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Hydrodynamic heat transport in dielectric crystals in the collective
limit and the drifting/driftless velocity conundrum
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We apply a recently developed method for solving the linearized phonon Boltzmann equation to study the
hydrodynamic thermal transport in dielectrics in the collective limit, i.e., when normal collisions dominate
resistive ones. The method recovers Guyer and Krumhansl results for a single Debye branch and extends them
to general dispersion relations and branches. Specifically, we obtain explicit microscopic expressions for the
phonon distribution and for the transport coefficients in this limit. We find that the phonon distribution differs
from the commonly used displaced distribution in two terms: one accounting for viscous flow and another one
which allows us to solve a long-standing issue on drifting and driftless second-sound velocities. Thus, the new
method allows us to generalize previous results and fill some gaps on fundamental aspects of the collective limit
through a simple mathematical formalism. We compare the hydrodynamic framework with previous models and
discuss its limitations.
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I. INTRODUCTION

Hydrodynamic heat transport consists of thermal transport
displaying features similar to mass transport in fluids, such
as viscosity and inertia. In dielectric crystals, it was first
experimentally found in the 1960s for solid helium, where
Poiseuille-like flow [1] and second sound [2] were detected,
and in the 1970s the observation of second sound extended
to a handful of materials at cryogenics temperatures [3–5].
Since the mid-2010s it has received renewed interest be-
cause theoretical models based in first-principles calculations
predicted hydrodynamic phenomena for low-dimensional ma-
terials at higher temperatures, such as graphene and other
two-dimensional (2D) materials [6–8], carbon nanotubes [9],
and in graphite [10,11]. Quite remarkably, hydrodynamic ef-
fects like Poiseuille flow have been observed recently in black
phosphorous and graphite [12,13] and second sound have
been recently measured in graphite at temperatures below
200 K [11,14].

Hydrodynamic transport cannot be described by Fourier’s
law, which predicts heat to propagate diffusively. Then, the-
oretical studies of hydrodynamic heat transport in insulating
crystals are generally addressed by directly solving the lin-
earized Boltzmann transport equation (BTE) for phonons
[15,16]. However, the complexity of the BTE and the dif-
ficulty of implementing boundary conditions only allows
solutions for simple geometries and/or simplifying assump-
tions at a high computational cost [10,17,18].

Hydrodynamic behavior is expected to occur in the limit
when momentum-conserving normal collisions are much
more frequent than resistive ones (the so-called collective or
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Ziman limit). Until recently this was considered a necessary
condition for hydrodynamic heat transport to exist, to the
point that when phonon normal collisions are also much more
frequent than collisions with boundaries the system is said
to be in the hydrodynamic regime. In the collective limit,
Guyer and Krumhansl [19] deduced from the BTE an equa-
tion for the heat flux (GKE) that resembles the Navier-Stokes
equation for fluids and recovers Fourier’s law when time and
space variations are small. The GKE thus nicely generalizes
Fourier’s law while predicting hydrodynamic behavior such
as Poiseuille flow and second sound. Interestingly, it provides
a unified picture of the heat propagation phenomenology and,
with proper boundary conditions, can be applied to complex
geometries, in contrast to direct BTE solutions.

The improvement of experimental techniques since the
early 2010s has allowed us to observe thermal responses at
small sizes and timescales which differ from Fourier’s law in
situations when resistive collisions dominate (kinetic limit)
[20–23]. Remarkably enough, the GKE, originally derived
in the collective limit, has been shown to capture such non-
Fourier effects at the nanoscale for several kinetic materials,
including InGaAs [23], silicon [24–31], and germanium [32].
These experimental observations asked for a theoretical foun-
dation and, recently, a hydrodynamic equation of the GKE
type has been derived for general dielectrics by solving the
BTE using a new method for small but finite Knudsen num-
bers (the quotient between phonon mean free paths and a
macroscopic scale) [31]. The derivation considered general
linearized collision operators, and general dispersion relations
and number of branches, thus generalizing previous results
[24,33,34]. The method, which from now on we will call flux
derivatives formalism (FDF), allows us to obtain the phonon
distribution and the transport coefficients of the hydrodynamic
equation from first principles. In Ref. [31] the kinetic limit
was analyzed using the relaxation time approximation (RTA),
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finding good agreement with experiments in silicon in a wide
range of temperatures and with second-sound experiments in
germanium from 100 to 300 K [32].

The aim of the present work is to apply the FDF to the
collective limit, i.e., the opposite limit from the one studied in
Ref. [31]. This study will allow us to check the validity of the
formalism by comparison with previous literature and study
hydrodynamic behavior from the perspective given by the new
method. We will see that it generalizes previous results and
improves our understanding on fundamental issues through a
simpler mathematical formalism. For the sake of simplicity,
throughout the paper we will consider isotropic systems.

The paper is organized as follows. We first summarize the
FDF method in Sec. II for the paper to be self-contained. Next
we apply the FDF to the collective limit and recover Guyer
and Krumhansl results [19] for a single branch in the Debye
aproximation and generalize them to general dispersion rela-
tions. We also obtain the nonequilibrium phonon distribution
function, which generalizes the classical expression and will
allow us to clarify in Sec. IV a longstanding conundrum re-
lated to drifting and driftless second-sound velocities. Finally,
Sec. V is devoted to concluding remarks.

II. FLUX DERIVATIVES FORMALISM

In classical kinetic theory, two well-known methods are
used to obtain macroscopic equations from the Boltzmann
transport equation: the Chapman-Enskog’s method [35] and
the Grad’s moment method [36]. They provide microscopic
expressions for the transport coefficients appearing therein
and the nonequilibrium distribution function. The Chapman-
Enskog method uses as independent variables the first
moments of the distribution, which for heat transport reduces
to the temperature T . As a result, the phonon distribution
and the macroscopic equations depend on the temperature
and its gradients. It is based on an expansion in the Knud-
sen number and produces Fourier’s law to first order and
Burnett and super-Burnett equations at higher orders [37].
On the other hand, Grad’s method assumes as independent
variables the moments of the distribution, which include the
temperature, as in Chapman-Enskog, but also the heat flux
and eventually higher-order fluxes. The distribution function
depends on these variables but not on their derivatives. Be-
yond Fourier, the macroscopic equations produced by both
methods display some shortcomings, such as the instability of
transient solutions in Burnett and super-Burnett equations or
the discontinuity of some properties in Grad’s equations due
to their hyperbolic character, added to the difficulty of posing
proper boundary conditions for higher derivatives or higher
moments, respectively [37].

