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A rank-2 toric code (R2TC) Hamiltonian in two dimensions can be constructed as a Higgsed descendant of
rank-2 U(1) lattice gauge theory. As noted by the authors recently [Y.-T. Oh, J. Kim, E.-G. Moon, and J. H.
Han, Phys. Rev. B 105, 045128 (2022)] the quasiparticles in that model show unusual braiding statistics that
depends on the initial locations of the particles which participate in the braiding. We show that this kind of
statistical phase captures the total dipole moment of quasiparticles encompassed in the braiding, in contrast to
the conventional anyonic braiding seeing the total charge. An Aharonov-Bohm interpretation of such dipolar
braiding statistics is made in terms of emergent, rank-1 vector potentials that are built out of the underlying
rank-2 gauge fields. Pertinent field theories of the quasiparticle dynamics in the R2TC are developed, and the
accompanying conservation laws derived. A dipolar BF theory of the rank-2 gauge fields is constructed and
shown to correctly capture the dipolar braiding statistics, in contrast to the conventional BF theory capturing the
monopolar braiding statistics of anyons in the rank-1 toric code.
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I. INTRODUCTION

The Chern-Simons (CS) field theory [1] made its entry
into condensed matter physics as an effective field theory
of the fractional quantum Hall system [2,3] and encodes the
mutual statistics of anyonic quasiparticles [4,5]. A variant of
the CS theory known as the BF theory captures the mutual
statistics among different species of anyons, such as those of
electric and magnetic quasiparticles in toric code (TC) or of
vortex and quasiparticle in superfluids [6]. In both CS and
BF theories, the phase factor picked up in the process of
braiding one anyon around other anyons is proportional to
the number of anyon charges enclosed and can be understood
within the flux attachment picture in which one anyon sees the
effective magnetic flux tied to other anyons and picks up the
corresponding Aharonov-Bohm (AB) phase.

Recently, subdimensional topological order embodied in
various exactly solvable spin models has emerged at the fron-
tier of quantum matter research [7–14]. These subdimensional
topological orders are characterized by excitations such as
fractons or lineons with constrained mobilities. Various exotic
field theories attempting to capture aspects of fracton physics
are under vigorous pursuit [15–23]. It was also realized that
applying the Higgsing procedure to a lattice gauge theory
(LGT) yields an exactly solvable spin model while lowering
U(1) gauge symmetry to ZN [24–27]. A well-known X-cube
model of fractons [8] is obtained by Higgsing the rank-2
LGT composed of gauge fields with only off-diagonal indices
[15]. On the other hand, Higgsing the symmetric rank-2 LGT

*hanjemme@gmail.com

with both diagonal and off-diagonal gauge fields on the two-
dimensional square lattice yields the rank-2 toric code (R2TC)
[24–26]. In contrast to the parent gauge theory hosting immo-
bile fractons or lineons, the excitations in R2TC are mobile
and can hop by N lattice spacings in the previously forbidden
directions due to the condensation of charge-N excitations
in the ZN gauge theory. An interesting consequence of it is
the dependence of the ground-state degeneracy on the linear
system size (Lx, Ly) mod N , studied in detail in recent works
[26,28–30].

In this paper, we focus on the other exotic property of
R2TC, i.e., mutual braiding statistics among the quasiparticles
that seems to break the conventional wisdom of Abelian anyon
braiding as well as the flux attachment picture. In R2TC, the
braiding phase was found to depend on the initial positions
of the quasiparticles participating in the braiding [26]. Recall
that the conventional anyon braiding counts the total charge
of anyons inside the loop, and the statistical phase is encoded
in the BF field theory. We call this framework the monopolar
braiding statistics. Here we develop a field-theoretic formal-
ism consistent with what we call the dipolar braiding statistics
and develop the associated dipolar BF theory of braiding. This
field theory is constructed from the rank-2 gauge fields, as the
conventional BF theory is made out of rank-1 gauge fields.
The flux attachment picture is similarly modified to that of
dipole attachment.

We begin by giving a quick review of the R2TC model
in Sec. II. In Sec. III, we define this anomalous position-
dependent statistics as the dipolar braiding statistics. Con-
struction of effective field theory is done in two steps. First,
in Sec. IV, we construct the effective Lagrangian for matter
fields minimally coupled to the rank-2 gauge fields. Then, in
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Sec. V we construct the full dipolar BF theory and derive
dipolar braiding statistics from it. Summary and discussion
follow in Sec. VI.

II. REVIEW OF R2TC

The R2TC model is obtained by Higgsing the rank-2 U(1)
LGT in two dimensions employing a pair of canonically con-
jugate fields Aab

i and Eab
i obeying [A, E ] = i for the same

site and indices. There are three independent components
(Axx

i , Axy
i , Ayy

i ) per site i (similarly for E ). Several mutually
commuting operators called generators can be constructed in
the rank-2 LGT as

Gx
i = Exx

i+x̂ − Exx
i + Exy

i+ŷ − Exy
i ≡ ρx

i

∼ ∂xExx
i + ∂yExy

i ,

Gy
i = Exy

i+x̂ − Exy
i + Eyy

i+ŷ − Eyy
i ≡ ρ

y
i

∼ ∂xExy
i + ∂yEyy

i ,

Bi = Axx
i+ŷ + Axx

i−ŷ − 2Axx
i + Ayy

i+x̂ + Ayy
i−x̂ − 2Ayy

i

− Axy
i + Axy

i−x̂ + Axy
i−ŷ − Axy

i−x̂−ŷ ≡ 2π

N
ρm

i

∼ ∂2
y Axx

i + ∂2
x Ayy

i − ∂x∂yAxy
i . (2.1)

