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Ultrafast valley polarization of graphene nanorings
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We study theoretically electron dynamics of a graphene nanoring placed in the field of an ultrashort optical
pulse. We describe the graphene nanoring within an effective model with infinite mass boundary conditions. For
an optical pulse with a duration of just a few femtoseconds, the electron dynamics is coherent and is described by
a time-dependent Schrödinger equation. If the optical pulse is circularly polarized, then two valleys of graphene
are populated differently, resulting in a finite valley polarization of the system after the pulse. Such a valley
polarization is a unique property of graphene nanoscale systems, while for a graphene monolayer, a circularly
polarized pulse does not produce any valley polarization. The valley polarization of the graphene nanoring
depends on parameters of the system, such as inner and outer radii. With the system’s size increasing, the valley
polarization monotonically decreases, converging to its zero value for the infinite graphene monolayer.
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I. INTRODUCTION

Graphene systems, such as graphene monolayer, bilayer,
and multilayers, have been extensively studied both theoreti-
cally and experimentally over the last few decades [1–7]. The
interest in such systems is related to their unique transport,
optical, and topological properties. At the same time, they are
very simple systems based on a single element, a carbon atom.

A graphene monolayer is a single layer of carbon atoms
which form a honeycomb crystal structure with two inequiva-
lent sublattices, say, A and B. One of the unique features of the
graphene monolayer is its low-energy relativistic dispersion
of a Dirac type [1]. The corresponding electron states are
chiral, where the chirality is related to the pseudospin origi-
nating from the two graphene sublattices. The chiral nature of
electron states brings such unique effects as Klein tunneling,
strong suppression of backscattering, and localization [4].

Another attractive property of the graphene monolayer is
the existence of two valleys in its reciprocal space. The valleys
are located at the K and K ′ points at the vertices of the hexag-
onal first Brillouin zone of graphene [5]. The energy spectra
at these points are gapless and relativistic; that is, they are the
Dirac points. The time-reversal operator connects the K and
K ′ valleys. Here, the time-reversal symmetry is the symmetry
of the graphene monolayer. Electrons in graphene also have
nontrivial local topological properties. Namely, while the net
topological charge (Chern number) for the whole Brillouin
zone of graphene is zero, the topological charges at the K and
K ′ points are 1 and −1, respectively [8].

The existence of the two valleys in graphene opens a pos-
sible application of graphene in valleytronics [9–11], where
the valley degree of freedom can be used for information
storage and quantum computer applications. The two valleys
in graphene are well separated in the reciprocal space, and an
intervalley scattering is strongly suppressed for a smooth scat-
tering potential. In this relation, there is a problem with how

to generate and manipulate valley polarization in graphene.
Here, the valley polarization is determined by the different
valley populations of the system. To generate the valley po-
larization in graphene, the time-reversal symmetry should be
broken. This can be done, for example, by an incident circu-
larly polarized pulse. If such a pulse is ultrashort with just
a few oscillations of the field, then it will allow controlling
the valley degree of freedom on the femtosecond timescale.
In Refs. [12–14], interactions of graphenelike systems with
a circularly polarized short and ultrastrong pulse were con-
sidered. It was found that such a pulse can induce large final
valley polarization, but to have such a valley polarization,
the inversion symmetry of graphene should be broken. This
means that graphene should have a finite band gap. Under
such a condition, the valley polarization is generated due to
the effect of topological resonance [13–15]. The topological
resonance is a cancellation of a dynamic phase by a topologi-
cal phase, which is accumulated during a strong optical pulse.
In pristine graphene that has a zero band gap, the topological
phase, which consists of a geometric phase (Berry phase) and
a phase of an interband dipole matrix element (non-Abelian
Berry connection), is effectively zero, so no topological reso-
nance can be observed in such a system. In graphene systems
with broken inversion symmetry, the topological phase is
proportional to the band gap and has different signs at the
two valleys, which results in the valley-dependent topolog-
ical resonance [15]. The inversion symmetry is broken in
graphenelike materials with two sublattices occupied by dif-
ferent atoms, e.g., transition-metal dichalcogenides (TMDCs)
[16–18], and in silicene/germanene, which has a buckled
hexagonal shape and in which the perpendicular electric field
breaks the inversion symmetry [19–21]. In graphene, a small
band gap can also be opened if it is placed on different types
of substrates, e.g., on SiC [22,23]. The finite valley polariza-
tion of TMDC monolayers placed in an ultrashort circularly
polarized pulse was predicted theoretically in Ref. [13].
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Here, we propose another method to generate ultrafast
valley polarization in graphene materials. We consider a
nanoflake of graphene. The example of such a system is a
graphene quantum dot (QD) [24–26]. For such a system,
a translational symmetry is broken, and the band gap is
opened due to a dimensional quantization. Quantum dots
and other types of nanosize systems are zero-dimensional;
that is, electrons are confined in all spatial directions and
occupy spectrally sharp energy levels like those found in
atoms [27–29]. Similar to conventional atoms, the properties
of QDs, which are also called artificial atoms, are governed by
the Hund’s rule [29,30], which determines electron occupa-
tions of degenerate QD energy levels; the Coulomb blockade
[31], which is a manifestation of electron-electron interactions
within the QD; and the Kondo effect [32], which is related to
electron spin.