The FDF introduced in Ref. [31] uses a mixed approach
of Chapman-Enskog and Grad methods. The key point is to
extend the set of independent variables to include the heat
flux and its first derivatives in space and time. For moderate
Knudsen numbers, it generally yields an equation for the heat
flux of the GKE type which overcomes the shortcomings
found in Chapman-Enskog and Grad methods. We summarize
below the main results of the Flux derivatives method [31]
and present them in the form more appropriate for the devel-
opments in the rest of the paper.

The linearized BTE for phonons writes:

∂ fλ
∂t

+ �vλ · �∇ fλ = C( fλ), (1)

where fλ is the phonon distribution function of the λ-phonon
mode (wave vector �k and polarization s), �vλ the phonon group
velocity, and C( fλ) is the linearized collision operator acting
on the distribution function. In terms of the scattering matrix,
�, it writes C( fλ) = −�λ′�λλ′nλ′ , with nλ = fλ − f eq

λ and f eq
λ

the Bose-Einstein distribution. By projecting the BTE to the
energy and to the crystal momentum, one obtains the transport
equations:

∂e

∂t
+ �∇ · �q = 0, (2)

∂ �p
∂t

+ �∇ · =
� =

∫
h̄�kλC( fλ)dλ, (3)

where e = ∫
h̄ωλ fλdλ is the energy density, �q = ∫

h̄ω�vλ fλdλ

the heat flux, �p = ∫
h̄�kλ fλdλ the momentum density, and

=
� = ∫

h̄�kλ�vλ fλdλ the flux of crystal-momentum. In order to

close the system, one needs to relate �p and
=
� to the energy

density and the heat flux, so that a solution of the BTE is
required. In most previous methods, the solution of the BTE is
set as an expansion on the basis of eigenvectors of the collision
operator and the unknowns are the macroscopic prefactors
[19,38–41]. Instead, we proposed that for moderate Knudsen
numbers the perturbed distribution function is an expansion
on the heat flux �q and its first derivatives in time and space,
considered as independent variables (i.e., at a given point in
space they can take independent values), and the unknowns
are the microscopic prefactors:

fλ = f eq
λ + �βλ · �q + �γλ · ∂ �q

∂t
+ =

Gλ : �∇ �q, (4)

where �βλ, �γλ, and
=
Gλ are weight functions dependent on the

phonon mode to be determined. In an isotropic material, the

case we focus on for simplicity, one has
=
Gλ ≡ =

G1,λ + =
G2,λ,

with
=
G1,λ ≡ g1,λk̂k̂ and

=
G2,λ ≡ g2,λI, where k̂ denotes the

unitary vector in the direction of �k, I is the identity tensor,
and g1,λ and g2,λ are scalar quantities; symbol “:” indicates
the double contraction of tensor indexes. The combination of
Eqs. (1)–(4) provides the equations for the weight functions.
They are obtained by neglecting second-order derivatives as
compared to first-order ones, i.e., for small-enough spatial
and time variations, and equating the prefactors of the macro-
scopic variables, considered as independent [31]:

C(�βλ) = − 1

κ

∂ f eq
λ

∂T
�vλ, (5a)

C(�γλ) = �βλ − τ

κ

∂ f eq
λ

∂T
�vλ, (5b)

C(
=
G1,λ) = �βλ�vλ, (5c)

C(g2,λ) = − 1

CV

∂ f eq
λ

∂T
, (5d)

where CV is the heat capacity per unit volume and κ

and τ are, respectively, the thermal conductivity and flux
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relaxation time [see Eq. (7b) below]. The left-hand side terms
in the latter equations use a compact notation; for instance,
in Eq. (5a), C(�βλ) is a vector with i Cartesian component
C(β i

λ) = −�λ′�λλ′β i
λ′ . The values of κ and τ can be obtained

with the help of two consistency relations arising from impos-
ing the definition of heat flux in Eq. (4):∫

h̄ωλ �βλ�vλdλ = I, (6a)∫
h̄ωλ �γλ�vλdλ = 0. (6b)

Interestingly, the nonequilibrium distribution (4) with the
weight functions obeying Eqs. (5a)–(5d) satisfies the con-
servation of energy for general collision operators, i.e.,∫

h̄ωλC( fλ)dλ = 0. This allows us to apply the formalism to
approximate collision operators, like in RTA and Callaway
models, while guaranteeing energy conservation. This con-
trasts to the direct application of these approaches, where
energy conservation requires additional constraints [18,42].

Finally, by introducing Eq. (4) in the expressions for the

energy, the momentum density �p and
=
�, the transport equa-

tions (2) and (3) read

CV
∂T ′

∂t
+ �∇ · �q = 0, (7a)

�q = −τ
∂ �q
∂t

− κ �∇T ′ + �2[∇2 �q + α �∇( �∇ · �q)], (7b)

with T ′ the local-equilibrium temperature, � the nonlocal
length, and α a nonlocal coefficient; as κ and τ , all these
parameters are intrinsic size-independent coefficients deter-
mined by the weights [indeed there is an extra term that can
be typically neglected, see Appendix (B)]. Equation (7b) is
the GKE [19], which generalizes Fourier’s law by including
memory and nonlocal effects. The second derivatives of the
heat flux characterized by parameter � resemble the viscous
terms in the Navier-Stokes equation, and for this reason heat
transport obeying this equation was addressed as phonon hy-
drodynamics. If spatial variations are much larger than the
nonlocal length �, then the viscous terms can be neglected,
and if time variations are much slower than the relaxation time
τ , then the time derivative term is negligible, thus recovering
Fourier’s law. Let us note in passing that this equation is
consistent with our assumption of �q, ∂ �q/∂t , and ∇ �q as inde-
pendent variables since, at a given point in space, they can take
arbitrary values by choosing the appropriate value of ∇T .

