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Probing the bulk plasmon continuum of layered materials through electron energy
loss spectroscopy in a reflection geometry
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A periodic arrangement of two-dimensional (2D) conducting planes is known to host a (bulk) plasmon
dispersion that interpolates between the typical, gapped behavior of three-dimensional (3D) metals and a gapless,
acoustic regime as a function of the out-of-plane wave vector. The semi-infinite system—the configuration
relevant to electron energy loss spectroscopy (EELS) in a reflection geometry, as in high-resolution EELS
(HREELS)—is known to host a surface plasmon that ceases to propagate below a cutoff wave vector. As the
f-sum rule requires a finite response whether there exist sharp excitations, we demonstrate that what remains
in the surface loss function—the material response probed by HREELS—is the contribution from the (bulk)
plasmon of the infinite system. We provide a one-to-one mapping between the plasmon continuum and the
spectral weight in the surface loss function. In light of this result, we suggest that HREELS be considered a
long-wavelength probe of the plasmon continuum in layered materials.
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I. INTRODUCTION

In the mid-1970s, Fetter [1] applied a hydrodynamic
analysis to a periodic system of conducting planes, each
hosting a two-dimensional (2D) electron gas, and obtained
a rather unique plasmon continuum. The plasmon—the
long-wavelength oscillation of the many-electron charge
density—radically changes in character depending on whether
adjacent conducting planes of the system are oscillating in-
phase or out-of-phase. While the in-phase oscillation [see
Fig. 1(a)] corresponds to a gapped (optical) mode reminiscent
of plasmons in simple three-dimensional (3D) metals, the out-
of-phase oscillation [see Fig. 1(b)] corresponds to a gapless
(acoustic) mode that disperses linearly with an in-plane wave
vector. Between the extremes of in-phase and out-of-phase
oscillation lies an acoustic-to-optical plasmon continuum (see
Fig. 2).

Due to the severe conduction anisotropy in the high-
TC cuprate superconductors [2–5], doped cuprates are often
modeled as a system of copper oxide planes, i.e., the
model studied by Fetter. Significant experimental effort has
recently been invested toward demonstrating that doped
cuprates exemplify the plasmon continuum scenario using
resonant inelastic x-ray scattering (RIXS) on both electron-
doped cuprates, such as La2−xCexCuO4 and Nd2−xCexCuO4

[6,7], as well as the hole-doped compounds La2−xSrxCuO4

(LSCO) and Bi2Sr1.6La0.4CuO6+δ (Bi-2201) [8,9]. Shared
among these RIXS studies is a peak in the scattered intensity
whose (planar) wave vector dispersion changes appreciably
as the out-of-plane wave vector is tuned toward an out-of-
phase oscillation between adjacent copper oxide layers. By
identifying this peak with the plasmon, RIXS data provide

*dimer@illinois.edu

strong evidence of a nearly acoustic mode in doped cuprates
coincident with the out-of-phase, acoustic plasmon disper-
sion of the Fetter model. This analogy to the Fetter model
can be completed by tracking the evolution toward the op-
tical plasmon dispersion when the out-of-plane wave vector
corresponds to in-phase oscillation; however, the scattering
geometry and suppression of charge excitations at a large
out-of-plane wave vector in the RIXS cross-section make this
connection difficult to establish concretely [10].

Rather than following the (3D) wave vector dispersion of
charge density excitations, we instead consider an experi-
mental probe that lacks translation symmetry along a chosen
axis: electron energy loss spectroscopy (EELS) in a reflection
geometry; i.e., high-resolution EELS (HREELS). When the
reflection surface is perpendicular to the out-of-plane (lay-
ering) direction, the explicitly broken translation symmetry
renders HREELS, in principle, susceptible to all out-of-
plane wave vector contributions, a point previously made in
Refs. [11,12]. Our main result is that EELS in a reflection
geometry (HREELS) does, in fact, probe the bulk plasmon
continuum of the Fetter model in the long-wavelength limit.
As a consequence, layered materials should generically be
expected to host a broad surface response at long wavelengths
due to their underlying bulk plasmon continuum.

While the doped cuprates provide motivation for this inves-
tigation, these compounds are notoriously complex. Because
of its relative simplicity and close correspondence to the
plasmon behavior seen in RIXS, we will instead focus on
the Fetter model of layered conducting planes (e.g., as was
also done in Ref. [13]). Though the aforementioned studies
[6–9] contain more involved computational analyses to fit
their experimental curves, the qualitative plasmon behavior
(or treatment of the Coulomb interaction) often mirrors the
Fetter result [1]. One could argue that the Fetter model might
represent a pathological limit since it neglects interplane
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FIG. 1. A visual representation of the (a) in-phase and (b) out-
of-phase charge oscillation within a periodic system of conducting
planes.

conduction; however, the inclusion of interlayer electron hop-
ping results in a plasmon dispersion that continuously evolves
from the Fetter result into a more general anisotropic disper-
sion [14]. This is to say that our results apply inasmuch as the
Fetter model is capable of describing any particular (strongly)
anisotropic system.

