
PHYSICAL REVIEW B 106, 155401 (2022)

Simple approach to current-induced bond weakening in ballistic conductors
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We present a simple, first-principles scheme for calculating mechanical properties of nonequilibrium bulk
systems assuming an ideal ballistic distribution function for the electronic states described by the external voltage
bias. This allows for fast calculations of estimates of the current-induced stresses inside bulk systems carrying
a ballistic current. The stress is calculated using the Hellmann-Feynman theorem, and is in agreement with the
derivative of the nonequilibrium free energy. We illustrate the theory and present results for one-dimensional
(1D) metal chains of Au, Cu, Al, Pt, Pb, and Ir. We compare the dependence of ultimate tensile strength on the
applied voltage which shows a remarkable difference. In particular, for these model systems, gold is seen to be the
most stable under strong current, while aluminum is the least stable. Interestingly, this agrees with the ordering
of break voltages among the metals found in experiments, suggesting that a current-induced “embrittlement”
effect could play a role.
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I. INTRODUCTION

Metallic interconnects and their stability under strong
electrical current, i.e., electronic nonequilibrium conditions,
plays a central role in the ongoing down-scaling of electronic
devices [1]. The ultimate limit of passing current through
contacts containing a few and down to a single atom in
the cross section has been investigated for more than three
decades [2–4]. For conductors in the atomic limit the electrons
essentially move through the contact without losing energy
to atomic vibrations. Therefore, single-atom-wide contacts
and chains of a range of common metals [5–8] can sustain
voltages on the order of 1 V, which corresponds to extreme
current densities on the order of 1010 A/cm2. The contact
disruption taking place at high voltage and current is still not
well understood. Different mechanisms have been put forth in
order to understand the role of nonequilibrium in the stability
of the atomic contacts. Joule heating in the contacts [7,9],
as well as the effect of the electric field, is suggested to
be an important factor, along with the role of heat transfer
between contact and bulk electrodes [10]. Furthermore,
the action of the current-induced/nonequilibrium “wind”
forces [11,12], which may transfer energy to the vibrations
beyond the Joule heating effects, may even lead to structural
instabilities (“runaway”) at particular critical voltages on the
order of 1 V. This effect might explain the different breaking
modes found for longer atomic chains of Au [13]. Clearly,
vibrational excitation along with the ambient temperature,
heat conductivity [14], energy barriers related to the bond
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breaking, and detailed atomic structure [15] are important
factors in this complicated process.

Despite the complications, the experiments, typically
involving large statistical samples, show a rather clear dis-
tinction between the current-induced disruption or switching
behavior of atomic contacts of different metals. For instance,
short atomic Au chains formed at low temperature were shown
to break at voltages around 1–2 V, while it was already
around 0.5 V for Pt [13]. Recently, Ring et al. [16] showed
in comparative studies how switching occurred at decreasing
voltages in the sequence Au, Cu, Pb, Al for atomic contacts
with conductances up to 6G0 (G0 = 2e2/h). It was noted that
this sequence did not correspond to the sequence in melting or
Debye temperatures. Furthermore, extensive first-principles
molecular dynamics calculations, including the coupling of
current to phonons [16] (Joule and wind force) described
by density functional theory (DFT), yielded a magnitude of
break voltages in agreement with the experiments. However,
these calculations neglected the nonequilibrium change in
bond strength, and, notably, were not able to reproduce the
material stability sequence and found that Al was highest and
Cu lowest in switching voltage.

Earlier calculations have demonstrated an “embrittle-
ment”/weakening of metallic bonds in the presence of
current [17]. This was related to the nonequilibrium charge
redistribution and a decrease in the bonding charge residing
between the atoms or overlap population, as calculated by
density functional theory combined with nonequilibrium
Green’s function methods (DFT-NEGF) [18]. More recently,
the change in bonding forces in a C60-C60 contact carrying
a current has been measured, and was explained in terms
of this type of nonequilibrium charge redistribution in the
system [19].

