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We extend the scope of full configuration interaction quantum Monte Carlo (FCIQMC) to be applied to
coupled fermion-boson Hamiltonians, alleviating the a priori truncation in boson occupation which is necessary
for many other wave-function-based approaches to be tractable. Detailing the required algorithmic changes for
efficient excitation generation, we apply FCIQMC in two contrasting settings. The first is a sign-problem-free
Hubbard-Holstein model of local electron-phonon interactions, where we show that, with care to control
for population bias via importance sampling and/or reweighting, the method can achieve unbiased energies
extrapolated to the thermodynamic limit, without suffering additional computational overheads from relaxing
boson occupation constraints. Second, we apply the method as a “solver” within a quantum embedding scheme
which maps electronic systems to local electron-boson auxiliary models, with the bosons representing coupling
to long-range plasmoniclike fluctuations. We are able to sample these general electron-boson Hamiltonians with
ease despite a formal sign problem, including a faithful reconstruction of converged reduced density matrices of
the system.
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I. INTRODUCTION

Quantum systems of interacting electrons explicitly cou-
pled to bosonic degrees of freedom are ubiquitous in nature.
Most notably, electrons can couple to nuclear vibrations, char-
acterized by collective phononic quasiparticles which obey
bosonic statistics [1,2]. The explicit effect of these lattice
vibrations on the electronic structure is neglected in Born-
Oppenheimer approximations, but strong coupling between
the electrons and these phonons can substantially renormalize
the effective interactions in the system, and lead to not just
quantitative changing of electronic expectation values, but
also qualitative new physics emerging from the system [3–5].
As a famous example, the coupling between electrons and
phonons in this way can renormalize interactions of certain
solid-state systems to such a degree that it can provide the
mechanism for the formation of Cooper pairs and supercon-
ducting order [6].

Phonons are not the only bosonic species of physical rele-
vance with which electrons can interact. The emerging field
of tailored electronic structure via optical cavities exposes
an exciting experimental approach to designing interactions
between electrons, and inducing new decoherence pathways
for electronic systems [7–9]. In this, the photonic field is quan-
tized via quantum electrodynamics, with these bosonic cavity
modes explicitly coupled to the electronic degrees of freedom
in the dipole limit to form mixed “polaritonic” quasiparticles
[10–14]. These correlated systems can be found to engage in
novel reaction pathways and even room-temperature superflu-
idity [15,16].

*george.booth@kcl.ac.uk

Beyond coupling to these “external” bosonic fields, col-
lective composite quasiparticles of electrons themselves can
manifest with emergent (quasi)bosonic statistics. These en-
compass plasmons, magnons, and other bosoniclike collective
excitations, which can mix strongly with other electronic
degrees of freedom [11,17–21]. Model Hamiltonians can be
constructed whereby the physics of these long-range exci-
tations is included via coupling of a (perhaps local) set of
correlated electronic degrees of freedom to explicit bosons
describing these physical collective modes. This “bath” of
bosons can induce novel entanglement, decoherence, and
screening of the electronic interactions due to the coupling
to the electrons [22–25]. In this way, the bosons can represent
the physical process of a large number of external electronic
degrees of freedom and their effect on a chosen subspace.

However, we are limited in available tools for simulation
of these interacting mixed-species quantum systems, which
is exceptionally challenging when the instantaneous corre-
lations are fully included, beyond a density functional or
Green’s function framework [26–33]. From a wave-function
perspective, the boson number is generally not conserved
in the Hamiltonian, leading to a formally infinite Hilbert
space of bosonic occupation for any single mode. To ensure
wave-function approaches are still tractable, it is common to
introduce a threshold on the occupancy of any one of these
modes, truncating the high-energy parts of the bosonic Hilbert
space to ensure a return to a finite-dimensional problem.
This approach has been used to develop exact diagonaliza-
tion [24,34], density matrix renormalization group (DMRG)
[35,36], coupled-cluster [12,37,38], and other wave-function
approaches adapted for coupled electron-boson systems [39].
However, ensuring convergence with respect to these trun-
cations, especially with strongly coupled and/or low-energy
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boson modes with high average occupation, can still rapidly
lead to intractable calculations compared to their fully
fermionic counterparts.

To avoid this truncation, other approaches look to either
stochastically sample over all bosonic occupations [40–42],
parametrize an ansatz over the bosonic sector (e.g., as a co-
herent Gaussian state) [43–45], or implicitly renormalize over
all boson occupations. This last approach can be achieved in
a wave-function context within an alternative coupled-cluster
formalism, whereby more highly occupied bosonic modes are
formed from the product of low bosonic occupation implic-
itly through the exponential ansatz [37,46–48]. Monte Carlo
methods, on the other hand, look to stochastically sample from
this space without truncation, but while they represent the de
facto approach for pure bosonic systems, they are substan-
tially limited in their applicability to coupled fermion-boson
systems by the manifestation of the fermion sign problem in
its various guises, which can limit their efficacy [41].

In this work, we look to adapt the modern approach to full
configuration interaction quantum Monte Carlo (FCIQMC) to
tackle mixed fermion-boson models. This stochastic approach
describes an ensemble of signed “walkers” which reside
on many-body configurations, representing a coarse-grained
snapshot of the underlying wave function of interest [49–75].
By evolving the walkers according to simple rules under-
pinned by a master equation derived from the imaginary-time
Schrödinger equation, expectation values can be averaged
over this evolution, providing systematically improvable es-
timates of correlated observables. Explicit annihilation events
between walkers of different sign, as well as “initiator” ap-
proximations, can overcome the fermion sign problem in this
context and enable long-time stable dynamics [50,76,77]. This
efficient sampling allows for system sizes (and Hilbert spaces)
to be considered well beyond the size that can be treated with
formally exact approaches, and is emerging as a complemen-
tary method to DMRG in fermionic systems.

The FCIQMC method has been used with success pre-
viously for a wide array of fermionic models [51,78–80],
as well as being applied to bosons [81,82]; however, it
has not to date been applied to mixed-species systems. In
particular, we believe that an application of FCIQMC to cou-
pled electron-boson systems is particularly appealing, since
it is not expected to require an explicit truncation of the
bosonic mode occupation, allowing a sampling over all rel-
evant bosonic degrees of freedom. An intrinsic strength of the
FCIQMC method is to efficiently seek out relevant parts of
the configuration space, and to exploit any natural emergent
sparsity in the wave-function representation present in low-
energy states. This will be of particular importance in the
formally infinite Hilbert space of these challenging mixed-
species systems, and we expect to provide an important tool
for their efficient simulation.