II. THE SEMI-INFINITE FETTER MODEL

In our implementation of the Fetter model, we consider a
system of conducting planes separated by (insulating) dielec-
tric layers, i.e., a semi-infinite, single-layer superlattice (see
Fig. 3). The conducting planes are characterized by a long
wavelength, 2D Drude conductivity σ at frequency ω through
the standard relation:

σ (ω) = ine2

mω
(
1 + i

ωτ

) , (1)

where n is the 2D (planar) electron density, e the electron
charge, m the electron mass, and τ corresponds to a relaxation
time associated with electron scattering. The layer periodicity
of the 2D conducting planes (or the interlayer distance) is
denoted by a, and we model the insulating, dielectric regions
through a dielectric constant ε > 1.

The excitations of the infinite Fetter model—the peri-
odic system of conducting planes without boundary—are
well studied. In the limit of negligible conduction dissipation
(ωpτ � 1), the bulk plasmon dispersion with the in-plane
wave vector q and out-of-plane wave vector Q is given by
[1,15–19]

ωp(q, Q) = �

√
qa sinh qa

2 cosh qa − 2 cos Qa
, (2)

where � is the optical plasma frequency defined as

�2 := ne2

ε0εma
. (3)

The ωp dispersion in Eq. (2) is plotted in Fig. 2.
In the semi-infinite geometry (i.e., as in Fig. 3), bulk plas-

mons are no longer self-sustained resonances of the system
due to the lack of translation symmetry in the out-of-plane
direction. Instead, surface plasmons—planar charge den-
sity oscillations that decay away from the vacuum-material
interface—are the long-lived excitations of the superlattice.
When corrections due to the finite relaxation time τ are
negligible, the surface modes follow the dispersion relation

FIG. 2. Plotted above is the dispersion of the plasma frequency
ωp in Eq. (2) for a periodic system of two-dimensional (2D) con-
ducting planes. The frequency scale is in units of optical plasma
frequency � in Eq. (3). The in-plane wave vector q and out-of-plane
wave vector Q are given in units of interplane separation a.

[16,17,19]:

ωsp(q) = �

√
qaε[ε cosh qa − sinh qa]

(ε2 − 1) sinh qa
, (4)

whose functional form depends on the dielectric mismatch at
the vacuum-material interface. The ωsp dispersion in Eq. (4) is
plotted in Fig. 4. Curiously, the surface plasmon ceases to ex-
ist for sufficiently long wavelengths and is never a resonance
of the system in the absence of a dielectric background [20].
The cutoff wave vector q∗:

q∗a := ln

(
ε + 1

ε − 1

)
, (5)

marks the lower bound for surface plasmon propagation at a
given ε > 1 [15,17,19].

III. DIELECTRIC ANALYSIS

The lack of long-lived charge density excitations in the
q < q∗ regime of the semi-infinite Fetter model poses an

FIG. 3. The semi-infinite model of periodic conducting planes—
the semi-infinite Fetter model—considered in this paper. The thick
black lines denote two-dimensional (2D) conducting planes, the di-
electric constant within the insulating layers is denoted by ε, and the
layer periodicity is given by a.
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FIG. 4. Dispersion of the surface plasma frequency ωsp in Eq. (4)
in the semi-infinite Fetter model (solid line) for the value ε = 2.
The bulk optical and acoustic branches (dashed lines) are obtained
from the plasma frequency ωp(q, Q) in Eq. (2) at Qa = 0 and π ,
respectively. The vertical bar denotes the cutoff wave vector q∗a,
determined by ε through Eq. (5), below which the surface plasmon
ceases to propagate.

interesting question for a HREELS experiment: What does
HREELS measure at wave vectors below q∗? Independent
of sharp excitations, the spectral weight in the (dissipative)
density response for q < q∗ is nevertheless constrained by
the f-sum rule in a reflection geometry [21–26]. Put simply,
HREELS has to measure something associated with charge
density excitations at long wavelengths—and a fixed amount
of it. It has previously been found that, in addition to the
surface plasmon, there is a finite contribution from the bulk
plasmon [27,28]; however, the bulk correction typically con-
stitutes a weak or visually imperceptible shoulder in the
surface loss function above the (bulk) plasma frequency. To
quantify the redistribution of spectral weight in the q < q∗
regime of the semi-infinite Fetter model, we study the surface
loss function:

g(q, ω) := − e2

2ε0|q|
∫ ∞

0
dzdz′

×χ ′′(q, ω; z, z′) exp(−|q|z) exp(−|q|z′), (6)

since this dimensionless quantity captures the material re-
sponse contribution to the HREELS cross-section [25,29–31].
In Eq. (6), χ ′′ denotes the imaginary part of the density re-
sponse function χ which has been Fourier transformed along
the planar and temporal directions, i.e., we assume planar
translation invariance, and the material region is chosen as the
half-space z > 0.