The local-equilibrium temperature T ′ is defined as
e = eeq(T ′), with eeq the equilibrium expression for the energy
[19,40,41,43], and it is related to the temperature T in f eq

through T ′ − T = τe∂T ′/∂t , with τe a time constant [31]. In
order to use the linearized BTE, temperature differences must
be small, i.e., (T ′ − T )/T << 1, which sets a limit to time
variations that the model can describe. If ω is the frequency of
the thermal perturbation and �T its amplitude, then the latter
inequality leads to ωτe�T/T << 1.

The microscopic expressions for the transport coefficients
give:

κ = −
∫

h̄kxvx∂T f eq
λ dλ∫

h̄kxC(βx )dλ
, (8a)

τ =
∫

h̄kxC(γx )dλ − ∫
h̄kxβxdλ∫

h̄kxC(βx )dλ
, (8b)

�2 =
∫

h̄kxvyG1,xydλ∫
h̄kxC(βx )dλ

, (8c)

α = 2 +
∫

h̄kxvxg2dλ∫
h̄kxvyG1,xydλ

− κτe

CV �2
, (8d)

τe = −
∫

h̄ωλ(G1,xx + g2)dλ. (8e)

These coefficients can be expressed in other ways, but the
expressions listed above are in the form more appropriate for
the discussions in the present work. In particular, they can be
applied to systems of any dimension.

In summary, given a collision operator, the solution of
Eqs. (5a)–(5d) provides the weights that specify the nonequi-
librium phonon distribution and the transport parameters from
first principles through the above equations. These could be
solved in principle for the full collision operator through it-
erative or variational methods, for instance, though this must
be studied with care because the solution for �β are the inputs

for the solutions of �γ and
=
G1. This is beyond the scope of the

present paper. In the next section, we apply this framework to
the collective limit, where some simplifications allow for an
analytical treatment.

III. COLLECTIVE LIMIT

When normal scattering dominates over resistive colli-
sions, the former strongly correlate the evolution of the
populations of different phonon modes so that they are not
independent and RTA does not apply. A precise study of
this limit requires to include the off-diagonal terms in the
linear collision operator C [19,39]. The latter can be separated
into the momentum-preserving normal collisions operator N
and the resistive collisions operator R, C = N + R. The GKE
equation was originally derived by Guyer and Krumhansl
in the collective limit, i.e., when N � R, assuming a single
branch and Debye approximation [19,44]. In this section, we
analyze this limit through the Flux derivatives formalism. This
will allow us to compare to Guyer and Krumhansl results
under their assumptions and, interestingly, generalize them to
several branches and general dispersion relations. The recov-
ery of GK results through this completely different method not
only supports the FDF but also clarifies some doubts raised
on the validity of the GK derivation [45]. In addition, we
will obtain an explicit expression for the phonon nonequi-
librium distribution which goes beyond the displaced Bose-
Einstein distribution often considered in this limit. This
generalized distribution function helps shed light on a long-
standing issue about the velocity of second sound in this limit
in Sec. IV. We first evaluate this distribution and later use it to
calculate the transport coefficients.

A. Nonequilibrium distribution function

According to the FDF, the distribution function depends
on the heat flux and its derivatives as given by Eq. (4) with the
weight functions the solutions of Eqs. (5a)–(5d).
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In the limit where resistive collisions are absent, in station-
ary and homogeneous situations, the solution of the BTE is
the displaced (or drifting) Bose-Einstein distribution [16,46]:

f disp
λ = 1

exp [h̄(ωλ − �k · �u)/kBT ] − 1
, (9)

where kB is Boltzmann constant and �u is the drift velocity,
which is uniform across the system as it is T . It can be shown
that f disp

λ maximizes the entropy and that, in these condi-
tions, phonon distributions relax to it [47]. This distribution
describes a collective motion of phonons which seem to move
at the same drift velocity, as molecules in a moving fluid. Not
far from equilibrium it writes

f disp
λ = f eq

λ + T

ωλ

∂ f eq
λ

∂T
�k · �u. (10)

On the other hand, under stationary and homogeneous con-
ditions, ansatz (4) simplifies to fλ = f eq

λ + �βλ · �q. Notice that
this has the same form of (10), since this yields for the heat
flux �q ∝ �u, which allows us to identify �βλ in the collective
limit as

�βcol
λ =

�kλ

ωλ
∂T f eq

λ∫
h̄kxvx∂T f eq

λ

. (11)

The other weight functions can be evaluated by taking into
account that in the limit N � R one can approximate the colli-
sion operator acting on function xλ as C(xλ) � N (xλ) � − xλ

τN,λ
,

with τN,λ the relaxation time for normal scattering of the λ

mode and xλ is any of the components of �γλ,
=
G1,λ, or g2,λ.

Let us note, however, that this does not apply to �βcol
λ , since N

conserves momentum and then N (�βcol
λ ) = N ( f disp

λ ) = 0. By
using Eqs. (5b)–(5d) one has

�γλ = τN,λ

(
τ

κ

∂ f eq
λ

∂T
�vλ − �βcol

λ

)
+ D�βcol

λ (12)

=
G1,λ = −τN,λ �βcol

λ �v, (13)

g2,λ = τN,λ

CV

∂ f eq
λ

∂T
. (14)

The last term in Eq. (12) is introduced because the integration
of �γλ in this limit is determined aside from a function propor-
tional to �βcol

λ because N (�βcol
λ ) = 0. Transport coefficients τ

and κ are determined below, and coefficient D is subsequently
obtained by constraint (6b). All weights in the distribution
function (4) are thus specified.

