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Notable non-Fermi liquid and quantum critical behaviors are observed in rare-earth metallic systems with
non-Kramers local moments supporting a number of different multipolar moments. A prominent example is
Pr(Ti, V)2Al20, where the non-Kramers doublet of the Pr3+ ion allows quadrupolar and octupolar moments,
but lacks a dipolar moment. Previous theoretical studies show that a single impurity Kondo problem with
such an unusual local moment leads to exotic non-Fermi liquid states. In this work, we investigate possible
quantum critical behaviors arising from the competition between non-Fermi liquid states and multipolar-ordered
phases induced by the RKKY interaction. We consider a local version of the corresponding Kondo lattice
model, namely the Bose-Fermi Kondo model. Here, the multipolar local moments are coupled to fermionic
and bosonic bath degrees of freedom representing the multipolar Kondo effect and RKKY interactions. Using a
perturbative renormalization group (RG) study up to two loop order, we find critical points between non-Fermi
liquid Kondo fixed points and a quadrupolar ordered fixed point. The critical points describe quantum critical
behaviors at the corresponding phase transitions and can be distinguished by higher order corrections in the
octupolar susceptibility that can be measured by ultrasound experiments. Our results imply the existence of a
rich expansion of the phases and quantum critical behaviors in multipolar heavy fermion systems.
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I. INTRODUCTION

Due to strong spin-orbit coupling and crystal electric field
effects, f electrons in rare-earth metallic systems may form
higher-rank multipolar moments [1,2]. Recent studies on the
relevant materials have shown that the interplay between the
multipolar moments and itinerant conduction electrons can
lead to a variety of exotic quantum phases of matter in-
cluding multipolar ordered phases, strange metallic behavior,
and unconventional superconductivity [3–18]; this interplay
also provides a setting for quantum critical behavior [19–21].
In contrast to the archetypal heavy fermion systems with
dipolar local moments [22,23], such materials are described
by a multipolar Kondo lattice model, with the Kondo in-
teractions and subsequent RKKY interactions taking very
unusual forms [24–26]. The Pr-based caged cubic compounds
Pr(Ti, V)2Al20 are a particularly exciting realization of a
multipolar Kondo lattice. In this class of materials, the Pr3+
ions rest at the center of a tetrahedral cage, and contribute a
local 4 f 2 moment. The moment forms a non-Kramers doublet
in the presence of the crystal field, and lacks any dipolar
moment; instead it only carries quadrupolar and octupolar
moments. These moments provide a route a number of ex-
perimentally observed phenomena including a quadrupolar
ordered phase, a multipolar Kondo effect related to non-Fermi
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liquid behavior (with resistivity ρ ∼ T 1/2 for the case of
PrV2Al20), and the multipolar fluctuations responsible for the
unconventional superconducting phase [27–45].

Theoretical works to understand these different quantum
phases have either focused on the properties deep inside of
a phase [46–54], or have been Ginzburg-Landau studies of
magnetic ordering phase transitions [55]. However, a full un-
derstanding of the quantum critical behavior which may arise
due to the competition between multipolar RKKY fluctuations
and the Kondo effect remains elusive. A simplified approach
to this competition is the Bose-Fermi Kondo model, which
serves as a local approximation of the full Kondo lattice
[56–65]. Within this scheme, the Kondo coupling between
the local moment and conduction electrons is taken into ac-
count explicitly, but the RKKY interaction is replaced by a
dynamical bosonic bath with the density of states ∼|ω|1−ε

acting at the impurity site. The main two kinds of phases
admitted by renormalization group analyses of this model are
a Kondo phase with large Fermi surface, wherein the local
moments hybridize with the conduction electrons increasing
the total density, and a magnetically ordered phase where
the Kondo effect is destroyed and the conduction electrons
are decoupled from the local moments [66–70]. The latter
phase is to be contrasted against the Moriya-Hertz-Millis
type (potentially multipolar) spin density wave instability of
a heavy Fermi liquid [71]. Although other Bose-Fermi Kondo
models studied with extended dynamical mean field theory
may yield a spin-density wave type phase [59,72,73], the
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FIG. 1. Schematic diagram for quantum phase transitions be-
tween non-Fermi liquid phases and multipolar ordered phases. F1±
and F2± stand for the novel multipolar and 2-channel Kondo fixed
points, respectively. BQ and BO stand for the quadrupolar and oc-
tupolar ordered fixed points, respectively, and CQO is a critical point
between BQ and BO. CQ(O)

1± and CQ(O)
2± are critical points between

F1± and BQ(O), and F2± and BQ(O), respectively. Critical points have
dashed lines, and stable fixed points have solid lines; gray circles are
outside of the perturbative regime. The fixed point values are listed
in Table I.

results we will describe here fall into the Kondo destruction
category.

In this work, motivated by experiments on Pr-based heavy
fermion systems, Pr(Ti, V)2Al20, we consider the multipolar
Bose-Fermi Kondo model in cubic systems as a simplified
model for the multipolar Kondo lattice. Here, the Pr3+ ions
provide a non-Kramers doublet supporting quadrupolar and
octupolar moments, which couple to conduction electrons. As
shown below, the multipolar Kondo lattice model permits a
mapping to a multipolar Bose-Fermi Kondo model, which
can be constructed based on local point group symmetry.
The fermionic Kondo problem without the bosonic bath or

RKKY interaction was theoretically studied earlier and var-
ious non-Fermi liquid ground states were identified. These
results may have some relevance to experiments in the dilute
limit [46,47,74–76], where non-Fermi liquid behaviors were
observed. It is then natural to study the phase transition be-
tween such non-Fermi liquids and a multipolar ordered phase.

In the multipolar Bose-Fermi Kondo model, we set the den-
sity of states of the quadrupolar (Q) and octupolar (O) bosonic
baths to be |ω|1−εi (i = Q, O) and perform a perturbative
renormalization group (RG) analysis based on an ε-expansion
to order ε2 to study the zero temperature phase diagram of
the model. Similar to previous work, we find that there are
two non-Fermi liquid phases [47,54] in the fermion Kondo
part of the model; one is a two-channel Kondo non-Fermi
liquid, and the other is an exotic non-Fermi liquid phase, not
simply classifiable into any multichannel-type model. These
phases, upon tuning the Kondo and bosonic bath couplings,
can pass through quantum critical points to both arrive at
a quadrupolar ordered phase, as presented in the schematic
diagram (Fig. 1) and in the RG flow diagrams (Figs. 2
and 3). The transition from the non-Fermi liquid phases to the
quadrupolar ordered phase is accompanied by the destruction
of the Kondo effect such that the Kondo coupling flows to zero
in the quadrupolar ordered phases, representing a small Fermi
surface state [68,69].