As our implementation of the semi-infinite Fetter model
(see Fig. 3) is made up of alternating conducting and dielec-
tric layers, we calculate the surface loss function in Eq. (6)
through a dielectric analysis of the system. In the dielec-
tric theory of reflection EELS [30,32–34] (and the vacuum
scattering contributions in Refs. [29,35]), one characterizes
the system through local dielectric response (in the out-of-
plane, or layering, direction) and derives the long-ranged
effect of the Coulomb interaction by enforcing electromag-
netic boundary conditions across each interface. Superlattice

boundary conditions are often written in the full electrody-
namic formalism in terms of the electric and magnetic field
vectors [15,16,36]. Instead, we take the nonretarded limit
q2 � ω2/c2 from the outset and work in a theory of poten-
tials φ, φD for the electric field E = −∇φ and the electric
displacement D = −ε0∇φD, which are themselves related in
the dielectric regions through D = ε0εE . At each interface,
we have the standard boundary conditions that the planar com-
ponents of E are continuous and, across a conducting plane,
that the discontinuity in the Dz is given by the planar charge
density. By use of the continuity equation and recognizing that
the finite (q, ω) components of the planar charge density are
entirely due to the induced response, the discontinuity in Dz

can be related to the planar components of E and the conduc-
tivity σ . Lastly, the infinite system of boundary conditions can
be closed by requiring decaying (bounded) behavior for φ, φD

within the material (e.g., see Refs. [16,19]).
The dielectric analysis provides calculational utility since

the surface loss function in Eq. (6) is encoded in the vacuum
solution for the electric potential when a driving field is ap-
plied [25,33,37,38]. To be concrete, consider a semi-infinite
system whose boundary is defined by a barrier to its charge
density at z = 0, as in our Fetter model of Fig. 3, and is
embedded within a dielectric medium characterized by ε. If
a perturbing potential φext is sourced by a charge density
localized entirely within the vacuum region (implementing
the negligible material penetration assumption used to con-
struct the HREELS cross-section [30–32]), then the material
responds to a field of the form:

φext(q, ω, z > 0) = Cext(q, ω) exp(−|q|z), (7)

by inducing the charge density:

ρind(q, ω, z) = e2Cext(q, ω)
∫

z′>0
dz′

× χ (q, ω; z, z′) exp(−|q|z′), (8)

via the definition of the density response function χ . Outside
of the material (in the vacuum region z < 0), the induced
charge density in Eq. (8) sources an induced potential:

φind(q, ω, z < 0) = e2

2ε0|q|
(

2

1 + ε

)
Cext(q, ω) exp(+|q|z)

×
∫ ∞

0
dz′dz′′χ (q, ω; z′, z′′)

× exp(−|q|z′) exp(−|q|z′′). (9)

In Eq. (9), φind depends on ε through the boundary conditions
across z = 0. Already, the induced potential in vacuum in
Eq. (9) is probing the density response function in the same
way as the surface loss function in Eq. (6).

To extract the surface loss function from the induced poten-
tial in Eq. (9), we require an explicit form of the external field
coefficient Cext in Eq. (7). A convenient external field—φext

of Eq. (7)—to consider is the classical dielectric description
of EELS in a reflection geometry [33,39,40], wherein an
incoming electron is modeled by a trajectory that undergoes
elastic reflection off the material surface (z = 0) at the time
t = 0. The potential φext sourced by this classical electron
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trajectory is

φext(q, ω, z < 0) = A(q, ω) cos

[
(ω − q · v‖)

(
z

vz

)]

−
( ε

1 + ε

)
A(q, ω) exp(+|q|z) (10)

in the vacuum region and

φext(q, ω, z > 0) =
(

1

1 + ε

)
A(q, ω) exp(−|q|z) (11)

in the material region. In Eqs. (10) and (11), dependence
on ε is through the boundary conditions across z = 0, the
coefficient A is defined by

A(q, ω) := − 2evz

ε0
[
q2v2

z + (ω − q · v‖)2
] , (12)

and the reflection trajectory of the classical electron is pa-
rameterized by its velocity components v‖ and vz, which are,
respectively, parallel and perpendicular to the (z = 0) surface.
In light of Eq. (11), we can immediately write down the mate-
rial response (in vacuum) to this particular φext using Eq. (9)
through the replacement Cext → A/(1 + ε) as

φind(q, ω, z < 0) = e2

2ε0|q|
2

(1 + ε)2
A(q, ω) exp(+|q|z)

×
∫ ∞

0
dz′dz′′χ (q, ω; z′, z′′)

× exp(−|q|z′) exp(−|q|z′′). (13)

The vacuum response of the material in Eq. (13) provides a
recipe to calculate the surface loss function within a dielectric
model. Since A in Eq. (12) is real [and as a result, so is φext in
Eq. (10) in vacuum], the imaginary part of the total potential
φtot := φind + φext is solely through the material contribution
in φind. From the definition of the surface loss function in
Eq. (6), only the imaginary contribution of the material re-
sponse is needed, and we can extract this quantity from the
total vacuum potential φ as

g(q, ω) = −
[

(1 + ε)2

2A(q, ω)

]
Im φ(q, ω, z = 0)

= −
[

(1 + ε)2

2A(q, ω)

]
Im φind(q, ω, z = 0), (14)

even when the φind, φext are not known separately. Naturally,
the (total) potential φ associated with the electric field can
be obtained through a dielectric analysis of the semi-infinite
Fetter model, and the calculation of the surface loss function
reduces to using Eq. (14) on the vacuum solution.