We now compare these results to Guyer and Krumhansl’s
[19]. In their derivation, the authors expressed the distribution
function in terms of the eigenvectors of the symmetrized nor-
mal scattering operator. Since only two of these eigenvectors
are known, they could only find explicit expressions for the
first two terms of the expansion. This gives the displaced
distribution (10) or, equivalently, f eq

λ + �βλ · �q, but not the
higher-order terms. Our formalism, instead, provides higher-
order corrections in terms of the flux derivatives, Eq. (4), with
explicit expressions for the weights. One might think that
these corrections, which are of order τN , are small and could
be neglected. Instead, let us stress that they are necessary for

a consistent and complete description of the collective limit,
like the inclusion of thermal viscosity through the term in �∇ �q
or, as will be shown in Sec. IV, the proper expression for
second-sound velocity.

B. Transport coefficients

We now evaluate the transport coefficients by introducing
the weights calculated above in the general expressions of
the formalism, Eqs. (8a)–(8e), and compare to previous work.
Since crystal momentum is conserved in normal collisions,
i.e.,

∫
h̄kxN ( fλ)dλ = 0, below we use that

∫
h̄kxC(xλ)dλ =∫

h̄kxR(xλ)dλ for any weight function component xλ.

1. Relaxation time τ

The general expression for τ , Eq. (8b), gives in the collec-
tive limit

τ =
∫

h̄kxR(γ col
x )dλ − ∫

h̄kxβ
col
x dλ∫

h̄kxR
(
βcol

x

)
dλ

.

Since in this limit R → 0, one has
∫

h̄kxR(γx )dλ 
∫
h̄kxβxdλ, and the heat flux relaxation time is

τ = −
∫

h̄kxβ
col
x dλ∫

h̄kxR
(
βcol

x

)
dλ

≡ −R∗−1
11 , (15)

which is the inverse of an average resistive scattering rate. The
notation R∗

11 follows the original one by Guyer and Krumhansl
[19], since it can be seen that the quotient in Eq. (15) can
be written as R∗

11 ≡< φ1
x |R∗|φ1

x >, i.e., the component of
the symmetrized resistive collision operator R∗ projected to
the normalized eigenvector |φ1

x > of the symmetrized normal
scattering operator N∗ [see Appendix (A) for the definitions of
symmetrized operators and eigenvectors of N∗]. This is also
the result found by Guyer and Krumhansl. When one approx-
imates R � − 1

τR,λ
, with τR,λ the λ-mode resistive relaxation

time, then τ =< φ1
x | 1

τR,λ
|φ1

x >−1, which is the most common
expression used for the relaxation time in the collective limit
[7,19,44].

2. Thermal conductivity κ

The general expression for the thermal conductivity (8a)
yields

κ = −
∫

h̄kxvx∂T f eq
λ dλ∫

h̄kxR
(
βcol

x

)
dλ

,

and using expressions (15) for τ , and (11) for βcol
x , it can be

rewritten as

κ =
( ∫

h̄kxvx∂T f eq
λ dλ

)2∫
h̄k2

x /ω ∂T f eq
λ dλ

τ = CV 〈φ0|vx

∣∣φ1
x

〉2
τ. (16)

By defining the average 〈xλ〉 ≡ ∫
h̄ωλ∂T f eq

λ xλdλ/Cv and the
phase velocity vp,λ ≡ ωλ/kλ, the latter expression can be
rewritten in d dimensions as

κ = 1

d
CV

〈
v

vp

〉2〈
v−2

p

〉−1
τ. (17)

And if one considers the Debye approximation and a single
phonon branch with velocity v in 3D, as assumed in the
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original work by Guyer and Krumhansl, one has κ = 1
3CV v2τ ,

which is the result obtained in Ref. [19].

3. Nonlocal length �

Introducing Eq. (13) into (8c) yields

�2 = −
∫

h̄kxv
2
y β

col
x τN,λdλ∫

h̄kxR
(
βcol

x

)
dλ

.

By using Eq. (15), it can be written in terms of eigenvector
|φ1

x > as

�2 = 〈
φ1

x

∣∣v2
y τN

∣∣φ1
x

〉
τ. (18)

This result agrees with Ref. [48] obtained using Callaway
model. According to the GKE, Eq. (7b), the thermal viscous
diffusivity is given by ν = �2/τ , so that it is simply given
by an average on v2

y τN , which reflects the physical origin of
the diffusion of heat flux and crystal momentum in this limit,
namely normal scattering. In contrast to fluids, where mo-
mentum is conserved, resistive collisions destroy momentum,
so that it diffuses only a finite time of order τ . As a result,
the transport equation for phonons is characterized by the
length diffused by momentum before being destroyed, which
approximately is ντ = �2.

In term of averages, Eq. (18) writes in d dimensions as

�2 = 1

d + 2

〈
v2

v2
p

τN

〉〈
v−2

p

〉−1
τ. (19)

For a single Debye branch in 3D it yields �2 = 1
5v2〈τN 〉τ , as

obtained by Guyer and Krumhansl [19,44].

4. Time parameter τe

Substituting Eqs. (13) and (14) into (8e) gives

τe =
〈

v

vp
τN

〉〈
v

vp

〉
− 〈τN 〉. (20)

One finds that in the Debye approximation τe = 0 and, in
general, it is of order 〈τN 〉. In consequence, condition (T −
T ′)/T = ωτe�T/T 
 1 is safely satisfied for ω〈τN 〉 < 1,
which is already a condition for the collective regime, namely
the timescale of experiments must be larger than normal scat-
tering times [39,40,44]. For larger frequencies one enters the
ballistic regime.

5. Nonlocal coefficient α

One finds from (8e)

α = 2 − d + 2

d

〈
v
vp

τN
〉

〈
v2

v2
p
τN

〉 〈 v

vp

〉
− κτe

CV �2
. (21)

In three dimensions and Debye approximation, one thus gets
α = 1/3. This value contrasts to α = 2 obtained by Guyer and
Krumhansl [19], but it is in agreement with Refs. [34,40].
Hardy and Albers explained that this discrepancy is due to
an approximation in the normal collision operator made in
Ref. [19].

