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Pairing of electromagnetic bosons under spin-orbit coupling

S. V. Andreev *

Abrikosov Center for Theoretical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia;
Smart Software Solutions, Saint-Petersburg 191014, Russia;

and National Research Center Kurchatov Institute B.P. Konstantinov, Petersburg Nuclear Physics Institute, Gatchina 188300, Russia

(Received 17 November 2021; revised 14 October 2022; accepted 18 October 2022; published 31 October 2022)

We discuss pairing of excitons and polaritons under effective spin-orbit coupling in two-dimensional semi-
conductors. The spin-orbit coupling is shown to induce dynamical broadening of a two-body bound state.
Application of a transverse magnetic field yields the rich Feshbach resonance phenomenology. We predict quan-
tum bosonic halos with a synthetic angular momentum Lz = ±2h̄. The d-wave-like dressing of the nominally
s-wave bound state is induced by spin-orbital coupling to the continuum in the open channel. As a possible
manifestation of the phenomenon in the equilibrium phase diagram we predict biexcitonic Mott supercurrent:
Dissociation of a biexciton Bose-Einstein condensate into a superfluid current of excitons upon increasing the
density.
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I. INTRODUCTION

Strongly correlated pairs of photons have been of
paramount interest for fundamental and applied quantum
science [1–4]. In the semiconductor technology pairing of
electromagnetic waves is enabled by formation of a biexci-
tonic molecule. Quantum entanglement of photon pairs has
been experimentally demonstrated with biexcitons in semi-
conductor quantum dots [5,6] and nanocrystals [7]. Further
progress toward greater functionalities would require con-
trollable pairing in macroscopic ensembles of light-matter
bosons [2–4,8]. Observation of biexcitons in several promi-
nent classes of two-dimensional (2D) semiconductors [8–15]
has spurred an intense theoretical research in the field over the
past years (see [16] and references therein).

Bosonic modes in planar semiconductors have fine struc-
ture due the long-range exchange interaction of the constituent
fermions [17–23] and TE-TM splitting of the associated elec-
tromagnetic field [24–26]. Both contributions can be regarded
as interaction of the boson spin with a momentum-dependent
effective magnetic field. The influence of such effective spin-
orbit (SO) coupling on the boson pairing is an interesting
question, which has been addressed only scarcely in our recent
studies [27].

In this paper we present a theoretical approach to the
problem based on the method of second quantization. We
construct a generic pairing Hamiltonian amenable to simple
mean-field models for macroscopic ensembles and multichan-
nel scattering formalism for two particles in vacuum. The
SO interaction couples bound states to continua in the chan-
nels with different spin configurations. Application of a static
magnetic field along z (the Faraday geometry) yields a rich
phenomenology akin to the Feshbach resonance in ultracold
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atomic gases [28]. We obtain analytical estimates of the po-
sitions of resonances for 2D excitons and polaritons. Close
to the resonance we predict macroscopic bosonic molecules
(the so-called halo states [29]) possessing an angular momen-
tum Lz = ±2h̄. The nominally s-wave bound state acquires a
d-wave-like halo due to the SO coupling with the continuum.
Straightforward extension of our formalism indicates that one
may expect existence of analogous mechanisms for fermions.
As a possible manifestation of the phenomenon in the equilib-
rium phase diagram we predict biexcitonic Mott supercurrent:
Dissociation of a biexciton Bose-Einstein condensate into a
superfluid current of excitons upon increasing the density.
Fundamental properties of the emergent quantum number and
the associated many-body states, as well as their possible use
in quantum technologies, remain to be explored.

II. THEORETCIAL MODEL

The electromagnetic boson fields in a 2D semiconductor
are guided (surface) exciton-polaritons propagating in the
structure plane. At low momenta inside the light cone there
is either rapid radiative decay [30] or hybridization with a
cavity mode [31]. The latter results in a strong reduction of
the polariton effective mass. We shall neglect leakage of the
polariton modes from the cavity. For excitons, we assume that
their momenta are outside of the light cone.

The optical selection rules lock the photon spin to the spin
orientation of an electron and a hole constituting the exciton.
In considering the exciton-exciton interactions this will allow
us to conveniently avoid cumbersome and system-specific
analysis accounting for all possible spin configurations of
four fermions [32–34]. Our approach extends to a broad
variety of 2D semiconductor structures where the concomi-
tant symmetries (e.g., valleys in the absence of an inversion
center [35], short-range electron-hole exchange [17], etc.) or
cavity-induced detunings isolate the radiative doublet from
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other exciton states (e.g., dark excitons [36]). A quantitative
criterion will be formulated below. Virtual transmutations
of the electromagnetic bosons into satellite states then may
be regarded as a background renormalization of the relevant
quantities [37]. We shall bear in mind atomically thin layers
of transition-metal dichalcogenides (TMD’s), such as MoS2,
as primary experimental test beds.