IV. RESULTS

Upon applying the aforementioned electromagnetic bound-
ary conditions to our implementation of the semi-infinite
Fetter model, we can extract the surface loss function g
from the vacuum potential φ through the relation given in
Eq. (14). The surface loss function can be separated into two
components:

g(q, ω) = gs(q, ω) + gb(q, ω), (15)
where

gs(q, ω) := (1 + ε)2

4
Im

2q̄ε2s cosh q̄ − (2ω̄2ε2 + q̄εs) sinh q̄

q̄ε2s cosh q̄ − [(ε2 − 1)ω̄2 + q̄εs] sinh q̄
(16)

and

gb(q, ω) := (1 + ε)2

4
Im

ε
√

sinh q̄[(4ω̄4 + q̄2s2) sinh q̄ − 4q̄ω̄2s cosh q̄]

q̄ε2s cosh q̄ − [(ε2 − 1)ω̄2 + q̄εs] sinh q̄
(17)

are loosely associated with surface (gs) and bulk (gb) plas-
mon excitation; similar decompositions have been previously
noted [17,27,28]. In the definitions of gs in Eq. (16) and
gb in Eq. (17), the dimensionless parameters q̄ := qa, ω̄ :=
ω/�, s := (1 + i/ωτ )−1 have been introduced, � is the op-
tical plasma frequency in Eq. (3), and the assumption ε > 1
has been used. Additionally, the complex square root in the
definition of gb in Eq. (17) corresponds to the branch with a
positive imaginary part.

At sufficiently large q > q∗, the essential behavior of the
surface gs in Eq. (16) and bulk gb in Eq. (17) contributions to
the surface loss function g can be gleaned from their identical
pole structure. Notably, both gs and gb have the same denom-
inator that, in the s → 1 (τ → ∞) limit, can be written as

1

q̄ε2 cosh q̄ − [(ε2 − 1)ω̄2 + q̄ε] sinh q̄

=
[

1

(ε2 − 1) sinh q̄

]
1

ω2
sp(q)
�2 − ω̄2

(18)

in terms of the surface plasma frequency ωsp of Eq. (4). If
the relaxation time τ is not short enough to radically alter
the surface plasmon dispersion, both the surface gs and bulk
gb terms peak at ω = ωsp. When the surface plasmon is a
sharp resonance of the semi-infinite Fetter model (i.e., for q
sufficiently larger than q∗), both gs and gb appear similar in
character and simply provide two contributions to the spectral
weight at the surface plasma frequency ωsp. This behavior can
be seen at qa = 4 in Fig. 5(a); the gs, gb curves lie atop one
another, and the cutoff wave vector q∗a = ln 3 ≈ 1.1 [from
Eq. (5) using ε = 2 of Fig. 5] is suitably smaller than qa = 4.

When q > q∗ approaches q∗, the distinction between gs

and gb becomes apparent as the square root in the numerator
of gb in Eq. (17) begins to appreciably contribute. In the s → 1
(τ → ∞) limit, the quartic polynomial in ω̄ within the square
root of Eq. (17):

(4ω̄4 + q̄2) sinh q̄ − 4q̄ω̄2 cosh q̄, (19)
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FIG. 5. Surface loss function g = gs + gb of Eq. (15), at ε = 2 and τ = 10/� across several values of the in-plane wave vector q. At
ε = 2, the cutoff wave vector is given by Eq. (5) as q∗a = ln 3 ≈ 1.1. At each wave vector, the surface plasma frequency ωsp and continuum
of bulk plasma frequencies can be determined by Eqs. (4) and (2), respectively. In (a), qa = 4 (q > q∗), ωsp ≈ 1.63 �, and the plasmon
continuum spans 1.39 � < ω < 1.44 �. In (b), qa = 1.5 (q > q∗), ωsp ≈ 1.10 �, and the plasmon continuum spans 0.69 � < ω < 1.09 �. In
(c), qa = 0.9 (q < q∗), ωsp ≈ 1.04 � is nonpropagating, and the plasmon continuum spans 0.44 � < ω < 1.03 �. In (d), qa = 0.01 (q < q∗)
is the qa → 0 limit, ωsp ≈ 1.15 � is nonpropagating, and the plasmon continuum spans 0 < ω < �.

has the zeros

ω = ωp(q, Q = 0) and ω = ωp(q, Q = π/a). (20)