The QDs are between a few nanometers and a few microns
in size. Due to such a tiny scale, the QDs can be occupied by
just a few electrons, which allows controlling and optimizing
QD-based nanoscale devices. The QDs also show superior
transport and optical properties with many applications in
different fields of science, such as semiconductor lasers [33],
quantum computers [34], biomedical systems [35], and light-
energy conversion [36,37].

In the present paper, we consider graphene nanosize sys-
tems with a special shape. Namely, we consider graphene
nanorings. Similar to QDs, nanorings have discrete energy
spectra with unique transport and optical properties. Graphene
nanorings have two parameters, the inner and outer radii of
the ring, which can be used to tune their properties. Below,
to describe an electron system of a graphene nanoring, we
use an effective model which is applied separately to the
K and K ′ valleys of graphene. Interaction of the graphene
nanoring with an ultrashort circularly polarized optical pulse
should generate different conduction band populations of the
two valleys, resulting in finite final valley polarization of the
system.

This paper is organized as follows. In Sec. II we intro-
duce the model and the main equations. We also define the
graphene nanoring and the optical pulse shape considered in
our calculations. In Sec. III, we present our numerical results
for the valley polarization of the graphene nanoring. The con-
cluding remarks are given in Sec. IV.

II. MODEL AND MAIN EQUATIONS

We consider a graphene nanoring with inner radius Rin and
outer radius Rout. We describe graphene within an effective
low-energy model with the Hamiltonian being of a Dirac type,
which for a graphene nanoring takes the following form:

H(ξ )
0 = γ

h̄
(σx px + ξσy py) + V (r), (1)

where σx and σy are the Pauli matrices, px = −ih̄∇x, py =
−ih̄∇y, and γ = √

3a0γ0/2 is the band parameter with the lat-
tice constant a0 = 0.142 nm and the nearest neighbor hopping
integral γ0 = 3.03 eV. Here, ξ is the valley parameter, which
is +1 for the K valley and −1 for the K ′ valley. Since the spin-
orbit interaction is very weak in graphene, the Hamiltonian (1)
is written only for one spin component, e.g., spin up. Thus,

each energy level calculated below has an extra double spin
degeneracy. The confinement potential V (r) is of the mass
form, V (r) = �(r)σz, where σz is the Pauli matrix. Here,
�(r) is zero inside the nanoring and �(r) → ∞ outside. Such
a profile of the confinement potential introduces infinite mass
boundary conditions [38–41] at the boundary of the nanoring.
Although the properties of graphene nanorings depend on
the type of their edges, e.g., zigzag or armchair edges, the
infinite boundary conditions can be a good approximation for
graphene nanostructures that are etched out of graphene sheets
by lithography (see Refs. [41–45]).