We end this section by comparing our results with the
work by Hardy and Albers [40]. They derived a macroscopic
equation in the collective limit similar to the GKE for general

dispersion relations in terms of eigenvenvectors of the normal
scattering operator N∗, thus generalizing GK results. In the
ideal collective limit (τN/τR → 0), their expressions for the
thermal conductivity and the relaxation time coincide with
those found in this section. The other coefficients, however,
are expressed in terms of the spectrum of N∗ eigenvenvectors,
φi, which being unknown for i > 1, prevents their calcula-
tion. For instance, �2 in isotropic systems can be expressed
as �′

σ < φ1
x |vy|φσ >< φσ |vy|φ1

x > τσ
N τ , where 1/τσ

N is the
eigenvalue of φσ and the prime indicates that the sum extends
only to σ > 1. Let us note that this expression is formally very
similar to our Eq. (18). Assuming a constant τσ

N and different
Debye branches, Hardy and Albers yield �2 = 1

5τN 〈v−2
p 〉−1τ

and α = 1/3, in agreement with the results of Eqs. (19) and
(21), respectively, for these conditions.

IV. VELOCITY OF SECOND SOUND
IN THE COLLECTIVE LIMIT

Second sound (SS) is the propagation of heat in the form of
waves, as first sound is the wave propagation of momentum or
density disturbances. These waves have been experimentally
observed in some solids at cryogenic temperatures [3–5] and
more recently in graphite below 200 K [11,14]. In these cases,
normal collisions dominate, which is the expected regime
for second sound to be detected [39,44]. Recently, however,
second sound has also been observed in germanium at room
temperature [32], where resistive collisions are very impor-
tant. Here we focus on second sound in the collective limit.
Quite surprisingly, in this limit two expressions for the veloc-
ity of second sound have been used in the literature [6,7,9,39]
coming from different approximations of the BTE, the so-
called drifting and driftless approximations. Remarkably, they
lead to different results, and the differences are especially
important in low-dimensional materials. For example, for
(20,20) single-wall carbon nanotubes at 300 K the predicted
speeds are some 4000 m/s for the drifting expression and
8000 m/s for the driftless one [9]. In the study of second
sound in unstrained graphene and other 2D materials, Ref. [6]
uses the driftless expression because the drifting one was
expected to diverge, whereas Ref. [7] calculates graphene SS
velocity using the drifting expression considering renormal-
ization of the dispersion relation due to coupling of bending
and stretching modes. We are thus faced to two different
predictions for the same experimental situation, i.e., the speed
of second sound in the collective limit. It is thus both theoret-
ically and experimentally relevant to solve this conflict.

In this section we show that a proper analysis of the BTE
predicts just a single velocity for second sound in the collec-
tive limit, thus solving the conundrum. In the following, we
first present the derivations leading to the drifting and driftless
expressions for the SS speed and then show how the FDF
solves the paradox.

Drifting and driftless approximations use the energy con-
servation equation and assume that, in the limit of negligible
resistive scattering, the phonon distribution function tends
to the displaced distribution. The conflict comes from two
possibilities of projecting the BTE to obtain macroscopic
equations: either on the crystal momentum (drifting approx-
imation) or on the heat flux (driftless approximation) [9,39].

155301-5



LLUC SENDRA et al. PHYSICAL REVIEW B 106, 155301 (2022)

A. Drifting approximation

In this limit, crystal momentum is conserved so that
the BTE leads to the following balance for energy and
momentum:

∂e

∂t
+ �∇ · �q = 0, (22)

∂ �p
∂t

+ �∇ · =
� = 0. (23)

Introducing the displaced distribution (10) in the expressions

for e, �q, �p, and
=
� yields

CV
∂T

∂t
+

(∫
kivi,λT

∂ f eq
λ

∂T
dλ

)
�∇ · �u = 0 (24)(∫

k2
i

ω
T

∂ f eq
λ

∂T
dλ

)
∂ �u
∂t

+
(∫

h̄kivi,λT
∂ f eq

λ

∂T
dλ

)
�∇T = 0,

(25)

where subindex i refers to a Cartesian component. The
combination of these equations supply a wave equation for
temperature (and for the drift velocity) with propagation speed

v2
drift =

( ∫
h̄kivi∂T f eq

λ dλ
)2

CV
∫

h̄k2
i /ω ∂T f eq

λ dλ
= 〈φ0|vi

∣∣φ1
i

〉2
. (26)

In the Debye approximation in three dimensions it yields

v2
drift = 1

3

〈
1

v2
p

〉−1

= 1

3

CV

� jCj/v
2
j

, (27)

with Cj and v j the heat capacity and velocity of the j branch,
respectively. For identical branches it gives v2

drift = v2/3, with
v the first-sound velocity [19,39].

B. Driftless approximation

If instead projecting the BTE on the quasimomentum one
projects it on the heat flux, then one gets a balance for the heat
flux

∂ �q
∂t

+ �∇ · =
Q =

∫
h̄ω�vλN ( fλ)dλ, (28)

with
=
Q = ∫

h̄ω�vλ�vλ fλdλ the flux of the heat flux. For the dis-
placed distribution, the right-hand side of Eq. (28) vanishes,
since N ( f disp

λ ) is identically null. And combining this equa-
tion with the conservation of energy yields a wave equation for
temperature but now with a different velocity

v2
dless = 1

CV

∫
h̄ωv2

i ∂T f eq
λ dλ = 〈

v2
i

〉
. (29)

In the Debye approximation, it yields in three dimensions

v2
dless = 1

3

〈
v2

p

〉 = 1

3

� jCjv
2
j

CV
, (30)

which is different from (27) except for identical branches [39].
In Ref. [39], expression (29) for the SS velocity was ob-

tained without assuming that the distribution function is the
drifting one, thus the name of driftless velocity. This is also the
expression derived in Ref. [6] using Callaway approximation
and projecting on the energy flux. This contrasts to Ref. [7],

FIG. 1. Second-sound drifting and driftless velocities for
graphene at different temperatures from expressions (26) and (29),
respectively, calculated in this work (solid lines) and from Lee et al.
[7] (drifting) and Cepellotti et al. [6] (driftless) (dashed lines).

where the authors project on momentum and obtain Eq. (26).
Therefore, one is lead to the puzzling result that the drifting
distribution leads to two different SS velocities depending
on which projection one chooses. Figure 1 highlights the
differences between drifting and driftless SS velocities for
graphene obtained from expressions (26) and (29) both for our
calculations (solid lines) and from Refs. [7] and [6] (dashed
lines). It shows that drifting and driftless velocities differ in a
factor around 2 as found for carbon nanotubes [9]. We have
not found any divergence in expression (26), though some
deviations are observed with respect to the values obtained
in Ref. [7], which employs phonon stiffening.

