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Tailoring the superposition of finite-momentum valley exciton states in transition-metal
dichalcogenide monolayers by using polarized twisted light
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A twisted light is a spatially structured light that carries quantized orbital angular momenta (OAM), being a
new degree of freedom useful in quantum information technology in addition to that of intrinsic spin angular
momentum (SAM), i.e., polarization. Using polarized twisted light to excite valley excitons in transition-metal
dichalcogenide monolayers (TMD-ML’s) sets up an intriguing photoexcited system which couples comprehen-
sively the excitonic and photonic multi-degrees of freedom, including the center-of-mass motion and valley
polarization of exciton and the both optical OAM and SAM. In this work, we present a systematic theoretical
investigation of the photoexcited valley excitons in TMD-ML’s by polarized Laguerre-Gaussian beams, one of
the best known twisted light (TL). We show that the photoexcitation of polarized TL incident to a TMD-ML
leads to the formation of the superposition of finite-momentum exciton (SFME) states, spatially localized with
the OAM- and SAM-encoded geometrical patterns.
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I. INTRODUCTION

With the intriguing electronic and excitonic properties,
atomically thin transition-metal dichalcogenide monolayers
(TMD-ML’s) have drawn vast attention for over a decade and
been well realized nowadays as promising two-dimensional
(2D) materials for advanced optoelectronic and valley-based
photonic applications [1–4]. Because of inherently weak
Coulomb screening in the 2D structures, photogenerated
electron-hole (e-h) pairs in a TMD-ML form tightly bound
excitons via the enhanced Coulomb attractions, with the ex-
citon binding energy so high as hundreds of meV [5,6]. It
is such tightly bound excitons, rather than the free e-h pairs,
that dictate the major optical features of the atomically thin
2D materials and various extraordinary optical and excitonic
phenomena result in the 2D materials, e.g., room-temperature
formation of exciton-polariton [7,8], high-temperature ex-
citon condensation [9], ultrafast excitation energy transfer
[10,11], superiorly high efficiencies of luminescences [1]
and light harvest [12,13], and rich exciton fine structures
[14–24].

Even more interestingly, an exciton in a TMD-ML pos-
sesses multiple degrees of freedom, including spin, valley,
and center-of-mass momentum (Q) as well. The spin-valley
locking effect in D3h TMD-ML’s enables the selective pho-
togeneratation of exciton in specific K or K ′ valley and the
coherent manipulation of the superposition valley exciton
states by using the polarization of light, i.e., optical spin angu-
lar momentum (SAM), of the incident light. This sets up the
prospect of valley-based photonics and quantum technology
implemented on TMD-ML’s [2,3]. By contrast to the matu-
rity of the manipulation of the spin-valley-locked degrees of
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freedom, manipulating the center-of-mass (CoM) motion of
exciton yet remains as a nontrivial task because the charge
neutrality of exciton hinders the electrically bias-controlled
transport or confinement [25–27].

The conventional light sources used for the photogenera-
tion of excitons are commonly based on nonstructured laser
beams that carry the optical SAM only. In fact, a light can be
spatially structured to acquire additional degrees of freedom,
e.g., optical orbital angular momentum (OAM). Such struc-
tured light with quantized OAM, also referred to as twisted
light (TL), was first predicted by Allen et al. in the early 90s
[28] and soon later realized experimentally by He et al. [29].
Over the past three decades, such new states of photons have
inspired broad interest and persistently on-going progress
in the exploration of the fascinating optical physics and
the advanced OAM-based photonic technology [30,31], such
as multidimensional quantum entanglements [32], OAM-
encoded quantum communications [33,34], optical control
of microscopic systems [35,36], and high-resolution imaging
[37]. Following the state-of-the-art advancement in the tech-
nology of TL, it is timely crucial to study the light-matter
interactions between TL and optoelectronic materials for the
prospective development of TL-based optoelectronic systems.
However, the research on the photoexcitation of TL in solids,
especially the emergent 2D materials, are yet still very limited
[38,39].

The first observation of the interaction between TL
and TMD-ML’s was reported very recently by Ref. [40],
with our theoretical contributions. Following the pioneer-
ing experiment-theory-joint work, in this paper we for the
first time present a comprehensive theoretical investigation of
the photoexcited valley excitons in TMD-ML’s by polarized
Laguerre-Gaussian beams, one of the best known TL carry-
ing the optical angular momenta, both OAM and SAM. We
show that the photoexcitations of TL lead to the formation
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FIG. 1. (a) The DFT-calculated spin- and valley-characteristic
quasiparticle band structure of MoS2-ML. (b) The zoom-in band
dispersion of the lowest conduction (εc1,k) and topmost valence bands
(εv1,k) around the K valley, which can be well fitted by the ideally
parabolic bands (magenta dots) with effective mass mc = 0.39m0

and mv = 0.46m0, respectively. For MoS2-ML, the bright A-exciton
states involve mainly the spin-like v1 and the c1 bands.

of superposition of finite-momentum exciton (SFME) states
in TMD-ML’s [41], constituted by the OAM- and SAM-
dependent superposition of the exciton states with different
CoM momenta. Via the couplings between optical angular
momenta and the momentum-dependent transition dipoles of
valley exciton, those TL-induced SFME states in TMD-ML’s
are featured with the momentum-dependent optical matrix
elements as the manifestation of the intriguing interplay be-
tween the multiple degrees of freedom of valley exciton and
TL, including both optical SAM and OAM.

This article is organized as follows. Following the in-
troductory section, Section II systematically presents the
fundamental theories of valley excitons in 2D materials and
Laguerre-Gaussian TL, the light-matter interactions between
2D excitons and TL, and the photoexcitation of excitons by
TL. We begin with the pseudospin model of exciton for the
bright exciton states with small CoM momenta in MoS2-
ML’s with the fitted parameters, which are determined on
the first principles base. In the valley-exciton model, we
present the theory of exciton-light interaction between the
valley exciton states of MoS2-ML and the Laguerre-Gaussian
TL in the angular spectrum representation. Taking the time-
dependent perturbation theory, we derive the formalism for
the TL-induced formation of SFME states and simulate the
q-dependent optical matrix elements of the resulting SFME
states with respect to the plane wave of light with the wave
vector q. Section III presents and analyzes the calculated
results, including the photoexcitation of SFME states by TL
with controlled OAM and SAM, and the OAM- and SAM-
encoded shape geometries and optical matrix elements of
TL-generated SFME states. Section IV concludes this work.