In Eq. (20), ωp is the bulk plasma frequency given by Eq. (2),
and Q labels the out-of-plane wave vector of the bulk plasmon
in the infinite Fetter model. Even in the s → 1 limit, the square
root in the definition of gb in Eq. (17) contributes a finite
imaginary part when ω is within the bulk plasmon continuum,
or ωp(q, Q = π/a) < ω < ωp(q, Q = 0). The bulk part (gb)
of the surface loss function g then is made up of two con-
tributions: a peak at the surface plasma frequency ω = ωsp

and a continuum of modes across the bulk plasmon dispersion
ωp(q, Q) in Eq. (2) at fixed in-plane q. The contribution of
both bulk and surface modes can be observed in Fig. 5(b)
at qa = 1.5, where the chosen value of ε = 2 still maintains
qa > q∗a = ln 3 ≈ 1.1 from Eq. (5).

For q < q∗, the surface plasmon is no longer a self-
sustained resonance of the semi-infinite Fetter model: this is
how q∗ in Eq. (5) is defined. The lack of surface plasmon
propagation is a precise statement occurring at q∗ if finite-τ

corrections to the surface plasmon dispersion are negligible
[17,19,41]; however, the spectrum itself evolves continuously
across q = q∗ [42]. Nevertheless, there is a sharp, qualitative
change in the surface contribution gs across q = q∗. From the
definition of gs in Eq. (16) at finite τ (i.e., not in the s → 1
limit), gs is proportional to the frequency-independent factor:

gs(q, ω) ∝ [−2ε cosh qa + (1 + ε2) sinh qa], (21)

which vanishes at the cutoff wave vector q = q∗ of Eq. (5).
For q > q∗, the multiplicative factor in Eq. (21) is positive,
whereas it is negative for q < q∗. Naturally, the total sur-
face loss function g = gs + gb cannot become negative, as the
density response in Eq. (6) is related to a sum of transition
amplitudes for charge density excitations via the fluctuation-
dissipation theorem. Instead, the sign change across
q = q∗ represents a kind of inverse begrenzungs effect
[34,43], wherein the surface component gs suppresses spec-
tral weight at the (nonpropagating) surface plasma frequency
arising from the pole in gb at ω = ωsp. The net effect of the
suppression at ω = ωsp is to increase the relative contribution
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FIG. 6. Surface loss function g = gs + gb at ε = 2 and the
qa → 0 limit implemented by qa = 0.01. In (a), g from
Fig. 5(d) (τ = 10/�) is plotted on its own for clarity. In (b), g is
plotted for the same ε = 2 and qa = 0.01 but at the much longer
relaxation time τ = 1000/�. In the qa → 0 limit, the bulk plasmon
continuum is bounded by 0 < ω < � from Eq. (2).

from the bulk plasmon continuum to the (total) surface loss
function g. This behavior can be observed in Fig. 5(c) at
qa = 0.9 < q∗a = ln 3 ≈ 1.1 for the chosen value ε = 2.

In the qa → 0 limit, the nonpropagating surface plasmon
peak at ω = ωsp becomes increasingly suppressed, leaving
only a broad response across the bulk plasmon continuum
0 < ω < �. This behavior can be observed in Fig. 5(d) for
qa = 0.01 and ε = 2: there is no appreciable feature in the
surface loss function g at the peak ω = ωsp visible for either
gs or gb. As the vertical scale due to gb and gs obscures g
in Fig. 5(d), g is plotted by itself in Fig. 6(a). Curiously,
the broad response across the bulk plasmon continuum is
relatively insensitive to the relaxation time τ if the plasmon
dispersion is not noticeably altered from its free electron
value in Eq. (2). In Fig. 6(b), the surface loss function g is
plotted for the same qa → 0 limit (qa = 0.01) and dielectric
constant ε = 2 but at the long relaxation time τ = 1000/�;
notwithstanding, the broad shape across 0 < ω < � remains,
and the only qualitative difference is the loss of curvature near
ω = 0, � when compared with g at τ = 10/� in Fig. 6(a).
The low energy, linear tail and broad peak near but not at
the optical plasma frequency � appear as signatures of the
underlying bulk plasmon continuum rather than resulting from
any particular damping factor. While this statement is quali-
tatively general, it should be noted that the precise shape of
the surface loss function in the qa → 0 limit is sensitive to
the dielectric constant ε. In Fig. 7, the qa → 0 surface loss
function is shown at ε = 1.1, 2, 5, and 10 to demonstrate the
influence of ε on the spectrum.