To distinguish the critical points and non-Fermi liquid
phases experimentally, we compute the zero temperature
quadrupolar χQ(τ ) ∼ τ−γQ and octupolar χO(τ ) ∼ τ−γO sus-
ceptibilities with the exponents γQ and γO [see Eq. (25) and
(26)], where τ is the imaginary time. It is shown that the oc-
tupolar susceptibility has different scaling behavior around the
non-Fermi liquids and critical fixed points at second order in
ε, which are summarized in Table I. Finally, we propose how
the multipolar susceptibilities can be measured experimen-
tally by the use of ultrasound measurements in the presence
of a magnetic field. The temperature/frequency scaling of the

TABLE I. Table of the fixed points and their multipolar susceptibility exponents. F1± and F2± are the multipolar and 2-channel Kondo fixed
points, respectively, and BQ and BO are the quadrupolar fixed point and octupolar fixed line, respectively (all four of these are stable). CQ

1,2± is
the critical point between F1,2± and BQ, and CO

1,2± is the critical point between F1,2± and BO. CQO is the critical point between BQ and BO. γQ

and γO stand for the quadrupolar and octupolar suscepti bility exponents defined in Eqs. (25) and (26), respectively. The schematic diagram
for their quantum phase transitions is presented in Fig. 1. Note that BO and CO

1,2± are outside of the perturbative regime, so their γQ values are
omitted. Note that in this table, the multipolar susceptibility exponents of F(1,2)± are the perturbative values. The exact values from conformal
field theory are 2/5 and 1, respectively [47,81].

Label (K∗
Q1, K∗

Q2, K∗
O, λ∗

Q, λ∗
O) Type γQ γO

F1±
( ± 1

2
√

6
,± 1

12
√

2
, − 1

4
√

3
, 0, 0

)
Multipolar 1/2 1/2

F2±
( ± 1

2
√

3
, ∓ 1

6 , 1
2
√

3
, 0, 0

)
2-channel Kondo 2 2

BQ

(
0, 0, 0, εQ + ε2

Q, 0
)

Quadrupolar εQ 2εQ + 2ε2
Q

BO (0, 0, 0, 0, ∞) Octupolar – εO

CQO

(
0, 0, 0,

εO
2 + εO (2εQ−εO )

4 ,
(2εQ−εO )

2 + ε2
O
4

)
Critical εQ εO

CQ
1±

( ± εQ√
3
, ± εQ

6 , − εQ

2
√

3
, εQ − 2ε2

Q, 0
)

Critical εQ 2εQ

CQ
2±

( ± ( εQ

2
√

6
+

√
3ε2

Q

16
√

2

)
, ∓( εQ

6
√

2
+ ε2

Q

16
√

2

)
,

εQ

4
√

3
, εQ + ε2

Q

4 , 0
)

Critical εQ 2εQ + 3ε2
Q/2

CO
1±

( ± ε
1/2
O

2
√

3
, ± ε

1/2
O
12 , − 1

4
√

3
, 0, 1

4 − εO
2

)
Critical – εO

CO
2±

( ± ε
1/2
O

2
√

6
,∓ ε

1/2
O

6
√

2
, 1

2
√

3
, 0, 1 − εO

2

)
Critical – εO
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multipolar susceptibility is given by χ ′
i (|ω/T | � 1) ∼ T γi−1

and χ ′
i (|ω/T | 	 1) ∼ ωγi−1, respectively, where i = Q, O

stand for quadrupolar and octupolar, respectively. The elastic
constants are directly related to the multipolar susceptibilties,
such as 	(C11 − C12) ∝ χ ′

Q and 	C44 ∝ h2χ ′
O, where 	Ci j is

the variation of the elastic constant Ci j, and h is the magnetic
field. That is, we can obtain the multipolar susceptibility expo-
nent by measuring the temperature dependence of the elastic
constants in the presence of the magnetic field using ultrasonic
measurements. Our result for the quantum critical behaviors
may be realized in experiments on Pr2(Ti, V)2Al2 in the high
pressure regime at low temperature.

The remainder of the paper is organized as follows. In
Sec. II, we describe modeling the multipolar Kondo lattice
in terms of a multipolar Bose-Fermi Kondo model. In Sec. III,
we perform a renormalization group analysis of our multipolar
Bose-Fermi Kondo model to identify the phases and phase
transitions in the model. In Sec. IV, we comment on how these
phases can be distinguished experimentally, and in Sec. V we
discuss the implications and possible extensions of our work.

II. CONSTRUCTION OF MODELS

We start by describing the microscopic origin of the multi-
polar moment, and then describe how to construct conduction
orbitals. Then, we couple the multipolar impurity to the
conduction orbitals which constitutes the (Fermi) Kondo cou-
pling. The Bose-Kondo coupling can then be derived from
the Fermi-Kondo coupling by calculating the RKKY cou-
pling of the parent Kondo lattice, and then replacing these
other moments with a dynamical bosonic bath field. Since
the setting of interest is the prasedoymium cubic compounds
Pr(Ti, V)2Al20, we need to consider the local symmetry of
the Pr3+ moment. Here, a Pr3+ ion rests at the center of a
Frank-Kasper cage, which is composed of (Ti, V) and Al.
Despite the complicated nature of the cage, its point group
symmetry is simply the tetrahedral group Td . This means that
we can classify the wave function of an electron hopping on
the cage according to the irreducible representations of Td . We
allow the most general interactions according to the local Td

symmetry and timereversal; the details of the symmetry group
are listed in Appendix B.