In this paper we introduce a conceptually simple, ap-
proximate method based on density functional theory (DFT)
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with standard periodic boundary conditions, which enables
us to calculate the bond weakening or “embrittlement” in
the presence of the nonequilibrium charge redistribution
due to current alone, assuming that scattering-dipole fields
are infinitely far away [20]. We employ it to assess how
the yield strength of single-atom metal chains changes with
applied bias, and relate the bond weakening to the underlying
electronic structure. Interestingly, we find that the bond
weakening with bias for the simple model systems follows
the material sequence (Au, Cu, Pb, Al) seen in the recent
comparative experiments [16]. This may suggest that the
“embrittlement” effect could play a role. The simple concepts
introduced here can be extended to 2- and 3-dimensional
systems and other nonequilibrium distribution functions, as
well as other applications related to nonequilibrium/current-
induced changes in the electronic, atomic, or magnetic
structures. Current-density-dependent exchange-correlation
functionals will be investigated in future work [21].

II. METHOD

The concept of the Landauer resistivity dipole [20] yielding
a local potential drop around the region where electrons are
scattered is well established and observed in experiments [22].
For defect-free, one-dimensional conductors connected to a
wide lead in a wide-narrow or wide-narrow-wide configura-
tion, the potential drop and electrical field are concentrated
at the point of connection. This is, e.g., seen in calculations
of a graphene nanoribbon connected to graphene [23,24]. The
voltage-drop dipole and resulting change in charge distribu-
tion leads to current-induced forces, which can be related to
the change in bond charges [18,24]. However, it is clear that
although the voltage drop and associated electrical field is
localized at the scatterer, the current is present throughout the
system. This leads to forces and strains entirely related to the
local current density since the local field is vanishing [24].

Therefore, it is interesting to consider the role of the current
alone and the related charge redistribution separate from the
voltage drop. Here we propose a very simple scheme based on
standard DFT with periodic boundary conditions, to calculate
the effect of current on the bonding, i.e., the stress-strain rela-
tion and yield strength, in the presence of a strong current. To
this end we use the ideal, ballistic distribution function which
depends on the group velocity, and fill the Bloch states accord-
ing to their band velocity projected along the applied external
electrical field, ê. Thus, we consider the same current-density
distribution in all unit cells. This nonequilibrium distribution
will shift and deform the DFT band structure, εk,i, where i is
band index, compared to the equilibrium case. The basic idea
is sketched in Fig. 1 for a simple one-dimensional model band
structure.

In the following V and −ê denote the magnitude of the
applied bias, and the field direction unit vector, respectively,
while

vk,i = 1

h̄

∂εk,i

∂k
, (1)

pk,i = −ê · vk,i, (2)

with vk,i being the band velocity of band index i and pk,i

the velocity projected in the field direction. We will in the
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FIG. 1. Example of bulk bias applied to a model 1D chain sys-
tem. Top/Middle: Band and occupation (filling) of states at zero/finite
bias. Bottom: Band velocity and occupation. The filled area corre-
sponds to the Fermi-Dirac distribution of the band and red/green
parts are “left”/“right” moving states. This distribution equates to a
shift of the local chemical potential according to the direction of the
electron with respect to the applied bias direction.

following denote the bias, V , applied in this way as a bulk
bias. We will define “left” and “right” moving states accord-
ing to the projection along ê and fix the chemical potentials
for left and right movers relative to a quasi-Fermi level as
μL = EF − eV/2 and μR = EF + eV/2 with V being the ap-
plied voltage, and the field −ê is directed from left to right.
The quasi-Fermi level, EF , is determined in the DFT self-
consistent cycle (SCF) such that the unit cell is charge neutral,
as in standard DFT calculations. In practice, EF is determined
in the DFT SCF cycle by using eigenvalues shifted according
to their projected velocity direction,

ε′
k,i = εk,i − eV

2
[1 − 2�(pk,i )], (3)

with �(x) being the Heaviside function. States are filled ac-
cording to the Fermi distribution, nF (ε′

k,i − EF ). However,
note that this shift is only applied when determining EF ,
while the unshifted eigenvalues are used in the calculation
of total energy, etc., as in usual DFT calculations. With this
approach the effective change in distribution function relative
to quasiequilibrium is

δ f (k, i) = �(pk,i )[nF (εk,i − μL ) − nF (εk,i − EF )]

+ �(−pk,i )[nF (εk,i − μR) − nF (εk,i − EF )].