Let us finally note that in Ref. [9] the vanishing of the right-
hand side of (28) is assumed as a hypothesis of conservation
of heat flux under normal scattering. Here we show that it
directly vanishes from the drifting distribution assumption. In
the next section we will see that the puzzle clarifies if one uses
the distribution function (4) instead of the drifting distribution.

C. Flux derivatives formalism

In our framework, the heat flux obeys the GK equa-
tion (7b). In the ideal collective limit, where R scattering can
be neglected (τ → ∞) and τN → 0, it reduces to

τ
∂ �q
∂t

+ κ �∇T ′ = 0, (31)

which combined with energy conservation yields a thermal
wave equation with a SS velocity given by

v2
SS = κ

CV τ
. (32)

Using the expression for κ in the previous section, Eq. (16),
one finds

vSS = vdrift. (33)

Then the FDF supplies the drifting SS velocity in the collec-
tive limit.
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This result can also be obtained in a faster way by pro-
jecting Eq. (5b) on the crystal momentum h̄kx. Since normal
collisions conserve momentum,

∫
h̄kxN (γλ)dλ = 0, and (5b)

directly yields the quotient κ/τ without requiring the expres-
sions for κ and τ ,

κ

τ
=

∫
h̄kxvx∂T f eq

λ dλ∫
h̄kxβcol

x dλ
. (34)

Finally, introducing Eq. (11) for �βcol yields again vSS = vdrift .
Let us note that a direct numerical solution of the BTE
for graphene ribbons obtains a velocity for second sound
in the collective limit which coincides with the drifting
velocity [49].

We next show how our formalism allows us to understand:
(i) why the driftless approximation supplies a wrong predic-
tion and (ii) that a proper analysis of the heat flux projection
also predicts for the SS speed the drifting (not driftless)
velocity.

In the driftless derivation, the right-hand side of Eq. (28)
identically vanishes so that the heat flux is conserved. This
result is a bit surprising, because a normal collision con-
serves quasimomentum h̄�k but not the heat flux h̄ω�v. For
instance, in a three-phonon normal collision, one generally
has ω1�v1 + ω2�v2 �= ω3�v3. Two conditions are necessary for
the equality to generally hold, namely linear dispersion re-
lations (Debye approximation) and identical branches. Aside
from this particular case, the energy flux generally changes
direction after a normal collision. This feature has not gone
unnoticed previously and led the authors of Ref. [9] to pre-
fer the drifting velocity to the driftless solution in their
analysis.

Let us note, however, that the no conservation of h̄ω�v
in collisions is not necessarily in contradiction with that the
integral

∫
h̄ω�vλN ( fλ)dλ vanishes, i.e., the sum of heat flux

variations for all collisions in a given position could still be
zero, so that the total heat flux �q would still be a conserved
macroscopic quantity. This apparently improbable situation
is actually what happens for homogeneous and stationary
cases as shown by Peierls [50], since then the solution of
the BTE is the displaced distribution and N ( f disp) = 0; in this
case, a uniform heat flux is maintained without a temperature
gradient [16].

The key issue in the present study is whether the heat flux
�q is conserved in unsteady and inhomogenous situations, such
as in wave propagation. Our formalism sheds light on this
point. According to the FDF, the distribution function is given
by Eq. (4), so that the heat source term in Eq. (28) yields∫

h̄ω�vλN (�βλ)dλ · �q +
∫

h̄ω�vλN (�γλ)dλ · ∂ �q
∂t

. (35)

The term in Gλ vanishes by symmetry in isotropic systems. In
the collective limit, the first term vanishes because N (�βcol ) ∝
N ( f disp) = 0, as in the driftless derivation. However, the last
term survives and, as a result, the heat flux is not generally
conserved in unsteady situations, at variance with the driftless
derivation. This explains why this approach provides wrong
predictions for the velocity of SS.

There is yet to be seen whether the inclusion of the source
term in the heat flux equation solves the conflict, i.e., whether

the heat flux projection predicts for SS the drifting velocity
obtained through the momentum projection. The source term
can be easily evaluated with the help of the general equa-
tion for C(�γλ), Eq. (5b), which yields∫

h̄ω�vλC(�γλ)dλ = I − τ

κ

∫
h̄ω�vλ�vλ

∂ f eq
λ

∂T
, (36)

where constraint (6a) has been used. Introducing the nonequi-
librium phonon distribution (4) in the expression for the flux

of the heat flux,
=
Q can be approximated in this limit (collective

and infinite medium) to the local equilibrium one up to terms
of order ωτN . The Flux derivatives formalism thus gives for
the balance equation of the heat flux,

∂ �q
∂t

+
∫

h̄ωv2
i

∂ f eq
λ

∂T
∇T =

(
1 − τ

κ

∫
h̄ωv2

i

∂ f eq
λ

∂T

)
∂ �q
∂t

. (37)

Remarkably, terms cancel out and one is left with Eq. (31).
We thus recover a wave equation with the drifting speed for
second sound, in agreement with the drifting derivation as
consistency required.

D. Discussion

The derivation above shows that the origin of the error
in the driftless derivation was to assume that the displaced
distribution was a good approximation for the distribution
function in the collective limit. It is the inclusion of the
term in ∂ �q/∂t in the distribution function that allows us to
solve the inconsistency. This underlines the pertinence of
using this macroscopic quantity as an independent variable
in the nonequilibrium phonon distribution as assumed in the
FDF. Indeed, notice that both the driftless and drifting deriva-
tions above assume the displaced phonon distribution. Despite
this is not correct in unsteady or inhomogeneous situations
in none of these cases, nevertheless, the drifting derivation
provides good results because momentum conservation in
normal collision gets rid of the term in heat flux time deriva-
tive, in contrast to what happens when projecting on the
energy flux.