A. Single-particle Hamiltonians

The single-particle Hamiltonian may be written as

Ĥα,i =
[

Kα ( p̂i ) + δα (B)

2

]
1̂i − h̄ωα ( p̂i ) · ŝi (1)

with the Larmour frequency

ωα ( p̂) = �α ( p̂) + μB

h̄
gαBnz (2)

being due to the ordinary magnetic field B and the in-plane
effective SO field

�α ( p̂) = �x,α ( p̂)nx + �y,α ( p̂)ny (3)

constructed on the basis of the momentum operator p̂ =
( p̂x, p̂y). The index i in (1) is introduced to label the particles.
The label α distinguishes between the exciton (α = X ) and
lower-polariton (α = L) models. For polaritons, we assume
large vacuum Rabi splitting h̄�R(B) as compared to the detun-
ing δ± = δ0 − δX (B) ± μBgX B between the microcavity and
the exciton modes. Here δ0 is the nominal (B = 0) detuning
and δX (B) is the exciton diamagnetic shift [38,39]. At the bot-
tom of the dispersion, where Eqs. (7) hold, one has δL(B) =
δX (B)/2 + δ0 − h̄�R(B) and gL = X 2

0 gX with X 2
0 = 1/2[1 +

(1 + h̄2�2
R/δ2

±)−1/2] ≈ 1/2 being the Hopfield coefficient X 2
p

evaluated at p = 0 [38]. All polariton parameters vary along
the dispersion curve and approach their bare excitonic values
at high momenta.

By virtue of the optical selection rules, the boson spin ŝ
may be identified with the spin-1 operator of a transverse
electromagnetic field [40], i.e.,

ŝ = σ̂xnx + σ̂yny + σ̂znz. (4)

Here σ̂x, σ̂y, and σ̂z are Pauli matrices, and nx, ny, nz form an
orthonormal basis. We shall adopt the notation |↑〉 and |↓〉 for
the basis states characterized by sz = +1 and −1, respectively
[41]. The three components of an expectation value 〈ŝ〉 are the
Stokes parameters encoding the photon polarization.

The decomposition of the total magnetic field ωα into
its in-plane and transverse components adopted in Eq. (2)
may be argued as follows. Under the time reversal one has
ŝz → −ŝz, whereas ŝx,y → ŝx,y [42]. Since, on the other hand,
B → −B, it follows that the boson spin ŝ may couple only
to the transverse component of B. In the electron-hole picture
this constraint corresponds to the mere fact that the 2D band
orbital momentum does not possess an in-plane component
[43–45]. In contrast, the in-plane SO field (3) satisfies

�α ( p̂) = �α (−p̂), (5)

which makes possible its coupling to the in-plane components
of ŝ. Explicitly, we shall assume

KX (p) = h̄2 p2

2mX
+ h̄υp

2
, (6a)

�X (p) = −υp

2
(nx cos 2θ + ny sin 2θ ) (6b)

for excitons [18–22,27] and

KL(p) = h̄2 p2

2m∗
, (7a)

�L(p) = − h̄p2

2mLT
(nx cos 2θ + ny sin 2θ ) (7b)

for polaritons [24–27], where m−1
∗ = m−1

L + m−1
LT with mL and

mLT being the lower polariton mass and the parameter charac-
terizing the longitudinal-transverse splitting of the polariton
dispersion, respectively. The momentum-dependent shifts of
the kinetic energies Kα (p) ensure monotonous behavior of
the dressed-particle dispersions obtained by diagonalization
of the Hamiltonians (1).

The picture of an electromagnetic boson as a well-defined
quasiparticle implicitly assumed in the above models requires
that its kinetic energy be larger than the radiative width.
Neglecting the exchange-induced corrections to Kα (p), the
corresponding condition may be written as

k 	
√

mα/h̄τα (8)

with τα being the boson radiative lifetime. This lower bound
on the in-plane momentum of the quasiparticle defines the
accuracy of the low-energy approximation employed below.
The exciton radiative lifetime τX may be increased by placing
the semiconductor onto a substrate [46] or into an off-resonant
microcavity [47]. One may also work with dipolar excitons
formed of spatially separated electrons and holes (see [27] and
references therein).

B. Biexciton and bipolariton in the absence of SO coupling

Binding of light-matter bosons occurs via their excitonic
component due to exchange of the identical fermions. A close
analog of the biexciton is the positronium molecule Ps2 [48].
In the spirit of covalent bonding in the molecular hydrogen
H2, the singlet electrons produce Coulomb attraction for holes
and vice versa. Opposite orientations of the fermionic spins
imply the singlet configuration for the associated photons.
Only even spin and orbital boson wave functions are allowed
[49,50]. The orbital wave function ϕn(r) can be obtained as a
solution of the Schrödinger equation for the relative motion[

K (X )
rel (k̂) + V (X )

↑↓ (r)
]
ϕn(r) = εnϕn(r), (9)

where V (X )
↑↓ (r) is an axially symmetric potential describing in-

teraction of two composite bosons [51] and the index n stands
for a full set of possible quantum numbers. The kinetic energy
of relative motion K (X )

rel (k̂) is defined in a standard way via the
rearrangement KX ( p̂1) + KX ( p̂2) = K (X )

rel (k̂) + K (X )
cm (K̂ ) which

always holds at least in the center-of-mass (c.m.) reference
frame.