II. THEORY

A. Valley-characteristic band structures of TMD-ML’s

The band structure of a TMD-ML is characterized by
two distinctive valleys located at the K and K ′ corners of
the first Brillouin zone (BZ), where the conduction and
valence bands are separated by the direct band gaps in the
visible light regime. Figure 1(a) presents the spin-resolved
quasiparticle band structure, εn,k, of a MoS2 monolayer
calculated by using the first-principles VASP package [42]

in the density-functional-theory (DFT) with the use of
Heyd-Scuseria-Ernzerhof (HSE) functional model (see
Ref. [43] for details) [44–47]. Because of the strong spin-orbit
couplings (SOCs) in TMD-ML’s, the conduction (valence)
bands, εc,k (εv,k), in the valleys are spin split by �c (�v) in
the scale of tens (hundreds) of meV. The giant spin-splitting
in the valence band spectrally separates apart the two classes
of exciton states, i.e., the A exciton (B exciton) in the
low (high) energy regime. The meV-scaled spin-splitting
�c further lifts the degeneracy of the spin-allowed bright
states and the spin-forbidden dark ones in the excitonic
fine structure of A-exciton. Throughout this work, we shall
focus on the low-lying spin-allowed A-exciton states of
MoS2-ML that involve mainly the topmost valence band and
lowest spinlike conduction band around the K and K ′ valleys.
Figure 1(b) shows the DFT-calculated dispersions of the
lowest conduction and the topmost valence band around the
K valley of MoS2-ML, well fitted by the parabolic conduction
and valence bands with the effective masses, mc = 0.39m0

and mv = 0.46m0, respectively, where m0 is the electron rest
mass.

B. Valley excitons in TMD-ML’s

In this section, we present the exciton pseudospin
model [21,23,50] for the bright exciton states, |�X

S,Q〉 ≡
1√
�

∑
vck �S,Q(vck) ĉ†

c,k+Q ĥ†
v,−k|GS〉, with small CoM mo-

menta, Q, in MoS2-ML’s, which is used for the studies of
TMD-ML’s under TL excitation throughout this work. The
exciton model is parametrized by the exciton mass, binding
energy and e-h exchange interaction that are determined on
the first principles base (see Ref. [43] for technical details)
[21,23,24,40,51,52]. S is the band index, � is the total area of
the 2D material, ĉ†

c,k(ĥ†
v,−k) is the particle operator that creates

a conduction electron (valence hole) in the Bloch state ψc,k(r)
(ψv,k(r)), |GS〉 is the ground state with fully occupied valence
bands, and �S,Q(vck) is the amplitude of the e-h configuration
ĉ†

c,k+Q ĥ†
v,−k|GS〉.

Taking the exchange-free exciton doublet with the
well-specified valley character as basis, |�X (0)

τ=K/K ′,Q〉 =
1√
�

∑
vck �

(0)
τ=K/K ′,Q(vck)ĉ†

c,k+Q ĥ†
v,−k|GS〉, the exciton Hamil-

tonian can be expressed in the form of 2 × 2 matrix, as given
by [21,23,50], which reads

ĤX(Q) =
(

EX (0)
K,Q + �̃K,K(Q) �̃K,K ′(Q)

�̃∗
K,K ′(Q) EX (0)

K ′,Q + �̃K ′,K ′(Q)

)

+ EX
SR I2×2, (1)

where EX (0)
τ,Q = (Eg − 4RyX ) + h̄2|Q|2/2MX is the energy dis-

persion of exchange-free exciton, Eg is the energy gap,
RyX is the Rydberg constant of exciton, MX = mc + mv =
0.85m0 is the total effective mass of exciton, �

(0)
τ,Q(vck) is the

momentum-space wave function of the exchange-free lowest
1s exciton states that could be derived from the Wannier
equation, [51,53–56] the superscript (0) is used to indicate
the exchange-free nature and the label of exciton state is
changed to S → τ = K/K ′ to specify the valley of exciton,
and �̃τ,τ ′ (Q) are the matrix elements of the long-range (LR)
e-h exchange Coulomb interaction (see Ref. [43] for details).
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The second term on the right-handed side of Eq. (1) arises
from the short-range (SR) part of e-h exchange Coulomb
interaction and simply shifts upward the bright exciton dou-
blet by the constant energy, EX

SR, from the lowest level of
the exchange-irrelevant spin-forbidden dark exciton states.
Since the energy offset of short-range exchange interaction
essentially does not affect the bright-exciton band structure,
hereafter we disregard EX

SR (set to be zero) for brevity. Con-
sidering that bright exciton states lying in the small reciprocal
area of light cone and expanding the periodic part of the Bloch
function as un,k+Q(r) ≈ un,k(r) + Q · ∇k un,k(r), [21,23,50]
the matrix element of the LR e-h exchange Coulomb inter-
action [57,58] is approximated to

�̃τ,τ ′(Q) ≈ 1

�

1

2ε0|Q|
(
Q · DX∗

τ,Q

)(
Q · DX

τ ′,Q
)
, (2)

in terms of the transition dipole moment of exciton DX
τ,Q ≡

1√
�

∑
vck �

(0)
τ,Q(vck)dv,k;c,k, where dv,k;c,k ≡ e〈ψv,k|r|ψc,k〉 =

eh̄
im0(εv,k−εc,k ) 〈ψv,k|p|ψc,k〉 is the single-particle transition dipole
moment. [23,50] In small Q-limit, the dipole moments of
valley excitons have the approximated form of DX

K/K ′,Q =
DX

0 σ̂+/−, where σ̂± = 1√
2
(x̂ ± iŷ). From the DFT-calculated

band structure and the DFT-based Bethe-Salpeter equa-
tion (BSE) calculation [23,59,60], we obtain DX

0 /
√

� =
0.181|e| (see Ref. [43] for details). The explicit form of Eq. (2)
in small Q limit is expressed as �̃K,K (Q) = �̃K ′,K ′ (Q) =
γ |Q| and �̃K,K ′ (Q) = �̃∗

K ′,K (Q) = γ |Q|e−i2φQ , where γ ≡
(1/4ε0)(DX

0 /
√

�)2 is the strength factor of the e-h exchange
interaction, and φQ ≡ tan−1(Qy/Qx ) is the azimuthal angle
of Q.