In Sec. II we detail the specific form of the Hamilto-
nians used in this work, while in Sec. III we describe the
key changes required in the FCIQMC algorithm for their
efficient simulation, in particular focusing on the excitation
generation for general electron-boson Hamiltonians. This has
been implemented in our FCIQMC package, M7 [83], which
extends all modern aspects of FCIQMC functionality, in-
cluding excited states and semistochastic adaptations to these

mixed-species models. In Sec. IV we move on to an appli-
cation of electron-boson FCIQMC to the Hubbard-Holstein
model, a paradigmatic model where strongly interacting elec-
trons and local phonon coupling on a lattice gives rise to a
number of electronically and phononically driven phase tran-
sitions. The approach will be compared to deterministic exact
diagonalization results with an explicitly truncated bosonic
occupation. Finally, in Sec. V we move towards a more gen-
eral implementation, where electron-boson FCIQMC is used
to solve a model of electrons coupled to long-range bosonic
quasiparticles. This model requires more general bosonic cou-
pling to arbitrary density fluctuations in the electronic states,
as well as general (four-point) electronic interactions among
the electrons. Furthermore, we demonstrate convergence of
density matrix sampling in this general context, as well as al-
gorithmic changes required for excitation generation towards
an ab initio setting.

II. ELECTRON-BOSON HAMILTONIANS

The general form of the second-quantized Hamiltonian
considered in this work can be written as

Ĥ = Ĥelec +
∑

m

ωmâ†
mâm

+
∑
mpq

∑
σ∈{↑,↓}

(Vmpσ qσ
ĉ†

pσ
ĉqσ

âm + gmâm) + H.c., (1)

where ĉ symbolizes the fermionic annihilation operator, and
Ĥelec contains the standard one- and two-electron (interaction)
terms over the single fermion states (labeled p and q) and spin
labels σ and τ :

Ĥelec =
∑

pq

∑
σ∈{↑,↓}

hpσ qσ
ĉ†

pσ
ĉqσ

+
∑
pqrs

∑
στ∈{↑,↓}

gpσ qτ rσ sτ
ĉ†

pσ
ĉ†

qτ
ĉsτ

ĉrσ
. (2)

The bosonic annihilation operator is denoted â, with indices
m extending over all modes. These bosons can represent
phononic, photonic, or other arbitrary bosons, which in this
work will interact in a linear fashion with the quantum fluctu-
ations in the fermionic charge density (although these can in
principle couple to, e.g., spin or pairing fluctuations or other
higher-order electronic operators). The effect of this explicit
coupling on the electronic structure is a dynamic or energy-
dependent change in the effective interactions between the
electrons, mediated by these bosons, to screen the electrons
at different length or energy scales in the system.

A simplified paradigmatic model system which captures
these effects as a special case of Eq. (1) is the Hubbard-
Holstein model [7,84–94], as

Ĥ = ĤHubbard +
L∑

m=1

gn̂m(âm + â†
m) +

L∑
m=1

ω0â†
mâm, (3)

where n̂m ≡ n̂m↑ + n̂m↓ ≡ ĉ†
m↑ ĉm↑ + ĉ†

m↓ ĉm↓ is the

fermion number operator, and the electronic ĤHubbard is
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parametrized as

ĤHubbard = −t
∑
〈i, j〉

∑
σ∈{↑,↓}

(ĉ†
jσ

ĉiσ + ĉ†
iσ

ĉ jσ ) + U
L∑

i=1

n̂i↑ n̂i↓ (4)

by the usual hopping between nearest neighbors (〈i, j〉) and
on-site repulsion term. In this way, the sites of the Hubbard-
Holstein model are each coupled with strength g to a local
boson mode of frequency ω0. The effect of these local
boson modes, which can drive effective electronic pairing
between the fermions, competes with both the on-site elec-
tronic repulsion and single-particle kinetic energy terms. It is
a prototypical model for phonon-driven emergence of charge
density waves in correlated materials and Peierls instabilities,
with metallic, Mott-insulating, and charge-density-modulated
phases present depending on the dominant terms, representing
an important and unsolved model system.

III. ADAPTATION OF FCIQMC FOR ELECTRON-BOSON
SYSTEMS

Due to the coupling with bosonic degrees of freedom, the
many-body Hilbert space in which the FCIQMC walker pop-
ulation must evolve is one formed by the product of fermionic
and bosonic configurations. While the basic ingredients of
the algorithm are largely the same, the necessities of gener-
ating boson-coupled excitations and accommodating bosonic
occupation in the many-body basis are significant departures
from the assumptions of a determinant space implementation.
While the determinant is stored as a bit string, the bosonic part
of the configuration must be stored as an integer array allow-
ing arbitrary occupancy [81]. Since the Hamiltonian in Eq. (1)
does not conserve boson number, there is in theory no limit to
the number of bosons that can be occupied in the configura-
tion interaction (CI) space basis. Practically speaking, high
boson occupation is energetically penalized by the positive
frequency ωn of the modes, with the expected distribution of
bosonic occupation following a Poissonian distribution. This
implies an exponential accuracy in representation of the wave
function with increasing truncation of the maximum boson
occupation. In practice, we store the boson occupations in the
FCIQMC results of this paper as an array of unsigned char-
acters, giving a maximum cutoff occupation of 255 bosons
per mode (though we can control this in order to enable direct
comparison to approaches with lower occupation truncations).
An occupancy of 255 is well beyond any reasonable occupa-
tion visited during the stochastic dynamics on any practical
timescale, and so this can be taken to be effectively infinite
within the sampling approximation.

A. Recap of FCIQMC algorithm

FCIQMC [49,95] is a projector Monte Carlo method which
represents the many-body wave function as a population of
signed walkers at each projective iteration. The average num-
ber of walkers on each many-body basis function will—given
a total number of walkers sufficient to resolve any present
sign problem—converge to the exact full configuration inter-
action (FCI) coefficient. Thus, expectation values with respect

to the ground-state wave function can be extracted by av-
eraging their values over a number of walker distributions
generated by iterative application of a stochastically realized
integrator.

Usually, this is based on the linear order truncation of the
imaginary time evolution operator, giving

�Ci = −�τ
∑
j�=i

HijCj − �τ (Hii − ES )Ci (5)

as the average update of the coefficients. Expressed in the
first term are the off-diagonal spawning contributions. These
are stochastized by making on average |Cj| attempts to draw
basis functions i with nonzero matrix element Hij in a process
referred to as excitation generation. The cost of the calculation
therefore scales linearly in the 1-norm of the amplitudes, or
number of walkers, NW ≡ ∑

i |Ci|.
Production scale calculations with FCIQMC codes re-

quire parallelization, with each basis function assigned a
rank index within a message passing communicator. Spawned
contributions are sent via this interface to the process on
which the sampled Ci would be accumulated. The incom-
ing spawns are combined with each other and any existing
walker population Ci in the annihilation procedure. Suffi-
cient incidence of annihilation between positive and negative
walkers is understood to be the crucial factor in suppress-
ing the growth of the unphysical stoquastic signal, and thus
overcoming the sign problem [54,76]. In problems with a
severe sign problem, the required number of walkers can
approach the FCI Hilbert space dimension—nullifying the
advantages of the sparse representation afforded by the
FCIQMC approach. In response to this, the initiator approxi-
mation was introduced, which imposes a dynamic truncation
of the Hamiltonian prohibiting spawns from low-weight
walkers in exchange for an approximate, but systematically
improvable, sampling of a physical ground-state eigenvec-
tor. The initiator approximation is most successful when
the wave function is localized in orbital space, as is often
the case in weak-to-moderately correlated molecular orbital
(MO)-based ab initio or reciprocal space lattice model sys-
tems, wherein systematic errors can be reduced to within
acceptable bounds well before the unmodified FCIQMC
would be able to tractably sample the physical ground
state.