(4)

We note that EF will in general depend on the applied bias,
and the effects of the bulk bias will be symmetric in bias.

Once the self-consistent Hamiltonian with applied bulk
bias has been calculated, we can obtain the current flowing
in the structure in the direction of −ê via

I (V ) = 2e
∑

i

∫
pk,i δ f (k, i)

dk
�

, (5)
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where � is the inverse Brillouin zone volume depending on
the dimensionality of the system. The factor 2 is spin degen-
eracy. We note that for 2D or 3D systems, we may in general
obtain a current density distribution in other directions (in-
creasing parameter space) than ê by considering other velocity
projections in Eq. (5). Also other distribution functions with
more involved velocity and energy dependence may be used,
for example, from the solution to the Boltzmann equation with
a relaxation time.

However, in the remaining of the paper, we will consider
1D systems and low (zero) temperature. In this case, we can
rewrite (5) as

I (V ) = 2e

h

∫ μL

μR

N (ε) dε, (6)

where N (ε) denotes the number of bands crossing the energy
ε. For a single band in the entire voltage window, [μR; μL],
we get

I = 2e2

h
V = G0V ≈ 77.5 μA/V. (7)

The tension (stress/force for 1D) is calculated using the
Hellmann-Feynman theorem (or “force theorem”), as in stan-
dard DFT [25,26]. Importantly, we note that for the systems
consisting of a periodically repeated finite unit cell, we have
square-integrable wave functions, a well-defined number of
electrons per unit cell, and may evaluate the total energy
per unit cell, Etot. This is in contrast to the infinite, nonperi-
odic transport setup where a unique total energy and electron
number is not defined, while the atomic forces may still be
calculated [27]. We note that the derivative of Etot with respect
to unit-cell length does not correspond to the tension in the
case of finite voltage/current. Instead, one should consider the
nonequilibrium free energy [28], F , and include the chemical
potentials of left and right moving states,

F = Etot − μLNL − μRNR, (8)

where NL/NR is the number of left/right moving states (ac-
cording to −ê) in the unit cell. The importance of the
nonequilibrium contribution to F and the force is illustrated
by an example in Fig. 2, where a numerically perfect agree-
ment between the free energy derivative and the tension is
found. The method here is akin to that of the fixed-spin-
moment (FSM) method [29] and constrained DFT [30]: In our
case the μL/μR can be viewed as Lagrange parameters [30],
and our NL and NR now play the role of the spin up/down N↑
and N↓ of the FSM, which similarly employ spin-dependent
chemical potentials to obtain a fixed moment M = N↑ − N↓.

Implementation and parameters

We have implemented the method in the SIESTA

DFT [31,32] code, which employs a LCAO basis set. In the
LCAO basis we can readily calculate the diagonal velocity
matrix element,

vk,i = 1

h̄
〈ψk,i|∂Hk

∂k
− εk,i

∂Sk

∂k
|ψk,i〉, (9)

where H and S are Hamiltonian and overlap matrices in k
space, respectively. The derivatives can be done analytically
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FIG. 2. Stress (σ ) over lattice constant of a Pt chain at 1 V
bulk bias. The red curve is the tension obtained from the Hellmann-
Feynman theorem. The derivative of the total energy with respect
to the 1D lattice constant (unit-cell size) L (blue) does not include
the contributions from left/right moving states NL and NR, which are
contained in the free energy derivative (black).

within LCAO using the real-space matrix elements, e.g.,

∂Hk

∂k
=

∑
R

iR eik·R(〈R|H|0〉 − 〈0|H|R〉), (10)

where R denotes lattice vectors. Note that (1) and (9) are
equivalent while the latter is exact regardless of the Brillouin
zone sampling, contrary to the former for discretized differ-
entiation. In the case of degenerate eigenstates a decoupling
based on the eigenvectors of the degenerate subspace (bra
using index i and ket using index j) of the velocity matrix
as given by Eq. (9).