By diagonalizing Eq. (1), the valley-mixed exciton states
are solved as∣∣�X

±,Q

〉 = 1√
2

(
e−iφQ

∣∣�X (0)
K,Q

〉 ± eiφQ
∣∣�X (0)

K ′,Q

〉)
, (3)

with the eigenenergies

EX
±,Q = EX (0)

τ,Q + (1 ± 1) γ |Q|, (4)

which are split by the Q-dependent exchange interaction into
the linear upper band EX

+,Q and the parabolic lower band EX
−,Q,

respectively. The slope of the linear upper band is evalu-

ated as 2γ = 1
2ε0

( DX
0√
�

)2 ≈ 2.94 eV Å from the DFT-calculated

DX
0 /

√
� [40], leading to the exciton band splitting ∼2.8 meV

at the light-cone edge [see Fig. 2(d)]. In this work, we adopt
the choice of phases in Ref. [21] to fix the global phases of
the valley-mixed exciton states in Eq. (3). Following Eq. (3),
the transition dipole moment of the exciton eigenstate with the
momentum Q in the upper band is given by

DX
+,Q = 1√

2

(
e−iφQ DX

K,Q + eiφQ DX
K ′,Q

) = DX
0(Q/|Q|) (5)

and that of the exciton state with the same momentum in the
lower band is

DX
−,Q = 1√

2

(
e−iφQ DX

K,Q − eiφQ DX
K ′,Q

) = iDX
0(Q⊥/|Q|), (6)

where Q⊥ ≡ |Q|(− sin φQ x̂ + cos φQ ŷ) is perpendicular to Q.
One notes that the exciton dipole moment of upper (lower)

FIG. 2. (a) The lowest valley degenerate exciton bands of
MoS2-ML, regardless of e-h exchange interaction, along the Qx axis
around the light-cone reciprocal range, where Q = (Qx, Qy ) is the
wave vector of exciton and the band edge is offset to be zero. (b) The
complex transition dipole moments of the K-valley exciton states
and (c) those of the K ′-valley exciton states over the Q-space. The
red (blue) arrows denote the real (imaginary) parts of the excitonic
dipole moments. In the absence of e-h exchange interaction, the
dipole moments of the K- and K ′-valley exciton states follow the
opposite circular polarization, independent of Q. (d) The valley-split
exciton bands by e-h exchange interaction of MoS2-ML, calculated
by numerically solving the DFT-based Bethe-Salpeter equation (ma-
genta circles) and simulated by the parametrized pseudospin model
(gray curves). The e-h exchange interaction splits the degenerate
exciton bands into the linear upper band (S = +) and the parabolic
lower one (S = −), leading to the Q-dependent dipole moments
of the exciton states, DX

S,Q. (e) The Q-dependent transition dipole
moments, DX

−,Q, of the lower exciton band are shown to be transverse
with respect to the Q wave vector, while (f) the dipole moments,
DX

+,Q, of the upper exciton band states are longitudinal. One notes
that all the Q vectors shown here are normalized by the light-cone
radius Qc = (1.92 eV)/h̄c, where 1.92 eV is the measured energy of
A-exciton peak in the absorption spectra of MoS2-ML [48,49].

exciton band is longitudinal (transverse) with respect to the
exciton wave vector, i.e., DX

+,Q ‖ Q (DX
−,Q ⊥ Q).

Figure 2(d) presents the calculated valley-mixed bright
exciton bands spit by the e-h exchange interaction in the
Q space covering the light-cone area by using Eq. (4) with
the parameter γ = 1.47 eV Å, in agreement with the band
structures calculated by solving the BSE (see Ref. [43] for
technical details) [40]. Correspondingly, the transition dipole
moments of the valley-mixed exciton states with finite Q in
the lower and upper bands are plotted in Figs. 2(e) and 2(f), re-
spectively. Figures 2(e) and 2(f) show that the dipole moments
of the valley-mixed excitons are Q-dependent, where DX

+/−,Q
of the upper longitudinal/lower transverse band is always
pointing to the direction parallel/normal to Q. For compari-
son, Figures 2(a)–2(c) show the calculated valley-degenerate
parabolic exciton bands and the exciton dipole moments in
circular polarization of bright valley exciton without the con-
sideration of e-h exchange interaction. The choice of phases
in Eq. (3) is advantageous for the simple expression of the
dipole moment of the valley-mixed exciton states in Eqs. (5)
and (6), which are expressed as purely real and imaginary Q-
dependent vectors, respectively. This makes the Q-dependent
dipole moments straightforwardly to visualize [see Figs. 2(e)
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and 2(f)] and facilitate the later analysis on the exciton-light
interactions.

C. Twisted light: Laguerre-Gaussian beams

Throughout this work, we consider the twisted light in the
Laguerre-Gaussian (LG) modes characterized with the quan-
tized orbital angular momentum (OAM) � = 0,±1,±2, . . .

and radial mode index p = 0, 1, 2, . . . that are normally in-
cident on TMD-ML’s [28]. Experimentally, LG beams with
the well-controlled OAMs can be realized by using the tech-
nology of spatial light modulator (SLM), and have been
employed to photoexcite atoms [61], molecules [62,63], and
free electrons in crystals [64], but not extensively yet excitons
in solids [38–40]. In the angular spectrum representation (see
Ref. [43] for details), the vector potential of the LG beam in
Lorenz gauge under the long Rayleigh-length condition [65]
and the paraxial approximation (that is valid for not too large
�) can be decomposed in the 2D Fourier transform [66,67] as

Aε̂,�,p
q0

(r) = ε̂
∑

q‖

A�p(q‖)eiq·r, (7)

where q = q‖ + q0, q‖ = qx x̂ + qy ŷ, q0 = q0ẑ is the wave
vector specified to be along the direction of light propagation,
and ε̂ denotes the unit vector of polarization perpendicular to
q0. As derived by Ref. [40] the q‖-space amplitude function of
LG beam (see Figs. S2 and S3 in Ref. [43]) is given by

A�p(q‖) = F̃�p(q‖) ei�φq‖ , (8)

in terms of the complex-valued radial function
F̃�p(q‖) = e−i�π/2 eiη�π F�p(q‖) and the phase factor

ei�φq‖ , where q‖ =
√

q2
x + q2

y , φq‖ = tan−1(qy/qx ),

η� ≡ |�|[1 − �(�)], �(�) is the Heaviside function, and
F�p(q‖) = (2πALG

0 /�)H|�|[ f�p(ρ)] is the real-valued radial
function obtained by means of the Hankel transform
H|�|[ f�p(ρ)] = ∫ ∞

0 dρ ρ f�p(ρ)J|�|(q‖ρ) of order |�| with
J|�|(q‖ρ) being the Bessel function of the first kind of order
|�| [67].

Taking the form of Eq. (7), a TL can be viewed as a super-
position of a large number of the plane waves with distinct
wave vectors q = (q‖, q0), each of which propagates with
the amplitude of A�p(q‖) in the slightly different directions
inclined from that of q0 with the angles, θ = tan−1(|q‖|/|q0|),
depending on q‖ (θ � 1 in the paraxial approximation). As
shown later, the amplitude A�p(q‖) determines the magnitude
of optical matrix element with which the finite-momentum
exciton state with Q = q‖ �= 0 can be photoexcited by TL. In
the limit of small θ , it is shown by Ref. [68] that the formalism
of LG beam formulated in Lorenz gauge can be approximated
by that of the same beam in the Coulomb gauge. Under the
condition, one can incorporate the formalism of Eq. (7) for
the TL in the paraxial approximation into the light-matter
interaction theory presented in the next section which is set
up on the base of Coulomb gauge [36].