The second term in Eq. (5) is a diagonal scaling term which
includes the shift ES . By modulating the shift, the total walker
creation due to spawning and/or annihilation can be matched
by the number removed via this diagonal death process, main-
taining an approximately constant NW and providing in ES an
estimation of the energy expectation value associated with the
sampled wave function.

B. Generalized excitation generation

Excitation generation constitutes a core component of
FCIQMC, whereby individual off-diagonal terms in the
Hamiltonian are selected according to a normalized probabil-
ity distribution for a given configuration, providing another
“connected” configuration in the full Hilbert space [95–98].
For maximum efficiency, these terms should be selected with
a probability approximately proportional to the absolute mag-
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nitude of the Hamiltonian matrix element connecting the
configurations. Since this will in general depend on the con-
figuration in question, this cannot be efficiently achieved in
practice, and so a number of approaches have been developed,
aiming at minimizing the cost of this stochastic selection
algorithm, and ensuring as optimal a probability distribution
in this sampling as possible. We initially divide these types
of |i〉 → |j〉 excitations into different classes, assigning initial
probabilities of these class types to each. These now include
both fermionic single and double excitations, as well as the
(separate) probabilities for bosonic excitation and deexcita-
tions. The first step involves selecting a class of excitation to
generate according to these normalized probabilities, and the
probabilities of generation within each class are continually
optimized through the calculation in order to minimize mul-
tiple walker creation events in a single attempt, and therefore
allow the largest time step possible with stable dynamics.

The algorithm for generating excitations from the elec-
tronic part of the Hamiltonian proceeds as normal, with single
excitations |i〉 → ĉ†

i ĉ j |i〉 (with i, j distinct) drawn by uniform
selection among occupied and unoccupied spin orbitals of
the same spin, taking into account any Abelian symmetry
constraints of these orbitals. Double excitations are drawn
as |i〉 → ĉ†

i ĉ†
j ĉl ĉk|i〉 (with i, j, k, l all distinct) according to

the precomputed heat bath (PCHB) algorithm, which approx-
imately draws these indices according to the magnitude of the
Hamiltonian matrix elements [96–98]. We focus here on the
boson coupling term, which introduces two novel excitation
generation cases, namely, fermion hopping coupled to boson
excitation and deexcitation, as

|i〉 → ĉ†
i ĉ j â

†
n|i〉, |i〉 → ĉ†

i ĉ j ân|i〉 (6)

(with i, j distinct). Boson number-conserving terms in the
Hamiltonian are diagonal, contributing only to the death rate
of walkers, and so do not need to be considered in the excita-
tion generation.

A stochastically efficient excitation generator for the con-
nections of Eq. (6) is straightforward to achieve via a
reapplication of the principles of the heat bath algorithm to
effectively weight the generation of these terms. To ensure
Hermiticity, the coefficients Vi jn of the boson excitations are
the same as those Vjin for the deexcitations, and so a sin-
gle PCHB sampler suffices for both cases. When the PCHB
sampler is invoked for a boson excitation, a uniform single
excitation |i〉 → ĉ†

iσ ĉ jσ |i〉 is drawn, with the (i, j) compound
index referencing a row in the PCHB table. Note that this
selection of the (i, j) pair is not invariant to the order of the
selection of the two indices, differing from the two-electron
integral precomputed table, which uses a triangular mapping
to leverage the i < j permutational symmetry of the uniformly
picked annihilation operator pair.

A bosonic index is then picked with probability
|Vi jn|/

∑
m |Vi jm|, whose values are precomputed in an alias

table for efficient selection. This ensures that these bosonic
excitations are drawn from a probability distribution as close
as possible to the true Hamiltonian magnitude between the
states. Unlike the fermionic PCHB implementation, drawn
excitations are only discarded as null when mode n is al-
ready at the imposed nboson cutoff (which never occurs in
practical settings where the cutoff is 255). Deexcitations are

drawn in exactly the same way, except that the indices i, j are
exchanged to find the correct row in the sampler table, and are
discarded when mode n is unoccupied.

IV. ONE-DIMENSIONAL HUBBARD-HOLSTEIN MODEL

We first test the ability to faithfully sample from the bo-
son spaces in these models via the one-dimensional (1D)
Hubbard-Holstein model, as given in Eq. (3). Due to the form
of the model, the excitation generation is simplified from its
generality described in Sec. III B. The electronic hopping is
stochastized by simply selecting an occupied spin orbital and
then randomly choosing to move left or right, generating a
null excitation if the adjacent spin orbital is already occupied.
Furthermore, since the model only couples bosonic operators
to the electronic density (in the site basis), not the hopping,
the parent configuration bit string is also used for the bosonic
deexcitation generation to select a boson mode. This is effi-
ciently achieved by caching the occupied sites coordinated to
a boson mode with nonzero occupation. An analogous list is
not prepared for the boson creation excitation generator, since
in general one is interested in the limit in which no practically
no cutoff is imposed on mode occupations, and therefore all
modes coupled to occupied sites can be excited.

Even though the term in the Hubbard-Holstein model
Hamiltonian which introduces coupling between the elec-
tronic density and bosonic (de)excitations has a positive
coefficient (therefore inducing both positive and negative
walkers into the dynamics), the overall FCIQMC simula-
tion in the site basis of the model is sign-problem free.
This is because these bosonic interactions only connect adja-
cent boson number sectors of the Hilbert space, and ensure
that the sign on any single configuration is constrained to
a single sign, precluding annihilation events from this part
of the Hamiltonian. Walkers that are positive in one boson
number sector are sign-coherently connected to negatively
signed walkers in the adjacent sectors. Furthermore, if there
is an odd (even) number of electrons in each spin sector
with periodic (antiperiodic) boundary conditions, the Hubbard
hopping term is also sign-problem free, while the interactions
are diagonal in the basis. Despite being a sign-problem-free
system, the model can still be challenging to solve and is
the subject of continued research, making it an ideal test
bed for the efficiency and convergence of the FCIQMC
algorithm.