Because the nanoring has cylindrical symmetry, its elec-
tron states are characterized by a z component of angular
momentum m, i.e., a magnetic quantum number, which takes
half-integer values, m = ±1/2,±3/2,±5/2, . . .. The corre-
sponding eigenfunctions of Hamiltonian (1) can be written for
the valley ξ in the following form:

ψ (ξ )(r, θ ) = ei(m−ξ/2)θ

(
χ

(ξ )
1 (r)

eiξθχ
(ξ )
2 (r)

)
, (2)

where r and θ are polar coordinates. Substituting the
form of the wave function (2) into the eigenvalue equa-
tion H0ψ

(ξ )(r, θ ) = Eψ (ξ )(r, θ ), we obtain the following
system of equations for functions χ

(ξ )
1 (r) and χ

(ξ )
2 (r):

∇rχ
(ξ )
1 (r) − (m − ξ/2)

r
χ

(ξ )
1 (r) = iE

γ
χ

(ξ )
2 (r), (3)

∇rχ
(ξ )
2 (r) + (m + ξ/2)

r
χ

(ξ )
2 (r) = iE

γ
χ

(ξ )
1 (r). (4)

Then substituting χ
(ξ )
2 from Eq. (3) into Eq. (4), we obtain the

differential equation for χ1(r),

∇2
r χ

(ξ )
1 (r) + 1

r
∇rχ

(ξ )
1 (r) −

(
(m + ξ/2)2

r
−E2

γ 2

)
χ

(ξ )
1 (r)=0.

(5)
The above equation is the Bessel equation, and its solution can
be expressed as a superposition of the Bessel and Neumann
functions,

χ
(ξ )
1 (r) = C(ξ )

1 Jm−ξ/2

(
ε

r

Rout

)
+ C(ξ )

2 Nm−ξ/2

(
ε

r

Rout

)
, (6)

where Jn(x) is the Bessel function of the first kind of order
n, Nn(x) is the Neumann function of order n, and ε = RoutE

γ
.

Here, C(ξ )
1 and C(ξ )

2 are constants. From Eq. (3) we can also
find the second component of the wave function,

χ
(ξ )
2 (r) = iC(ξ )

1 Jm+ξ/2

(
ε

r

Rout

)
+ iC(ξ )

2 Nm+ξ/2

(
ε

r

Rout

)
. (7)

The energy spectrum of the nanoring is obtained from the infi-
nite mass boundary conditions, which are introduced through
the following expression [38]:

lim
r→R

χ
(ξ )
1 (r) = iξ lim

r→R
χ

(ξ )
2 (r), (8)

where R is the boundary of the nanoring, i.e., r = Rin and
r = Rout. Substituting Eqs. (6) and (7) into Eq. (8), we obtain
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the equation for the eigenenergies of the system:

ξNm+ξ/2(εRin/Rout ) + Nm−ξ/2(εRin/Rout )

ξJm−ξ/2(εRin/Rout ) + Jm+ξ/2(εRin/Rout )

= ξNm+ξ/2(ε) + Nm−ξ/2(ε)

ξJm−ξ/2(ε) + Jm+ξ/2(ε)
. (9)

With the known wave functions, the dipole matrix elements
between states i and j can be calculated from the following
expression:

D(ξ )
i j = 〈

ψ
(ξ )
j

∣∣er
∣∣ψ (ξ )

i

〉
. (10)

Substituting Eq. (2) for the wave functions in terms of χ1 and
χ2, we obtain the x and y components of the dipole matrix
elements

D(ξ )
x,i j = eπ [δ(mi, mj − 1) + δ(mi, mj + 1)]

×
∫ rout

rin

[
χ

(ξ )∗
1, j (r)χ (ξ )

1,i (r) + χ
(ξ )∗
2, j (r)χ (ξ )

2,i (r)
]
r2dr (11)

and

D(ξ )
y,i j (r, θ ) = −ieπ [δ(mi, mj − 1) − δ(mi, mj + 1)]

×
∫ rout

rin

[
χ

(ξ )∗
1, j (r)χ (ξ )

1,i (r) + χ
(ξ )∗
2, j (r)χ (ξ )

2,i (r)
]
r2dr.