D. Exciton-light interaction

In this section, we present the formalisms for the exciton-
light interaction between 2D valley exciton and LG TL

formulated in the angular spectrum representation. Taking
the rotating wave approximation, one writes the light-matter
interaction induced by a weak TL as HI (r, t ) ≈ H̃I (r) e−iωt ,
where H̃I (r) = |e|

2m0
A(r) · p.

In the time-dependent perturbation theory, the time-
dependent exciton state under a weak photoexcitation can be
expressed as

|�X (t )〉 ≈ |GS〉 +
∑
S=±

∑
Q

c̃(1)
S,Q(t )e−iωS,Qt

∣∣�X
S,Q

〉
, (9)

a superposition of finite-momentum exciton (SFME) state,
where c̃(1)

S,Q(t ) are the TL-induced time-dependent coefficients
of the photogenerated exciton states, |�X

S,Q〉. In the first-order

perturbation theory, one solves c̃(1)
S,Q(t ) = γ̃S,Q(t )( M̃S,Q

h̄ωS,Q
), where

γ̃S,Q(t ) absorbs the all time dependence of the coefficient,
M̃S,Q = 1√

�

∑
vck �∗

S,Q(vck) 〈ψc,k+Q| |e|
2m0

A(r) · p|ψv,k〉 is the
optical matrix element that measures the optical activity of the
exciton state |�X

S,Q〉 with respect to the incident light, ω is the
light frequency, and ωS,Q = EX

S,Q/h̄ is the natural frequency of

the exciton state |�X
S,Q〉.

For normally incident nonstructured light, the vector po-
tentials are generally given by Aε̂

q0
(r) = ε̂A0 eiq0·r, specified

by a well-defined wave vector q0. Taking the vector potential
of plane-wave light for M̃S,Q, the optical matrix element of
the exciton state |�X

S,Q〉 in the electric dipole approximation is

derived as M̃ ε̂,q0
S,Q ≈ δQ,0(Eg/2ih̄)A0(ε̂ · DX∗

S,Q), where the Kro-
necker delta, δQ,0, ensuring the conservation of momentum
allows only the exciton state with vanishing Q = 0 coupled to
the normal incident light with q‖ = 0.

By contrast, a TL is composed of infinite number
of finite-momentum plane waves and the optical ma-
trix element in terms of the vector potential of TL,
Aε̂,�,p

q0
(r) = ε̂

∑
q‖
A�p(q‖)eiq·r according to Eq. (7), is

written as M̃ ε̂,�,p
S,Q = 1√

�

∑
vck �∗

S,Q(vck)
∑

q‖
|e|

2m0
A�p(q‖)ε̂ ·

〈ψc,k+Q|eiq·r p|ψv,k〉. In the electrical dipole approximation,
one can preserve the leading electrical dipole term in the
Taylor expansion of the Bloch state ψc,k+Q around k and
approximate 〈ψc,k+Q|eiq·r p|ψv,k〉 ≈ δq‖,Q〈ψc,k|p|ψv,k〉 in the
evaluation of the optical matrix element, where the in-plane
momenta q‖ carried by TL enter the delta function to ensure
the momentum conservation q‖ = Q. As a result, the optical
matrix element of the exciton state |�X

S,Q〉 is derived as

M̃ ε̂,�,p
S,Q ≈

(
Eg

2ih̄

)
A�p(Q)

(
ε̂ · DX∗

S,Q

)
. (10)

in terms of the exciton dipole, DX
S,Q, defined for Eq. (2).

The Q-dependent optical matrix element of Eq. (10) is
determined by the product of the OAM-determined spec-
trum distribution function of LG beam, A�p(Q), over the
extended Q-space and the projection of exciton transition
dipole moment on the polarization direction, (ε̂ · DX∗

S,Q), i.e.,
the coupling between the optical SAM, ε̂, of TL and the
valley-mixed transition dipole of exciton by the intrinsic e-h
exchange interaction. The magnitude of the optical matrix
element evaluated by Eq. (10) reflects the coupling strength
for the exciton-light interaction between a valley exciton in
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the state (S, Q) and a ε̂-polarized TL in the (�, p) mode, man-
ifesting the intriguing couplings between the multiple degrees
of freedom possessed by the optical and excitonic subsystems.
With the Q-dependent nonzero optical matrix elements given
by Eq. (10), a LG beam enables the simultaneous photogen-
eration of numerously distinct finite-moment exciton states,
|�X

S,Q〉, forming a SFME state.

E. TL induced SFME states

To characterize the spatial localization of a SFME state,
here we introduce the envelope function of SFME state in the
center-of-mass coordinates R c defined by

F̃S (Rc, t ) = 1√
�

∑
Q

c̃(1)
S,Q(t ) eiQ·Rc , (11)

which extracts the Rc-coordinate envelope profile from the
exciton wave function given by Eq. (9). To elaborate on the
dynamics of SFME states, we consider the energy disper-
sions, EX

±,Q, of valley exciton bands, which are described

by EX
−,Q = h̄2|Q|2/2MX and EX

+,Q ≈ 2γ |Q| for the lower and
upper bands, respectively (the band edge is offset to be zero
here). It is known that F̃S (Rc, t ) as a superposition of the
finite momentum exciton states of the S band formed by
momentum states around a wave vector Q moves with the
group velocity defined by vS=±,g ≡ (∇QEX

±,Q)/h̄, according
to which v−,g = h̄|Q|/MX and v+,g = 2γ /h̄ are derived. Since
an SFME state induced by a twisted light is composed of the
momentum exciton states with various Q, each of which are
oriented in all possible in-plane directions. Thus one might
expect that, with increasing time, the envelope function of
the TL-induced SFME state might be unmoving but spread
more and more extendedly over the in-plane space with the
group velocity. With the parameters γ = 1.47 eV Å and MX =
0.85m0, v−,g (v+,g) at the major momentum |Q| = 0.1Qc of
SFME state of Figs. 5(c)–5(e) is estimated to be 1.33 × 1011

nm/s (4.46 × 1014 nm/s). Thus one could infer that, within
the measured decoherence time ∼0.4 ps by Ref. [69], the
envelope function of the SFME states of the upper band could
quickly be flattened over the space while the envelope func-
tion of the lower band SFME states might remain more stable
in the geometric shape. The phase velocity of F̃S (Rc, t ) is
given by vS=±,ph ≡ (EX

±,Q/h̄|Q|)Q̂, which has the magnitude
of v−,ph = h̄|Q|/2MX = v−,g/2 and v+,ph = 2γ /h̄ = v+,g.