Due to this lack of sign problem, the exact ground-state
eigenvalue can in principle be estimated from the shift esti-
mator (ES) with an arbitrarily small NW , given a long enough
evolution of the walker population and a correction for the
population control bias. It has been shown in recent work
[99] that this correction can be made without alterations to
the FCIQMC algorithm, and that given only the NW and
shift time series the systematic bias due to the statistical
covariance between the shift and the stochastic wave func-
tion can be substantially removed [81,100–102]. The essence
of this approach is to retrospectively “undo” the dynami-
cal scaling of the wave function due to the shift-dependent
death step, so that the covariance between the wave function
and the shift can be reduced. The crucial factor to be deter-
mined is the optimal span of time series points n on which
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FIG. 1. Correlation energies for the Hubbard-Holstein model
(L = 8, nelec = 8, U = 2.0t , ω0 = 5.0t , g = √

10.0t) with maximum
boson occupation per mode of nboson = 1, compared to the exact
diagonalization value. These energy estimates are unbiased for popu-
lation control bias by the reweighting of shift estimates of the energy.
This correction is performed across the time series of shift measure-
ments (ES) and instantaneous NW for different correction orders (n).
Consecutive points in the time series from which the corrected ener-
gies are computed were ten Monte Carlo (MC) iterations apart, and
the shift updates occur with the same frequency and with damping
parameter γ = 5. The FCIQMC was performed for 16 × 106 MC
cycles with a mean walker number of N̄W = 188.

these “reweightings” should be performed so as to effectively
remove the bias without introducing excess random error due
to the reduction in number of effectively sampled points. We
call n the “correction order” in Fig. 1.

We first test this approach for a small lattice where we
can perform exact diagonalization calculations (eight sites).
Obtaining the exact diagonalization data also necessitates a
severe truncation in the maximum boson occupation, which
we limit to a single boson occupancy per mode. The shift-bias-
corrected FCIQMC data with the same equivalent artificial
boson truncation are shown in Fig. 1. Note that the fig-
ure shows the expected unbiased energy as a function of the
length of history of the walker population used in order to
control for population bias, not iteration number. This shows
similar characteristics to the equivalent plot in Ref. [99] for a
single calculation. Initially there is convergence towards the
exact eigenvalue; then we observe the expected diminishing
returns of attempting to further reduce systematic error by
elongating the history over which the correction is computed,
as the statistical uncertainty in the estimator grows. For this
model, a correction order around 2000 appears to be a good
compromise. This, however, serves as a proof of principle
of the exactness of the implementation, and the ability to
compute unbiased energies in these (albeit small) systems
compared to exact results.

A. Importance sampling

The bias in the uncorrected shift estimator for sign-
problem-free systems has also been shown to reduce sig-

nificantly with the introduction of importance sampling,
the basic premise of which is to sample not the ground-
state CI coefficients Ci, but the modified wave function
C̃i = 〈φguide|i〉Ci, where |φguide〉 is a “guiding” wave func-
tion. Equivalently viewed as a similarity transform of the
Hamiltonian, this approach effectively modifies the spawning
probabilities such that moves to configurations with larger
diagonal matrix element are probabilistically suppressed. Ex-
pectation values can then be unbiased for this modification
to the dynamic [103,104]. Even with a very simple form for
the guiding wave function, such as that of the Gutzwiller-like
form

|φguide〉 =
∑

i

e−αHii |i〉, (7)

significant improvements have been found in fermionic model
systems. We expect this guiding wave function to be even
more powerful in the case of boson number nonconserving
Hamiltonians where inhibition of spawning to more ener-
getic configurations with highly occupied bosonic modes is
an obvious route to achieving a more compressed stochastic
representation of the ground state.

Figure 2(a) illustrates an example application of this adap-
tation where an α value of ∼0.2 is seen to remove the bias
almost completely, even without the explicit reweighting al-
gorithm of Fig. 1, though a significant bosonic occupation
cutoff is applied (nboson = 2) in order to enable comparison
to exact diagonalization. The plot also shows the expected
trend of increasing random error in the shift estimator due
to the importance sampling [99]. Intuitively, this is due
to the reciprocal relationship between the importance sam-
pling factors for proposed moves i → j and j → i. As a
move i → j becomes more suppressed, the variance of the
walker population (and true CI coefficient) on j increases, and
the back-spawning magnitudes also increase. This boosted
reproduction rate of ill-defined walker occupations propa-
gates more error. Fortunately, it seems that the increases in
noise are modest in comparison to the dramatic reduction
in the systematic sampling error due to population control
bias.

B. Relaxing bosonic occupation constraints

Having established the ability to practically obtain unbi-
ased ground-state energetics via electron-boson FCIQMC in
small systems with boson occupation constraints, we now
turn to the practicality of relaxing these boson occupation
constraints of any mode. This requires the FCIQMC to effec-
tively sample from an infinite Hilbert space of configurations
comprising all possible combinations of boson occupations of
each mode. We will consider the convergence with respect to
relaxing the bosonic threshold on both the (population bias
corrected and uncorrected) ground-state energies, as well as
the convergence of these FCIQMC estimates with respect to
the number of walkers.

We start by considering the Mott regime of the eight-site
Hubbard-Holstein model, with U = 4t , ω0 = 0.5t , and g =√

0.15t . In this Hamiltonian, the phononic renormalization
is not sufficient to overcome the strong Coulomb repulsion,
and Mott order remains in the system. While strongly cor-
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(a)

(b)

FIG. 2. Population control bias amelioration by importance sam-
pling of the Hubbard-Holstein ground state (U = 2.0t , ω0 = 5.0t ,
g = √

10.0t) using a guiding wave function of the type defined in
Eq. (7), with variation in the single adjustable parameter, α. All
energies are shown relative to the average shift with no importance
sampling (α = 0). (a) 8-site chain with walker number of NW =
2 × 104 and nboson = 2, an exactly diagonalizable system. (b) Reduc-
tion in population control bias for increasing Hubbard-Holstein chain
lengths. Each series was obtained with nboson = 255 and a target NW

of 106.

related, the relatively weak boson coupling should allow for
consideration of the convergence of the energies with num-
ber of walkers compared to exact diagonalization as the
occupation is increased. Furthermore, we can transform the
Hamiltonian, by performing a shifting of the boson operators
to remove the coupling of the phonons to the static charge den-
sity of the system (which is known exactly by symmetry). This
zero phonon mode removal (ZPMR) transformation can leave
the exact eigenstates of the full Hamiltonian unchanged (as
long as it is accounted for in the expectation values), but can
dramatically increase the speed of convergence with respect
to average bosonic occupation. This is because the bosons
now only couple to charge fluctuations, rather than the mean-