(12)

Here, mi and mj are magnetic quantum numbers of the cor-
responding states i and j. As expected, the dipole transitions
have selection rule mi = mj ± 1.

Now we place the graphene nanoring in the field of an op-
tical pulse. The corresponding electron dynamics is described
by the time-dependent Hamiltonian of the form

H(ξ )(t ) = H(ξ )
0 + eF(t ) · r, (13)

where F(t ) is the pulse’s electric field. Below we consider
only a circularly polarized optical pulse. Such a pulse breaks
the inversion symmetry of the system, which can result in a
finite final valley polarization of the system. The profile of the
electric field of the circularly polarized pulse is given by the
following expression:

Fx(t ) = F0e−u2
(1 − 2u2), (14)

Fy(t ) = F0e−u2
(2u), (15)

where u = t/τ and time parameter τ determines the pulse’s
duration and frequency. Below, the main results are shown for
τ = 1 fs, i.e., the frequency of the pulse ≈1 eV. Here, we con-
sider only one oscillation of the field, addressing the problem
of ultrafast control of the valley degree of freedom. Thus, we
consider the case when valley polarization can be generated
by just a single oscillation of the optical pulse. Under this
condition, only one parameter, τ , characterizes the pulse’s
duration and frequency. We assume that the pulse duration,
around 6 fs, is less than the characteristic relaxation times
of the nanoring. In this case, the electron dynamics within
the graphene nanoring is described by the time-dependent
Schrödinger equation,

ih̄
d (ξ )(t )

dt
= H(ξ )(t ) (ξ )(t ). (16)

We expand a solution of Eq. (16) in the basis of single-particle
states (2) ψi,

 (ξ )(t ) =
N∑

j=1

β
(ξ )
j (t )ψ (ξ )

i e− i
h̄ E jt , (17)

with the time-dependent expansion coefficients β
(ξ )
i (t ).

Strictly speaking, the energy spectrum of the graphene nanor-
ing, within the effective low-energy model, consists of an
infinite number of levels in both the conduction and valence
bands. In our approach, we consider a finite number N of
nanoring levels, the energies of which are in the interval from
−2 eV to 2 eV. The number of such levels depends on the size
of the nanoring.

The intensity of the optical pulse we consider below is
small enough that the pulse’s electric field does not mix the
states of different valleys. The amplitude of the pulse, which
can result in the coupling of the valleys, can be estimated from
the condition that, during the pulse, an electron is transferred
between the two valleys, i.e., over the distance of 4π/3

√
3a0.

The corresponding field amplitude can be estimated as F0 ≈
4π h̄/3

√
3τa0 ≈ 1.1 V/Å. Below, we consider optical pulses

with amplitudes less than 0.5 V/Å.
The coefficients βi(t ) in Eq. (17) satisfy the following

system of differential equations:

dβ
(ξ )
k

dt
= − i

h̄

N∑
j=1

F(t ) · D(ξ )
k j (t )β (ξ )

j e− i
h̄ (Ej−Ek )t . (18)

We solve the system of equations (18) numerically with the
conditions that all the valence band (VB) states are initially
occupied and all the conduction band (CB) states are empty.
The equations are solved using the Runge-Kutta method,
where the initial time is −3τ and the final time is 3τ . From
the solution of Eq. (18) we obtain the final populations of the
CB levels, i.e., the populations after the pulse. We find the CB
populations for both the K and K ′ valleys,

N (ξ )
CB (t ) =

∑
j∈CB

∣∣β (ξ )
j (t )

∣∣2
. (19)

Then, we define the final valley polarization of the graphene
nanoring. To better characterize the asymmetry in valley pop-
ulations of the system, we introduce two different expressions
for the valley polarization. In the first expression, the valley
polarization is defined as the difference between the CB pop-
ulations of different valleys,

P = N (K )
CB (t = ∞) − N (K ′ )

CB (t = ∞)

π
(
R2

out − R2
in

) , (20)

where the valley polarization is defined per unit area of the
nanoring.