In practice, excited states of a biexciton have never been
observed. We are also unaware of any theoretical claim of
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such states. In fact, studies of the analogous dipositronium
problem suggest that such states may actually not exist due
to a very diffuse structure of a four-particle complex consist-
ing of electrons and holes with equal masses [52]. We shall
therefore assume that the set of bound states labeled by n
in Eq. (16) consists of a single s-wave (ground) state. This
assumption, while not implying any loss of generality, will
also highlight the emergent nature of the state derived in this
work. We shall use the notations ϕ1s(r) ≡ ϕ(r) and ε1s ≡ ε,
and take the Gaussian Ansatz

ϕ(r) = (a
√

π )−1e−r2/2a2
(10)

for our analytical estimates. Here a ≡ h̄/
√

mX |ε| is on the
order of the microscopic biexciton radius (few nanometers in
TMD’s).

Increasing the static transverse dipole moment of a dipolar
exciton allows one to tune the biexciton energy ε toward
zero and even positive values. The latter correspond to the
biexciton being transformed into an s-wave scattering res-
onance [53,54]. We shall call it natural resonance in order
to make distinction with the synthetic SO-induced scattering
resonances predicted in this work. An interplay between the
two has to some extent been addressed in our prior work [27].
The object of this study is true bound exciton pairs with ε < 0
and a much less than any other relevant length scale. The main
control parameter, absent in [27], is the transverse magnetic
field.

In a microcavity, the bend of the lower-polariton dispersion
in the vicinity of the light cone may produce autodissocia-
tion of the biexciton into the polariton continuum [55]. Such
quasistationary biexciton has been referred to as “bipolari-
ton” [51]. The autodissociation occurs when the biexciton
level crosses the lower-polariton continuum with the singlet
spin configuration. The corresponding condition reads as ε +
δX (B) > δL(B). The resonant approximation (26) employed
below requires that

ε + δX (B) < δL(B) (11)

and, therefore, excludes such uncontrollable broadening of the
biexciton level.

C. Pairing Hamiltonian

Consider a system of two particles. There are four basis
states |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 whose linear combinations real-
ize the states Sz = +2, 0,−2 of the total spin Sz = sz,1 + sz,2.
We notice that since �α ( p̂i ) lies in the structure plane, the sum
�α ( p̂1) · ŝ1 + �α ( p̂2) · ŝ2 does not commute with S2

z . Hence,
the SO coupling may change the spin state of a pair by flipping
the spin of either of the two particles. This property in combi-
nation with the symmetry relation (5) are the key ingredients
for the phenomenology presented in this work.

To proceed, let us introduce the (free) pair creation and
annihilation operators

Ĉ†
σ1σ2,k,K = â†

σ1k+K/2â†
σ2,−k+K/2,

Ĉσ1σ2,k,K = âσ2,−k+K/2âσ1k+K/2, (12)

where k = (p1 − p2)/2 and K = p1 + p2 are the relative and
center-of-mass (c..m.) momenta, respectively, and σ = ↑,↓

labels the particle spin. The particle creation (annihilation)
operators â†

σ,p (âσ,p) obey the usual boson commutation re-
lations. It follows that

Ĉσ1σ2,k,K = Ĉσ2σ1,−k,K . (13)

Next, we define the molecular operators

Ĉ↑↓,n,K =
∑

k

φn(k)Ĉ↑↓,k,K, (14)

where the function φn(k) is the Fourier image of the molecular
wave function of the relative motion

ϕn(r) = 1√
S

∑
k

φn(k)eikr, (15)

defined as an ε < 0 solution of Eq. (9) and S is the quantiza-
tion area. In terms of the free pair and molecular operators the
second-quantized pairing Hamiltonian can be written as

Ĥα = 1

2

∑
σ ′

1σ
′
2σ1σ2

∑
k′,n′,k,n

×
∑
K ′,K

Hk′(n′ ),K ′,k(n),K
σ ′

1σ
′
2σ1σ2,α

Ĉ†
σ ′

1σ
′
2,k

′(n′ ),K ′Ĉσ1σ2,k(n),K, (16)

where we have used the obvious notation Ĉσ1σ2,n,K ≡
δσ1σ̄2Ĉ↑↓,n,K . From a mathematical viewpoint, the form (16)
is dictated by the principle of asymptotic completeness of the
resultant scattering theory [56]. This fundamental principle is
expected to hold in our case on timescales shorter than the
boson radiative lifetime, i.e., under the assumption (8). The
matrix elements

Hk′(n′ ),K ′,k(n),K
σ ′

1σ
′
2σ1σ2,α

=
∫

ψ∗
k′(n′ ),K ′ (r, R) 〈σ ′

1σ
′
2| Ĥα |σ1σ2〉

×ψk(n),K (r, R)dr dR (17)

are taken on the free and bound-state wave functions

ψkK (r, R) = 1

S
eikr+iKR, (18a)

ψn,K (r, R) = 1√
S

eiKRϕn(r). (18b)

The 4 × 4 matrix Hamiltonian Ĥα is given by

Ĥα = Ĥα,1 ⊕ Ĥα,2 + V̂α, (19)

where “⊕” denotes the Kronecker sum, the 2 × 2 matrices
Ĥα,i are given by Eq. (1), and

V̂α =
∑
σ,σ ′

V (α)
σσ ′ (r) |σσ ′〉 〈σσ ′| . (20)

Strictly speaking, the two-body interaction potentials V (X )
σσ ′ (r)

are well defined only at interparticle distances r much larger
than the exciton Bohr radius aX . This is sufficient, how-
ever, for considerations involving the low-energy scattering
assumed in our study. Moreover, unless we are interested in
long-range physics due to a possible permanent exciton dipole
moment [54], the actual shape of the potential curves is not
important even at r 	 aX . We assume just that the potential
V (X )

↑↓ (r) possesses a bound state [Eq. (9)], whereas V (X )
↑↑ (r) and

V (X )
↓↓ (r) do not. The Fourier transforms of the lower-polariton
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interaction potentials may be obtained in the usual way as
V (L)

σσ ′ (k′ − k) ≡ X 2
k′X 2

k V (X )
σσ ′ (k′ − k), where Xk is the Hopfield

coefficient.

