodes
is a beneficial condition for the stability of the topological
phase.
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IV. CONCLUSIONS AND OUTLOOK

We have studied the topological properties of a Kitaev
chain under the perturbing influence of generic boundary
conditions mimicking the coupling with external degrees of
freedom (e.g., external reservoirs). Using appropriate con-
straints, we have derived a four-parameter, symmetry-based
classification of the different possible boundary effects show-
ing that particle-hole and reflection symmetries can be broken
or preserved by appropriately fixing the boundary parameters.
When the particle-hole and the reflection symmetries are si-
multaneously broken, the topological protection of the edge
modes is completely lost due to the hybridization with the
external degrees of freedom. Vice versa, the edge modes turn
out to be quite robust in the intermediate regimes. We have in-
vestigated the resilience of topological states by using several
estimators, also including the recently introduced edge-edge
quantum conditional mutual information and the related edge-
edge squashed entanglement that provides a faithful and bona
fide measure of the nonlocal quantum correlations between the
Majorana excitations. We have shown that these information
and entanglement quantifiers, complemented by the energy
eigenvalues and the charge densities of the edge modes, yield
a complete characterization of the topological properties of
the system and of their fate in the different ranges of boundary
conditions.

In a future perspective, we plan to apply edge-edge mutual
information and squashed entanglement to the investigation of
the open dynamics beyond the stationarity and vanishing cur-
rents regimes, in order to characterize the fate of topological
order in generic nonequilibrium dynamics, possibly modeled
either by means of effective non-Hermitian Hamiltonians or in
the full generality of completely positive and trace preserving
maps.
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APPENDIX A: CHARGE DENSITY AND SPECTRAL
PROPERTIES

Despite the lack of an immediate correspondence between
the charge Q and the energy E of a normalized eigenstate
of the Kitaev chain Hamiltonian, the two quantities are not
independent. This statement is easily proven by using the sta-
tionary Bogoliubov–de Gennes equations (1) complemented
by the normalized expression of the charge density Q =∑L

n=1 ψ†
n σzψn. For a Kitaev chain with generalized boundary

conditions, it is rather straightforward to prove the validity of
the relation

μQ = 2Re

[
L−1∑
n=1

ψ†
n

( −t �

−� t

)
ψn+1

]
− E

+ �2 − t2

t
[al |u1|2 + ar |uL|2 − (dl |v1|2 + dr |vL|2)].

(A1)

When one considers a Kitaev chain with OBCs (i.e., al,r =
dl,r = 0), Eq. (A1) takes the following form:

μQ = 2Re

[∑L−1
n=1 ψ†

n

( −t �

−� t

)
ψn+1

]
− E . (A2)

A Kitaev chain with OBCs is a particle-hole symmet-
ric model implying that any eigenstate ψn of the model
Hamiltonian with energy eigenvalue E comes together
with a particle-hole symmetric state ψ̃n = Pψn with energy
eigenvalue Ẽ = −E . This correspondence is implemented
mathematically by the particle-hole operator P = σxK written
in terms of the conjugation operator K . Using Eq. (A2) one
can show that ψn and ψ̃n have opposite charge (i.e., Q̃ = −Q).
A few lines proof is obtained by observing that

μQ̃ = 2Re

[
L−1∑
n=1

ψ̃†
n

( −t �

−� t

)
ψ̃n+1

]
− Ẽ

= −
{

2Re

[
L−1∑
n=1

ψ†
n

( −t �

−� t

)
ψn+1

]
− E

}
= −μQ,

(A3)

where the relation σx(−tσz + i�σy)σx = −(−tσz + i�σy)
has been used in the derivation.

The above observations imply that as long as the particle-
hole symmetry is preserved the total electric charge associated
with states with positive energy is completely balanced by the
opposite charge related to states belonging to the negative part
of the energy spectrum.

Interestingly, despite the fact that particle-hole symmetry
breaking induces a violation of the charge neutrality of the
subgap modes, the charge’s excess/deficiency of these states
is completely neutralized by the electric charge of the re-
maining bulklike states. A similar neutralization mechanism
also operates for the Majorana polarization loss discussed in
Appendix B [95].

APPENDIX B: SUBGAP ENERGY LEVELS, CHARGE
EXCESS, POLARIZATION LOSS, AND EDGE

ENTANGLEMENT

In this Appendix we review the behavior of the different
topological estimators as functions of the boundary parameter
a, for different values of the chemical potential. In panel (a)
of Fig. 5 we report the behavior of the subgap energy levels;
in panel (b) the charge excess; in panel (c) the polarization
loss; and in panel (d) the difference between the quantized
value of the edge-edge SE E0

SQ = log 2/2 and the edge-edge
QCMI I(4). To be definite, we consider the symmetry class
PH/R, while a similar analysis can be performed for systems
belonging to the symmetry class PH/R.

The plots in Fig. 5(a) show that the subgap energy levels
features a nonlinear dependence on the boundary parameter
a that nevertheless is monotonically increasing along the en-
tire range of variations of a for any value of the chemical
potential.
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FIG. 5. Panel (a): Subgap energy level E0 as a function of the boundary parameter a. Panel (b): Charge excess Q as a function of a. Panel
(c): Polarization loss 1 − |PM

1 | as a function of a. Panel (d): Difference between the quantized value of the edge SE E 0
SQ = log 2/2 and the

edge QCMI I(4). Different curves correspond to different values of the chemical potential, as specified in the figure insets. Throughout, we have
considered the symmetry class PH/R. In all panels the Hamiltonian hopping and pairing amplitudes are fixed at t = 1 and � = 0.3.

Figure 5(b) shows the complicated behavior of the charge
excess. As anticipated earlier, the sign of this quantity is
not directly related to the sign of the boundary parameter; it
is significantly affected by the actual value of the chemical
potential.

Figure 5(c) indicates that despite the significant range of
variations of the boundary parameter a that we have consid-
ered, the polarization loss never exceeds a few percent of the
Majorana polarization of subgap states for a Kitaev chain with
OBCs.

Finally, Fig. 5(d) shows that for all negative values of
the a parameter the edge-edge QCMI I(4) is strongly re-
silient and remains very close to the quantized value E0

SQ =
log 2/2 that the edge-edge SE takes in the topologically or-
dered phase (μ � 2t) of a Kitaev chain with OBCs. In the
interval of positive values of the boundary parameter, the
QCMI I(4) remains completely resilient at the point of ex-
act topological degeneracy μ = 0, while for larger values
of the chemical potential it starts to deviate significantly
from E0

SQ.
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