The second expression defines the normalized valley polar-
ization,

PN = N (K )
CB (t = ∞) − N (K ′ )

CB (t = ∞)

N (K )
CB (t = ∞) + N (K ′ )

CB (t = ∞)
. (21)

This expression determines the fraction of the excited elec-
trons, which occupy the two valleys differently. The maximum
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FIG. 1. Energy spectra of a graphene nanoring. The spectra are
shown as a function of the magnetic quantum number m, which takes
half-integer values. The size of the nanoring is Rin = 5 nm, Rout = 15
nm in (a) and (b) and Rin = 5 nm, Rout = 35 nm in (c) and (d). The
spectra are shown (a) and (c) for the K valley and (b) and (d) for the
K ′ valley.

value of PN is 1, corresponding to the condition that all elec-
trons are excited in only one valley.

III. RESULTS AND DISCUSSION

The energy spectrum of the graphene nanoring, obtained
from Eq. (9), is shown in Fig. 1 for both the K and K ′ valleys.
It satisfies the condition of the time-reversal symmetry, i.e.,
EK,m = EK ′,−m. The energy spectrum also has the following
specific structure. It has a finite bulk band gap, which is due
to the finite size of the system. Here, the states with positive
energies belong to the conduction band, while the states with
negative energies belong to the valence band. As expected,
the band gap decreases with increasing the system’s size. For
example, for outer radius Rout = 15 nm [see Figs. 1(a) and
1(b)] the band gap is around 2 eV, while for outer radius
Rout = 35 nm [see Figs. 1(c) and 1(d)] the band gap is 0.5 eV.

In addition to the gapped structure of the energy spec-
trum, there is a clear in-gap branch visible for each valley.
These two branches are due to the edge states of the system
[46–48]. The branches have different behaviors for the K
and K ′ valleys. While for the K valley, the energy of the
in-gap states decreases with the quantum number m, for the
K ′ valley, the energy increases with m. Such fundamentally
different behaviors of the energy spectrum at the two valleys
result in different responses of the valley to a circularly po-
larized pulse. This is due to the fact that, for example, for a
clockwise circularly polarized pulse, the dipole selection rule
is mfinal = minitial + 1. Then, the rate of the optical transition

FIG. 2. Profile of the electric field of a left circularly polarized
optical pulse. The pulse has only one oscillation. The amplitude
of the pulse is F0 = 0.1 V/Å. The optical field has both x and y
components. The inset shows the corresponding cycle of the optical
pulse.

between the states is determined by the corresponding energy
difference, �E = Emfinal − Eminitial . The value of �E is different
for the K and K ′ valleys, which finally results in different
after-the-pulse CB populations for the two valleys.

As mentioned above, the continuous model of graphene
generates an infinite number of states within the nanoring. In
Fig. 1, we show only the energy levels taken into account in
our calculations. These levels are within the energy window
−2 eV < E < 2 eV. Such an energy interval is chosen in
such a way that for the optical pulse with an amplitude up
to F0 = 0.3 eV, the valley polarization converges to the values
presented below with accuracy less than 5%.

We apply a single cycle of a left circularly polarized op-
tical pulse. The pulse profile, i.e., the x and y components
of the pulse electric field, is shown in Fig. 2. Before the
pulse, all states of graphene nanoring with negative energies
are populated. The optical pulse results in the redistribution
of electrons between the states of the nanoring and in the
population of the CB states, both the in-gap states and the bulk
states.

One of the main characteristics of electron dynamics in the
field of the pulse is the total CB population N (ξ )

CB . In Fig. 3,
the CB population is shown as a function of time for the two
valleys, K and K ′, and different amplitudes of the pulse F0.
The size of the nanoring is Rin = 5 nm and Rout = 15 nm. For
all values of F0 the electron dynamics is highly irreversible;
that is, the maximum CB population is almost the same as the
final CB population, i.e., the population after the pulse. The
irreversible dynamics has also been observed in the graphene
monolayer [49]. Another essential property of CB population
dynamics is that the final CB population for the K valley is
always greater than the corresponding population for the K ′
valley. This means that, after the pulse, there is a finite valley
polarization of the graphene nanoring.