III. QUANTUM HALOS

Let us apply our pairing formalism to the single-particle
Hamiltonians (1). The external magnetic field splits the triplet
of the scattering channels with Sz = −2, 0,+2 by the amount
2μBgαB. When B crosses the threshold value B(α)

c (to be
derived below), the lowest-energy scattering states (Sz = +2)
come into resonance with the Sz = 0 bound state. Assuming
|B − B(α)

c | � B(α)
c one may neglect the coupling to the Sz =

0,−2 scattering states (as well as to other possible states such
as dark excitons [36]) and reduce the generic Hamiltonian (16)
to

Ĥα =
∑

k

[
Kα (k) + δα (B)

2
− μBgαB

]
â†

↑,kâ↑,k

+ [ε + δX (B)]Ĉ†
↑↓Ĉ↑↓

+ 1

2S

∑
p,p′,q

â†
↑,p′+qâ†

↑,p−qV
(α)
↑↑ (q)â↑,pâ↑,p′

−
∑

k

h̄�(s)
α (k) · [s↓↑φ∗(k)Ĉ†

↑↓â↑,−kâ↑,k + H.c.],

(21)

where

�(s)
α (k) = �α (k) + �α (−k)

2
, (22)

s↓↑ ≡ 〈↓| ŝ |↑〉 with ŝ defined by Eq. (4), Ĉ↑↓ is the shortcut
for the molecular operator Ĉ↑↓,n=1s,K=0, and, as usual, we have
assumed that all pairs are at K = 0 in the last term. One may
readily recognize the structure of the Fano-Anderson (FA)
model of a discrete level in a continuum [57,58]. Mean-field
solutions of analogous models have provided much insight
into the collective behavior of ultracold atoms with Fesh-
bach resonances [59–61]. The important difference of our
system from atomic settings and previously considered dipo-
lar excitons featuring a natural s-wave resonance [54] is the
dynamical (orbital) nature of the coherent coupling between
the open (Sz = +2) and closed (Sz = 0) channels. For two
particles in vacuum the Hamiltonian (21) yields the on-shell
T matrix

T (α)
↑↑ = T (α)

↑↑,bg + T (α)
↑↑,res

with T (α)
↑↑,bg being the standard background contribution due to

the potential V (α)
↑↑ (k′ − k) and

T (α)
↑↑,res

(
k′, k, E (α)

k + i0
) = 2|φ̃(k)|2∣∣h̄�(s)

α (k) · s↑↓
∣∣2

e2i(θ ′−θ )

E (α)
k − �̄α − �α (E (α)

k + i0)
,

(23)
where

�̄α ≡ ε + 2μBgαB + δX (B) − δα (B) (24)

is the bare detuning between the channels (note that ε < 0),
E (α)

k ≡ Kα (k) + Kα (−k) is the kinetic energy of the relative

motion of two bosons, φ̃(k) ≡ √
Sφ(k)/2π with φ(k) defined

by Eq. (15), and the pair bubble reads as

�α

(
E (α)

k + i0
) =

∫
2|φ̃(q)|2∣∣h̄�(s)

α (q) · s↑↓
∣∣2

E (α)
k − E (α)

q + i0
dq. (25)

The result (23) holds under the conditions

|�̄α| � 2μBgαB (26)

and |h̄�(s)
α (k) · s↑↓| � μBgαB. The former is the usual res-

onant approximation, whereas the latter is specific for the
problem under consideration. The condition (26) may be seen
to imply |ε| ∼ μBgαB, so that, under the realistic assumption
|ε| 	 |h̄�(s)

α (k) · s↑↓|, the second condition is also fulfilled.
The d-wave-like dependence of T (α)

↑↑,res on the scattering an-
gle is entirely due to the SO coupling. The bare excitonic
molecule has zero orbital momentum.

By using the explicit formulas (6) and assuming k � mX υ

we find for the pole of the T matrix (23) for excitons

EX = �̄X −
√

π

4
E (X )

a − EX

2

−
√

π

2

E2
X

E (X )
a

− β
(X )
E ln

(
E (X )

a

EX

)
− iπβ

(X )
E , (27)

where β
(X )
E = E3

X /(E (X )
a )2 and

E (X )
a ≡ h̄υ/a. (28)

We have used the Fourier transform φ̃(k) = π−1/2ae−k2a2/2 of
the Gaussian Ansatz (10). Solution of Eq. (27) at EX → 0 can
be recast in the form

EX (B) = 4
3μBgX

(
B − B(X )

c

)
, (29)

where

B(X )
c = (|ε| + √

π/4E (X )
a

)
/2μBgX . (30)

For polaritons, the massive character of their kinetic energy
[Eq. (7a)] allows us to define the scattering amplitude

f (L)
σσ ′ (k′, k) = −(2π )2m∗/2h̄2T (L)

σσ ′ (k′, k, Ek + i0).