Interestingly, we have been able to obtain a closed expres-
sion for the source term in the heat flux balance equation,
Eq. (37). It shows that, in general, the heat flux is not
conserved under normal collisions. However, when resistive
scattering can be neglected, the heat flux is a conserved quan-
tity in stationary situations, not only for the homogeneous
case—as studied by Peierls—but also for inhomogeneous
ones, as in stationary Poiseuille flow, where �q is only de-
stroyed at boundaries. In unsteady situations, it is helpful to
write the source term as (1 − v2

dless/v
2
drift )∂ �q/∂t . Since both

velocities are generally different, the source term does not
vanish and �q is not conserved. Nevertheless, for linear disper-
sion and identical branches it becomes null, in agreement with
the conservation of h̄ω�v in each collision discussed above.
Typically, vdless > vdrift (see for instance Eqs. (27) and (30),
or Ref. [9]) so that the prefactor of ∂ �q/∂t is negative. Notice,
however, that the source term has not a definite sign. In a
thermal wave, for instance, ∂ �q/∂t changes sign and the source
term with it. Accordingly, at any point in space the heat flux is
created and destroyed periodically by normal collisions. Thus
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the effect of normal collisions is not to destroy heat flux but to
introduce a delay in the heat flux.

Let us finally comment that Hardy introduced the drift-
less SS velocity by assuming a general odd perturbation
describing situations not restricted to the collective limit [39].
Then the phonon distribution is not necessarily the displaced
one thus the name driftless second sound. In his heuristic
derivation, Hardy considered a RTA model (therefore out
from the collective limit) with a constant relaxation time. Our
model also yields the driftless SS speed under these approx-
imations, since in RTA κ = CV 〈v2

i 〉τ . However, our model
is not restricted to these approximations and it generally
sets v2

SS = κ
CV τ

.

E. Low-dimensional materials

The study of SS in the collective limit performed above is
based on the results of Sec. III. However, the applicability of
those results requires that the integrals appearing therein do
not diverge. This issue is delicate in low-dimensional systems
due to the dispersion relations of flexural modes. In stress-
free 2D materials, harmonic models of flexural modes display
dispersion relations ωflex ∝ k2; as a result, the normalization
constant of vectors |φ1

i > yields
∫

k3/ω2dk ∝ ∫
1/k dk which

diverges for infinite samples. This divergence led [6] to use the
driftless expression for SS in graphene. As mentioned above,
the coupling of out-of-plane and in-plane modes renormalizes
the dispersion relation of flexural modes so that at low fre-
quencies ωflex ∝ k3/2 [51,52] and the divergence disappears.
The renormalized dispersion relation was used in the numeri-
cal solution of the BTE performed in Ref. [49] obtaining in
the collective limit thermal waves with propagation veloc-
ity equal to the drifting expression, in agreement with our
formalism.

Nevertheless, the ω ∝ k3/2 dependence and, in general, dis-
persion relations ω ∝ kδ with δ > 1 exhibit a problem when
applied to the displaced distribution in the thermodynamic
limit. The latter yields negative values for small frequencies
[41,53] so that displaced distribution cannot be a correct
solution at these frequencies. This contrasts, however, with
iterative solutions of the BTE for graphene and other 2D sub-
stances, which seem to provide displaced distributions [6,7].
This might be due to the finite wave-vector lower bound used
in the discretization of the reciprocal space, which may not
reach the region of negative values. The question arises of
which is the appropriate phonon distribution in the collective
limit in this situation. Whichever it is, the substitution of the
corresponding �βcol

λ in the root expressions of Sec. III would
yield the transport coefficients. In a recent paper [54], the
authors address this issue and find that for large 2D samples
the drift velocity is negligible and SS propagates with a (drift-
less) velocity given by v2

SS = κ
Cτq

, where τq is the relaxation
time of the heat flux, in agreement with our expression (32).
Let us note in passing that the latter driftless velocity does
not necessarily coincide with the classical expression of the
driftless velocity, Eq. (29).

Finally, under strain, dispersion relations of flexural modes
in 2D materials seem to become linear at low wave vectors
[55,56] so that convergence of normalization constant is guar-
anteed. However, the convergence of the thermal conductivity

in this case is still unclear both computationally and exper-
imentally [53,54,56]. In 1D, also theoretical models often
provide divergent thermal conductivities, though the inclusion
of three-phonon scattering to second order seem to yield finite
values [53]. The latter property is required for the application
of the present approach in its current form.

V. CONCLUDING REMARKS

From the fundamental point of view, a macroscopic heat
transport model generalizing Fourier’s law down to smaller
scales would provide a unifying description of nonlocal ef-
fects in heat transport and shed light on the phenomenology
that these give rise. From the practical viewpoint it would
allow us to study smaller space and timescales and address
physical situations of experimental interest at low compu-
tational cost and thus make a useful tool for engineering
optimization and design without resorting to the complexities
of the BTE equation, whose application is generally limited to
simple geometries. Recently, the GKE has been derived from
the BTE for general collision operators and dispersion rela-
tions at moderate Knudsen numbers through a new method,
the FDF, and applied to the kinetic limit [31]. In this paper
we have extended its application to the collective limit, which
has allowed us to validate the formalism by comparison with
previous literature and supply additional understanding of the
collective limit through a simpler mathematical method. The
FDF recovers Guyer and Krumhansl transport coefficients
for a single Debye branch and extends the results to general
dispersion relations and branches. Interestingly, it provides
a phonon distribution in this limit which differs from the
commonly used displaced distribution by including two new
terms. One contains the spatial derivatives of the heat flux,
analogous to the viscous term appearing in fluids, and ac-
counts for thermal viscous flow. The other one contains the
time derivative of the heat flux and allows us to solve an
old riddle between drifting and driftless velocities for second
sound in this limit. This term conciliates drifting and driftless
derivations, which now yield both the same expression for the
second-sound speed, the drifting one, which is also the result
supplied by the FDF. It is shown that although heat flux is not
generally conserved under normal collisions, the source term
in the equation for the heat flux is proportional to the time
derivative of the heat flux, so that heat flux does conserve in
steady sate. This includes the well-known homogeneous case
analyzed by Peierls but also nonhomogeneous cases such as
Poiseuille flow.