A. Multipolar moments

Generally speaking, on the site of a local moment, the wave
functions of a particular ionic configuration are constrained
to an effective ground state by Hund’s rules. These ground
states are then split by the local crystalline electric field. The
consequence of these restrictions is the formation of localized
anisotropic charge and magnetization densities, leading to
multipolar moments. In the case of a rare-earth Pr3+ ion sub-
jected to a tetrahedral (Td ) crystal field, the spin-orbit coupled
J = 4 multiplet of the 4 f 2 electrons is split to give rise to
a low-lying and energetically well-isolated 
3 non-Kramers
doublet [28]; the doublet states are listed in Appendix A. This

3 doublet supports both time-reversal even quadrupolar mo-
ments {O22 =

√
3

2 (J2
x − J2

y ), O20 = 1
2 (3J2

z − J2)} as well as

a timereversal odd octupolar moment {Txyz =
√

15
6 JxJyJz}; we

use the Stevens operators to describe the multipolar moments

and the overline indicates a full symmetrization. These mo-
ments can be compactly represented by the pseudospin-1/2
operator S, the components of which are given by [46,54]

Sx = −1

4
O22, Sy = −1

4
O20, Sz = 1

3
√

5
Txyz, (1)

and satisfy a canonically normalized su(2) algebra [Si, S j] =
iεi jkSk . Further details of this pseudospin-1/2 object are de-
scribed in Appendix A. Note that, although the multipolar
moments are written in terms of pseudospin-1/2 operators,
their transformations under rotations in Td and time reversal
reflect the underlying multipolar attributes.

B. Fermi-Kondo couplings

Wave functions of an electron hopping on a Frank-Kasper
cage can be thought of as molecular orbitals centered at the Pr
ion. It is these molecular orbitals which we couple to the local
multipolar moments described in the previous section. Since
these wave functions are classifiable according to irreps of Td ,
we pick basis functions for the T2 representation. Two options
are the p-orbital basis functions x, y, z (alternatively, or the
T2g orbitals {xy, yz, zx} yield an identical model and results).
We therefore consider three bands, assumed to be degenerate,
constructed from these local orbitals; see Eq. (2). The most
general Kondo Hamiltonian couplings of these conduction
bands with the local multipolar moments respecting the local
Td symmetry and time-reversal are enumerated in Eqs. (3)–(5)
[46,54]:

HF
0 =

∑
k,α,a

Ekc†
kaαckaα, (2)

HQ1 = KQ1c†
0aα

(
σ 0

αβλ3
abSx − σ 0

αβλ8
abSy

)
c0bβ, (3)

HQ2 = KQ2c†
0aα

(
2σ z

αβλ2
abSy + σ

y
αβλ5

ab(
√

3Sx + Sy)

+ σ x
αβλ7

ab(
√

3Sx − Sy)
)
c0bβ, (4)

HO = KOc†
0aα

(
σ x

αβλ6
ab + σ

y
αβλ4

ab + σ z
αβλ1

ab

)
Szc0bβ. (5)

The subscript 0 on the conduction electron operators in-
dicates that this interaction occurs only on the impurity site,
which is taken to be the origin. The Latin indices sum over
orbitals a, b = x, y, z, and the Greek indices sum over spins
α, β =↑,↓. σ i are the standard Pauli matrices, and λ j are
the 3 × 3 Gell-Mann matrices, listed in Appendix C. For
the conduction electrons, we assume a constant density of
states near the Fermi surface,

∑
k δ(ω − Ek ) = N0 between

−D < ω < D.
The pseudospin S represents the multipolar moments,

with Sx,y and Sz standing for the quadrupolar and octupolar
moments, respectively. In order to perform the many-body
perturbation theory later in this work, we rewrite the local
moment S in terms of Abrikosov pseudofermions:

S =
∑
αβ

f †
α

σαβ

2
fβ, (6)

where we constrain the occupation of the impurity to be∑
α f †

α fα = 1. In order to impose this physical constraint,
we introduce a chemical potential for the pseudofermion by
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adding λ
∑

σ f †
σ fσ to the Hamiltonian, and take the limit

λ → ∞ at the end of the calculation [64,77].

C. Bose-Kondo couplings

In the full Kondo lattice, the local Kondo Hamiltonian of
Eqs. (3)–(5) appears at each lattice site. Through this Kondo
interaction, an effective interaction between local moments
is generated, known as the RKKY interaction [78–80]. In
the Bose-Fermi Kondo model, this RKKY interaction is rep-
resented by the coupling of the local moment to a bosonic
bath. The procedure to generate the most general symmetry
allowed RKKY-type interaction is described in Appendix D.
The resulting kinetic term for bosons and the Bose-Kondo
coupling are given in Eqs. (7) and (8), respectively,

HB
0 =

∑
k

[
�Qk

(
φ

x†
k φx

k + φ
y†
k φ

y
k

) + �Okφ
z†
k φz

k

]
, (7)

Hg = gQ
(
Sxφx

0 + Syφ
y
0

) + gOSzφz
0. (8)

Here, �Qk and �Ok are the dispersions of the bosonic baths
coupled to the quadrupole and octupole moments, respec-
tively. To set up the controlled RG calculation, we introduce
an ε expansion with dimensional regularization in the density
of states of the bosonic bath,∑

k

[δ(ω − �i,k ) − δ(ω + �i,k )] = N2
i

2
|ω|1−εi sgn(ω). (9)

To consider the most general situation, we introduce εQ and
εO for the quadrupolar and octupolar bosonic baths because
the density of states power law of the quadrupolar and oc-
tupolar bosonic baths are generically different. The multipolar
moments localized at r = 0 couple to the bosonic bath fields
φ0 = ∑

k( φk + φ†
−k ).

In summary, the total multipolar Bose-Fermi Kondo
Hamiltonian H is

H = HF
0 + HQ1 + HQ2 + HO + HB

0 + Hg. (10)

III. RENORMALIZATION GROUP ANALYSIS

A. ε-Expansion and Dimensional Regularization

We perform the renormalization group analysis by using
dimensional regularization with minimal subtraction [64]. The
bosonic bath already has an ε factor modifying its density of
states which can be used in the minimal subtraction procedure,
but the conduction electron bath does not. We therefore intro-
duce ε′ for the conduction electron density of states to enable
the minimal subtraction of poles:∑

k

δ(ω − Ek ) = N0|ω|−ε′
. (11)

Note that ε′ will set to zero at the end of the calculation. Con-
sequently, we define a renormalized field f and dimensionless
coupling constants gi and Ki,

f B = Z1/2
f f , (12)

gB
i = giZ

−1
f Zgiμ

εi/2, (13)

KB
j = KjZ

−1
f ZKj μ

ε′
, (14)

where μ is the renormalization energy scale, and Z f , Zgi , and
ZKj are the renormalization constants for the pseudofermion
f , bosonic couplings gi (here i = Q, O), and fermionic cou-
plings Kj (here j = Q1, Q2, O). The superscript B stands
for the bare value which does not evolve under the RG
flow. In addition, we absorb the density of states Ni into
the dimensionless couplings as N0Kj → Kj and Nigi → gi,
respectively, in the following section. The details of the RG
analysis and corresponding Feynman diagrams are enumer-
ated in Appendix E. Note that we ignore the self-energies
of the conduction electrons and bosonic baths because they
vanish in the thermodynamic limit [60].