Neglecting the slight phase interference between the time-
dependent parts (∝ e−iωS,Qt ) of the different exciton states
and considering ωS,Q ≈ ω0 = EX

S,0/h̄ to be approximately
constant, the amplitude coefficients of the exciton states is

written as c̃(1)
S,Q(t ) ≈ γ̃0(t )(

M̃ ε̂,�,p
S,Q

h̄ω0
), where γ̃S,Q(t ) ≈ γ̃S,0(t ) ≡

γ̃0(t ). Thus the envelope function of SFME state for the S
band excited by the ε̂-polarized TL in the (�, p)-mode can be
written as F̃ ε̂,�,p

S (Rc, t ) ≈ γ̃0(t ) f̃ ε̂,�,p
S (Rc) in a separable form,

where γ̃0(t ) is the factor absorbing the all time-dependencies
and

f̃ ε̂,�,p
S (Rc) = 1

h̄ω0

1√
�

∑
Q

M̃ ε̂,�,p
S,Q eiQ·Rc , (12)

is defined to describe the static part of the envelope function,
where the optical matrix element, M̃ ε̂,�,p

S,Q , is acting as the co-

efficient of the Fourier transform component of the envelope
function, f̃ ε̂,�,p

S (Rc), of the TL-induced SFME state in the
center-of-mass coordinate Rc-space. Thus the contour pattern
of M̃ ε̂,�,p

S,Q over the Q-space for the SFME state excited by
ε̂-polarized TL in the (�, p) mode directly maps out the finite-
momentum exciton components therein, from which one can
further infer the shape of the SFME state in the real space
described by f̃ ε̂,�,p

S (Rc). In other words, a TL-induced SFME
state can be re-shaped by switching the (�, p) mode of the
LG beam or directly changing the light polarization. In fact,
engineering or guiding the center-of-mass motion of an exci-
ton is not a trivial task because of charge neutrality of exciton
[25–27]. Here, we find that the application of TL provides an
alternative possible route to forming and shaping the envelope
function of SFME states. As suggested by Ref. [69], the deco-
herence coming from the exciton-exciton and exciton-phonon
interactions can be suppressed by reducing the exciton density
and temperature, respectively. By means of the technology,
the twisted light induced SFME states in TMD-MLs might
preserve the coherence and allow for optically guiding prior
to the spontaneous radiative recombination happening within
the subpicosecond time period.

In the remainder part of this work, we will investigate how
to tailor the geometric shape of the envelope function of the
SFME state in TMD-ML’s using polarized TL and analyze the
�- and p-dependent optical matrix elements of the TL-tailored
SFME states.

III. RESULTS AND DISCUSsiONS

A. Formation of SFME states by TL

1. Optical matrix elements of excitons and the reciprocal
amplitude functions of LG TL

First, we consider the exciton states photogenerated by
normally incident polarized LG beams in the fundamental
mode (�, p) = (0, 0). Figures 3(c) and 3(e) show the square of

magnitude of the optical matrix elements, |M̃ σ̂+,0,0
S=±,Q|

2
, for the

Q-exciton components in the upper and lower exciton band,
respectively, excited by a circularly σ̂+-polarized fundamental
(0,0)-LG beam.

From Eq. (10), one realizes that the complex optical matrix
elements, M̃ ε̂,�,p

S,Q for the Q-exciton components in a TL-
generated SFME state are determined by the kind of mode
of the exciting LG beam as well as the polarization ε̂. This
indicates that the superposition of the Q-exciton components
in a SFME state can be specified by the selected polarization,
ε̂, of incident TL. Thus, because the magnitude of the dipole-
coupling term |σ̂+ · DX∗

±,Q| = DX
0 /

√
2 in Eq. (10) remains

constant for all the Q-exciton states coupled to the circularly
polarized beam, the optical matrix elements M̃ σ̂+,0,0

S,Q follows
the same distribution over the Q-space as that of the amplitude
function A00(Q) of the incident circularly polarized TL. For
reference, Fig. 3(a) presents the contour-plot of the |A00(q‖)|2
of the fundamental LG beam in the q‖-space, schematically
highlighted with the circular arrow lines representing the cir-
cular polarization, ε̂ = σ̂+, carried by the incident LG beam.
With the beam waist of LG beam W0 = 1.5 μm, |A00(q‖)|2 ∝
exp ( −q2

‖ W 2
0 /2) spreads over a finite q‖-area at the scale of
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FIG. 3. (a) The square of the magnitude of the amplitude func-

tion, |A�p(q‖)|2, of normally incident circularly polarized LG beam
in the fundamental mode with q0 = q0 ẑ and (ε̂, �, p) = (σ̂+, 0, 0),
where the spiral arrow lines schematically indicate the circular po-
larization of TL. (b) Schematics of a MoS2 monolayer under the
photoexcitation of the circularly polarized TL. (c) The square of
the magnitude of the optical matrix elements, |M̃ ε̂=σ̂+,�=0,p=0

S=+,Q |2, of
the valley-mixed exciton states in the upper band, where the red
arrow lines depict the longitudinal dipole moments, DX

+,Q ‖ Q, of
the TL-excited exciton states with Q = 0.06Qc [indicated also by the
vertical dashed lines in (d) and (f)]. (d) The valley-split exciton band
structure and the exciton states photogenerated by the fundamental
LG TL in the upper band, marked by the red filled circles whose sizes
reflect the magnitudes of |M̃ σ̂+,0,0

+,Q |2 of the states. (e) and (f) present
the results as (c) and (d), but for the exciton states in the lower band.
Note the photoexcited exciton states in the lower band carrying the
transverse dipole moments, DX

−,Q ⊥ Q.

characteristic length ∼0.1Qc, so does the |M̃ σ̂+,0,0
S,Q |2 as seen in

Figs. 3(c) and 3(e).
The optical matrix elements, M̃ σ̂+,0,0

S,Q , are known from
Eq. (12) to determine the amplitudes of the finite-Q exciton
components in the TL-generated SFME state. The magnitudes
of M̃ σ̂+,0,0

+,Q [M̃ σ̂+,0,0
−,Q ] for the SFME state formed in the upper

[lower] exciton band are represented by the sizes of filled
circles placed on the Q-exciton states of the upper [lower]
band shown in Fig. 3(d) [Fig. 3(f)]. Figures 3(d) and 3(f) show
the finite-Q exciton components in the TL-excited SFME state
that are distributed over the upward dispersions of the exci-
ton bands. Accordingly, one can naturally infer the spectral
blueshifts of the SFME states under the photoexcitation of the
TL in the higher-order modes, as observed by Ref. [40].