FIG. 3. Approximately linear convergence of systematic energy
errors with respect to 1/NW in the Mott-insulator phase of the
Hubbard-Holstein model at half filling with L = 8, U = 4t , ω0 =
0.5t , and g = √

0.15t , as well as energies explicitly corrected for this
bias showing agreement with exact diagonalization results. We show
uncorrected (ES) and explicitly reweighted (corrected ES) average
energy (shift) estimators from the FCIQMC, for the model with nboson

truncated to one, two, and untruncated (nboson = 255 for practical
purposes). These first two results are compared to exact diagonal-
ization in the same Hilbert space, while we compare the untruncated
FCIQMC results to exact diagonalization with the shifted bosonic
operators and nboson = 2, which should be well converged in this
regime (see the Appendix), showing good agreement of the corrected
results at all walker numbers.

field static component. This allows exact diagonalization to
converge faster with boson occupation, and we can com-
pare this to the unconstrained FCIQMC as walker numbers
increase. We note that while this transformation of the Hamil-
tonian can in principle also be performed for FCIQMC, it
is not in this case, since it would induce a sign problem in
the resulting dynamics. The details of this transformation are
given in the Appendix.

Figure 3 shows the convergence of the ground-state
FCIQMC energy estimates with respect to reciprocal walker
number, for both the uncorrected and a posteriori corrected
shift energy estimates. As has been noted elsewhere (although
still somewhat debated), we find a linear convergence of the
population control bias with respect to reciprocal walker num-
ber. While this error is reduced with the importance sampling
of the dynamic via the trial wave function, this does not
sufficiently remove the bias, and the reweighting approach is
still required.

Once this reweighting is applied, the energies at all walker
numbers are unbiased, with the exact diagonalization results
for a boson occupation truncation of one and two within
the statistical errors of the FCIQMC. Relaxing the boson
occupation entirely (nboson = 255 for technical reasons, but
this threshold is never reached) the energies are relaxed by
a further ∼0.2t . These agree well with the exact diagonal-
ization result in the presence of the ZPMR transformation of
the boson operators, despite a boson occupation truncated to
nboson = 2, which we believe to also be well converged in this
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regime with weak boson coupling. We find our best FCIQMC
result for the model to be −7.1787(17)t at ∼7 × 103 walkers,
with the ZPMR exact diagonalization result with nboson = 2 to
be −7.18408t .

We now turn to a parameter regime of the 1D Hubbard-
Holstein model where the bosonic renormalization effects are
strong enough to induce a Peierls charge ordering, breaking
the small Mott order present. This antiadiabatic phase will be
characterized by U = 2t , ω0 = 5.0t , and g = √

10.0t . In this
regime, we expect a much slower convergence of the energy
with respect to increasing boson occupation, and we can ex-
plicitly verify that this convergence correctly reproduces the
infinite boson occupation limit, without any increase in bias
or statistical error in the FCIQMC simulations. These results
are shown in Fig. 4(a), where explicit boson occupations up
to eight are required for convergence to within the small
FCIQMC error bars, with the remaining population control
bias accounting for ∼0.15t . These FCIQMC calculations were
performed without importance sampling with ∼800 walkers
at all values of nboson, including the infinite boson limit, which
agrees with the nboson = 10 result both in value and magnitude
of stochastic error. This indicates that no additional difficulties
arise in the FCIQMC by fully relaxing this boson occupation
constraint, which would not be possible to obtain with exact
diagonalization. In Fig. 4(b), the fraction of wave-function
amplitude histogramed according to either the sum of boson
occupation, or the largest single-mode occupation can be seen,
illustrating non-negligible walker weight for this system on
configurations with up to ten bosons in any single mode. We
find a best FCIQMC estimate of this point in the param-
eter space of the eight-site 1D Hubbard-Holstein model of
−28.612(6)t .

C. Approach to the thermodynamic limit

With the ability of FCIQMC to faithfully and efficiently
sample from unconstrained bosonic occupations, we now turn
to increasing the physical system size, and demonstrate con-
vergence to the thermodynamic limit of the model. We remain
in the antiadiabatic Peierls regime where strong bosonic cou-
pling distorts the charge density and large bosonic occupations
are required to be sampled as shown previously in Fig. 4(a).

Having recognized the benefits of the use of importance
sampling, we return to the matter of optimizing a guiding
wave function. Figure 2 shows the shift energy improvement
with respect to α for a selection of Hubbard-Holstein chains.
In each of these systems the shift converges from above, and
so it is valid to take the α responsible for the most negative
energy difference to be the optimal value.

In Fig. 2(b), the absolute energy density correction due to
importance sampling for a selection of chain lengths for a
constant computational cost NW is evident, with an α of ∼0.05
conferring optimal bias reduction regardless of chain length.
These data demonstrate that optimization of the α parameter
can be done on cheaper, low-NW FCIQMC evolutions before
the resulting optimal value is used with larger NW values, and
in conjunction with the a posteriori reweighted shift correc-
tion. Neither of these measures is capable of eliminating the
bias completely, but they are effective means of accelerating
the systematic improvement with respect to NW .

(a)

(b)

FIG. 4. Demonstration of the effect of many-body wave-function
truncation due to the imposition of boson mode occupation cutoffs
for a small Hubbard-Holstein chain without importance sampling
(L = 8, nelec = 8, U = 2.0t , ω0 = 5.0t , g = √

10.0t). (a) Conver-
gence of the uncorrected and corrected shift energies for the ground
state with respect to nboson truncation. The shaded area represents the
random error in the corrected shift energy with nboson = 255 (in prac-
tice, an untruncated bosonic occupation). All means and standard
errors were obtained by blocking [105] of the shift time series with
N̄W ∼ 800. (b) Histograms of FCIQMC walker weight according to
either the largest single mode boson occupation of the conguration
(blue), or the sum of the boson occupation over all bosonic modes
(orange). Note that appreciable amplitude of the walkers in this
system reside on configurations with up to ten bosons in any one
mode, reflecting the energetic impact of the bosonic truncation seen
in (a). The calculation was performed with nboson = 255 and a large
enough N̄W (∼2 × 105) to obtain the correct shift without the use of
reweighting.

Figure 5 shows the convergence of the FCIQMC energy
per site as the chain length increases to 48 sites, with ∼107

walkers in each simulation. A power-law extrapolation of
the energies achieves a highly accurate unbiased FCIQMC
prediction for the thermodynamic limit energy density of
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FIG. 5. Convergence of the FCIQMC energy per site of the
Peierls regime 1D Hubbard-Holstein model (U = 2.0t , ω0 = 5.0t ,
g = √

10.0t). Approximately 107 walkers were used in each calcula-
tion, with importance sampling and the reweighting correction both
applied to obtain unbiased results. The curve follows a power-law
fit to these data giving a thermodynamic limit energy density of
−3.55790(13)t . The inset shows the random error in the corrected
shift as a function of the chain length.