The theory contains a vector of electric charges (ρx
i , ρ

y
i )

and a scalar magnetic charge ρm
i , tied to the gauge fields

through the Gauss law constraints Ga
i = ρa

i (a = x, y) and
Bi ≡ (2π/N )ρm

i for some integer N � 2. They generate the
gauge transformations Aab

i → U †
A Aab

i UA and Eab
i → U †

E Eab
i UE

which result in

Aaa
i → Aaa

i + f a
i − f a

i−â (a = x, y),

Axy
i → Axy

i + f y
i − f y

i−x̂ + f x
i − f x

i−ŷ,

Exx
i → Exx

i + gi+ŷ + gi−ŷ − 2gi,

Eyy
i → Eyy

i + gi+x̂ + gi−x̂ − 2gi,

Exy
i → Exy

i + gi+x̂ + gi+ŷ − gi − gi+x̂+ŷ. (2.2)

The two unitary operators are

UA = ei
∑

i ( f x
i Gx

i + f y
i Gy

i ), UE = ei
∑

i giBi . (2.3)

Generalized Pauli operators are obtained from Higgsing
the gauge fields as [24,25]

X0,i = eiAxy
i , Z0,i = e2π iExy

i /N ,

X1,i = eiAxx
i , Z1,i = e2π iExx

i /N ,

X2,i = eiAyy
i , Z2,i = e2π iEyy

i /N . (2.4)

They operate on the N-dimensional local Hilbert space de-
fined by

X |g〉 = |g + 1〉, Z|g〉 = ωg|g〉, ZX = ωXZ, (2.5)

where |g〉 = |0〉, |1〉, . . . , |N − 1〉, and ω = e2π i/N . Apply-
ing the Higgsing formulas in Eq. (2.4) to the three mutually
commuting generators in Eq. (2.1) results in three types of

commuting spin operators:

ax
i ≡ e(2π i/N )Gx

i = Z−1
1,i Z1,i+x̂Z0,iZ

−1
0,i−ŷ,

ay
i ≡ e(2π i/N )Gy

i = Z−1
2,i Z2,i+x̂Z0,iZ

−1
0,i−x̂,

bi ≡ eiBi = X −1
0,i X0,i−x̂X0,i−ŷX −1

0,i−x̂−ŷ

× X2,i−x̂X −2
2,i X2,i+x̂X1,i−ŷX −2

1,i X1,i+ŷ. (2.6)

The R2TC Hamiltonian is constructed as

Ax
i = 1

N

N−1∑
j=0

(
ax

i

) j
, Ay

i = 1

N

N−1∑
j=0

(
ay

i

) j
,

Bi = 1

N

N−1∑
j=0

(bi )
j, H = −

∑
i

(
Ax

i + Ay
i + Bi

)
. (2.7)

This model has the ground states characterized by Ax
i |GS〉 =

Ay
i |GS〉 = Bi|GS〉 = |GS〉. An excited state is obtained when

one of the stabilizers ax
i , ay

i , or bi takes on the eigenvalue ω j

with nonzero integer j. We use ex, ey, and m to denote the two
electric and one magnetic charges associated with ax

i , ay
i , and

bi excitations, respectively. The ex (ey) monopole can move
freely in the x (y) direction, but can hop only by N lattice
spacings in the y (x) direction; the magnetic monopole can
only hop by N spacings in both directions [26].

III. DIPOLAR BRAIDING STATISTICS

It was shown [26] that nontrivial braiding statistics arises
between (ex, m) and (ey, m) monopoles1 with phase factors
given by

eiφex ,m = ω(yx0−ym0 ), eiφey ,m = ω(xm0−xy0 ). (3.1)

The ex, ey, and m monopoles are located at

rx0 = (xx0, yx0), ry0 = (xy0, yy0), rm = (xm0, ym0) (3.2)

at the start of the braiding, respectively.
The following integral representations of the phase factors

can be given for the braiding of ex and ey particles around m:

φex,m = 2π

N

∫
d2r (yx0 − y)ρm(r),

φey,m = 2π

N

∫
d2r (x − xy0)ρm(r). (3.3)

The magnetic monopole density inside the contour is ρm(r).
The phase factors in Eq. (3.1) are recovered for a single m
monopole ρm(r) = δ2(r − rm0). The initial position of the ex

or ey particle that does the braiding enters explicitly in the
above integrand. The familiar anyonic statistics is obtained
instead from integrating the monopole density; in contrast,
Eq. (3.3) can be thought to integrate the dipole density of the
enclosed particles.