2. Shaping the envelope function of SFME states by using
polarized TL

Next, we turn to consider linearly polarized LG beams
and examine the resulting SFME states. Figures 4(c) and 4(e)

FIG. 4. (a) The square of the magnitude of the amplitude func-

tion, |A�p(q‖)|2, of normally incident linearly x̂-polarized LG beam
in the fundamental mode, where the horizontal arrow lines indicate
the linear polarization of the applied TL. (b) Schematics of a MoS2

monolayer excited by the linearly polarized TL. (c) The square of the
magnitude of the optical matrix elements in the Q-space, |M̃ x̂,0,0

+,Q |2,

and (d) the envelope functions in the Rc-space, | f̃ x̂,0,0
+ (Rc )|2, of the

finite-Q exciton states in the upper band photoexcited by the linearly
polarized fundamental LG TL, where the black bar in (d) represents
the length of beam waist of the exciting TL, W0 = 1.5 μm. (e) and (f)
present the results as (c) and (d), but for the transverse exciton states
excited by the same polarized TL in the lower band.

show the square of magnitude of the complex optical matrix
element |M̃ x̂,0,0

S,Q |2 over the Q-space for the linearly x̂-polarized
LG beam in the fundamental (0,0)-mode. Differing from the
cases of circularly polarized beam, the dipole-field coupling
terms, x̂ · DX∗

−,Q = iDX
0 sin φQ and x̂ · DX∗

+,Q = DX
0 cos φQ, in

Eq. (10) arising from the linearly polarized beam are no longer
constant and highly depend on the orientation of the Q-vector.
With the φQ dependence of the dipole-field coupling terms,

the contour pattern of |M̃ ε̂,�,p
S,Q |2 over the Q-space is reshaped

to be highly anisotropic.
For the upper exciton band, as shown in Fig. 4(c), the x̂-

polarized LG beam selectively couples the exciton states with
the wave vectors surrounding the Qx axis. Correspondingly,
the SFME state photogenerated by the x̂-polarized LG beam
for the exciton upper band is more localized along the x̂ direc-
tion in the real space (that is parallel to the x̂ polarization of the
exciting beam) and nearly vanishing around the y axis in the
real space, as described by | f̃ x̂,0,0

+ (Rc)|2 shown in Fig. 4(d).
By contrast, the photogenerated SFME state in the lower

band by the same x̂-polarized LG beam superpositions the
finite momentum exciton states surrounding the Qy axis in the
Q-space and the resulting SFME state turns out to be localized
in the ŷ direction in the real space (that is perpendicular to the
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FIG. 5. (a) The square of the magnitude of the amplitude func-

tion, |A�p(q‖)|2, of the high-order LG beam carrying the finite OAM,
� = 1, with q0 = q0 ẑ and the mode indices (ε̂, �, p) = (x̂, 1, 0).
(b) Schematics of a MoS2 monolayer under the excitation of the
linearly polarized TL with (ε̂, �, p) = (x̂, 1, 0). (c) The square of the

magnitude of the optical matrix elements in the Q-space, |M̃ x̂,1,0
+,Q |2,

and (d) the envelope functions in the Rc-space, | f̃ x̂,1,0
+ (Rc )|2, of

the finite-Q exciton states in the upper band photoexcited by the
x̂-polarized TL with � = 1, where the length of the black scale bar is,
W0 = 1.5 μm, for reference. (e) and (f) present the results as (c) and
(d), but for the TL-excited exciton states in the lower band.

x̂ polarization of the exciting beam), as shown in Figs. 4(e)
and 4(f).

The above studies show that the SFME states optically
generated in the valley-split exciton bands by a TL can be
engineered by the selection of the polarization of the exciting
TL. Besides, whereas the valley-mixed exciton bands split by
only few meV are usually hardly resolved [21,23,40,50] and
identified spectrally, the TL-excited SFME states in the upper
and lower bands present the completely distinctive Q distri-
butions of the optical matrix elements, suggesting the distinct
angle-dependent optical spectra of the upper- and lower-band
SFME states.

3. �- and p-dependent SFME states

After recognizing the shaping effect of light polarization
(SAM of light) on TL-generated SFME states, we proceed
with the investigation of the photoexcitations in the TMD-
ML’s by the TL carrying nonzero � �= 0 (OAM of light).
Figures 5(c) and 5(e) show the square of magnitudes of
the Q-dependent optical matrix elements |M̃ x̂,1,0

S=±,Q|2 of the
SFME states in the upper and lower exciton band excited by
the normally incident x̂-polarized LG beams in the mode of
(�, p) = (1, 0), respectively. For reference of Figs. 5(c) and
5(e), Fig. 5(a) plots the amplitude function |A10(q‖)|2 featured

FIG. 6. The real-space envelope functions | f̃ ε̂,�,p
S=± (Rc )|2 of the

SFME states in a MoS2-ML photogenerated by the higher-order
x̂-polarized LG TL with (a) (ε̂, �, p) = (x̂, ±5, 0), (b) (ε̂, �, p) =
(x̂, ±10, 0), (c) (ε̂, �, p) = (x̂, 0, 1), and (d) (ε̂, �, p) = (x̂, 0, 10).
The dotted contour lines in all plots have the equal value of 0.01.

with the ring-like contours in the q‖-space and highlighted
with the horizontal arrow lines representing the x̂ polarization
of the incident TL.

From Eqs. (10) and (12), the amplitude function of
the Fourier transform of the SFME states induced by x̂-
polarized TL are given by M̃ x̂,�,p

S,Q ∝ A�p(Q)(x̂ · DX ∗
S,Q), which

are determined by the product of the amplitude function of
TL, A�p(Q), and the dipole coupling term, (x̂ · DX ∗

S,Q). Ac-

cordingly, we obtain M̃ x̂,�,p
+,Q ∝ A�p(Q) cos φQ and M̃ x̂,�,p

−,Q ∝
A�p(Q) sin φQ. It turns out that, in Figs. 5(c) [5(e)], the square
of magnitude of the optical matrix elements of the upper
[lower] exciton band, M̃ x̂,�,0

+,Q [M̃ x̂,�,0
−,Q ] for |�| = 1 becomes

highly anisotropic and distributed mainly around the positive
and negative Qx axes [Qy axis] in the Q-plane.