For the resonant contribution we obtain

f (L)
↑↑,res(k

′, k) = − 2πe2i(θ ′−θ )

Ẽ (L)
k −�L

η2
(

E (L)
k

)2
/E (L)

a

+ ln
(
E (L)

a /E (L)
k

) + iπ
. (31)

The amplitude has the genuine d-wave form. Here E (L)
a ≡

h̄2/m∗a2 and

η ≡ m∗√
2mLT

is the dimensionless ratio of the polariton effective mass to
the parameter characterizing the strength of the longitudinal-
transverse splitting. The renormalized kinetic energy and the
detuning read as, respectively, Ẽ (L)

k = (1 + η2)E (L)
k and �L =

�̄L − η2E (L)
a . The pole of the polariton scattering amplitude

(31) is given by

EL = (1 + η2)−1

[
�L − β

(L)
E ln

(
E (L)

a

EL

)
− iπβ

(L)
E

]
, (32)
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where β
(L)
E = η2E2

L/E (L)
a . The solution of Eq. (32) at EL → 0

may be written as

EL(B) = (1 + η2)−1 ∂�̄L

∂B

(
B − B(L)

c

)
(33)

with

B(L)
c = B(L)

0 + η2E (L)
a (∂�̄L/∂B)−1 (34)

and B(L)
0 being defined by �̄L(B(L)

0 ) = 0.
The solutions (29) and (33) are resonances at B > B(α)

c and
synthetic bound states of the two-channel models (21) at B <

B(α)
c . Although the density of states in 2D remains finite at

zero energy, the resonances have vanishing widths β
(α)
E due to

the orbital origin of the effective magnetic fields switching the
pair spin configuration. The slopes of the lines Eα (B) define
the relative weights of the bare molecule in the (normalized)
wave functions of the synthetic bound states

� (α)(r) = ϒ (α)(r) |↑↑〉 + wαϕ(r) 1√
2
(|↑↓〉 + |↓↑〉) (35)

via the identity

w2
α =

(
∂�̄α

∂B

)−1(
∂Eα

∂B

)
.

In the vicinity of B(α)
c , where Eqs. (29) and (33) hold, we

obtain w2
X = 2

3 and w2
L = (1 + η2)−1, respectively. The re-

maining contributions to the wave functions (35) are due to
the quantum halos

ϒ (α)(r) =
√

2wα

π

∫
h̄�(s)

α (q) · s↑↓G(α)
↑↑ (0)φ̃(k)e−iqrdq,

(36)
where G(α)

↑↑ (E ) = (E − E (α)
q )−1 are the Green functions of the

exciton (α = X ) and polariton (α = L) open channels. At r 	
a we obtain

ϒ (α)(r) ∝ a

r2
e−2iγ , (37)

where γ is the polar angle of r. In contrast to the strongly
localized s-wave core, the halos decay algebraically. Most
remarkably, the halo carries an angular momentum Lz = −2h̄
(opposite to the applied magnetic field). We suggest that
the emergent quantum number is due to conversion of the
core spin fluctuations into the peripheric orbital motion by
the SO coupling. In the end of Sec. IV we shall argue that
the same mechanism underlies the formation of the polar-
ized superstripe in a resonantly paired superfluid of dipolar
excitons [27].

The energy Eα (B) defined by Eqs. (29) and (33) should
not be confused with the dissociation energies of the states
described here. The synthetic wave functions (35) themselves
represent partially disintegrated states, the halos being quan-
tum superpositions of the continua states in the open channels.
Destruction of the halo occurs when the thermal energy kBT
becomes comparable with the Josephson energies of the co-
herent SO links between the channels, the latter being on
the order of E (X )

a for excitons and ηE (L)
a for polaritons. For

excitons in a TMD monolayer, we estimate E (X )
a /kB ∼ 150 K.

The same quantity sets the upper bound for the formation time
of the composite state (35) and should be compared with the
biexciton radiative width (few tens of μeV) in order to justify

the picture of well-defined quasiparticles implicitly assumed
in our approach. On the other hand, the lower bound (8),
as applied to the relative momentum k of two bosons with
K = 0, defines how far the halo may extend in the real space.
For excitons in a MoS2 monolayer with τ ≈ 4 ps we obtain
k−1 ≈ 50 nm. In comparison, the biexciton radius a in TMD’s
amounts to few nanometers [12].

The halo should emit entangled pairs of photons carrying
an orbital angular momentum −2h̄ due to leakage of the low-k
excitons into the light cone. Such photons may be detected by
using the coincidence circuit supplemented with the forklike
interference holograms [62]. We expect B(X )

c on the order of
few tens of teslas which is within reach of the existing experi-
mental facilities [39]. The position of the polariton resonance
B(L)

c as defined by Eq. (34) may be additionally tuned by the
Rabi splitting h̄�R.