We have employed the PBE-GGA functional for exchange
correlation and the DZP basis set. The results did not differ
significantly from test calculations using the PBE-LDA func-
tional. Furthermore, we have verified for our SIESTA/LCAO
calculations the results at zero bulk bias agree very well with
those obtained using the GPAW code and a plane-wave basis
set [33]. We disregarded magnetic effects [34] and used an
optimized k-point sampling with 1000 k points chosen ac-
cording to the bias window. Our analysis was done using the
SISL [35] code.

III. RESULTS

A. DFT-NEGF and bulk-bias comparison

We first apply the bulk bias to a 1D Al chain to illustrate
the method, and compare it to the same Al chain connected
to 3D Al electrodes in a transport calculation at finite bias
using DFT-NEGF [36]. In Fig. 3(a), the tension (σ ) over
the lattice constant of the 1D Al chain at different bulk-bias
voltages is shown. The change in lattice constant defines the
strain ε = (L − L0)/L0, where L (L0) is the (equilibrium) lat-
tice constant. For all bias points, the tension in the Al chain
rises linearly to a maximum, after which it becomes strongly
nonlinear (a more detailed discussion and comparison to other
materials is given below).

We compare the change in tension with bias, 	σ (V ) =
σ (V ) − σ (0), to the change in bond population in Fig. 3(b).
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FIG. 3. (a) Stress (force) as a function of strain (lattice constant) of 1D Al bulk chain for different values of the bulk-bias voltage. (b) Change
in tension with bias, 	σ (V ) = σ (V ) − σ (0) (top), and change in overlap population (OP) (bottom) in the Al bulk chain. (c) DFT-NEGF
calculation of 1D Al chain with bond length L = 2.5 Å connected to 3D Al electrodes. Below: Bias-induced OP at 0.5 V; black bars represent
	OP(z) from DFT-NEGF, the green line 	OP from the bulk-bias calculation. Bottom: Induced charge density along the chain with comparison
of the bulk-bias calculation (inset). The induced charge density and OP converge in the chain far away from the electrode interface (z > 75 Å),
where the electrostatic potential is constant.

This illustrates the relation between the current-induced ten-
sion due to the change in bond charge in agreement with
earlier studies [18,19].

Figure 3(c) depicts the results of a DFT-NEGF calculation
where a long 1D Al chain is connected to 3D bulk Al elec-
trodes (top panel). The potential drop and electrical field in
this system is concentrated at the point of connection close
to the higher chemical potential. That means that inside the
chain, sufficiently far away from the electrode interface, there
is no influence of the voltage drop or field, and the induced
charges and resulting strain in the chain are entirely due
to the local current density. The charges and strains in this
region resemble those from the bulk-bias calculation. This
is demonstrated in the bottom panels of Fig. 3(c) where we
consider the change in electrons residing in the bonds, i.e.,
overlap population (OP), and the overall charge density along
the junction. Inside the chain the change in overlap population
is 	OP ∼ −2×10−3e, in good agreement with the infinite
chain results [Fig. 3(b) lower panel, circle]. The real-space
change in density, 	ρ, is further compared in the lower panel
in Fig. 3(c) and the lower right inset. In general, a discrepancy
can be attributed to the difference in the actual current distri-
bution (coming from the 3D electrodes) versus the bulk-bias
distribution, which is based on bulk bands of the 1D chain,
where the reflection at the 3D-1D interface is neglected.