The phases φm,ex and φm,ey for braiding the m monopole
around ex and ey monopole, respectively, have similar integral

1We often refer to ex, ey, m quasiparticle excitations as
“monopoles” in order to distinguish them from dipole excitations
that are composites of the monopoles.
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expressions:

φm,ex = 2π

N

∫
d2r (y − ym0)ρx(r),

φm,ey = 2π

N

∫
d2r (xm0 − x)ρy(r). (3.4)

The densities of ex and ey are ρx(r) and ρy(r), respectively.
A lattice-model interpretation of the integral formulas in

Eqs. (3.3) and (3.4) can be given. Discretizing the phase
integrals in Eqs. (3.3) and (3.4) and invoking the Higgsing
formula in Eq. (2.6),

eiφex ,m → Wex,m = exp

(
i
2π

N

∑
i∈A

(yx0 − yi )ρ
m
i

)

=
∏
i∈A

(bi )
yx0−yi ,

eiφey ,m → Wey,m = exp

(
i
2π

N

∑
i∈A

(xi − xy0)ρm
i

)

=
∏
i∈A

(bi )
xi−xy0 ,

eiφm,ex → Wm,ex =
∏
i∈A

(
ax

i

)yi−ym0
,

eiφm,ey → Wm,ey =
∏
i∈A

(
ay

i

)xm0−xi
. (3.5)

Each operator W is given as a product of various stabilizers
over the area

∏
i∈A inside the braiding path. When acting on

the ground state this yields 1, but not so if some monopoles
reside in the area. Inserting explicit expressions for bi from
Eq. (2.6) into Wex,m and Wey,m shows that all the operators
in the interior of A cancel out, leaving only the product of
X operators along the boundary, hence qualifying them as
Wegner-Wilson operators of sorts.

In the case of a rectangular boundary A = [x0, x1] ×
[y0, y1] one finds

Wex,m = Tx(x0 → x1|y0)Tx(y0 → y1|x1)[Tx(x0 → x1|y1)]−1[Tx(y0 → y1|x0)]−1,

Wey,m = Ty(x0 → x1|y0)Ty(y0 → y1|x1)[Ty(x0 → x1|y1)]−1[Ty(y0 → y1|x0)]−1, (3.6)

where the ex, ey translation operators are defined as

Tx(x1 → x2|y) =
x2−1∏
x=x1

(X1,i )
−1

(
X1,iX

−1
1,i−ŷ

)y−yx0 = exp

(
i

x2−1∑
x=x1

{−Axx(x, y) + (y − yx0)[Axx(x, y) − Axx(x, y − 1)]}
)

,

Tx(y1 → y2|x) =
y2−1∏
y=y1

(
X0,iX

−1
0,i−ŷX −1

2,i X2,i−x̂
)y−yx0 = exp

(
i

y2−1∑
y=y1

(y − yx0)[Axy(x, y) − Axy(x, y − 1) − Ayy(x, y) + Ayy(x − 1, y)]

)
,

Ty(x1 → x2|y) =
x2−1∏
x=x1

(
X0,iX

−1
0,i−x̂X −1

1,i X1,i−ŷ
)x−xy0 = exp

(
i

x2−1∑
x=x1

(x − xy0)[Axy(x, y) − Axy(x − 1, y) − Axx(x, y) + Axx(x, y − 1)]

)
,

Ty(y1 → y2|x) =
y2−1∏
y=y1

(X2,i )
−1(X2,iX

−1
2,i−x̂

)x−xy0 = exp

(
i

y2−1∑
y=y1

{−Ayy(x, y) + (x − xy0)[Ayy(x, y) − Ayy(x − 1, y)]}
)

. (3.7)

The Tx(x1 →x2|y) translates the ex quasiparticle from (x1, y)
to (x2, y). On the other hand, Tx(y1 →y2|x) translates ex

from (x, y1) to (x, y2) only if y1 − yx0 mod N = 0 and y2 −
yx0 mod N = 0 [26]. Recall that the ex monopole is able to
hop only by N lattice sites in the y direction. Nevertheless,
one can define the operator Tx(y1 →y2|x) for any pair of co-
ordinates y1, y2, under a new interpretation: for general y1, y2,
the translation of ex embodies the simultaneous creation and
motion of some auxiliary dipoles that are necessary to main-
tain the overall dipole moment conservation mod N . Similar
statements apply to Ty(x1 → x2|y). Details can be found in
Appendix A.

On taking continuum limits of Eq. (3.7), the braiding
phases become line integrals

φex,m =
∮

dr · ax, φey,m =
∮

dr · ay (3.8)

with a pair of emergent vector potentials defined by

ax = (−Axx + (y − yx0)∂yAxx, (y − yx0)
(
∂yAxy − ∂xAyy

))
,

ay = (
(x − xy0)(∂xAxy − ∂yAxx ),−Ayy + (x − xy0)∂xAyy

)
.

(3.9)

The meaning of ax and ay is clarified on taking their curl,

∇ × ax = 2π

N
(yx0 − y)ρm,

∇ × ay = 2π

N
(x − xy0)ρm, (3.10)

where we used the constraint

∂2
x Ayy + ∂2

y Axx − ∂x∂yAxy = (2π/N )ρm.

In an ordinary flux attachment scenario, the curl of the emer-
gent vector potential equals the charge density. Here it gives
either the x or the y component of the dipole density. The
initial positions of the ex and ey monopoles appear explicitly
in the formulas as a result.
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Next, we turn to the braiding operators Wm,ex and Wm,ey .
It turns out Wex,m and Wey,m individually do not have the nice

cancellation of bulk terms but their product Wm,e ≡ Wm,exWm,ey

does, and become a product of boundary operators

Wm,e = Tm(x0 → x1|y0)Tm(y0 → y1|x1)[Tm(x0 → x1|y1)]−1[Tm(y0 → y1|x0)]−1, (3.11)

with

Tm(x1 → x2|y) =
x2∏

x=x1+1

(Z2,i )
x−xm0 (Z0,i−x̂ )ym0−y =exp

[
i
2π

N

x2∑
x=x1+1

(
(x−xm0)Eyy(x, y)−(y−ym0)Exy(x−1, y)