B. Analysis of the Fermionic Kondo Model

The beta functions with the multipolar moment couplings
up to cubic order in Ki are given by [46,47,54]

dKQ1

d ln μ
= 6KQ2KO + 2KQ1

(
K2

Q1 + 6K2
Q2 + 3K2

O

)
, (15)

dKQ2

d ln μ
= KO(KQ1 −

√
3KQ2) + 2KQ2

(
K2

Q1 + 6K2
Q2 + 3K2

O

)
,

(16)

dKO

d ln μ
= 2KQ2(2KQ1 −

√
3KQ2) + 4KO

(
K2

Q1 + 6K2
Q2

)
.

(17)

This RG flow has two distinct stable fixed points. The
two types of stable fixed points are the multipolar fixed
points, F1± = (K∗

Q1, K∗
Q2, K∗

O) = (± 1
2
√

6
,± 1

12
√

2
,− 1

4
√

3
), and

two-channel Kondo fixed points, F2± = (± 1
2
√

3
,∓ 1

6 , 1
2
√

3
).

The stable fixed points have perturbative scaling dimensions
	 = 1/4 and 	 = 1, respectively, which are the slope of the
beta function at the respective fixed points; both fixed points
are non-Fermi liquid phases. 	 is also related to the scaling
dimension (1 + 	) of the leading irrelevant operator at the
fixed point. The physical observables such as resistivity ρ and
heat capacity CV at the fixed points are obtained by using the
scaling dimension 	; at low temperatures we have ρ ∼ T 	

and CV ∼ T 2	. Note that the exact scaling dimensions of
F1± and F2± from the CFT are 1/5 and 1/2, respectively
[47,54,81].

C. Analysis of the Bosonic Kondo Model

The beta functions for the coupling of the local moment to
the bosonic bath up to g5

i order are given by

dλQ

d ln μ
= −λQ

(
εQ − λQ − λO + λ2

Q + λQλO
)
, (18)

dλO

d ln μ
= −λO(εO − 2λQ + 2λQλO), (19)

where λQ,O = g2
Q,O. Equations (18) and (19) have two sta-

ble fixed points, a quadrupolar ordered fixed point, BQ =
(λ∗

Q, λ∗
O) = (εQ + ε2

Q, 0), and an octupolar ordered fixed
point, BO = (0,∞). The quadrupolar and octupolar fixed
points can be identified with an XY fixed point and Ising
fixed point in the ordinary Fermi-Bose Kondo model [62,64].
The octupolar fixed point is, strictly speaking, outside of the
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FIG. 2. The RG flow diagram between the multipolar Kondo
fixed point F1+ (green dot) and quadrupolar fixed point BQ (red
dot) when ε = 0.1. F1+ and BQ are located at (s1, t1) = (0, 1)
and (s1, t1) = (1, 0), respectively. Between the two stable fixed
points, there is a critical point CQ

1+ = (0.798, 0.289) (orange dot),
and the red line denotes the separatrix between these two phases.
Here, s1 = 1 − 0.104KQ1 − 0.180KQ2 + 6.708KO, t1 = 3.796KQ1 +
6.574KQ2 + 1.124KO, and λO = 0, with the constraint λQ = 0.113 −
0.571KQ1 − 0.989KQ2 − 0.430KO.

regime of our perturbative calculation. The beta functions also
have another fixed point, CQO = ( εQ

2 + εO (2εQ−εO )
4 ,

(2εQ−εO )
2 +

ε2
O
4 ), which is a critical point between the quadrupolar and

octupolar fixed points, and corresponds to the XXZ fixed
point in the ordinary Fermi-Bose Kondo model [62,64].
All the fixed point values are calculated up to ε2

i order.
In the limit εQ = εO = ε, CQO = ( ε

2 + ε2

4 , ε
2 + ε2

4 ) becomes
isotropic [62,64]. Note that BQ exists in the range 0 < εQ <

1/4, and CQO exists when 27ε2
O − 2(2 + εO − 2εQ)3 < 0 and

εQ �
√

3.516 + 2εO − ε2
O − 1.875 with 0 < εO < 1. For the

isotropic limit ε = εQ = εO, the range is 0 < ε < 1/2.

D. Analysis of the Bose-Fermi Kondo Model

In order to study the destruction of the Kondo effect to
magnetic ordering, we consider the full model of coupling the
local moment to both the fermionic conduction electron bath
and the bosonic bath. In this case, the beta functions are as
follows:

dKQ1

d ln μ
= KQ1

(
λQ + λO

2
− λQ(λQ + λO)

2

)

+6KQ2KO + 2KQ1
(
K2

Q1 + 6K2
Q2 + 3K2

O

)
, (20)

dKQ2

d ln μ
= KQ2

(
λQ + λO

2
− λQ(λQ + λO)

2

)

+KO(KQ1 −
√

3KQ2)

+2KQ2
(
K2

Q1 + 6K2
Q2 + 3K2

O

)
, (21)

FIG. 3. The RG flow diagram between the 2-channel Kondo
fixed point F2+ [blue dot, (s2, t2) = (0, 1)] and quadrupolar fixed
point BQ [red dot, (s2, t2) = (1, 0)] when ε = 0.1. Between the two
fixed points, there is a critical point CQ

2+ = (0.950, 0.075) (purple
dot). The red line denotes the separatrix between the two phases.
Here, s2 = 1 − 0.003KQ1 + 0.011KQ2 − 3.455KO, t2 = 1.219KQ1 −
4.222KQ2 − 0.192KO, and λO = 0 with the constraint λQ = 0.113 −
0.218KQ1 + 0.755KQ2 + 0.263KO.

dKO

d ln μ
= KO(λQ − λQλO)

+2KQ2(2KQ1 −
√

3KQ2) + 4KO
(
K2

Q1 + 6K2
Q2

)
,

(22)

dλQ

d ln μ
= −λQ

[
εQ − (λQ + λO) + λQ(λQ + λO)

−4
(
K2

Q1 + 6K2
Q2 + 3K2

O

)]
, (23)

dλO

d ln μ
= −λO

[
εO − 2λQ + 2λQλO − 8

(
K2

Q1 + 6K2
Q2

)]
.