As expected, the CB population monotonically increases
with the field amplitude (see Fig. 3). Here, the results are
shown for a frequency of the pulse around 1.0 eV, which
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FIG. 3. Conduction band population as a function of time. The
conduction band states are the states with positive energies. The data
are shown for different field amplitudes for (a) the K valley and
(b) the K ′ valley. The corresponding values of F0 are shown next to
each line. The inner and outer radii of the nanoring are Rin = 5 nm,
Rout = 15 nm. The time constant, which determines the frequency
and the duration of the optical pulse, is τ = 1 fs. The optical pulse is
left circularly polarized.

corresponds to the time parameter of τ = 1 fs [see Eqs. (14)
and (15)]. To illustrate the effect of the pulse frequency on
the electron dynamics, we show in Fig. 4 the CB population
for different values of τ . In all cases, the pulse has only one
oscillation. With increasing τ , the pulse frequency decreases,
which enhances the coupling of the VB states and the in-gap
CB states, where the energy separation between them is rela-
tively small, i.e., less than 1 eV. As a result, the populations
of the in-gap edge states increase with τ . Such a tendency is
visible in Fig. 4 for both valleys, while it is more pronounced
for the K valley.

To characterize the final state of the electron system, we
show in Fig. 5 the occupations of individual CB levels after
the pulse. The results are shown for different field amplitudes.
As discussed above, with increasing the field amplitude F0, the

FIG. 4. Conduction band population as a function of time. The
conduction band states are the states with positive energy. The data
are shown for different values of parameter τ for (a) the K valley
and (b) the K ′ valley. The corresponding values of τ are shown next
to each line. Parameter τ determines both the frequency of the pulse
and its duration. The time is shown in dimensionless units, t/τ . The
inner and outer radii of the nanoring are Rin = 5 nm and Rout = 15
nm. The field amplitude is F0 = 0.1 V/Å. The optical pulse is left
circularly polarized.

FIG. 5. Population of individual conduction band levels. The
results are for (a)–(c) the K valley and (d)–(f) the K ′ valley. The
amplitude of the pulse is F0 = 0.1 V/Å in (a) and (d), F0 = 0.2 V/Å
in (b) and (e), and F0 = 0.3 V/Å in (c) and (f). The inner and outer
radii of the nanoring are Rin = 5 nm and Rout = 15 nm. The red lines
correspond to in-gap edge states, while the blue lines correspond to
bulk states of the nanoring. The time constant of the pulse is τ = 1
fs. The optical pulse is left circularly polarized.

occupations of the CB levels monotonically increase, which
occurs for each level. At the same time, the largest occu-
pations are visible for the in-gap edge CB states, which are
marked by red lines. Also, the main difference between the
K and K ′ valleys is mainly in the populations of the in-gap
edge states. For example, comparing Figs. 5(c) and 5(f), we
can say that the populations of the bulk CB states, which are
shown by blue lines, are almost the same for the K and K ′
valleys, while the populations of the edge CB states (red lines)
are quite different. This difference results in the final valley
polarization of the system.

To emphasize the effect of the frequency of the pulse on the
ultrafast electron dynamics, we show in Fig. 6 the final pop-
ulations of the CB levels for different values of τ . When the
time parameter τ increases from 1 to 2 fs, the populations of
the in-gap edge states are strongly increased. This is because
the pulse frequency becomes smaller, and the low-energy CB
states become more populated. Such an enhancement is more
pronounced for the K valley (see Fig. 6). For example, the
populations of all edge CB states (the red lines in Fig. 6)
strongly increase when τ changes from 1 to 2 fs for the K
valley, and almost all of them become around 0.4, while for
the K ′ valley, even for τ = 2 fs, only two red lines are visible,
with populations of 0.4 and 0.1.

The main outcome of the interaction of the circularly
polarized pulse with the graphene nanoring is the valley polar-
ization of the electron system. We have used two expressions
to define the valley polarization, P and PN [see Eqs. (20) and
(21)]. Here, P is just the difference between the CB popula-
tions of the K and K ′ valleys per unit area, while PN is its
normalized value.