)]
,

Tm(y1 → y2|x) =
y2∏

y=y1+1

(Z1,i )
y−ym0(Z0,i−ŷ )xm0−x =exp

[
i
2π

N

y2∑
y=y1+1

(
(y−ym0)Exx(x, y)−(x−xm0)Exy(x, y−1)

)]
. (3.12)

The overall braiding phase φm,e = φm,ex + φm,ey for m around
both ex and ey, can be written φm,e = ∮

dr · am, where

am = 2π

N
((x − xm0)Eyy − (y − ym0)Exy,

× (y − ym0)Exx − (x − xm0)Exy),

∇ × am = 2π

N
[(y − ym0)ρx − (x − xm0)ρy]. (3.13)

The constraints

∂xExx + ∂yExy = ρx, ∂xExy + ∂yEyy = ρy

were used in the last line.
To sum up, a dipolar AB phase formulation of the dipolar

braiding statistics is possible in terms of some emergent vector
potential ax, ay, and am, which are functions of the underlying
rank-2 fields Aab, Eab as well as the initial locations of the
quasiparticles. For completeness we mention that under the
gauge transformation

Axx → Axx + ∂x fx, Exx → Exx + ∂2
y g,

Axy → Axy + ∂x fy+∂y fx, Exy → Exy − ∂x∂yg,

Ayy → Ayy + ∂y fy, Eyy → Eyy + ∂2
x g

of the rank-2 fields, the emergent vector potentials transform
as

ax → ax + ∇Fx, ay → ay + ∇Fy, am → am + ∇G,

where

(Fx, Fy) = (− fx + (y − yx0)∂y fx, fy − (x − xy0)∂x fy),

G = (x − xm0)∂xg + (y − ym0)∂yg − g.

IV. MATTER FIELDS WITH MINIMAL COUPLING

There are three matter fields in the R2TC, represented
by field operators (ψx, ψy, ψm), which are related to the
monopole density by ρa = ψ†

a ψa (a = x, y, m). Appropriate
field theory for these can be constructed by exploiting the
gauge transformation properties in Eqs. (2.2) and (2.3) and
identifying proper covariant derivatives of the matter fields.

Taking the continuum limit of the unitary operators
in Eq. (2.3) and invoking the constraints Ga

i = ρa
i and

Bi = (2π/N )ρm
i from Eq. (2.1), one can show that the matter

fields ψa (a = x, y, m) and the gauge fields (Aab, Eab) trans-
form as

(ψx, ψy, ψm) → (ei fx ψx, ei fyψy, ei 2π
N gψm),

Aab → Aab+(∂x fx, ∂x fy+∂y fx, ∂y fy),

Eab → Eab+(
∂2

y g,−∂x∂yg, ∂2
x g

)
. (4.1)

Identifying the covariant derivatives and constructing a gauge-
invariant Lagrangian is a straightforward exercise [27]. For ex

(ψx) and ey (ψy) particles they are

Dxψx ≡ (∂x − iAxx )ψx,

Dyψy ≡ (∂y − iAyy)ψy,

Dxyψxy ≡ ψx∂xψy + ψy∂yψx − iAxyψxψy, (4.2)

and

Le =
∑

a=x,y

ψ†
a ∂tψa

− 1

2
(αe|Dxψx|2 + αe|Dyψy|2 + βe|Dxyψxy|2). (4.3)

Similarly for the m particles,

Dxxψm ≡ ψm∂2
x ψm − (∂xψm)2 − i

2π

N
Eyyψ2

m,

Dyyψm ≡ ψm∂2
y ψm − (∂yψm)2 − i

2π

N
Exxψ2

m,

Dxyψm ≡ ψm∂x∂yψm − (∂xψm)(∂yψm) + i
2π

N
Exyψ2

m, (4.4)

and

Lm = iψ†
m∂tψm

− 1
4 (αm|Dxxψm|2 + αm|Dyyψm|2 + βm|Dxyψm|2) (4.5)

define the appropriate matter field theory. Various constants
(α’s and β’s) appear, which do not change the generic features
of the field theory.
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Continuity equations for the quasiparticles follow as

∂tρ
x + ∂xJxx

e + ∂yJxy
e = 0,

∂tρ
y + ∂xJxy

e + ∂yJyy
e = 0,

∂tρ
m + ∂2

x Jxx
m + ∂x∂yJxy

m + ∂2
y Jyy

m = 0, (4.6)

where

Jaa
e ≡ − i

2
αe[ψ†

a ∂aψa − (∂aψ
†
a )ψa] (a = x, y),

Jxy
e ≡ − i

2
βeψ

†
x ψ†

y (ψx∂xψy + ψy∂yψx ) + H.c. = Jyx
e ,

Jaa
m = − i

4
αm

(
ψ†

m∂2
a ψ†

m − ∂aψ
†
m∂aψ

†
m

)
ψ2

m + H.c. (a = x, y),

Jxy
m = − i

4
βm(ψ†

m∂x∂yψ
†
m − ∂xψ

†
m∂yψ

†
m)ψ2

m + H.c. = Jyx
m .

(4.7)

Both the covariant derivatives and the conservation laws de-
part significantly from those of particles in the rank-1 U(1)
gauge fields.