−3.55790(13)t per site for this point in the phase diagram.
The fitting was repeated with the omission of the longer
chains which are associated with the largest random error; the
resulting energy densities of −3.55782(18)t for L � 42 and
−3.55812(4)t for L � 24 are found to agree with the L � 48
estimate within standard errors. The latter result indicates an
∼2 × 10−4t undercorrection of the bias for L > 24, but this
is within standard error and expected given that NW was not
increased with L. Also shown is the increase in the random
error (as estimated by blocking analysis) of the corrected shift
with respect to L. Since each system was tackled with an
equal NW and in the same amount of CPU time, this error can
be identified as directly corresponding to the scaling in the
effective cost of the calculations for the unbiased energy to a
given statistical uncertainty as a function of increasing chain
length.

V. FCIQMC FOR ELECTRON-BOSON EMBEDDED
MODELS

While a more extensive investigation of the Hubbard-
Holstein model and its phase diagram with FCIQMC is
planned for future work, we want to also stress the generality
of the electron-boson FCIQMC approach and implementa-
tion, including to more complex interactions and couplings,
and in the presence of sign problems. Rather than an ab initio
electron-phonon Hamiltonian, we will consider the challenge
of solving an auxiliary effective electron-boson Hamiltonian
that arises within the context of a recently developed quan-
tum embedding theory. Here, the bosons in the embedded
Hamiltonian are fictitious, but their presence mimics the effect
of interactions between an electronic fragment of a system
with its (potentially large) electronic environment. In this way,
the bosons describe the coupling of local electronic degrees

of freedom to long-range collective electronic excitations in
their environment. While these collective excitations represent
composite fermionic quasiparticles, they obey (quasi)bosonic
statistics. Bosons therefore naturally arise in the description
of wholly electronic systems. The Hamiltonian of the em-
bedded cluster in this context has a “dense” coupling of the
bosons to arbitrary fermionic hopping in the fragment elec-
tronic subsystem, as well as a dense four-point electronic
interaction and presence of a sign problem. Furthermore,
reproducing the properties of the full system in this ap-
proach requires a sampling of reduced density matrices of
this model Hamiltonian, and we will investigate the fidelity
by which these important quantities (including the coupled
electron-boson reduced density matrix) can be sampled in
FCIQMC.

This recent quantum embedding theory, which maps an
electronic system to an auxiliary electron-boson coupled
problem describing a small fragment of the original system,
is dubbed the “extended density matrix embedding theory”
(EDMET) [25], building on a “parent” mean-field quantum
embedding formalism. The resulting local cluster Hamilto-
nian has the form of Eq. (1). The fermionic degrees of freedom
are comprised of a small fragment of the sites of the full
system, coupled to a fermionic bath of the same dimension-
ality. The Hamiltonian in this fermionic space is algebraically
constructed to ensure that the mean-field properties of the
fragment match between the cluster model and the full sys-
tem. In a similar spirit, the bosonic modes are constructed
algebraically from the random phase approximation (RPA)
solution over the full system, in order to require that the
RPA description of the two-body fragment properties match
those of the RPA over the full system. In this way, a simple
construction rigorously maps from a large electronic system to
a coupled electron-boson model for a fragment of the solution,
with the properties of the whole system accessible from the
reduced density matrices of this embedded problem. Full de-
tails of the method and the specifics of the cluster Hamiltonian
construction can be found in Ref. [25].

We now consider the ability of FCIQMC to provide the
required accuracy in the solution of this embedded cluster
Hamiltonian. Two differences from the form of Eq. (1) ex-
ist in the resulting cluster model: gn = 0 (i.e., there are no
single boson terms not coupled to the charge density), and
the electron-boson coupling term is zero when the fermionic
indices i and j coincide, if the fermionic cluster basis is
canonicalized to a mean-field representation (i.e., the bosons
represent couplings to the fragment density fluctuations,
rather than the mean-field density, and so ZPMR is not ef-
fective). To date, only exact diagonalization has been used as
a solver of these embedded Hamiltonians, which puts a severe
constraint on both the size of the fragment spaces which can
be chosen as well as the boson occupation truncation to ensure
computational tractability. Physically, this truncation corre-
sponds to limiting the energy scales of long-range plasmonic
excitations that the fragment can couple to, and it would be
advantageous to not truncate these effects, and so alternative
solvers for these auxiliary model Hamiltonians are urgently
sought. Using electron-boson FCIQMC will, however, require
an ability to sample the reduced density matrices (RDMs)
of the coupled electron-boson model in FCIQMC, including
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electron-boson terms (which will also be useful for other
property estimates in a more general context).

A. Reduced density matrix sampling

The standard way to stochastically estimate (off-diagonal)
elements of RDMs in FCIQMC is to repurpose the spawning
step of the algorithm. This step can be considered the act
of randomly drawing a configuration pair, and a product of
two instantaneous walker occupations taken from statistically
independent replica simulations, which can then be used to
estimate their contribution to unbiased RDMs [53,63]. This
has proven a successful means of sampling one- and two-body
RDMs in fermionic systems for a diversity of applications,
e.g., molecular properties [58,68], multi-configurational self-
consistent field (MCSCF) orbital optimizations [59,60,106],
and contributions from internally contracted perturbers in
multireference perturbation theories [74,107]. However, this
approach makes an approximation that the set of configu-
rational pairs (i, j) with nonzero coefficient product which
contribute to the RDMs of interest (	 connections) is equal
to the set of (i, j) pairs connected by a nonzero Hamiltonian
matrix element (H connections). This is required as it is
impractical to essentially take the outer product of a sparse,
computationally distributed representation of the FCI wave-
function so that all 	 connections are explicitly included, and
so the feasibility of accurate, fully stochastic RDM estimates
within an FCIQMC computational framework is predicated on
the success of the assumed equivalence of H and 	 connec-
tions.

A stark example of the breakdown of this assumption is
in the case of Hartree-Fock canonical orbital representations,
in which single excitations of the Hartree-Fock determinant
can have substantial coefficients, but do not interact with the
reference through the Hamiltonian, H , so relying on spawn-
ing alone to sample the one-particle reduced density matrix
(1RDM) would neglect some large contributions. This class
of 	 connections is therefore explicitly included as a separate
contribution. An approach to including these contributions
more widely is to ensure that important 	-connected con-
figuration pairs (which may not be significantly weighted
H-connected configurations) are included in a “deterministic”
space, which is already widely used in FCIQMC propagation
[108,109]. Here, coefficients on configurations designated to
comprise the deterministic subspace are collected from across
all processes and multiplied exactly by a sparse representation
of the Hamiltonian projected into that subspace. In a semis-
tochastic RDM calculation, another sparse matrix object can
be initialized which only stores those 	 connections which are
not also H connections so that all RDM contributions between
configurations in the deterministic subspace are made without
approximation. As the size of the deterministic subspace in-
creases, any error of the kind described above is rigorously
removed.