In Fig. 7, the valley polarization P is shown as a function
of the field amplitude for different parameters of the nanoring.
At small field amplitudes, the valley polarization quadratically
increases with F0. At large values of F0, the valley polarization
shows a saturated behavior. Such saturation is related to the
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FIG. 6. Population of individual conduction band levels. The
results are for (a) and (b) the K valley and (c) and (d) the K ′ valley.
The time constant of the optical pulse is τ = 1 fs in (a) and (c) and
τ = 2 fs in (b) and (d). The inner and outer radii of the nanoring are
Rin = 5 nm and Rout = 15 nm. The red lines correspond to in-gap
edge states, while the blue lines correspond to bulk states of the
nanoring. The amplitude of the pulse is F0 = 0.1 V/Å. The optical
pulse is left circularly polarized.

finite number of nanoring levels considered in the model. Al-
though our results are the most accurate for a field amplitude
less than 0.3 V/Å, we show the data for field amplitudes up
to 0.5 V/Å to illustrate the effect of a finite number of levels
within a nanoscale system.

In Fig. 7(a), the inner radius of the nanoring is fixed, and
the outer radius is varied. The results show that with increas-
ing the outer radius, the valley polarization P, defined as the
polarization per unit area, decreases. This is consistent with
the fact that the valley polarization of the graphene monolayer,
i.e., an infinite graphene nanoring, is zero.

Figure 7(b) illustrates the valley polarization’s dependence
on the nanoring’s inner radius. In this case, with decreasing
the inner radius, while the size of the nanoring increases,
the valley polarization still increases. Thus, these results sug-
gest that the maximum valley polarization is achieved for a
nanoring with the smallest inner radius, i.e., for a disk. To
check this statement, we calculated the valley polarization for
a disk using the infinite mass boundary conditions at the disk’s
boundary. The results show that for a graphene disk with a
radius of 15 nm, the valley polarization is P = 0.0028 nm−2

for a field amplitude of 0.2 V/Å, while for a ring with an inner
radius of 5 nm and an outer radius of 15 nm, the corresponding
valley polarization has a smaller value, P = 0.0014 nm−2.
These data support the above statement that the valley polar-
ization is the largest for the disk. A detailed analysis of the
valley polarization generated in graphene nanodisks by the
optical pulse will be given elsewhere.

At small field amplitudes F0, the valley polarization has
a quadratic dependence on F0, i.e., a linear dependence on

FIG. 7. The valley polarization of a graphene nanoring. The val-
ley polarization is defined by Eq. (20) and is shown as a function
of the field amplitude F0 for different parameters of the nanoring.
In (a), the inner radius is fixed at Rin = 5 nm, and the outer radius
is varied with the corresponding values shown next to each line. In
(b), the outer radius is fixed at Rout = 35 nm, and the inner radius is
varied with the corresponding values shown next to each line. The
time constant of the pulse is τ = 1 fs, and the pulse is left circularly
polarized. The insets in each panel show the valley polarization at
small values of F0.

the power of the pulse, with a coefficient that depends on the
parameters of the nanoring. We can approximate this depen-
dence with the following expression:

P = 5.42Rout − 5.89Rin + 30

R2
out − R2

in

F 2
0 , (22)

where F0 is measured in volts per angstrom and Rout and Rin

are in nanometers. Equation (22) can be used to design the
nanoring with a given value of the valley polarization.

The valley polarization can also be characterized by its
normalized value [see Eq. (21)], which shows the fraction of
the excited electrons that are valley polarized. The normalized
valley polarization as a function of the field amplitude F0 is
shown in Fig. 8 for different sizes of the nanoring. Similar
to the case of valley polarization P (see Fig. 7), for a fixed
internal radius of the nanoring Rin, the valley polarization PN

decreases with increasing the size of the system, i.e., Rout [see
Fig. 8(b)]. This is consistent with the expectation that with
increasing the size of the nanoring, the system becomes more
similar to a pristine graphene monolayer, for which there is no
valley polarization after a circularly polarized pulse.