In addition to the surface loss function having support
across the (bulk) plasmon continuum, the induced poten-
tial at these energies oscillates in step with the associated
plasmon. Through our dielectric analysis, we can provide a
precise, one-to-one correspondence between the plasmon at
out-of-plane wave vector Q—ωp(q, Q) of Eq. (2)—and the
material response at fixed q across the plasmon continuum.
In the dielectric theory, this out-of-plane oscillation occurs
in the decay factor exp[−βa], which relates the potential in
adjacent dielectric layers: φn = exp[−βa]φn+1. To maintain
a bounded solution as n → ∞, we require Re β � 0 ⇐⇒
| exp[−βa]| � 1; decaying modes (surface plasmons) corre-
spond to | exp[−βa]| < 1, whereas wavelike modes (bulk
plasmons) correspond to | exp[−βa]| = 1 [16,19,44]. In the
τ → ∞ limit of negligible conductivity dissipation, the decay

FIG. 7. Variation of the qa → 0 (qa = 0.01) surface loss func-
tion g in Eq. (15) with the dielectric constant ε. The parameters used
are τ = 10/� and: (a) ε = 1.1 (q∗a ≈ 3.0), (b) ε = 2 (q∗a ≈ 1.1),
(c) ε = 5 (q∗a ≈ 0.41), and (d) ε = 10 (q∗a ≈ 0.20). The value ε

determines q∗ through Eq. (5).

factor across the plasmon continuum is determined solely by
the out-of-plane oscillation of the (bulk) plasmon. Specifi-
cally, rearranging the plasmon dispersion ωp in Eq. (2):

cos Qa = 1

2

[
2 cosh qa −

(
�

ω

)2

qa sinh qa

]
, (22)

enables us to label the bulk plasmon at fixed (q, ω) through
its out-of-plane wave vector Q. Using the prescription in
Eq. (22), we find that exp[−βa] = exp[−iQa] at energies sat-
isfying the plasmon dispersion ωp(q, Q) of Eq. (2). In Fig. 8,
we demonstrate this behavior by plotting the decay factor
exp[−βa] across the bulk plasmon continuum at qa = 0.5,
ε = 2, and in the τ → ∞ limit. For clarity, the equivalence
exp[−βa] = exp[−iQa] is maintained at arbitrary in-plane
wave vector qa and dielectric constant ε > 1 across the bulk
plasmon continuum. The surface loss function then is a di-
rect probe of the (bulk) plasmon across ωp(q, Q) at fixed
in-plane q.

FIG. 8. (a) Real and (b) imaginary parts of the decay factor
exp(−βa) to demonstrate the equality between the out-of-plane os-
cillation in the electric potential and the out-of-plane wave vector Q
in Eq. (22) across the plasmon continuum. The parameters used are
qa = 0.5, ε = 2, and the τ → ∞ limit. In both (a) and (b), the two
curves lie atop one another.
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The surface loss function g in Eq. (15) demonstrates the
transition from surface plasmon propagation at large in-plane
wave vectors to a long-wavelength regime dominated by the
bulk plasmon continuum (see Fig. 5). Instead of a sharp peak
at a single frequency, the qa → 0 surface loss function is
characterized by a linear tail at low energies and a broad
peak across the (bulk) plasmon continuum. This shape is only
weakly influenced by the intrinsic damping parameter (see
Fig. 6); however, the spectrum is sensitive to the dielectric
constant ε (see Fig. 7). Though the bulbous peak might ini-
tially suggest a damped, residual surface plasmon at long
wavelengths, the oscillatory behavior of the electric potential
across the plasmon continuum (e.g., the exact correspondence
exp[−βa] = exp[−iQa] demonstrated in Fig. 8) suggests that
the broad spectrum is intrinsic to the plasmon itself. From
this perspective, we find that the long-wavelength surface loss
function is purely a bulk probe of the semi-infinite Fetter
model.

V. DISCUSSION

Authors of previous studies [17,27,28,33,40,42,45–48]
have demonstrated and emphasized that bulk charge den-
sity excitations appear in the surface loss function (i.e., the
HREELS cross-section); however, the contribution of bulk
excitations typically presents as either a weak, possibly im-
perceptible, shoulder near sharp surface excitations or a broad
background. We found similar behavior in the semi-infinite
Fetter model for sufficiently large (in-plane) wave vectors.
At qa = 1.5 > q∗a in Fig. 5(b), a shoulder forms across the
bulk plasmon continuum before the strong peak at the surface
plasma frequency. Just below the cutoff wave vector (q < q∗)
in Fig. 5(c), however, the peak at the (nonpropagating) surface
plasma frequency has become suppressed, and the surface
loss function takes on a broad shape across the bulk plasmon
continuum. In the long-wavelength limit (qa → 0), the peak
at the (nonpropagating) surface plasma frequency is visible
in both gs and gb in Fig. 5(d), yet no such feature appears in
the surface loss function g = gs + gb of Fig. 6(a). In essence,
the long-wavelength surface loss function of the semi-infinite
Fetter model probes only the bulk plasmon continuum of the
infinite system.