However, ensuring all 	-connected configurations are
included in a deterministic subspace may not always be effi-
cient or practical. Sampling of the remaining 	 connections
(those which do not involve pairs of configurations in the
deterministic subspace) can be achieved by the implemen-
tation of special “ghost” excitation generators, which are

propagated separately to the spawning events of FCIQMC
and only carry the instantaneous population of the parent
configuration (ignoring generated connections that would
already be accounted for by the deterministic subspace),
specifically for RDM accumulation. Such a situation has
already been covered in detail in the accumulation of the
three-body RDM and four-body contracted auxiliary matrices
for MRPT2 [74], where these higher-rank contributions are
explicitly outside the rank of the standard electronic Hamil-
tonian. The necessity to confront the discrepancy between
H- and 	-connected configuration pairs manifests again in
the present context, since the fermion-boson RDM 〈ĉ†

i ĉ j â†
n〉

would not receive contributions to any elements of the form
〈ĉ†

i ĉiâ†
n〉 since there are no direct interactions (H connec-

tions) between the mean-field electronic densities and boson
(de)excitations. Thus, a whole class of configuration pairs
is omitted by assuming H- and 	-connection equivalence
when propagating the EDMET cluster Hamiltonian. The same
would be true not just for the EDMET Hamiltonian, but also
general Hamiltonians where the ZPMR transformation of the
bosons has been applied (generalized to remove coupling to a
mean-field density).

A possible solution is to implement a uniform excitation
generator to draw “ghost” connections of the form |i〉 → â†

n|i〉,
|i〉 → ân|i〉, purely for the purpose of sampling these ne-
glected contributions to the fermion-boson coupled RDM, as
was done for triple excitations in the generation of three-body
RDMs. However, in the present work, this class of 	 connec-
tion was taken into account by the deterministic space alone,
and so any RDM sampling must be checked for convergence
with respect to the number of configurations in this subspace,
denoted NSS. It should be stressed that a more general Hamil-
tonian which also coupled to the full quadratic fermion terms
would not encounter this problem.

B. Extended Hubbard model

We consider FCIQMC as the auxiliary Hamiltonian
“solver” within an EDMET framework, applied to the 1D
Hubbard model with extended interactions. This purely
fermionic model can be written as

ĤEx−Hubbard = ĤHubbard + V
∑
〈i, j〉

n̂in̂ j, (8)

and we aim to converge to the thermodynamic limit of
the model. The additional nearest-neighbor repulsion fun-
damentally changes the phase diagram from the simple
Mott-insulating phase of the 1D ĤHubbard to one where the
competing V term can drive the system into a charge-
ordered phase to minimize nearest-neighbor density-density
repulsion. The phase diagram therefore roughly consists of
Mott-insulating phases for V � U/2 and a charge-ordered
phase for V � U/2 [110–113]. Rather than solve this directly
in the large-system limit, we aim to solve a local model
of a cluster of nfrag local sites, coupled to fermionic and
bosonic degrees of freedom approximating the coupling and
entanglement with the wider system (a bath space). The long-
range charge fluctuations induced by the nearest-neighbor
interactions will then be modeled by the random phase ap-
proximation, and used to map to a local model of bosons
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FIG. 6. The FCIQMC-EDMET energy per site for an extended
Hubbard model (L = 42,U = 2.0,V = 1.0) as determined from
multiple independent FCIQMC estimations of the required RDMs of
a four-site fragment size. This leads to an auxiliary Hamiltonian con-
sisting of eight fermions and ten bosons, with no cutoff on bosonic
occupation. The calculations were carried out for two different sizes
of semistochastic subspace to ensure convergence with respect to
RDM contributions not generated through spawning.

coupled to the interacting local fermionic space. Charge order-
ing in the model can then be induced by these bosons in the
auxiliary model, rather than collective long-range fermionic
fluctuations. The energy density of the model over the frag-
ment space can then be computed from the one- and two-body
fermionic density matrices of the model, as well as the boson-
fermion coupled density matrix, as 〈ĉ†

i ĉ j ân〉 and 〈ĉ†
i ĉ j â†

n〉.
We consider a specific point in the phase diagram with

U = 2t and V = 1t , which is very close to the phase transi-
tion point between Mott insulator and charge-ordered phases
[113]. We expect therefore that the model will feature sig-
nificant long-range two-point fluctuations, which are hard
to model in a local model and will have to be mimicked
via strong coupling to the bosonic bath. We first consider a
four-site fragment space, to ensure convergence of the system
properties with FCIQMC. Mapping a 42-site chain (close to
the thermodynamic limit for the energy density) to the auxil-
iary Hamiltonian of Eq. (1), with eight fermionic degrees of
freedom and 10 boson modes, we consider the convergence
with number of walkers in Fig. 6. Additionally, we check that
changes to the deterministic space do not change the fidelity
of the RDMs, from which the energies are computed.

We find a very rapid convergence of the FCIQMC energies
with respect to increasing walker number, with all values be-
tween NW = 105 and NW = 107 statistically indistinguishable
within their random error bars, estimated from multiple cal-
culations with different random number seeds. Convergence
with walker number is expected due to the use of the “initia-
tor” approximation in the FCIQMC dynamics to control the
sign problem. In these simulations, the initiator approximation
is employed with the threshold walker number of na = 3 in
order to define an initiator configuration. This is without any
restriction of bosonic occupation, and shows that, even in the
presence of a sign problem in this model, these systems can

FIG. 7. Comparison of DMRG and EDMET using the FCIQMC
cluster solver for a half-filled extended Hubbard model (L =
42,U = 2.0,V = 1.0) as the system size increases. The inset shows
the systematic improvement of the EDMET per-site energy with re-
spect to the size of the number of sites in the fragment. Convergence
with fragment size is imperceptible on the scale of the main plot.

be faithfully converged, relying on a combination of anni-
hilation events and the initiator approximation to converge.
Furthermore, changing the size of the deterministic space
(NSS) does not further change the quality of the results, but
does reduce the statistical fluctuations. The scale of these
fluctuations is, however, already very small, with the EDMET
energy density for this fragment size reliably found within
10−4t by ∼106 walkers, demonstrating the applicability of
fermion-boson FCIQMC as a cluster solver for this embed-
ding method.