B. Bands, DOS, COOP, and overlap population

We can relate the change in OP with bulk-bias voltage to
the underlying electronic band structure. The change in OP
depends on the change in the filling of the states near the

Fermi energy due to the applied bias. In particular, filling
(depleting) bonding states increases (decreases) the OP, and
vice versa for antibonding states. Figure 4(a) demonstrates
this principle for the Al bulk chain where the band structure,
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FIG. 4. Band structure, density of states (DOS), and crystal or-
bital overlap population (COOP) of (a) bulk Al chain with bond
length L = 2.5 Å at 0 V (black) and 0.5 V (red), and (b) bulk Au
chain with bond length L = 2.72 Å at 0 V (black) and 2.0 V (red).
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FIG. 5. Stress (force) as a function of strain (lattice constant) for one-dimensional, atomic chains at different bulk-bias voltages.

density of states (DOS), and crystal orbital overlap population
(COOP) at 0 V (black) and 0.5 V (red) near EF are shown.
The bands are only slightly shifted by the bulk bias, while the
DOS and COOP are nearly unchanged. The positive sign of
the COOP indicates that all states in the voltage window are
of bonding nature. The applied bias leads to the occupation of
bonding states above EF , and the depletion of bonding states
below EF . As the amount of bonding states getting depleted
is higher than the amount getting filled, the bond charge (area
below COOP) decreases in comparison to equilibrium. This
results in bond weakening in the chains. In contrast, for the
Au bulk chain [Fig. 4(b)], we find a strong shift of the bands
at 2 V. The DOS is pinned to the lower chemical potential,
leading to only minor changes in the occupation. This pinning
is controlled by the occupation of the filled d states. The small
bond strengthening we see at 2 V results from the depletion of
antibonding states (negative COOP).

C. Mechanical properties at nonequilibrium of 1D chains

We will now apply the bulk-bias method on 1D atomic
metal chain systems, to compare the trend in the current-
induced bond weakening over the different metals. The
tension in the 1D chain, which for 1D is a force (F ), is related
to the strain ε in terms of the linear and nonlinear elastic
moduli, E and D, respectively,

F = Eε + Dε2, (11)

with D < 0, so the term will decrease the stiffness at large
tensile strain. The strength or maximum tensile force or
ultimate tensile strength (UTS) corresponds to ∂F/∂ε = 0,
Fmax = −E/2D. If we consider the real experimental situation
where an atomic chain is connected to elastic bulk electrodes
and is pulled by an external force, we will expect the chains
to become unstable and that plastic deformation/breaking will
occur at the strain where the tensile force reach its first
maximum which we can consider to be the ultimate tensile
strength.

The tension-strain curves of 1D chains of different metals
at finite bulk-bias voltages are shown in Fig. 5. The overall
behaviors are remarkably different. However, for all materials
presented, we find that the tension decreases with bias. Fur-
ther, except for Au, we find an increase of the equilibrium
lattice constant (dashed line for zero tension), i.e., the chains
expand with bias, corresponding to a weakening of the bond
strength. Au and Cu [Figs. 5(a) and 5(b)] exhibit a relatively
weak dependence on the applied voltage while the lattice
constant shows a minor decrease for Au in contrast to Cu,
where the lattice constant increases by 1% at 2 V. This behav-
ior is in strong contrast to the case of Al [Fig. 5(c)], which is
very sensitive to both applied strain and the applied bulk bias.
The Al chain already becomes unstable at bias voltages below
1 V. The yield point of Al is significantly lowered for a bulk
bias of 0.5 V, while the equilibrium lattice constant remains
nearly the same. The metals Pt, Pb, and Ir [Figs. 5(d)–5(f)]
are also significantly influenced by the bulk bias compared
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to Au and Cu, in both their equilibrium bond length and
tension maximum. However, Pt and Ir are able to sustain a
higher force than Au even at 2 V. Todorov et al. [17] calcu-
lated the UTS as a function of bias based on a single-orbital,
tight-binding model of a 4-atom Au contact between bulk
electrodes. They obtained a drop of the UTS from ∼1.05 at
0 V to ∼0.9 eV/Å at 1 V bias in reasonable agreement with
our result given the difference in geometry and the fact that
the d electrons are playing a role; cf. Fig. 4(b).