In most derivations of the macroscopic equations from the
BTE, the starting point is to propose an expansion of the
nonequilibrium distribution around the displaced distribution
[19,24,33,38–41,44,57]. Often, this expansion is on the basis
of eigenvectors of the symmetrized normal collision operator,
as in the classical works of Guyer and Krumhansl and Hardy.
Subsequently, under some approximations the equations for
their prefactors are found, which are eventually related to
macroscopic quantities, such as energy and momentum den-
sity, thus yielding the hydrodynamic equations. In the FDF
framework used in this paper, the macroscopic equations are
derived from a completely different perspective. Instead of ex-
panding the phonon distribution in terms of eigenvectors, we
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propose its expansion on appropriate macroscopic variables.
In this way, the unknowns are the mode-dependent prefactors
of the macroscopic quantities, just the opposite strategy of
previous methods. The phonon distribution function assumed
in the FDF, Eq. (4), states clearly that these are independent
variables, and the derived macroscopic equations are consis-
tent with this property.

Ansatz (4) implicitly assumes that after a fast timescale the
system relaxes to a pseudoequilibrium distribution of the form
of ansatz (4). Accordingly, the heat flux and their derivatives
are slow variables which as time goes will eventually die out
if the experimental conditions allow it. Ultimately, the validity
of this ansatz depends on the agreement with experiments. In
the collective limit, the classical experiments and theoretical
analyses are consistent with it as we have seen. In the kinetic
limit abundant experiments on silicon described and predicted
by the GKE are also consistent with the ansatz.

The FDF is limited to moderate Knudsen numbers, when
higher-order derivatives may be neglected. This prevents its
application in its present form to the ballistic regime and study
the effect of close boundaries or small length scales, includ-
ing the study of the Knudsen minimum or the temperature
dependence of the effective thermal conductivity before the
maximum. In the collective limit, the smallness of normal
scattering times allows the model to capture a fully developed
Poiseuille flow. However, in kinetic substances the condition
of small Knudsen numbers only permits to see Poiseuille flow
close enough to boundaries. For silicon, it has been found that
the GKE with ab initio calculated values for � correctly de-
scribe experiments for system scales L > 2�, while for smaller
L, the GKE overestimates viscous effects. In germanium,
second sound has been observed in frequency-domain ther-
moreflectance experiments where a fast-varying heat power
is directly supplied to the sample in a thin 15-nm surface
layer; this corresponds to large Knudsen numbers and then
far beyond the applicability of the model [32]. In these ex-
periments, viscous effects seem to be highly suppressed thus
unlocking the memory effects grasped in the relaxation time τ .
The agreement of the predicted values for τ in the 100–300 K
range indicates the usefulness of the present approach beyond
its region of applicability and also the need of further efforts
to understand the interplay of spatial and temporal effects at
high Knudsen numbers.

Finally, in most real substances such as graphite or
graphene where normal collisions are dominant, resistive
collisions are also expected to play an important role, so
that they are placed somewhere between the collective and
the kinetic limits. The study of the FDF in this intermediate
regime is the aim of future work.
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APPENDIX A: SYMMETRIZED SCATTERING MATRIX

The linearized BTE can be symmetrized by introducing a
reference temperature T0, defining f 0

λ = f eq
λ (T0), and rescal-

ing the phonon deviation from equilibrium nλ = fλ − f 0
λ as

follows:

n∗
λ = nλ√

f 0
λ

(
f 0
λ + 1

) . (A1)

Then the BTE writes

∂n∗
λ

∂t
+ �vλ · �∇n∗

λ = −
∑
λ′

�∗
λλ′n∗

λ′ , (A2)

where �∗ is the symmetric, self-adjoint, scattering operator
[19]

�∗
λλ′ =

√
f 0
λ′
(

f 0
λ′ + 1

)
f 0
λ

(
f 0
λ + 1

) �λλ′ . (A3)

Analogously, one can define the symmetrized normal N∗ and
resistive R∗ scattering operators, with �∗ = N∗ + R∗.

The distribution function can be expressed in terms of the
eigenvectors of the symmetrized normal scattering operator
N∗, which is an orthogonal basis of the phase density space,
and take advantage that four of these eigenvectors are known,
namely φ0

λ and φ1
αλ (α is the index of the spatial component)

[19]. They are related to the equilibrium and displaced Bose-
Einstein distributions, respectively, and read

φ0
λ = c0 h̄ω

√
f 0
λ

(
f 0
λ + 1

)
(A4)

φ1
αλ = c1 h̄kα

√
f 0
λ

(
f 0
λ + 1

)
, (A5)

with ci normalization constants so that < φ0
λ|φ0

λ >=
< φ1

αλ|φ1
αλ >= 1, and the scalar product is defined as

< f | g >= V
∫

f (λ)g(λ) dλ. The eigenvalues of these eigen-
vectors are zero, which indicates that they describe equilib-
rium states under N scattering.

APPENDIX B: SECOND TIME DERIVATIVE

The heat flux equation (7b) indeed includes a term in
the second time derivative of the heat flux, τ 2

p
∂2 �q
∂t2 , which for

finite Knudsen can be typically neglected as we see in this
Appendix. Coefficient τ 2

p writes [31]:

τ 2
p = −

∫
h̄γxkxdλ∫

h̄kxC(βx )dλ
. (B1)

According to Eq. (B1), τp directly vanishes for identical De-
bye branches because of constraint (6b), in agreement with
Guyer and Krumhansl. For general dispersion relations, it can
be written as τ 2

p = τ̃Nτ by defining

τ̃N =
∫

h̄γ col
x kxdλ∫

h̄kxβcol
x dλ

. (B2)

The latter is a difference of averages of τN , so that τ̃N is of
order 〈τN 〉 (or smaller). Then, the quotient of the second and
first time derivative terms is ωτ 2

p/τ ≈ ω〈τN 〉. This is much
smaller than 1 in the collective limit, so that the second time
derivative can be neglected and one recovers the GKE.
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