In the absence of a propagating surface plasmon, the trans-
fer of spectral weight to the bulk plasmon continuum is
required by the f-sum rule. While we have performed a di-
electric analysis, the electromagnetic response encoded within
the vacuum potential in Eq. (14) genuinely behaves as the
many-body response function defined in Eq. (6). The f-sum
rule:∫ ∞

0
dω ω g(q, ω) = πe2|q|

4ε0m

∫ ∞

0
dz n(z) exp(−2|q|z), (23)

relates the spectral weight within the surface loss function g
in Eq. (6) of our layered model to the electron density n(z).
Notably, the f-sum rule in Eq. (23) is reduced when compared
with its standard form [21,24,25,28] due to the lack of out-
of-plane dispersion in the semi-infinite Fetter model (e.g., see
the derivation in Ref. [49]). As a system of regularly spaced
conducting planes, the electron density in our analysis is
simply n(z) = n

∑
j δ(z − ja), where n is the planar electron

FIG. 9. Redistribution of spectral weight from the surface plasma
frequency to the (bulk) plasmon continuum in the scaled surface loss
function f in Eq. (27). The parameters used are ε = 2, τ = 10/�,
and the cutoff wave vector [determined through Eq. (5) by ε = 2]
q∗a = ln 3 ≈ 1.1. By construction, all curves have the same (unit)
integrated weight. The frequency axis has been scaled by �0 = √

ε �

to demonstrate the normalization; in these units, the plasmon contin-
uum spans 0 < ω < �0/

√
ε in the long-wavelength limit.

density of a single layer, and the right-hand side of the f-sum
rule in Eq. (23) can be evaluated as a geometric series to
provide∫ ∞

0
dω ω g(q, ω) =

(
π�2

0

8

)
2|q|a

1 − exp(−2|q|a)
, (24)

where

�2
0 := ne2

ε0ma
= ε �2 (25)

is the unscreened optical plasma frequency.
The crucial consequence of the f-sum rule in Eq. (24) is that

the qa → 0 limit of the surface loss function remains finite:

lim
qa→0

∫ ∞

0
dω ω g(q, ω) =

(
π�2

0

8

)
. (26)

The sharp q → 0 surface plasmon in an isotropic metal ex-
hausts the spectral weight required by the f-sum rule [21,28];
however, the semi-infinite Fetter model lacks this mode in
the long-wavelength limit. Nevertheless, the f-sum rule is
indifferent to whether sharp excitations are present: the con-
tribution from the bulk plasmon continuum must compensate
for the lost spectral weight at the surface plasmon peak. To
demonstrate how this spectral weight is redistributed across
the cutoff wave vector q∗, we can scale the surface loss func-
tion according to the f-sum rule in Eq. (24) as

f (q, ω) :=
[(

8

π�2
0

)
1 − exp(−2|q|a)

2|q|a
]
ω g(q, ω), (27)

so that f has unit weight
∫ ∞

0 dω f (q, ω) = 1. One should note
that the rescaling in Eq. (27) slightly distorts the spectrum
of f (compared with the surface loss function g) due to the
multiplicative factor of ω. In Fig. 9, the dispersion of f at
ε = 2 and τ = 10/� is shown across several values of qa
to demonstrate the rearrangement of spectral weight as the
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surface plasmon peak is suppressed below q∗a = ln 3 ≈ 1.1
[using Eq. (5) for ε = 2].

Before comparing our results with existing data, we
should acknowledge that the model presented in Sec. II—
the semi-infinite Fetter model (see Fig. 3)—contains several
simplifying approximations. When describing the conducting
planes, the planar conductivity σ (ω) in Eq. (1) was char-
acterized by a constant relaxation time τ up to or in the
q > q∗ regime beyond the plasma frequency, and we ne-
glected dispersion with the planar wave vector q. The lack
of dispersion means that we should restrict our analysis to
the long-wavelength limit ql � 1, where l is the planar lattice
spacing. If the interlayer distance between conducting planes
a is sufficiently larger than the planar lattice spacing (i.e.,
l � a), then the surface loss function g of Eq. (15) can
disperse with qa while maintaining ql � 1. Additionally,
we chose to model the insulating layers by frequency-
independent dielectric constants. If the bandgap of the
dielectric layers is sufficiently large compared with the bulk or
surface plasmon energies under consideration, we are primar-
ily neglecting the low-energy phonon contributions of these
insulating regions.

The approximations used in our simplified Fetter model
of Sec. II are consistent with a long-wavelength analysis
of the layered structure in the high-TC cuprate supercon-
ductors. To be specific, we will consider the structure of
Bi-2212 (also modeled within a system of conducting layers
in Ref. [45]), which is characterized by the interbilayer dis-
tance between copper oxide planes a ≈ 15.4 Å and the planar
(nearest-neighbor Cu-Cu) lattice spacing l ≈ 3.8 Å [50]. The
small value l/a ≈ 0.25 permits the surface loss function g of
Eq. (15) to disperse with qa while remaining in the (planar)
long-wavelength limit of ql � 1. While the low-frequency
scattering rate 1/τ (ω) is famously linear in cuprates near
optimal doping, the linearity of 1/τ (ω) in Bi-2212 begins to
deviate near excitation energies of h̄ω ∼ 0.37 eV [51]. The
relaxation time τ (ω) eventually saturates to a constant near
h̄ω ∼ 0.62 eV [51], which is well below the optical plasmon
energy of doped Bi-2212 (h̄� ∼ 1 eV from the optically
determined loss function [12,52,53]). More subtly, Bi-2212
is a bilayer cuprate with two closely spaced copper oxide
planes repeated every a ≈ 15.4 Å (i.e., we neglect the planar
lattice shift of the full c ≈ 30.8 Å unit cell [50]). This bilayer
structure in a layered electron gas results in an additional
narrow band of acoustic modes [11,16,54] below the (bulk)
plasmon continuum; however, the dispersion shown in Fig. 2
remains intact and qualitatively unaltered. As a result, we will
neglect these lower-energy acoustic modes and focus on the
broader plasmon continuum that occurs in the single-layer
Fetter model of Fig. 3.