In order to attempt a simple comparison with the exper-
imental data we compare the maximum tension, the change
in tension, and the change in lattice constant between the
metals in Figs. 6(a)–6(c). First, we note that the sequence in
σmax for the metals follows a sequence which is not changed
by the bulk bias up to 2 V. Only the case of Al yields an
unstable negative tension above ∼0.75 V. Atomic contacts
down to a single atom width of Au, Cu, Pb, and Al were
studied in mechanically controlled break junction experiments
by Ring et al. [16] where characteristic threshold voltages
corresponding to changes in the atomic structure were ex-
tracted as a function of contact size. These threshold voltages
have been shown to follow (in decreasing order) the material
sequence (Au, Cu, Pb, Al) for contact conductances 1–6 G0.
Interestingly, in our calculation, we find the same sequence in
the maximum tension, the induced tension, and in the change
in lattice constant [Figs. 6(a)–6(c)].

We may as a rough, simple measure define a characteristic
critical voltage from our calculation as Vcrit = W0/(dW/dV ),
where W is the work needed to break the chain obtained by
integrating the tension from 0 to σmax, using as dW/dV the
low-bias slope, and W0 the equilibrium work. In Fig. 6(d) we
plot as black crosses the experimental switching voltages from
Ref. [16] for the conductance corresponding to the infinite
chains at zero voltage (Au and Cu: 1G0, Pb: 3G0, Al: 2G0). For
comparison, the absolute values are normalized to the critical
voltage of Au. Most notably, our simulations reproduce the
sequence of critical voltages observed experimentally. These
experimental findings are furthermore in accordance with
earlier observations showing how Au single-atom-wide con-
tacts [7,37] can withstand voltage bursts beyond 2 V, while
for Al [6] this is below 0.8 V, and Pt [37] below 0.6 V.
It should of course be noted that while Au, Pt, and Ir are
known to form chains in experiments [38] in agreement with
DFT [39], it is not clear how well this model describes the
smallest contacts of the metals. Furthermore, many effects
will play a role in the complicated atomic rearrangement pro-
cess besides the nonequilibrium bond weakening addressed
above, such as electron-phonon coupling (Joule heating) and
heat conduction, energy nonconserving forces, mechanical
properties of the connection to bulk, atomic diffusion, etc.
Intriguingly, first-principles calculations [40] of the electron-
phonon-coupling single-atom chains showed that Au (and
Cu) have significantly stronger e-ph coupling compared to
Al, suggesting that the phonon effects (Joule heating and
wind-force effects) would be less severe for Al at the atomic
scale. Further, extensive first-principles calculations on re-
alistic structures and including the coupling of current to
phonons [16] (Joule and wind force), but neglecting the
current-induced bond weakening, were not able to reproduce
the material stability ranking, and found that Al was highest
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FIG. 6. (a) Ultimate tension over bulk bias of the 1D chains
shown in Fig. 5. (b) Change of maximum tension with bias
voltage and (c) change of lattice constant in %. (d) Calculated crit-
ical voltages (normalized to Vcrit of Au). The black crosses are the
experimental switching voltages from Ref. [16].

and Cu lowest in switching voltage for the smallest contacts
and up to a conductance of 6G0.

IV. CONCLUSIONS

We have presented a simple first-principles method to
estimate the role of current-induced bond weakening in bal-
listic atomic conductors. The method includes the role of the
electronic current on the bonds and is implemented in a stan-
dard DFT code. It is important to realize that our simple
method relies on the fact that the resistivity dipoles, in prin-
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ciple, can be located away from “bottleneck” regions where
the current density is high. We may thus, in a simplified
picture, consider the current, present throughout the structure,
and voltage drop/field separately. We have applied the method
to one-dimensional systems, but it is generally applicable for
bulk, periodic, atomic structures in 2D and 3D, other nonequi-
librium distribution functions depending on the band velocity,
as well, and other current-induced changes in properties such
as structure or magnetism. It has been demonstrated in ex-
periments [41] how few-atom structures can be formed based
on the “switching” between different conductance levels due
to changes in atomic rearrangements among the few atoms
in the cross section. Our prediction of the trend in stability

for the different metals with applied voltage/current is, for
these simple model systems, in agreement with recent exper-
iments [16]. This may indicate that the nonequilibrium bond
weakening plays a role in the effect. The change in stability
with nonequilibrium may have useful applications for future
atom-scale memristive devices [41–43].
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