IV. BIEXCITON MOTT SUPERCURRENT

The Hamiltonians (21) provide a basis for the
corresponding many-body theories. By virtue of the
transient nature of excitons, these are supposed to be
nonequilibrium models. Consideration of an equilibrium
scenario is, nevertheless, a good starting point to develop a
feel for the ensuing phenomena. The central issue for bosons
with attractive interaction has been the transition between
the particle and molecular Bose-Einstein condensates, the
bosonic analog of the BCS-BEC crossover for fermions
[63–67]. Excitons have long been considered as promising
candidates for realization of this transition [67–70]. In this
context, a three-channel Fano-Anderson (FA) model has been
suggested for dipolar excitons interacting via a natural s-wave
resonance [53,54]. The FA model is an advanced version
of the old BCS theories and has been put forward during
the era of Feshbach-resonant atomic gases [59–61]. The
model makes explicit the Goldstone physics associated with
the molecular off-diagonal long-range order (ODLRO) and
admits an arbitrarily accurate perturbative solution in the limit
of a narrow resonance [60,61]. It connects to the variational
BCS theory in the opposite limit of a broad resonance.

For a broad resonance the excitonic BCS-BEC transition
was also believed to be identical with the so-called biexciton
Mott transition [67], associated with the spatial overlap of the
molecules at high densities. The s-wave FA model had also be-
trayed the traces of the Mott transition in the reentrant region
of the phase diagram corresponding to a true bound state (see
the ε < 0 side of the phase diagram in Fig. 2 in Ref. [53]). This
region progressively disappears as one reduces the coupling
of the bound state to the (spin-singlet) scattering continuum.
On the resonant side (ε > 0 in the same figure), the predic-
tion of the FA model is opposite to the Mott-type scenario:
The quasistationary biexcitons (natural resonances) here are
stabilized at increasing density by repulsive interactions.

From this perspective, the Hamiltonians (21) represent
qualitatively different variants of the FA model. The d-wave-
like resonances (27) and (32) being inherently narrow, it is
not clear a priori whether and how the BCS-BEC transition
may be related to the biexciton Mott transition in this case.
The most intriguing feature is the d-wave SO dressing which
produces the quantum halo for a pair of excitons. In the
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remainder of the paper we discuss how it may manifest itself
in the course of the BCS-BEC transition.

To this end, let us look at the behavior of the pair-breaking
excitation spectrum ε↑,k on approaching the transition from
the BEC side. We focus on the two-channel excitonic (α = X )
Hamiltonian (21): Excitons, in general, have longer lifetimes
as compared to polaritons and may achieve the kinetic equi-
librium with respect to the two-body collisions enabling a
metastable Bose-Einstein condensed state. We replace the
molecular field operator Ĉ↑↓ by a c number C↑↓ ≡ √

NB and
proceed along the lines of Ref. [27] to obtain

ε↑,k =
√

ζ 2
↑,k − 4

∣∣h̄�
(s)
B (k) · s↑↓

∣∣2
, (38)

with

ζ↑,k ≡ h̄2k2

2mX
+ h̄υk

2
+ gXB|�B|2 − μBgX B − μ (39)

being the (grand canonical) energy of unpaired spin-↑ exci-
tons in the mean-field potential produced by the molecules in
the absence of the molecular SO field

�
(s)
B (k) ≡

√
4πnBa2e−(ka)2/2�

(s)
X (k). (40)

In writing Eq. (40) we have used the Gaussian Ansatz (10) for
φ(k). The occupation number NB is related to the molecular
order parameter by |�B|2 = NB/S ≡ nB. The chemical poten-
tial reads as μ = ε/2 + gB|�B|2/2. The phenomenologically
introduced coupling constants gB and gXB account for the
effective interactions between the molecules and molecules
with excitons, respectively. These interactions are expected to
be repulsive. Hereinafter, we shall assume 0 < gB = gXB ≡
g � gX , where gX ≡ g↑↑ is the effective interaction for the
background potential V↑↑(q). We define the dimensionless
coupling constant g̃ ≡ mg/h̄2 and use the value g̃ = 1 in nu-
merical estimates.

In the dilute limit nBa2 � 1 the molecular SO field is neg-
ligible and the gap in the excitation spectrum (38) is located
at k = 0:

ε↑,0 = |ε|/2 − μBgX B + nB(gXB − gB/2).

At the second-order phase transition ray {μ = ε/2, μBgX B <

|ε|/2} separating the biexciton BEC from the vacuum (see
Fig. 1) one has nB = 0, and the gap is just the energy needed
to break a biexciton in free space. As the gas parameter nBa2

approaches unity, however, the term (40) becomes important
and may overweight the SO shift of the exciton kinetic energy
[the second term in Eq. (39)]. In this case the gap shifts to a
circle of degenerate minima in the k space. Closure of such ro-
tonlike gap marks a second-order (quantum) phase transition
into a state discussed below.

A viable candidate for this state is a superposition of
counterpropagating plane-wave excitonic condensates ψ↑,q

and ψ↑,−q with some wave vector q = (q, θ ) chosen spon-
taneously on the circle. The two condensates would be
immersed in a residual background of the molecular conden-
sate and share the common phase θX due to the spontaneously
broken UN (1) symmetry associated with conservation of the
total number of particles N = NX + 2NB. This phase is locked

FIG. 1. The zero-temperature phase diagram for the exciton FA
model (21) in equilibrium. The biexciton binding energy |ε| ≡
h̄2/mX a2 and the characteristic size a are used as the units of energy
and length, respectively. The dimensionless magnetic field reads
as b ≡ μBgX B/|ε|. Increasing the chemical potential μ (density) at
b < 1