(24)

Under this full renormalization group flow, all of the previ-
ously found stable fixed points in the fermionic Kondo F1±,
F2± and bosonic Kondo BQ, and BO cases remain stable. Fur-
ther, new fixed points emerge, which describe critical points
between the phases described in Secs. III B and III C. For the
case λQ �= 0, λO = 0, we find two pairs of critical points. The
first critical point is given by CQ

1± = (K∗
Q1, K∗

Q2, K∗
O, λ∗

Q, λ∗
O) =

(± εQ√
3
,± εQ

6 ,− εQ

2
√

3
, εQ − 2ε2

Q, 0) which is a critical point be-
tween F1± and BQ. The flow diagram corresponding to this
transition is given in Fig. 2. The second critical point is CQ

2± =
(±( εQ

2
√

6
+

√
3ε2

Q

16
√

2
),∓( εQ

6
√

2
+ ε2

Q

16
√

2
), εQ

4
√

3
, εQ + ε2

Q

4 , 0). This is a
critical point between F2± and BQ, and its flow diagram is
Fig. 3. In the case of λQ = 0, λO �= 0, we find the critical
points, CO

1,2±, between F1,2± and BO. However, the fixed point
values of λO in BO and CO

1,2± are order one numbers, so
they are outside of the perturbative regime. Despite this, we
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believe the existence of the fixed points to be maintained
under specalized nonperturbative methods. For example, the
octupolar-type critical points may be accessible via the
Coulomb gas representation [56,64]. Note that CQ,O

1± and CQ,O
2±

exist for 0 < εQ < 1/2 and 0 < εQ < 2 − √
2, respectively.

IV. PHYSICAL OBSERVABLES

A. Multipolar Susceptibility and Exponents

In order to compare our results with the experiment, we
consider the local multipolar moment susceptibility exponent.
The local quadrupolar and octupolar moment susceptibilities,
χQ and χO, are defined as

χQ(τ ) = 〈Tτ Sx,y(τ )Sx,y(0)〉 ∝
(

τ0

|τ |
)γQ

, (25)

χO(τ ) = 〈Tτ Sz(τ )Sz(0)〉 ∝
(

τ0

|τ |
)γO

, (26)

where γi (i = Q, O) is the multipolar susceptibility exponent
and τ 	 τ0 with the cutoff τ0 = 1/�. We emphasize that the
multipolar susceptibility exponents describe how the suscep-
tibility scales as imaginary time evolves, but do not directly
yield the temperature scaling. When the fixed point value
of λi (i = Q, O) is nonzero, the corresponding susceptibility
exponent is given by [62,64]

γi = εi +
[

1

λi

dλi

d ln μ

]
f.p.

, (27)

where f.p. stands for value at the fixed point. By definition,
dλi

d ln μ
= 0 is at the fixed point, so γi = εi, which is exact to

all orders of ε [62,64]. Since our critical points CQ
1,2± all have

a nonzero fixed point value for λQ, the quadrupolar suscep-
tibility exponent of the critical points CQ

1± and CQ
2± are both

given by γQ = εQ. Thus we cannot distinguish between the
two critical points via γQ. Let us consider instead the case of
the octupolar susceptibility exponent.

When the fixed point value of λi is zero, as is the case
for λO at both CQ

1,2±, then the corresponding susceptibility
exponent is given by [62]

γi = εi +
[

lim
λi→0

1

λi

dλi

d ln μ

]
f.p.

= εi +
[

∂

∂λi

dλi

d ln μ

]
f.p.

. (28)

In contrast to the previous case, Eq. (28) includes higher order
corrections in εQ,O. Since our calculation applies to order ε2,
we can use ε2 corrections to the octupolar susceptibility to
distinguish between different fixed points. The resulting sus-
ceptibilities for the two critical points are γO = 2εQ and 2εQ +
3ε2

Q/2, for CQ
1± and CQ

2±, respectively. The results for the sus-
ceptibility exponents at different fixed points are summarized
at Table I. The full expression of the multipolar suscepti-
bility exponent γi for λ∗

i = 0 is presented in Appendix F.
An additional point is that we may also distinguish between
these critical points and the non-Fermi liquid phases F1± and
F2± using this octupolar susceptibility. This is useful because
we can then distinguish non-Fermi liquid behavior due to a

quantum critical regime from non-Fermi liquid behavior in a
phase (F1± or F2± in our case). We note that the multipolar
susceptibility exponents of the fermionic fixed points F(1,2)±
are perturbative. The exact exponents can be obtained via
conformal field theory and are 2/5 and 1 for F1± and F2±,
respectively [47,81].

B. Finite Temperature Scaling and Elastic Constants

The results in the previous section only apply at zero
temperature, and do not directly correspond to a measurable
quantity. In order to obtain the temperature dependence of the
susceptibility, we assume that we have conformal invariance
at the critical point, and that the multipolar moment is a
primary operator with conformal dimension γi/2 [62,82]. The
results for the real part χ ′ and imaginary part χ ′′ are given by
Eqs. (29) and (30); see Appendix G for details.

χ ′
i (ω, T ) ∝

{
T γi−1

(
1 + CRe1

(
ω
T

)2)
, |ω| � T,

ωγi−1, |ω| 	 T,
(29)

χ ′′
i (ω, T ) ∝

{
T γi−1

(
ω
T

)
, |ω| � T,

ωγi−1, |ω| 	 T,
(30)

where CRe1 is defined in Appendix G. Note that the real part
of the temperature dependence of the multipolar susceptibility
for F1± and F2± in the dc limit (ω = 0) is consistent with
the temperature scaling, χ ∼ T 2	−1, which is the conformal
field theory result upon setting γi = 2	 [81]. The exact tem-
perature dependencies for F1± and F2± from CFT are given
by χ ∼ T −3/5 and χ ∼ log T , respectively [47]. We expect
that the multipolar susceptibility exponent in Eq. (29) can
be observed by measuring the temperature dependence of
elastic constants [83,84]. The elastic free energy including the
symmetry-allowed coupling between the multipolar moments
and strains is given by [49,84]

F = C0
11 − C0

12

2

(
ε2
μ + ε2

ν

) + C0
44

2

(
ε2

xy + ε2
yz + ε2

zx

)
− sQ[εμO22 + ενO20]

− sOTxyz[hxεyz + hyεzx + hzεxy], (31)

where εi j is the strain tensor, εμ ≡ (εxx − εyy) and εν ≡
(2εzz − εxx − εyy)/

√
3, C11, C12, and C44 are the elastic con-

stants which are coefficients of ε2
ii, εiiε j j , and ε2

i j (i �= j) for
the deformation free energy in the cubic lattice, respectively;
hi is the magnetic field (i = x, y, z); the superscript 0 stands
for the bare value of the elastic constants; sQ and sO are the
couplings between the multipolar moments and lattice strain
tensors. From second-order perturbation theory, we can get
the following corrections to the bare elastic constants,

(C11 − C12) = (
C0

11 − C0
12

) − (
s2

Q

)
χ ′

Q, (32)

C44 = C0
44 − (

s2
Oh2

i

)
χ ′

O, (33)

where we apply the magnetic field hi along one and only one
of the x, y, or z axes under the assumption that the cubic
symmetry is negligibly affected. The octupolar susceptibility
is therefore only detectable when measured in the presence
of both strain and magnetic field simultaneously. As a result,
the multipolar susceptibility can be observed by measuring
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the temperature dependence of the elastic constants (C11−C12)
and C44 via ultrasonic measurements.