Correspondingly, Figs. 5(d) and 5(f) show the square of
magnitude of the real-space envelope functions | f̃ x̂,1,0

S=± (Rc)|2
of the SFME states photogenerated in the upper and lower
exciton band, respectively, by the incident of (1,0) LG TL. As
compared with the semi-ring-like SFME states excited by the
fundamental LG beam with the nodes at the origin Rc = 0 [see
Figs. 4(d) and 4(f)], the SFME states excited by the LG beam
with � = 1 shown in Figs. 5(d) and 5(f) are nodeless at the
origin position. According to Eq. (12), the envelope function
of a SFME state at the origin Rc = 0 is given by f̃ x̂,�,p

± (Rc =
0) ∝ ∫

d2Q M̃ x̂,�,p
±,Q . Following Eq. (10), one can show that

M̃ x̂,�,p
±,Q ∝ ei�φQ (eiφQ ± e−iφQ ), where the term ei�φQ is arising

from A�p(Q) and the one (eiφQ ± e−iφQ ) is from the dipole
coupling term, (x̂ · DX ∗

±,Q), of Eq. (10). Thus one can derive

that f̃ x̂,�,p
± (Rc = 0) ∝ ∫ 2π

0 dφQ ei�φQ (eiφQ ± e−iφQ ) ∝ (δ�,−1 ±
δ�,1). This shows that, under the linearly polarized TL exci-
tation, the TL-excited SFME states normally should have the
nodes at Rc = 0, unless the exciting TL carrying the OAM’s,
� = ±1. The exceptional hut-like envelop functions nodeless
at the origin results from the cancellation of the phase winding
numbers, n�

w = ±1, of optical OAM � = ±1 and those of the
Q-dependent dipoles of valley exciton, nX

w = ∓1, and mani-
fest the interplay between the optical OAM and dipolar valley
exciton.

Further, let us examine the effects of the LG TL with higher
�’s. Figures 6(a) and 6(b) show that the real-space SFME
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states of the upper (lower) band photoexcited by the high-�
LG TL are split into the shape of saddle featured with the
nodes at Rc = 0 and elongated along the positive and negative
y semiaxis (x semiaxis), consistent with the predicted nodes
at Rc = 0 for � �= ±1 by our previous analysis. To see a more
thorough analysis including the study of Q-dependent optical
matrix elements, please refer to Ref. [43].

Besides the OAM’s, the spatial structures of LG TL are
characterized also by the radial indices, p. Figures 6(c) and
6(d) show the envelope functions, | f̃ x̂,0,p

± (Rc)|2, in real space
resulting from the photoexcitations of normally incident x̂-
polarized LG beams with � = 0 and p = 1 and 10. One notes
that the real-space envelop functions of the SFME states ex-
cited by the LG TL with p �= 0 exhibit very different patterns
from those excited by OAM TL with p = 0 shown by Figs. 4,
5 and 6(a), 6(b). Inheriting from the multiple-ring patterns of
the amplitude function |A0p(Q)|2 of the high order LG TL
with p �= 0 (see Fig. S3 in Ref. [43]), the rippling features are
also retained in the real-space envelope functions of the SFME
states, as shown by the plots of | f̃ x̂,0,p

± (Rc)|2 in Figs. 6(c) and
6(d).

In general, the optical OAM is actually transferrable to the
both center-of-mass motion as well as the relative e-h motion
of exciton, as justified by the group-theory study of Ref. [70].
In this work, we show that the OAM carried by a twisted
light affects only the CoM motion of the lowest 1s exciton
since the lowest 1s exciton states carries no internal angular
momentum. The interaction between twisted light and high
lying exciton states with nonzero internal angular momenta
and the resulting new optical selection rules for the internal
angular momentum of exciton are certainly crucial and worthy
of studying in the future.

B. Momentum-dependent optical matrix elements (MD-OME’s)

The formation of the SFME states should make impacts on
the optical properties of a TMD-ML under the excitation of
TL. While many optical processes in materials involve com-
plex relaxation and dephasing mechanisms that are beyond
the scope of this work, in this section we shall examine the
optical matrix elements (OME’s) with respect to the SFME
states of a TL-excited TMD-ML, which offer fundamental
parameters for further sophisticate simulation of the realistic
optical processes, e.g., photoluminescence or absorption [71].
In the angular spectrum representation, one is concerned with
the momentum-dependent OME regarding a plane-wave of
light with the wave vector q. The square magnitude of OME
determines the rate of optical transition from an exciton state
and q dependence of OME manifests the angle dependence of
optical spectrum.

The OME with respect to the SFME state of a TL-excited
TMD-ML is defined as M̃λ,q

SFME ≡ 〈�X (t )| ˆ̃Hλ,q
I (r)|GS〉, where

|�X 〉 is the SFME state given by Eq. (9), ˆ̃Hλ,q
I (r) is the sec-

ond quantized operator of the light-matter interaction for the
plane-wave light with wave vector q = qν ( sin θν cos φν x̂ +
sin θν sin φν ŷ + cos θν ẑ) given by H̃λ,q

I (r) = |e|
2m0

Aε̂λ,q
q (r) · p,

θν (φν) is the polar (azimuthal) angle of the light wave vector,
Aε̂λ,q

q (r) = ε̂λ,q A0 eiq·r is the vector potential of the plane-
wave, and ε̂λ=1,q = cos θν ( cos φν x̂ + sin φν ŷ) − sin θν ẑ and

FIG. 7. The θν-dependent OME’s, |M̃(θν, φν = 0◦)|2, of the
SFME states in a MoS2 monolayer along the fixed x-z plane
(φν = 0◦) and with varied polar angles (θν), photogenerated by
the x̂-polarized TL with (a) (ε̂ = x̂, � = 0, 1, . . ., 5, 10, p = 0) and
(b) (ε̂ = x̂, � = 0, p = 0, 1, . . ., 5, 10). From (a) and (b), (c) records
the polar angles, θν,max, of the maximum magnitude of the MD-
OME of the SFME states photogenerated by the TL in the various
modes of (�, 0) and (0, p). The obvious � dependence of θν,max

indicates the OAM-encoded polar angles in the MD-OME’s of the
TL-excited SFME states. (d) Schematics illustrating the polar, θν , and
azimuthal angle, φν , of a coupled plane-wave light with wave vector
q considered in the MD-OME simulation. (e) The φν dependence

of |M̃S=±(θν,max, φν )|2 for the SFME states formed in the upper
(S = +) and lower (S = −) exciton bands excited by the normal
incident TL with (ε̂ = x̂, � = 1, 5, 10, p = 0) at θν = θν,max. One

notes that |M̃+|2 and |M̃−|2 follow the distinct and complementary
φν-dependencies, allowing for selectively detecting the optical sig-
nals from the valley-split exciton bands according to the azimuthal
angles.