2 results in dissociation of the biexciton condensate into an
exciton supercurrent. The corresponding second-order boundary is
defined by closure of the rotonlike gap in the pair-breaking exci-
tation spectrum (shown in the inset). This boundary shifts toward
higher magnetic fields and densities as one reduces the strength of
the SO coupling E (X )

a given by Eq. (28) (E (X )
a = 0.8 on the left

and E (X )
a = 0.5 on the right). Within our approximation (see the

text) the other three boundaries (bold lines) remain unchanged. All
four second-order boundaries meet at the quantum critical end point
(bc, μc ) = ( 1

2 , − 1
2 ).

to the molecular background according to the relation

θB = 2θX + 2θ + π (41)

(modulo 2π ), that ensures the maximum energy gain due to
the interaction of the exciton spin with the molecular SO
field. In order to work out the exact form of the exciton order
parameter, we make the substitutions â↑,p/

√
S → ψ↑,±qδp,±q

and Ĉ↑↓/
√

S → √
nBeiθB in the grand-canonical Hamiltonian

Ĥ ′
X ≡ ĤX − μN̂ (supplemented by the gB and gXB terms as

outlined above), and diagonalize thus obtained energy density
hX by the unitary transformation

ψ↑,q = 1√
2
(ψ+ − ψ−)ei(θB−2θ ), ψ∗

↑,−q = 1√
2
(ψ+ + ψ−).

We obtain

hX = [
ζ↑,q − 2

∣∣h̄�
(s)
B (q) · s↑↓

∣∣]|ψ−|2

+ [
ζ↑,q + 2

∣∣h̄�
(s)
B (q) · s↑↓

∣∣]|ψ+|2

+ gX

2
(|ψ−|4 + |ψ+|4 + 2|ψ−|2|ψ+|2)

+ (ε − 2μ)nB + gB

2
n2

B. (42)

The energy (42) is minimized by the choice ψ+ ≡ 0, which
yields |ψ↑,−q| = |ψ↑,q| and the anticipated Eq. (41) for the
phases. The exciton order parameter may finally be recast as

�X (r) = √
nX eiqre−iθX |↑〉 , (43)
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where nX = NX /S is the exciton density. We thus see that dis-
sociation of the biexciton condensate produces spontaneous
exciton supercurrent

jX = h̄q
mX

nX . (44)

This result is consistent with the broken time-reversal symme-
try of the model (21). The exciton supercurrent (44) vanishes
almost simultaneously with the residues of the biexciton con-
densate near the second-order ray {μ = ε/2, μBgB > |ε|/2}
(Fig. 1). In the limit qa � 1 the solution of the equa-
tion ∂hX /∂q = 0 takes a simple form

q = mX υ

h̄

(√
4πnBa2 − 1

2

)
, (45)

which yields

μ0 =
(

1

2
+ 1

32π

)
g̃−1ε

for the chemical potential at which the state (43) becomes an
ordinary σ+-polarized exciton condensate.

Following the logic of our historical discussion, we dub
this state biexciton Mott supercurrent. This high-density phase
between the biexciton and the exciton BEC’s may be com-
pared with the BCS side of the ordinary s-wave biexciton Mott
transition [67]. On the contrary, there is a qualitative differ-
ence from the BCS-BEC transition in the narrow-resonance
s-wave FA model, where the biexciton BEC is stabilized at
high densities [53].

In TMD monolayers, the domain of existence of this state
in the phase diagram shown in Fig. 1 seems to be reduced
to a narrow window around the critical end point (bc, μc) =
( 1

2 |ε|,− 1
2 |ε|). For instance, the version on the left has been

obtained for E (X )
a /|ε| = 0.8, which we believe to be an upper

bound for the strength of SO coupling in a typical monolayer
of MoS2. The point on the second-order line used to illustrate
the closure of the roton gap corresponds to nBa2 = 0.2. At
such densities the underlying fermionic structure of excitons
and biexcitons comes into play, and the actual dissociation
scenario may be very different from our predictions [71].

One could try to reduce the biexciton binding energy |ε|
by working with dipolar excitons in (homo)bilayers. Spatial
separation of electrons and holes would also enable experi-
mental detection of the supercurrent following the proposal
of Ref. [72], referred to as “counterflow superconductivity.”
Another appealing property of the dipolar excitons is their
relatively long lifetime τX . However, the SO coupling (which
scales as τ−1

X [20]) would be suppressed and the eventual be-
havior of the ratio E (X )

a /|ε| is not evident. A more elaborated
study is needed to explore this possibility.

In this regard, we point out affinity of the biexciton Mott
supercurrent to the spontaneously polarized exciton super-
stripe predicted in Ref. [27]. Enhancement of the molecular
SO field (40) in that case occurs due to the divergent growth
of the biexciton size a on approaching the critical distance
between the layers at which a true bound state turns into a
natural resonance [53,54]. The divergence of a compensates
the vanishing strength of the SO coupling and enables the
corresponding transition already in the dilute limit. Despite
the important differences in their properties, the two phases

are common in that both are manifestations of the d-wave SO
dressing at the many-body level.