Several conserved quantities can be identified from the
continuity equations. Writing the three monopole charges
Qa = ∫

d2r ρa (a = x, y, m), and three dipole charges

μm =
∫

d2r rρm,

μe =
∫

d2r(xρy − yρx ), (4.8)

one can show their time derivatives vanish identically under
the appropriate boundary conditions at infinity. The existence

of six conserved quantities in the theory is closely tied to the
existence of (up to) six independent holonomies and (up to)
N6 ground-state degeneracies in the R2TC.2

Finally, the covariant derivatives and the accompanying
Lagrangians we constructed can be cast in the lattice model.
Writing (ψx, ψy, ψm → Xi,Yi, Mi), we obtain

|Dxψx|2 → X †
i Xi−x̂eiAxx

i + H.c.,

|Dyψy|2 → Y †
i Yi−ŷeiAyy

i + H.c.,

|Dxyψxy|2 → Y †
i Yi−x̂X †

i Xi−ŷeiAxy
i + H.c.,

|Dxxψm|2 → M2
i M†

i+x̂M†
i−x̂eiExx

i + H.c.,

|Dyyψm|2 → M2
i M†

i+ŷM†
i−ŷeiEyy

i + H.c.,

|Dxyψm|2 → MiMi+x̂+ŷM†
i+x̂M†

i+ŷeiExy
i + H.c. (4.9)

Similar expressions have been suggested in the tight-binding
model of higher-order topological insulator [23].

V. DIPOLAR BF THEORY

Comparing the temporal derivatives of the constraints in
Eq. (2.1) with the continuity equation in Eq. (4.6) allows the
identification of several identities:

Jab
e = −∂t E

ab,
2π

N
Jxx

m = −∂t A
yy,

2π

N
Jxy

m = ∂t A
xy,

2π

N
Jyy

m = −∂t A
xx. (5.1)

The Lagrangian that encodes all these constraints as well as
the commutation [Aab(r), Eab(r′)] = iδ2(r − r′) is

LdBF = A0x(∂xExx +∂yExy − ρx ) + A0y(∂xExy+∂yEyy − ρy) + E0

(
∂2

x Ayy+∂2
y Axx −∂x∂yAxy − 2π

N
ρm

)

+ Exx

(
∂t A

xx + 2π

N
Jyy

m

)
+ Exy

(
∂t A

xy− 2π

N
Jxy

m

)
+ Eyy

(
∂t A

yy+ 2π

N
Jxx

m

)
− AxxJxx

e −AxyJxy
e −AyyJyy

e . (5.2)

This action is the dipolar BF theory (dBF) in contrast to the BF
theory of the rank-1 TC. The Lagrange multipliers transform
as

A0a → A0a + ∂t f a, E0 → E0 + ∂t g. (5.3)

The conservation laws of Eq. (4.6) are recovered from the
gauge invariance of the action.

The dipolar AB phase factors follow straightforwardly
from the dBF action, but before doing so one must first
address the important conceptual question: How can one adi-
abatically move a particle when its motion is constrained?
For instance, the m particle cannot move at all in the limit
N → ∞ due to the dipole conservation, and ex (ey) can
only move smoothly in the x (y) direction. Nevertheless, by
making use of the translation operators defined in Eqs. (3.7)

2There is an intricate relation between the six conserved quantities
mentioned here and the holonomies that generate the ground-state
degeneracy. They will be discussed in an upcoming paper [31].

and (3.12), it seems as though the monopoles can be freely
moved around. Upon careful analysis of the lattice transla-
tion operators, we realize that such motion becomes possible
at the expense of creating an auxiliary dipole that com-
pensates for the changes in the dipole moment during the
monopole motion, as explicitly demonstrated in Appendix B.
The composite particle of a monopole and an auxiliary dipole
carries a net dipole moment of zero, and is free from con-
straint.

We show how to derive the dipolar braiding phase
explicitly in the continuum theory. As an m particle ini-
tially at rm0 = (xm0, ym0) is moved to rm(t ) = (xm(t ), ym(t )),
the monopole and auxiliary dipole composite have the
density

ρm(r) = [1 + (rm(t ) − rm0) · ∇]δ2[r − rm(t )]. (5.4)

The second part reflects the dipole contribution. Details of
the derivation can be found in Appendix B. The total dipole
moment μm = ∫

d2r rρm(r) is indeed conserved. When the
position rm varies over time, the time derivative of the total
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density ρm becomes

∂tρ
m(r) = −ẋm

[
(xm − xm0)∂2

x δ2(r − rm)

+ (ym − ym0)∂x∂yδ
2(r − rm)

]
− ẏm

[
(xm − xm0)∂x∂yδ

2(r − rm)

+ (ym − ym0)∂2
y δ2(r − rm)

]
. (5.5)

Invoking the continuity equation for ρm in Eq. (4.6), one can
deduce the accompanying current density

Jxx
m = ẋm(xm − xm0)δ2(r − rm),

Jxy
m = [ẋm(xm − xm0) + ẏm(ym − ym0)]δ2(r − rm),

Jyy
m = ẏm(ym − ym0)δ2(r − rm). (5.6)

Finally, inserting the obtained current density into the dBF
action gives

2π

N

∫
dt

∫
d2r

[
ExxJyy

m − ExyJxy
m + EyyJxx

m

]
=

∮
drm · am(rm), (5.7)

precisely equal to the statistical phase φm,e from braiding m
around ex, ey quasiparticles.