HREELS measurements of Bi-2212 at long wavelengths
[12,55,56] corroborate the broad spectrum and (low energy)
linear tail of our dielectric model, which can be seen in Figs. 6
and 7 at various relaxation times and dielectric constants,
respectively. Due to the large interbilayer spacing of Bi-2212,
the long-wavelength regime of the surface loss function is
set by the small wave vector 1/a ≈ 0.06 Å−1; using Eq. (5),
we can approximate the cutoff wave vector as q∗ ≈ 0.03 Å−1

from the value ε ≈ 4.5 [12,51,53]. In this regime, HREELS
studies [12,55,56] observe a broad peak, i.e., a peak with

full width at half maximum wider than the plasmon peak in
Bi-2212 inferred via optical means [12,53,57,58], centered
near the optical plasma frequency which, in our model, is
associated with the broad spectrum of bulk plasmon excitation
(i.e., the dispersion in Fig. 2 at small qa). Unfortunately,
significant damping—either the result of the (insulating) cap
layer [45] or some other cuprate behavior—at larger wave
vectors (detailed in Refs. [55,56]) prevents tracking the dis-
persion of this broad spectrum beyond the long-wavelength
limit; consequently, the regime of surface plasmon propaga-
tion for q � q∗ is not observed. This discrepancy suggests
that the planar conductivity—or as discussed in Refs. [55,56],
the polarizability—disperses in a nontrivial manner be-
yond the long-wavelength limit. As an additional compli-
cation, the low-energy incident electrons used in HREELS
result in a skewed spectrum for long-wavelength scattering
near the wave vector resolution [12,59,60]. The peak struc-
ture of broad, electonvolt-scale losses can be entirely washed
out at these long wavelengths [12,56], rendering the surface
loss function difficult to extract in Bi-2212. Nevertheless,
correcting for this distorted spectrum appears to recover a
long-wavelength surface loss function that scales linearly at
low energies [12] rather than the quadratic tail observed in
optical studies of the (bulk) loss function [52,53]. In our
model, this linear tail is associated with the broad plasmon
continuum at long wavelengths (see Fig. 2). Further, both a
broad peak near the optical plasma frequency and (low en-
ergy) linear tail were observed in the HREELS spectrum of the
related single-layer compound Bi-2201 [12], which suggests
that these features are related to the cuprate layering structure.

VI. SUMMARY

EELS in a reflection geometry (HREELS) is often under-
stood as a surface probe whose characteristic long-wavelength
excitation is the surface plasmon. In the semi-infinite Fetter
model (see Fig. 3), however, the extreme limit of conduction
anisotropy restricts surface plasmon propagation to finite in-
plane wave vectors q above a cutoff value q∗. Below q∗, the
system lacks a surface plasmon and, therefore, has only the
(bulk) plasmon as its collective, long-wavelength excitation.
As the plane of reflection explicitly breaks translation sym-
metry, the plasmon contributes a continuum of excitations due
to the nonconserved out-of-plane wave vector. To understand
how this continuum might be observed in an HREELS ex-
periment, we have employed a dielectric analysis to calculate
the surface loss function—the material response probed by
HREELS—of the semi-infinite Fetter model.

Our results can largely be summarized by Fig. 5. At suffi-
ciently large q > q∗ in Figs. 5(a) and 5(b), the surface loss
function g of Eq. (15) is characterized by a sharp surface
plasmon peak with only a weak [or in Fig. 5(a), impercep-
tible] shoulder across the plasmon continuum. Just below
q∗ in Fig. 5(c), the surface plasmon peak becomes actively
suppressed, and the plasmon continuum receives significant
spectral weight. In Fig. 5(d), the long-wavelength limit has
successfully suppressed the nonpropagating surface plasmon
peak, and all that remains in the surface loss function is a
broad response across the plasmon continuum [see Fig. 6(a)
or 7(b)]. While the shape of the surface loss function requires
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a calculation, our results can be understood within the context
of the f-sum rule in Eq. (23) governing the semi-infinite Fet-
ter model in Eq. (24). Whether there exist sharp excitations
in the long-wavelength limit, the surface loss function must
contain significant spectral weight in Eq. (26). Consequently,
the long-wavelength surface loss function becomes a probe
of the bulk plasmon continuum in the semi-infinite Fetter
model.
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