V. CONCLUSIONS

Inspired by experiments on Pr(Ti, V)2Al20, we have stud-
ied an appropriate multipolar Bose-Fermi Kondo model,
where the non-Kramers local moments carrying quadrupolar
and octupolar moments are coupled to p-orbital electrons. By
using an RG analysis on our model, we find not only two
non-Fermi liquid phases and a quadrupolar ordered phase,
but also two quantum critical points between the non-Fermi
liquid phases and quadrupolar ordered phase. To distinguish
between each of these non-Fermi liquid phases and quan-
tum critical points, we compute the multipolar susceptibility
exponents at zero temperature and show that the octupolar
susceptibility exponent is different at second order in ε at all
of these fixed points. Furthermore, we obtain the temperature
scaling behavior of the multipolar susceptibility, and explain
how the quadrupolar and octupolar susceptibilities are related
to the elastic constants (C11-C12) and C44, respectively. We
propose that measurement of the temperature dependence of
the elastic constants (C11-C12) and C44 using an ultrasonic
measurement in the presence of a magnetic field can be used
to distinguish the non-Fermi liquid phases and quantum criti-
cal points experimentally. Our results may be experimentally
relevant for Pr2(Ti, V)2Al2 in the high-pressure regime at low
temperature.

Possible directions for future work could include applying
the work to a variety of other heavy fermion systems. For ex-
ample, several Yb and Ce compounds exhibit local moments
with very high degeneracies, which enables the formation of a
large number of multipolar moments [3,4,15,85–90]. Another
direction could be to verify our results from the (extended)
dynamical mean field theory perspective. One subtlety is that
the εQ, εO parameters in the bosonic bath density of states
should be determined self-consistently, which may be possible
in a full dynamical mean field treatment [58].

More generally, our results are indicative of the large vari-
ety of multipolar ordered phases and exotic electronic states
found in rare-earth metallic systems. The root of the mul-
tipolar moments, unusual Kondo couplings, and anisotropic
RKKY interactions is the strong spin-orbit coupling and crys-
tal electric field effects, which, as we have shown, can lead
to a myriad of quantum critical behaviors. This suggests there
may be new classes of quantum critical points relating Kondo
destruction, multipolar ordering, and non-Fermi liquids in
multipolar Kondo lattice systems, and that they are experi-
mentally accessible. This opens new doors for exploring the
landscape of multipolar quantum matter.
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APPENDIX A: MULTIPOLAR MOMENTS FROM
NON-KRAMERS DOUBLET

In a vacuum, a Pr3+ ion forms a spin J = 4 system by
Hund’s rules. In the presence of a tetrahedral crystal field,
these nine degenerate states are split, and the resulting ground
state in the Pr(V, Ti)2Al20 compounds is a non-Kramers 
3

doublet spanned by the following two states [28,46,54]:

∣∣
(1)
3

〉 = 1

2

√
7

6
|4〉 − 1

2

√
5

3
|0〉 + 1

2

√
7

6
|−4〉, (A1)

∣∣
(2)
3

〉 = 1√
2
|2〉 + 1√

2
|−2〉. (A2)

To determine which multipolar moments are supported by
these wave functions, we can compute the matrix elements
of Stevens operators in the doublet {|
(1)

3 〉, |
(2)
3 〉}. In this

doublet, we find that, defining a different basis

|↑〉 = 1√
2

(∣∣
(1)
3

〉 + i
∣∣
(2)

3

〉)
, (A3)

|↓〉 = 1√
2

(
i
∣∣
(1)

3

〉 + ∣∣
(2)
3

〉)
, (A4)

we find that

〈α|
(

−1

4
O22

)
|β〉 = 1

2
σ x

αβ, (A5)

〈α|
(

−1

4
O20

)
|β〉 = 1

2
σ

y
αβ, (A6)

〈α|
(

1

3
√

5
Txyz

)
|β〉 = 1

2
σ z

αβ, (A7)

where α, β take the values ↑,↓ [where these ↑,↓ are the ones
listed in Eqs. (A3) and (A4)], and σ i are the standard Pauli
matrices. We emphasize that these σ i matrices and indices
α, β relate to matrix elements of operators in local moment
states, and have nothing to do with the Pauli matrices and α, β

indices for the conduction electrons in Eqs. (3)–(5).

APPENDIX B: ACTION OF TETRAHEDRAL GROUP

In order to test which terms in the Hamiltonian are allowed,
we need to know how candidate terms transform under action
of the tetrahedral group Td , and under time-reversal T . The
most economical way to check all transformations is to pick
two generators of Td , which are C31 and S4z. C31 is the rotation
by 2π/3 about the (1,1,1) axis, and S4z is a rotation by π/2
about the zaxis followed by a mirror reflection across the
xy plane. Both of these transformations leave a tetrahedron
invariant. Checking all possible Kondo terms respecting the
symmetry yields in Eqs. (3)–(5). The table of all symmetry
transformation is given by Table II.

APPENDIX C: SU(3) GELL-MANN MATRICES

In our multipolar Kondo models, we have three orbitals.
To account for all possible traceless hermitian matrices which
describe possible fermionic bilinears, we use the generators
of SU(3), normalized to tr(λiλ j ) = 2δi j . We enumerate these
3 × 3 Gell-Mann matrices that appear in the Fermi-Kondo
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TABLE II. Symmetry transformations of various objects under
two generators of the tetrahedral group as well as time-reversal T .