Likewise, when the ex monopole is translated from rx0 =
(xx0, yx0) to rx(t ) = (xx(t ), yx(t )), or the ey monopole from
ry0 = (xy0, yy0) to ry(t ) = (xy(t ), yy(t )), the net monopole and
auxiliary dipole composite have the density

ρx(r) = δ2[r − rx(t )] + [yx(t ) − yx0]∂yδ
2[r − rx(t )],

ρy(r) = δ2[r − ry(t )] + [xy(t ) − xy0]∂xδ
2[r − ry(t )]. (5.8)

The net electric dipole moment μe = ∫
d2r[xρy(r) − yρx(r)]

is conserved during the motion.
The current density accompanying the adiabatic motion of

ex is

Jxx
e = ẋx[1 + (yx − yx0)∂y]δ2(r − rx ),

Jxy
e = ẏx(yx − yx0)∂yδ

2(r − rx ),

Jyy
e = −ẏx(yx − yx0)∂xδ

2(r − rx ), (5.9)

while that of the ey is

Jxx
e = −ẋy(xy − xy0)∂yδ

2(r − ry),

Jxy
e = ẋy(xy − xy0)∂xδ

2(r − ry),

Jyy
e = ẏy[1 + (xy − xy0)∂x]δ2(r − ry). (5.10)

Inserting the current densities of the ex or ey monopoles in the
dBF action results in

−
∫

dt
∫

dx dy
[
AxxJxx

e + AxyJxy
e + AyyJyy

e

]
(5.11)

equal to either
∮

drx · ay(rx ) = φex,m or
∮

dry · ay(ry) = φey,m.
The dBF action is thus consistent with the dipolar braiding
phases obtained from the analysis of the lattice model. Impor-
tantly, both the monopole and the auxiliary dipole components
in the density must be kept in order to derive the correct
braiding statistics.

VI. DISCUSSION

Field-theoretic formulation for the dipolar braiding statis-
tics first found in the R2TC model is developed. The statistical
phases count the net dipole moment rather than the charge
of the quasiparticles enclosed in the braiding. The adiabatic
motion of a quasiparticle is possible when accompanied by
the simultaneous motion of auxiliary dipole, which helps con-
serve the total dipole moment. The dipolar braiding statistics
is derived by solving the equation of motion for quasiparticles.

Various field theories of dipolar nature have been proposed
in the past in three dimensions [18,23]. Our paper proposes a
dipolar field theory in two dimensions along with the accom-
panying dipolar statistics.

Note added. Recently, several papers analyzed the ground-
state degeneracy and the dipolar braiding statistics from a
complementary perspective of anyon lattice [29,30], and pro-
posed a Chern-Simons–type field (Ref. [29]) or a combination
of Chern-Simons and dipolar Chern-Simons theory descrip-
tions (Ref. [30]). It remains to explore how the dipolar BF
theory proposed in this work relates to these other theories.
An important part of the specification of the topological field
theory is that of the global structure under the so-called large
gauge transformation. We have not completely worked out
the global structure of the dipolar BF theory or the related
ground-state degeneracy count in this paper. These problems
will be addressed in a forthcoming paper [31].
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APPENDIX A: EMERGENT GAUGE FIELDS
FROM LATTICE CONSIDERATION

In this Appendix, we elucidate the procedure by which the
emergent gauge fields are obtained from the lattice consider-
ation. Initially, the discretized phase integrals were written as
areal products Wex,m and Wey,m:

Wex,m =
∏
i∈A

(bi )
yx0−yi , Wey,m =

∏
i∈A

(bi )
xi−xy0 . (A1)

By substituting the definition of bi in terms of spin operators,
we obtain equivalent, Wegner-Wilson (WW) loop expressions
as a product of various X operators along the boundary. We
consider the case of a rectangular boundary A = [x0, x1] ×
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FIG. 1. Schematic diagram for the operators (a) Wex ,m (c) and Wey,m in Eq. (A1). The boundary of WW operators is expressed by the navy
lines.

[y0, y1] as depicted in Fig. 1. We can further decompose them
into products of four line operators as

Wex,m = Tx(x0 → x1|y0)Tx(y0 → y1|x1)[Tx(x0 → x1|y1)]−1

× [Tx(y0 → y1|x0)]−1,

Wey,m = Ty(x0 → x1|y0)Ty(y0 → y1|x1)[Ty(x0 → x1|y1)]−1

× [Ty(y0 → y1|x0)]−1. (A2)

For instance, Tx(x0 → x1|y0) involves the product of opera-
tors at x = x0 through x = x1 for a fixed y = y0. Specifically,

Tx(x1 → x2|y) =
x2−1∏
x=x1

(X1,i )
−1

(
X1,iX

−1
1,i−ŷ

)y−yx0
,

Tx(y1 → y2|x) =
y2−1∏
y=y1

(
X0,iX

−1
0,i−ŷX −1

2,i X2,i−x̂
)y−yx0 (A3)

and

Ty(x1 → x2|y) =
x2−1∏
x=x1

(
X0,iX

−1
0,i−x̂X −1

1,i X1,i−ŷ
)x−xy0

,

Ty(y1 → y2|x) =
y2−1∏
y=y1

(X2,i )
−1(X2,iX

−1
2,i−x̂

)x−xy0
. (A4)

The shape of the boundary can be relaxed. For any type of
boundary made by putting together several rectangles of arbi-
trary sizes, one still finds complete cancellation of operators
except those at the boundary, which can be decomposed into
the products of T operators given in Eqs. (A3) and (A4).