ε̂λ=2,q = − sin φν x̂ + cos φν ŷ are the polarization basis of
TM and TE mode of light, respectively [see the schematics
plotted in Fig. 7(d)]. Since optical transitions could only be
significantly triggered by the light with energy resonant to
the SFME state, we define the momentum-dependent (MD)
OME of a SFME state, |M̃(θν, φν )|2 ≡ ∑2

λ=1 |M̃λ,qc
SFME|2 =

|M̃+(θν, φν )|2 + |M̃−(θν, φν )|2, with respect to the TM (λ =
1) and TE (λ = 2) light with energy equal to the exci-
ton band edge, EX

S,0 = h̄cQc, where qc = Qc( sin θν cos φν x̂ +
sin θν sin φν ŷ + cos θν ẑ) is the wave vector of the reso-
nant light. |M̃+/−(θν, φν )|2 is the OME contributed by the
upper/lower (S = +/−) exciton band components in the
SFME state given by Eq. (9). For the SFME states generated
by the x̂-polarized TL with � and p degrees of freedom, we
can follow the definition of M̃λ,qc

SFME and neglect the dispersion
of exciton states (ωS,Q ≈ ω0) to evaluate the MD-OME as

∣∣M̃(θν, φν )
∣∣2 ∝

∣∣∣M̃ x̂,�,p
+,qc,‖

∣∣∣2
cos2 θν +

∣∣∣M̃ x̂,�,p
−,qc,‖

∣∣∣2
, (13)

where qc,‖ is the in-plane component of qc = qc,‖ +
Qc cos θν ẑ. The appearance of cos2 θν in the first term on the
right-handed side of Eq. (13) arises from the partial projection
of the polarization of TM light onto the longitudinal dipoles of
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the upper-band exciton states, |ε̂λ=1,qc
· DX ∗

S=+,qc,‖ |
2 ∝ cos2 θν

(similar arguments for the absorption spectra in MoS2-ML’s
could be found in Ref. [21]).

From Eq. (13), one can note that the angle dependence
of |M̃(θν, φν )|2 is correlated to the qc,‖ distribution of the
square of the magnitude of the optical matrix elements,
|M̃ x̂,�,p

±,Q=qc,‖
|2. Taking the relation of M̃ x̂,�,p

±,qc,‖ ∝ A�p(qc,‖)(x̂ ·
DX ∗

±,qc,‖
) from Eq. (10), the MD-OME from a TL-induced

SFME state in Eq. (13) composed of the contributions from
the upper and lower exciton bands reads, |M̃(θν, φν )|2 ∝
|A�p(qc,‖)|2 cos2 φν cos2 θν + |A�p(qc,‖)|2 sin2 φν .

Accordingly, Figs. 7(a) and 7(b) show the θν depen-
dence of the MD-OME, |M̃(θν, 0)|2, in the x-z plane
(φν = 0) from the SFME states in a TMD-ML photoex-
cited by the TL with {� = 0, 1, 2, . . . , p = 0} and {� =
0, p = 0, 1, 2, . . . }, respectively. Since |M̃−(θν, φν = 0)|2 ∝
sin2(φν = 0) = 0, the MD-OME in the x-z plane is solely
from the upper exciton band, |M̃(θν, 0)|2 = |M̃+(θν, 0)|2 ∝
|A�p(qc,‖)|2 cos2 θν . Hence, with increasing �, the direction of
the MD-OME with maximum value is tilted from the z-axis
with increasing θν ≡ θν,max as shown in Fig. 7(a), follow-

ing the similar qx dependence to that of |A�p(qc,‖)|2 (see
Fig. S2(a) in Ref. [43]). By contrast, as shown in Fig. 7(b),
the MD-OME with the maximum value remains at θν = 0
with fixed � = 0 and increasing p = 0, 1, 2, . . . , consistent
with the qx dependencies of |A�p(qc,‖)|2 (see Fig. S3(a) in
Ref. [43]). Figure 7(c) shows how the polar angle, θν,max, of
the MD-OME with maximum value of the TL-excited SFME
states depend on the OAM’s (filled circles) and the radial
indices (filled triangles) of the exciting TL with (�, p = 0)
and (� = 0, p), respectively. Apparently, the former shows the
better angle-resolved spectra for varying �.

Finally, let us examine the φν dependencies of the MD-
OME’s from SFME states in TMD-ML’s excited by LG TL.
Figure 7(e) shows the magnitude square of the MD-OME’s
from the SFME states in the upper and lower exciton bands
excited by the TL with OAM’s, � = 1, 5, and 10, over the
full azimuthal angular range φν = {0◦, 360◦} with the fixed
θν = θν,max. One notes that, under the x̂-polarized TL ex-
citation, the MD-OME from the upper and lower exciton
bands exhibit the distinctive and complementary φν depen-
dencies. As one sees in Fig. 7(e), the magnitude square of
the MD-OME from the upper-band SFME state oscillates
with φν , featured with the maximum value at the angles φν =
0◦, 180◦, i.e., along the positive and negative x axis in parallel

to the x̂ polarization of the exciting TL. By contrast, the
MD-OME’s from the lower-band SFME states show the max-
imum value at the angles φν = 90◦, 270◦, i.e., along the
positive and negative y axis perpendicular to the x̂ polar-
ization of the incident TL. As a main finding of this work,
we show that the MD-OME of specific valley-mixed exciton
bands of TMD-ML’s under polarized TL are highly direc-
tional and dependent on the direction of the polarization of
the applied TL. While the meV-split upper and lower exciton
bands of a TMD-ML are normally hardly resolved spectrally,
the MD-OME’s of the SFME states under the linearly polar-
ized TL excitation is shown to mimic an exciton multiplexer
allowing for selectively detecting the optical signatures of
the meV-split longitudinal and transverse exciton bands of
TMD-ML’s [72,73].

IV. CONCLUSIONS

In conclusion, we present a comprehensive theoretical
investigation of the photogenerated valley excitons in TMD-
ML’s by Laguerre-Gaussian (LG) beams, one of the best
known twisted light carrying optical OAM, in addition to
optical SAM. We show that a normally incident polarized LG
beam to a TMD-ML photogenerates the SAM- and OAM-
encoded superposition of finite-momentum exciton (SFME)
states, whose distributions over the exciton-momentum space
are determined by the intriguing interplay between multiple
photonic and excitonic degrees of freedom, including the
OAM and SAM of light, and the valley pseudospin and center-
of-mass motion of exciton. This reveals the possibilities of
using polarized TL with engineered OAM to optically local-
ize, shape and guide the finite momentum exciton states, a key
feature desired by the advanced optoelectronic applications
and fundamental research that require charge-neutral excitons
to be transported. The spatial structures of exciting TL are
shown directly to impact the momentum-dependent optical
matrix elements of the TL-generated SFME states, which
manifest the angle-dependent optical properties of TL-excited
TMD-ML’s.
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