We then consider the convergence of the FCIQMC-
EDMET energies as the fragment size increases. This model
can be effectively solved within the DMRG given the one-
dimensional nature of the model, for which we use the BLOCK

code, with 1000 renormalized states retained in the matrix
product state of each site. In Fig. 7 we show the convergence
of the energy density to the thermodynamic limit for this
parameter regime as the chain length increases. Taking the
largest chain length of 42 sites, we also map to the local
coupled electron-boson cluster model with EDMET for differ-
ent numbers of fragment sites, and solve with FCIQMC. The
convergence with nfrag is shown in the inset, and demonstrates
the monotonic convergence, to an accuracy in the ground-
state energy of ∼10−3t , with both the EDMET mapping and
the FCIQMC solver giving systematic errors smaller than
the residual finite-size errors. The nfrag = 6 cluster problem
consists of a 12-orbital, 12-electron fermionic space, coupled
to 21 auxiliary bosonic modes, which is easily treated, con-
verging within ∼10−4t between 106 and 3 × 106 walkers after
3000 RDM accumulation cycles.

Further improvements in the FCIQMC-EDMET approach
can be found via self-consistency, which we neglect in this
demonstration. In this, the RDMs are used to update both the
mean-field and interaction kernel of the RPA, subsequently
modifying the resulting cluster Hamiltonian in the bath space.
We will explore the potential of FCIQMC-EDMET in future
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work, with the main conclusion here being the applicabil-
ity of FCIQMC to electron-boson systems for more general
Hamiltonians and as a solver in this workflow, with the ini-
tiator approximation and annihilation events of the sparse
representation allowing for faithful convergence of both en-
ergies and RDMs even in the presence of a sign problem in
these infinite Hilbert spaces.

VI. CONCLUSIONS AND OUTLOOK

We have developed an extension of the FCIQMC method to
enable application to coupled electron-boson systems, avoid-
ing the truncation in bosonic occupancy which can limit
the efficiency of other wave-function-based approaches. We
describe the changes for efficient excitation generation in
these systems, as well as considerations in sampling reduced
density matrices. We demonstrate the convergence and appli-
cability of the method in two very different physical contexts.
First, it was applied to a sign-problem-free system (the 1D
Hubbard-Holstein model) where sparse sampling and care to
control for population bias was shown to enable unbiased
results in the thermodynamic limit. Furthermore, the method
was used as a solver of an embedded Hamiltonian within
the extended density matrix embedding method, which maps
large electronic systems to local interacting electron-boson
auxiliary models to solve. These generalized electron-boson
models induce sign problems in the FCIQMC dynamics,
which we show can be easily controlled via standard FCIQMC
techniques, without having to resort to truncation of the boson
occupancy. Furthermore, the extraction of the full system
energy density requires a faithful sampling of the reduced
density matrices (including the electron-boson RDM), which
we demonstrate are faithfully sampled and compare to DMRG
reference values in the full model.

Although the results presented here are for the ground
state, FCIQMC’s dynamical adaptations are in principle com-
pletely compatible with mixed fermion-boson Hamiltonians.
In this regard, however, it should be noted that immunity
to the sign problem—which is key to the method’s efficacy
in the Hubbard-Holstein model—is a state-specific attribute,
and that any attempt to sample excited states within the
walker dynamic, either by explicit projection [63] or real-
time propagation [67], will necessitate annihilations, thereby
reintroducing a sign problem. Krylov projection [56,65], on
the other hand, does not interfere with the sign-problem-
free propagation towards the ground state, but attempting
to sample matrix elements, particularly those of the overlap
matrix between Krylov space-spanning replica walker pop-
ulations, would be marred by the highly delocalized nature
of the wave function in the site basis. None of these caveats,
however, are especially applicable to the more localized and
sign-problematic low-lying eigenfunctions encountered in the
systems described in Sec. V.

Having established the applicability of FCIQMC in a new
domain, a wide array of physical phenomena are now avail-
able for study, and future work must apply the approach to
open problems to assess the merits and limits of the method in
the context of complementary methods. We expect particular
efficiency of FCIQMC in cases of general interacting Hamil-
tonian forms, with many bosons that are relatively weakly

coupled. This case allows for a sparse representation of the
wave function to be efficiently sampled within FCIQMC, and
enables the annihilation and initiator approximations to work
at their best, without requiring a priori truncations on bosonic
occupation. The use of FCIQMC as a solver within EDMET
is an example of this type of setting, and will be further
explored, including self-consistency in future work, where the
ability to obtain unbiased RDMs is a particular strength of the
method compared to more traditional quantum Monte Carlo
approaches to electron-boson problems.
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APPENDIX: ZERO PHONON MODE REMOVAL

When studying the Hubbard-Holstein model with periodic
boundary conditions, it is routine to bring about a reduction in
the coupling between the electron and boson sector by apply-
ing the zero phonon mode removal (ZPMR) transformation to
the bosonic second-quantized operators. This can be written
as

âm → âm − g

ω0
〈n〉, (A1)

where 〈n〉 = Nelec/L stands for the average electronic density
per site. Under this transformation, the electron-boson cou-
pling becomes

gn̂m

(
â†

m + âm − 2g

ω0
〈n〉

)
. (A2)

Since the fermion number is fixed, the average fermion oc-
cupation per site is known by symmetry, and the resultant
on-site one-electron contribution amounts to an energy shift of
−2g2Nelec

2/(ω0L). Likewise, the boson energy contributions
transform to

ω0

(
â†

mâm − g

ω0
〈n〉(â†

m + âm) + g2

ω2
0

〈n〉2

)
(A3)

from which the second term shows that there are now
single boson (de)excitations that are uncoupled to the
electronic modes, and an additional constant. After sum-
mation over sites, this gives another constant energy shift
of g2Nelec

2/(ω0L), resulting in an overall energy shift of
−g2Nelec

2/(ω0L) to the ZPMR Hamiltonian spectrum relative
to the untransformed definition.

This transformation redefines the vacuum state in the
boson modes in such a way that the boson occupation-
truncated wave function converges faster to the untruncated
wave function with respect to nboson, making larger systems
tractable by exact eigensolvers provided that the coupling to
the bosons is weak. Physically, this amounts to decoupling
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the bosons from the static charge density of the system,
ensuring only coupling to the instantaneous quantum den-
sity fluctuations (higher moments of the density distribution)
remain. It is tempting to bring the ZPMR transformation
into effect in the hope of improving the performance of
FCIQMC by condensing the walker distribution around con-
figurations with lower-occupied modes. Indeed, this is likely
to be advantageous for general Hamiltonians. However, for
the Hubbard-Holstein model, it must be noted that the density-

uncoupled (de)excitations between boson number sectors
would always carry the opposite sign to the density-coupled
(de)excitations. This introduces a sign problem, which would
negate the advantages in wave-function compactification
achieved by the transformation. Therefore, use of the ZPMR
transformation in the present work is restricted to obtaining
faster-converging FCI energies with respect to boson oc-
cupation cutoff for small systems, to allow comparison to
FCIQMC results.
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