The first operator in Wex,m is Tx(x0 → x1|y0), which is
illustrated in Fig. 2(a). It reduces to

∏x1−1
x=x0

(X1,i )−1 when
y0 − yx0 mod N = 0 and creates ex monopoles with charge

−1 at (x0, y0) and charge +1 at (x1, y0). In other words, the
operator translates the ex monopole of charge +1 from (x0, y0)
to (x1, y0). For y0 − yx0 mod N 	= 0, we need to take account
of the action by the auxiliary factor (X1,iX

−1
1,i−ŷ )y0−yx0 as well,

which is the creation of a pair of ex dipoles. One of the dipoles
created consists of two ex monopoles with charges (y0 − yx0)
at (x0, y0) and −(y0 − yx0) at (x0, y0 − 1). The other dipole
consists of two ex monopoles with charges −(y0 − yx0) at
(x1, y0) and (y0 − yx0) at (x1, y0 − 1).

We next look into the action of Tx(y0 → y1|x1) oper-
ator, which is illustrated in Fig. 2(b). First of all one
can write Tx(y0 → y1|x1) = Tx(y0 → yx0|x1)Tx(yx0 → y1|x1).
When both y0 − yx0 mod N = 0 and y1 − yx0 mod N = 0,
one can think of it as a product of two translation operators of
ex, namely, Tx(y0 → yx0|x1) and Tx(yx0 → y1|x1), moving ex

from (x1, y0) to (x1, yx0) and then subsequently from (x1, yx0)
to (x1, y1). When y0 − yx0 mod N 	= 0 or y1 − yx0 mod N 	=
0, either the action of Tx(y0 → yx0|x1) or Tx(yx0 → y1|x1)
is accompanied by the creation of an auxiliary dipole near
(x1, y0) or (x1, y1), respectively. We can understand the action
of Tx and its inverse T −1

x as performing the translation of ex

monopole while either creating or annihilating an auxiliary
dipole. At the end of the Wex,m operation, all the auxiliary
dipoles disappear and the ex monopole has completed a loop.

By following the same procedure, one can interpret Ty as
the translation operator moving the ey monopole from one
point to another and with or without the accompanying dipole
depending on the modality of the coordinates with respect to
N . The auxiliary dipoles are aligned in the x direction and
disappear at the completion of the loop.

The operators Wm,ex and Wm,ey are defined as

Wm,ex =
∏
i∈A

(
ax

i

)yi−ym0
, Wm,ey =

∏
i∈A

(
ay

i

)xm0−xi
. (A5)
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FIG. 2. Graphical illustration for (a) Tx (x0 → x1|y0 ) and (b) Tx (y0 → y1|x1). The navy line represents the domain of Tx . The cyan square
represents ex monopole with charge ±1 together with other charges comprising the auxiliary dipoles. The orange square represents the other
pair that makes up the auxiliary dipole. The auxiliary dipoles are connected by the gray line.

In the case of the rectangular boundary A = [x0, x1] ×
[y0, y1], Wm,ex and Wm,ey are expressed in Fig. 3. The pres-
ence of Z0 operators in the interior of the boundary makes it
impossible to decompose Wm,ex and Wm,ey into the product of
line operators as was the case in Wex,m and Wey,m. On the other
hand, on inspecting Fig. 3, one realizes that the Z0 operators in
the interior cancel out by multiplying Wm,ex and Wm,ey . Hence,
we can decompose Wm,e ≡ Wm,exWm,ey as the product of line
operators:

Wm,e = Tm(x0 → x1|y0)Tm(y0 → y1|x1)[Tm(x0 → x1|y1)]−1

× [Tm(y0 → y1|x0)]−1. (A6)

Here, the Tm operator is defined by

Tm(x1 → x2|y) = ∏x2
x=x1+1 (Z2,i )x−xm0 (Z0,i−x̂ )ym0−y,

Tm(y1 → y2|x) =
y2∏

y=y1+1

(Z1,i )
y−ym0 (Z0,i−ŷ)xm0−x. (A7)

The complete cancellation of Z0 takes place for other shapes
of the boundary as well, and Wm,e can always be decomposed
into the product of Tm’s.

The first operator in Wm,e is Tm(x0 → x1|y0), which is il-
lustrated in Fig. 4(a). Its role is to translate the m monopoles
from (x0, y0) to (x1, y0) and creating the auxiliary dipoles de-
pending on the modality of the coordinates with respect to N .

When y0 − ym0 mod N 	= 0, two auxiliary m dipoles aligned
in the y direction are created near (x0, y0) and (x1, y0), respec-
tively. The dipole near the point (x0, y0) has dipole moment
y0 − ym0, and the other dipole near the point (x1, y0) has dipole
moment −(y0 − ym0). When x0 − xm0 mod N 	= 0, Tm(x0 →
x1|y0) creates an x-directed auxiliary dipole near (x0, y0)
with the dipole moment x0 − xm0. When x1 − xm0 mod N 	=
0, Tm(x0 → x1|y0) creates an x-directed auxiliary dipole near
(x1, y0) with the dipole moment is −(x1 − xm0). In contrast
to Tx or Ty creating the auxiliary dipole only with the x-
or y-component dipole moment, the auxiliary dipole cre-
ated by Tm has both x and y components and it consists of
three monopoles. For example, the auxiliary dipole created
by Tm(x0 → x1|y0) near (x1, y0) consists of three monopoles
with charge −(y0 − ym0) at (x1, y0 + 1), charge −(x1 − xm0)
at (x1 + 1, y0), and charge (y0 − ym0) + (x1 − xm0) at (x1, y0).