V. CONCLUDING REMARKS

Finally, we point out possible existence of analogous
mechanisms for fermions. Replacement of the commutation
relations results, in particular, in a sign change in Eq. (22).
Consistently, the time-reversal invariance now dictates that
�(k) = −�(−k), which is the case for the Rashba [73,74]
and Dresselhaus [75] SO couplings. The second-quantized
forms of the type (21) then imply intriguing mean-field
possibilities associated with topological properties of the Bo-
goliubov transformation and the existence of chiral edge
modes [76,77]. Such possibilities have indeed been antici-
pated for SO coupled superconductors [78–80] and ultracold
fermionic atoms [81], though from a somewhat different
perspective. Optical studies of the effects predicted in this
work would help to elucidate common fundamental origin of
the synthetic orbital momenta of quasiparticles (fermions or
bosons) under SO coupling.
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APPENDIX A: PAIR BUBBLES FOR EXCITONS
AND POLARITONS

The Gaussian Ansatz for the s-wave biexciton wave func-
tion yields the following expressions (we use the units E (α)

a ):

�X (E + i0) = πE3G3,2
4,5

(
E2

∣∣−3/2,−1,−7/4,−5/4

−3/2,−1,0,−7/4,−5/4

) − iπE3

(A1)
and

�L(E + i0)

= −η2(1 + E − e−E E2[Chi(E ) + Shi(E )] + iπe−E E2)

(A2)

for the exciton and polariton pair bubbles, respectively. Here
Gm,n

p,q (z|a1,...,an,an+1,...,ap

b1,...,bm,bm+1,...,bq
) is the Meijer G function, Chi(x) and

Shi(x) are the hyperbolic cosine and sine integrals, respec-
tively. As it should be, the real parts of the pair bubbles vanish
at E → ∞, whereas their low-energy expansion yields the
results presented in the main text.

We note that the coefficient at the first power of E in the ex-
pansion of �α (E + i0) defines the relative weight of the halo
in the wave function of the synthetic molecule. Interestingly,
this coefficient turns out to be the same for few other physical
Ansätzes such as the Coulomb

φ̃(k) =
√

2

π

a

(1 + k2a2)3/2
(A3)
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and the weakly bound state

φ̃(k) = a√
π

1

1 + (ka)2
, (A4)

although the use of the latter would require more elaborated
consideration of our model.

Somewhat different but more transparent results may be
obtained by using the Heaviside theta function Ansatz φ̃(k) =
aθ (a−1 − k):

�X (E + i0)

= −π

2

[1

3
+ E

2
+ E2 + E3 ln

(1 − E

E

)
+ iπE3

]
(A5)

and

�L(E + i0) = −η2π
[1

2
+ E + E2 ln

(
1 − E

E

)
+ iπE2

]
(A6)

for excitons and polaritons, respectively. The Heaviside
Ansatz, however, has a nonphysical algebraic decay in real
space.

APPENDIX B: DISTORTION OF THE CONTINUUM
BY THE BACKGROUND REPULSIVE POTENTIAL

Here we estimate corrections to the pair bubbles due to the
distortion of the continuum states by the background repulsive
potential V (α)

↑↑ (r). We start with the general expression for the
pair bubble

�α (E + i0) = h̄2
∫ 〈ϕ| �̂α |q+〉 〈+q| �̂†

α |ϕ〉
E − E (L)

q + i0
dq, (B1)

where we have introduced the operator

�̂α =
∫ √

2�(s)
α (k) · s↑↓ |k〉 〈k| dk (B2)

and |q+〉 are the background scattering states. For definitive-
ness, let us consider polaritons. The scattering states can be
recast as

|q+〉 = |q〉 + G(L)
0,↑↑

(
E (L)

q + i0
)
T (L)

↑↑,bg

(
E (L)

q + i0
) |q〉 , (B3)

where G(L)
0,↑↑(z) and T (L)

↑↑,bg(z) are the free Green operator and
the background T operator of the polariton open channel.
Furthermore, we write

〈ϕ| �̂L |q+〉

=
∫ √

2�L(k) · s↑↓ 〈ϕ|k〉 〈k| T (L)
↑↑,bg

(
E (L)

q + i0
) |q〉

E (L)
q − E (L)

k + i0
dk.

(B4)

Let us model V (L)
↑↑ (r) by the impenetrable-disk potential of the

radius a. The off-shell T matrix then can be expressed as [82]

〈k| T (L)
↑↑,bg

(
E (L)

q + i0
) |q〉

= (2π )−2 h̄2

m
qa

+∞∑
m=0

cmeiδm (q)Jm(ka)

× [cos(δm)Jm+1(qa) − sin(δm)Ym+1(qa)] cos(mθ ),

(B5)
where cm = 1 for m = 0 and cm = 2 otherwise, and the sine

and cosine of the scattering phase shift are given by

cos(δm) = Ym(qa)√
J2

m(qa) + Y 2
m (qa)

, (B6a)

sin(δm) = Jm(qa)√
J2

m(qa) + Y 2
m (qa)

. (B6b)

Due to the orbital dependence of the matrix element

h̄�L(k) · s↑↓ = − h̄2k2

mLT
e−2iθ , (B7)

only the d waves from the background scattering contribute to
the pair-bubble equation (B1). By taking the Heaviside theta
Ansatz 〈k|ϕ〉 = aθ (a−1 − k) and performing the integration,
one obtains the leading correction to the unperturbed result
[the above Eq. (A6)]

δ�L

E (L)
a

= −2−15π−1η2. (B8)

We therefore conclude that the background distortion of the
continuum may be safely neglected.
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