Also, when the outer radius is fixed and the inner radius
is varied [see Fig. 8(a)], the valley polarization increases with
decreasing the inner radius of the nanoring Rin. This behavior
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FIG. 8. The valley polarization of a graphene nanoring. The val-
ley polarization is defined by Eq. (21) and is shown as a function
of the field amplitude F0 for different parameters of the nanoring. In
(a), the outer radius is fixed at Rout = 35 nm, and the inner radius
is varied with the corresponding values shown next to each line. In
(b), the inner radius is fixed at Rin = 5 nm, and the outer radius is
varied with the corresponding values shown next to each line. The
time constant of the pulse is τ = 1 fs, and the pulse is left circularly
polarized.

is similar to what was shown in Fig. 7(b) and also means that
the maximum valley polarization is observed for a small inner
radius. The normalized valley polarization can reach a value
of up to 40% [see Fig. 8(b)].

The main difference between the valley polarizations P and
PN is that, at small field amplitudes, the normalized valley
polarization almost does not depend on the field amplitude.
Its dependence on the parameters of the nanoring can be
approximated by the following expression:

PN = −0.005886Rout − 0.0072Rin + 0.4964. (23)

This expression can be used to predict the valley polarization
for a nanoring of a given size.

Comparing the behaviors of P and PN , we can see that,
at a finite field amplitude F0, P increases with F0, while PN

decreases. For the valley polarization P, its increase with F0 is
because, at larger field amplitudes, more nanoring levels are
excited, resulting in larger populations of both the K and K ′
valleys and, correspondingly, in larger valley polarization P.
For the valley polarization PN , which is defined as a fraction
of excited electrons that are valley polarized, both the num-
ber of excited electrons and the difference between the CB

populations of the two valleys increase with F0. The main
contribution to the difference in the CB populations of the
valleys comes from the edge states, while the total population
of the CB is determined by both the edge states and the bulk
states of the nanoring. As a result, the valley polarization PN

decreases with increasing the field amplitude.
Expressions (22) and (23) have been obtained for a partic-

ular profile of the optical pulse, which is a single oscillation
circularly polarized optical pulse with a time constant of τ =
1 fs. Similar expressions can be obtained for optical pulses
of different polarizations, frequencies, and durations. The pa-
rameters of the edge states of the graphene nanoring depend
on the shape of the ring and the model used to describe it
[47]. Thus, they will also affect the valley polarization and the
corresponding expressions (22) and (23).

IV. CONCLUSION

In graphenelike systems with two valleys, the valley po-
larization can be induced only through processes which break
the time-reversal symmetry. For example, such polarization
can be introduced in systems interacting with a circularly
polarized pulse. Here, ultrashort optical pulses are particularly
interesting since they allow control of the valley degree of
freedom on a femtosecond timescale. The valley polarization
can be induced by such an ultrashort circularly polarized pulse
in monolayers of graphenelike materials only if they have
broken inversion symmetry. The broken inversion symmetry
also introduces a finite band gap in the system. Thus, in
pristine graphene, which has inversion symmetry, no valley
polarization can be generated by any short optical pulse. To
resolve this problem, we considered a graphene monolayer
with broken translational symmetry, i.e., a graphene nanoring.
The energy spectrum of such a nanoring consists of bulk states
with a finite band gap between the valence and conduction
bands and in-gap edge states. Such in-gap states are mainly
responsible for generating the finite valley polarization of the
nanoring. The valley polarization induced by the ultrashort
optical pulse depends on the parameters of the nanoring,
i.e., its inner and outer radii. With increasing the size of the
nanoring, the normalized valley polarization decreases and
converges to a zero value for the infinite graphene monolayer.

Although we considered a particular shape of the graphene
nanosystem, i.e., a nanoring, we expect that the valley polar-
ization can be induced by an ultrashort circularly polarized
pulse for a graphene nanoflake of any shape. In our analysis,
we also did not consider intervalley mixing induced by the
boundaries of the graphene nanosystem. Such mixing can be
significant only for relatively small graphene nanorings.
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