Object S4z C31 T

x −y y x

y x z y

z −z x z

σ 0 σ 0 σ 0 σ 0

σ x σ y σ y −σ x

σ y −σ x σ z −σ y

σ z σ z σ x −σ z

Sx −Sx − 1
2 Sx −

√
3

2 Sy Sx

Sy Sy
√

3
2 Sx − 1

2 Sy Sy

Sz −Sz Sz −Sz

Hamiltonians here [46,54]:

λ1 =

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠, λ2 =

⎛
⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎠, (C1)

λ3 =

⎛
⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎠, λ4 =

⎛
⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎠, (C2)

λ5 =

⎛
⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎠, λ6 =

⎛
⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎠, (C3)

λ7 =

⎛
⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎠, λ8 = 1√

3

⎛
⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎠. (C4)

APPENDIX D: BOSE-KONDO COUPLING

In order to construct the coupling of the local moment
to the bosonic bath while respecting the local symmetry,
we construct the effective interaction between spins in the
corresponding Kondo lattice. Starting with the Fermi-Kondo
Hamiltonian in Eqs. (3)–(5), we can compute the effective
interaction between two spins by computing the diagram in
Fig. 4. We then replace one of the spin operators in this
resulting RKKY interaction with the bosonic field and thereby
find the symmetry-allowed coupling of the local moment to
the bosonic bath. We emphasize that this is not an actual

FIG. 4. Effective Kondo Lattice RKKY Interaction; dotted lines
refer to the pseudospin operators (not to be confused with dashed
lines in other diagrams referring to pseudofermion propagators) and
the solid lines are fermion propagators. The Si and S j are the spin
operators on different sites i and j in the parent Kondo lattice.

FIG. 5. Pseudofermion self-energy, both direct and counterterm
contribution.

RKKY interaction between local moments on different sites,
and should be conceptually likened to a Weiss mean field
coupled to the impurity.

APPENDIX E: DETAILS OF THE RENORMALIZATION
GROUP METHOD

From the bare Hamiltonian presented in the main text, we
can introduce counterterms in order to remove divergences
in the loop integrals. When calculating the Fermi-Kondo and
Bose-Kondo vertex functions, as well as the pseudofermion
self-energy, we can solve for these counterterms order by or-
der and use them to compute the renormalization factors. The
corresponding diagrams for the pseudofermion self-energy
are given in Fig. 5, the diagrams for the Fermi-Kondo ver-
tex corrections are given in Figs. 6–11, and the diagrams
for the Bose-Kondo vertex corrections are given in Figs. 12
and 13. Details for how to extract renormalization constants
from the vertex corrections and self-energy are presented
in an excellent reference [64]. In the Feynman diagrams of
Figs. 5–13, solid lines refer to conduction electron propaga-
tors [Eq. (E1)], dashed lines corresponds to pseudofermion
propagators [Eq. (E2)], and the squiggly lines refer to bosonic
bath propagators [Eq. (E3)]:

Gc
0 (iω, k) = 1

iω − Ek
, (E1)

G f
0 (iω, k) = 1

iω − λ
, (E2)

Gφ

0 (iω, k) = 2�k

(iω − �k )(iω + �k ).
(E3)

FIG. 6. Order K corrections to the Fermi-Kondo vertex. There
are only direct contributions at this order.
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FIG. 7. Order K2 and g2 corrections to the Fermi-Kondo vertex.

FIG. 8. Order Kg2 direct correction to the Fermi-Kondo vertex.

FIG. 9. Order Kg2 counterterm corrections to the Fermi-Kondo
vertex.

FIG. 10. Order g4 direct corrections to the Fermi-Kondo vertex.

FIG. 11. Order g4 counterterm corrections to the Fermi-Kondo
vertex.
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FIG. 12. Order g2 and K2 corrections to the Bose-Kondo vertex.

FIG. 13. Order g4 direct and counterterm corrections to the Bose-
Kondo vertex.

The renormalization constants and wavefunction renormalization up to third order in Ki and fifth order in gi, are given in
Eqs. (E4)–(E9).

ZKQ1 = 1 − 1

εQ

g2
Q

(
g2

Q − g2
O

)
8

+ 1

εO

[
g2

O

4
+ g2

Og2
Q

8

]
+ 1

ε2
O

g4
O

32
+ 1

εQεO

3g2
Qg2

O

8
+ 1

εOε′
3KQ2KOg2

O

2KQ1
+ 1

ε′

[
3K2

O

2
+ 6KQ2KO

KQ1

]

+ 1

ε′2

[
12K2

Q2 + 3K2
O − 3

√
3KQ2

KQ1

(
2K2

Q2 + K2
O

) + 9KQ2KO

KQ1

(
4K2

Q2 + K2
O

)]

− 1

εQ(εQ + εO)

g2
Qg2

O

4
+ 1

ε′(εQ + ε′)
6KQ2KOg2

Q

KQ1
, (E4)

ZKQ2 = 1 − 1

εQ

g2
Q

(
g2

Q − g2
O

)
8

+ 1

εO

[
g2

O

4
+ g2

Og2
Q

8

]
+ 1

ε2
O

g4
O

32
+ 1

εQεO

3g2
Qg2

O

8
+ 1

εOε′

[
KQ1KOg2

O

4KQ2
−

√
3KOg2

O

4

]

+ 1

ε′

[
KQ1KO

KQ2
−

√
3KO + 3K2

O

2

]
+ 1

ε′2

[
2K2

Q1 + 3K2
Q2 + 9K2

O

2
− 3

√
3KQ1KQ2 −

√
3KQ1K2

O

KQ2

+KO

(
−

√
3K2

Q1 + 6KQ1KQ2 − 6
√

3K2
Q2 − 3

√
3K2

O

2

)
+ KQ1KO

2KQ2

(
2K2

Q1 + 3K2
O

)]

− 1

εQ(εQ + εO)

g2
Qg2

O

4
+ 1

ε′(εQ + ε′)

[
KQ1KOg2

Q

KQ2
−

√
3KOg2

Q

]
, (E5)

ZKO = 1 + 1

εQ

[
g2

Q

2
+ g4

Q

8
+ g2

Qg2
O

4

]
+ 1

ε2
Q

3g4
Q

8
− 1

εO

g2
O + g2

Qg2
O

4
+ 1

ε2
O

g4
O

32
− 1

εQεO

3g2
Qg2

O

8
+ 1

εOε′

[
−KQ1KQ2g2

O

KO
+

√
3K2

Q2g2
O

KO

]

+ 1

εQε′

[
2KQ1KQ2g2

Q

KO
−

√
3K2

Q2g2
Q

KO

]
+ 1

ε′

[
K2

Q1 + 6K2
Q2 − 3K2

O

2
+ 2KQ2

KO
(2KQ2 −

√
3KQ2)