The graphical illustration of Tm(y0 → y1|x1) is given in
Fig. 4(b). After the application of Tm(x0 → x1|y0) to the
vacuum, applying Tm(y0 → y1|x1) in succession translates
the m monopole with charge +1 and the auxiliary dipole
from (x1, y0) to (x1, y1). Subsequently, applying [Tm(x0 →
x1|y1)]−1 and [Tm(y0 → y1|x0)]−1 moves the m monopoles
and the auxiliary dipole from (x1, y1) to (x0, y1) to (x0, y0),
which completes the entire loop. In summary, during the op-
eration of Wm,e, the consecutive Tm’s operation braids the m
monopole and the accompanied auxiliary dipole around the
boundary of the Wm,e operator.
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FIG. 3. Graphical illustrations for the operators (a) Wm,ex and (b) Wm,ey in Eq. (A5). The boundary of WW operators are expressed by the
navy lines.

FIG. 4. Graphical illustration for (a) Tm(x0 → x1|y0 ) and (b) Tm(y0 → y1|x1). The navy line represents the domain of Tx . The cyan square
represents m monopole with charge ±1 together with other charges composing the auxiliary dipole. The orange square represents the other
pair that makes up the auxiliary dipole. The auxiliary dipoles are connected by the gray line.
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APPENDIX B: AUXILIARY DIPOLES
AND CONTINUITY EQUATIONS

In this Appendix, we show how to write the charge den-
sities of ex, ey, and m quasiparticles in the presence of their
auxiliary dipoles in the continuum theory, and solve the appro-
priate continuity equations to find the corresponding current
densities that match the charge densities. In Appendix A we
have shown that in the spin system, the translation of ex, ey,
and m monopoles is accompanied by the auxiliary dipoles.
The auxiliary dipole moment for ex (ey) varies in a way that
conserves the y component (x component) of the total dipole
moment as the ex (ey) monopole is translated. The auxiliary
dipole for m varies in a way that conserves both the x and
y components for the m monopole and the accompanying
dipole.

First, consider the m monopole of unit charge moving
around by the applications of Tm operators. When the m par-
ticle is translated from the initial point rm0 = (xm0, ym0) to

some point rm = (xm, ym), it is accompanied by the auxiliary
dipole. The auxiliary dipole, according to the lattice calcula-
tion, consists of three m monopoles with charge −(xm − xm0)
at (xm + 1, ym), charge (xm − xm0) + (ym − ym0) at (xm, ym),
and charge −(ym − ym0) at (xm, ym + 1). The combined dipole
moment of the auxiliary dipole is

μm = −(xm − xm0, ym − ym0), (B1)

which precisely compensates for the dipole moment incurred
by the motion of the m particle from rm0 to rm.

To take the continuum limit we switch the lattice constant
from 1 to � and take the limit � → 0. The positions of three
monopoles composing the auxiliary dipole become (xm +
�, ym), (xm, ym), and (xm, ym + �). The monopole charges
are modified accordingly to − 1

�
(xm − xm0), 1

�
(xm − xm0) +

1
�

(ym − ym0), and − 1
�

(ym − ym0), respectively. We can write
the charge density for the auxiliary dipole as

ρμm
(r) = (xm − xm0)

�
[−δ(x − xm − �)δ(y − ym) + δ(x − xm)δ(y − ym)]

+ (ym − ym0)

�
[−δ(x − xm)δ(y − ym − �) + δ(x − xm)δ(y − ym)], (B2)

which becomes, in the � → 0 limit,

ρμm
(r) = (xm − xm0)∂xδ(x − xm)δ(y − ym)

+ (ym − ym0)δ(x − xm)∂yδ(y − ym)

= (rm − rm0) · ∇δ2(r − rm), (B3)

where δ2(r − rm) = δ(x − xm)δ(y − ym). Together with the
original m monopole density ρm,0(r) = δ2(r − rm), the net
density becomes

ρm(r) = ρm,0(r) + ρμm
(r)

= δ2(r − rm) + (rm − rm0) · ∇δ2(r − rm). (B4)

Similar consideration applies to the two electric
monopoles. When the ex monopole is translated from
rx0 = (xx0, yx0) to rx = (xx, yx ), it is accompanied by an

auxiliary dipole consisting of ex monopole with charge
(xx − xx0) at (xx, yx − 1) and charge −(xx − xx0) at (xx, yx ).
By following the same procedure for taking the continuum
limit as before, we obtain the charge density of ex particle as

ρx = ρx,0 + ρμx = δ2(r − rx ) + (yx − yx0)∂yδ
2(r − rx ),

ρy = 0, (B5)

where ρx,0(r) = δ2(r − rx ) is the ex monopole density, and
ρμx

is the density of the auxiliary dipole. Note that we need to
consider the density of the ey monopole simultaneously, albeit
ρy = 0, since it is coupled to ρx by the continuity equations in
Eq. (4.6). For the motion of ey we find

ρy = ρy,0 + ρμy = δ2(r − rx ) + (xy − xy0)∂xδ
2(r − rx ),

ρx = 0. (B6)
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