]

+ 1

ε′2

[
2K2

Q1 − 4
√

3KQ1KQ2 + 18K2
Q2 + 3KQ2KO(2KQ1 −

√
2KQ2) + 2KQ2

KO

(
K2

Q1 + 6K2
Q2

)
(2KQ1 −

√
3KQ2)

]

− 1

εQ(εQ + εO)

g2
Qg2

O

4
+ 1

ε′(εQ + ε′)

[
KQ1KOg2

Q

KQ2
−

√
3KOg2

Q

]
, (E6)

ZgQ = 1 − 1

εQ

g2
Q

(
g2

Q + g2
O

)
8

+ 1

εO

[
g2

O

4
+ g2

Qg2
O

8

]
+ 1

ε2
O

g4
O

32
+ 1

ε′
3K2

O

2
+ 1

εQεO

3g2
Qg2

O

8
− 1

εQ(εQ + εO)

g2
Qg2

O

4
, (E7)
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ZgO = 1 + 1

εQ

[
g2

Q

2
+ g4

Q

8
+ g2

Qg2
O

4

]
+ 1

ε2
Q

3g4
Q

8
− 1

εO

(
g2

O + g2
Qg2

O

)
4

+ 1

ε2
O

g4
O

32
+ 1

ε′

[
K2

Q1 + 6K2
Q2 − 3K2

O

2

]

− 1

εQεO

3g2
Qg2

O

8
− 1

(εQ + εO)

g2
Qg2

O

2
+ 1

(εQ + εO)

g2
Qg2

O

2
, (E8)

Z f = 1 + 1

εQ

[
−g2

Q

2
+ g4

Q

8

]
− 1

ε2
Q

g4
Q

8
− 1

εO

g2
O

4
+ 1

ε2
O

g4
O

32
− 1

ε′

[
K2

Q1 + 6K2
Q2 + 3K2

O

2

]
+ 1

(εQ + εO)
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Qg2

O

2
− 1

εQεO

3g2
Qg2

O

8
. (E9)

From the renormalization constants, we can compute the beta functions,

dKi

d ln μ
= Ki

[ ∑
k=Q1,Q2,O

Kk∂Kk G(0,0,1)
Ki

+ gQ

2
∂gQ G(1,0,0)

Ki
+ gO

2
∂gO G(0,1,0)

Ki

]
, (E10)

dg j

d ln μ
= g j

[
−ε j

2
+

∑
k=Q1,Q2,O

Kk∂Kk G(0,0,1)
g j

+ gQ

2
∂gQ G(1,0,0)

g j
+ gO

2
∂gO G(0,1,0)

g j

]
, (E11)

where we Taylor expand the products Z−1
f ZKi and Z−1

f Zgj as
follows in order to obtain the G(m,n,�) factors which appear in
Eqs. (E10) and (E11):

GKi ≡ Z−1
f ZKi =

∞∑
m,n,�=0

G(m,n,�)
Ki

({K, g})

εm
Qεn

Oε′� , (E12)

Ggj ≡ Z−1
f Zgj =

∞∑
m,n,�=0

G(m,n,�)
g j

({K, g})

εm
Qεn

Oε′� . (E13)

The first terms of the series are G(0,0,0)
Ki

= G(0,0,0)
g j

= 1, and the
indices i = Q1, Q2, O, j = Q, O.

APPENDIX F: EXPONENTS FOR MULTIPOLAR
SUSCEPTIBILITY

From the Bose-Kondo beta functions in Eq. (23) and (24)
in Sec. III D, the local multipolar moment susceptibilities for
the case of zero fixed point values in our model are given by
Eq. (28), and turn out to be

γQ = λ∗
O + 4((K∗

Q1)2 + 6(K∗
Q2)2 + 3(K∗

O)2), (F1)

if λ∗
Q = 0, and

γO = 2λ∗
Q + 8((K∗

Q1)2 + 6(K∗
Q2)2), (F2)

if λ∗
O = 0. The latter of these two is used to compute the

octupolar susceptibility exponent at the critical points CQ
1,2±.

APPENDIX G: SCALING BEHAVIORS OF MULTIPOLAR
SUSCEPTIBILITY AT FINITE TEMPERATURE

The scaling behavior of the multipolar susceptibility as a
function of imaginary time in the previous section is for zero
temperature. Here, we will discuss how to obtain the scaling
behavior for finite temperature. Let us assume that we have
conformal invariance at the critical point. Assuming that the
multipolar moments are primary operators with conformal

dimension γi/2, the correlation function (susceptibility) of the
multipolar moment is [62,82]

〈Tτ Si(τ1)Si(τ2)〉 ∝ 1

|τ1 − τ2|γi
. (G1)

Performing a conformal mapping, τ → f (τ ) = π
β

tan( πτ
β

),

〈Tτ Si(τ1)Si(τ2)〉 →
(

∂ f (τ1)

∂τ1

)γi/2(
∂ f (τ2)

∂τ2

)γi/2

× 〈Tτ Si( f (τ1))Si( f (τ2))〉. (G2)

Letting τ1 = τ and τ2 = 0, then

χi(τ, T ) ∝
(

π/β

sin(πτ/β )

)γi

. (G3)

After Fourier transforming and analytic continuation, we can
get the multipolar susceptibility in terms of the temperature T
and the energy scaling ω [82,91,92],

χi(ω, T ) ∝ T γi−1 

(

γi

2 − iω
2πT

)

(1 − γi )



(
1 − γi

2 − iω
2πT

) . (G4)

The scaling behavior of the real and imaginary parts of
F ( ω

T ) ≡ 
( γi

2 − iω
2πT )/
(1 − γi

2 − iω
2πT ) is

Re[F (x)] =
{

F (0) + CRe,<|x|2, |x| � 1,

CRe,>|x|γi−1, |x| 	 1,
(G5)

Im[F (x)] =
{

CIm,<|x|, |x| � 1,

CIm,>|x|γi−1, |x| 	 1,
(G6)

where F (0) = 
( γi
2 )
(1−γi )


(1− γi
2 )

and CRe,< is a real constant. Then,

the temperature dependencies of the real and imaginary parts
of the multipolar susceptibility are given in Eqs. (29) and (30),
where the constant CRe1 = CRe,</F (0) in the main text. Note
that the real part of the susceptibility exponent at the dc limit
(ω = 0) for the Kondo fixed point is consistent with the CFT
result [81], χ ′ ∼ T 2	−1, where γi = 2	.
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