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Theory of a continuous bandwidth-tuned Wigner-Mott transition
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We develop a theory for a continuous bandwidth-tuned transition at fixed fractional electron filling from
a metal with a generic Fermi surface to a “Wigner-Mott” insulator that spontaneously breaks crystalline
space-group symmetries. Across the quantum critical point, (i) the entire electronic Fermi surface disappears
abruptly upon approaching from the metallic side, and (ii) the insulating charge gap and various order parameters
associated with the spontaneously broken space-group symmetries vanish continuously upon approaching from
the insulating side. Additionally, the insulating side hosts a Fermi surface of neutral spinons. We present a
framework for describing such continuous metal-insulator transitions (MITs) and analyze the example of a
bandwidth-tuned transition at a filling, ν = 1/6, for spinful electrons on the triangular lattice. By extending the
theory to a certain large-N limit, we provide a concrete example of such a continuous MIT and discuss numerous
experimental signatures near the critical point. We place our results in the context of recent experiments in moiré
transition metal dichalcogenide materials.

DOI: 10.1103/PhysRevB.106.155145

I. INTRODUCTION

Conventional quantum phase transitions (QPTs) in insu-
lators associated with the onset of spontaneously broken
symmetries can be described using the classic Landau-
Ginzburg-Wilson framework. The critical field theory is
governed by the long-wavelength and low-energy fluctuations
of a local “order parameter.” Continuous QPTs in metals are
significantly more challenging to describe theoretically due
to the abundance of low-energy gapless excitations in the
vicinity of an electronic Fermi surface (FS). Arguably the
most intriguing example [1] of such a continuous QPT in a
metal is associated with the abrupt disappearance of an entire
electronic FS, as the metal evolves into an electrical insulator
at a fixed density. A theory for such a continuous Mott tran-
sition at half filling νc = 1/2 was described in Ref. [2]. The
corresponding Mott insulating state is a quantum spin liquid
that preserves all symmetries of the underlying microscopic
Hamiltonian. In this article, we focus on a particular class of
such continuous bandwidth-tuned metal-insulator transitions
(MITs) at fixed electron filling, νc < 1/2, where the insula-
tor spontaneously breaks underlying crystalline space-group
symmetries. Such a state is often dubbed a “Wigner-Mott”
(WM) insulator, and we will use that terminology. The evolu-
tion from a Wigner-Mott insulator to a symmetry-preserving
Fermi liquid metal raises a number of fascinating and deep
theoretical questions, and further may be experimentally ac-
cessible in the near future.

There have been a number of recent theoretical and
experimental breakthroughs in realizing interaction-induced
insulators at partial filling of moiré flat bands in bilayers of
transition metal dichalcogenide (TMD) materials [3]. These
include the observation of a robust Mott insulator at half
filling of the moiré unit cell [4] accompanied by the formation

of local moments and a panoply of Wigner-Mott insulators
at a sequence of other commensurate fillings [5–7]. The
WM insulators are expected to display a variety of transla-
tional and/or rotational symmetry breaking, some of which
have been observed experimentally. More recently, two in-
dependent works have provided compelling evidence for a
continuous bandwidth-tuned transition from a Mott insulator
to a Fermi liquid metal at fixed νc = 1/2 [8,9]. In addition to
a scaling collapse of the electrical resistivity across the MIT,
the experiment finds the charge gap and the inverse Fermi ve-
locity to vanish continuously upon approaching the transition
from the insulating and metallic sides, respectively. Magnetic
measurements reveal a smooth evolution of the susceptibility
across the MIT and no sign of any magnetic ordering in the
Mott insulator down to the lowest temperatures. Numerous
aspects of the observed phenomenology are reminiscent of
a continuous transition [2] from a Fermi liquid metal to a
paramagnetic Mott insulator with a spinon Fermi surface.
Additionally an exact diagonalization approach lends support
to a continuous MIT at νc = 1/2 in the TMD setting, or at
least a weakly first-order transition [10].

In this paper, we will be concerned with the important
theoretical question regarding the nature of the evolution from
a symmetry-preserving Fermi liquid to a WM insulator, which
has co-existing crystalline orders, at fixed νc (< 1/2). This is
illustrated in Fig. 1. The metal has an electronic Fermi surface
with an area (in units of the Brillouin zone area) fixed by
Luttinger’s theorem by the filling νc. The WM insulator on the
other hand has no electronic Fermi surface but broken space-
group symmetries. Given the striking differences between
these two phases an obvious expectation for this evolution
is that it occurs through a direct first-order transition. Al-
ternately the evolution can also happen in a more elaborate
manner through intermediate phases which are charge ordered
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FIG. 1. A Wigner-Mott (WM) insulator with charge density
wave order evolves into a metal as a function of increasing bandwidth
at fixed fractional filling. This paper analyzes critically the possibility
of a direct continuous transition between a (different) WM insulator
and a metal with an electronic Fermi surface.

but remain metallic. Both of these scenarios have been con-
sidered before in numerous other works, such as [11–14].
The latter is realized in a simple weak-coupling treatment
of models of correlated electrons. In the intermediate phase
the broken translation symmetry leads to an even number
of electrons in the enlarged unit cell. The electronic Fermi
surface can then be shrunk continuously to zero across the
metal-insulator transition. A transition of this type is illus-
trated in Fig. 2(a) and discussed in Sec. II A. Previous works
using a variety of mean-field-like approaches have studied
these types of transitions in twisted bilayer transition metal
dichalcogenides [15–17].

But is a direct continuous transition between the
symmetry-preserving Fermi liquid and a Wigner-Mott in-
sulator at all allowed even in principle? Contrary to the
conventional scenarios described in the previous paragraph,
such a transition must necessarily involve both the continuous
disappearance of the full Fermi surface (without shrinking),
and the concomitant development of charge order which

FIG. 2. Scenarios for continuous MIT at fixed νc = 1/q (for q >

2): (a) A conventional transition where the electronic Fermi surface
is reconstructed by spin density wave order and shrinks continuously
with increasing strength of this order via a Lifshitz transition. This
type of transition is discussed in detail in Sec. II A. (b) The main
subject of the present paper concerns a direct transition between
the WM insulator and a metal without any spontaneously broken
symmetries. The chargon theory is then described by a deconfined
critical point between a superfluid and charge-ordered Mott insulator.
Within our theory the charge order will not be of the

√
3 × √

3 type;
this is discussed in the main text. We show instead the triangular
superlattice which is a possible mean field charge order in our theory.

breaks space-group symmetry. Importantly, the onset of the
broken symmetry alone cannot account for the disappear-
ance of the entire FS across the transition into the insulator.
Thus, in spite of the existence of a possible order param-
eter associated with the spontaneously broken translational
symmetry, the continuous metal-insulator transition at fixed
νc lies fundamentally beyond a mean-field order-parameter-
based paradigm in the absence of any fine-tuning (e.g., in
the form of FS “nesting”). As a result, the low-energy field
theory will not be governed by the fluctuations of these order-
parameter fields and necessitates a more complex description.

Remarkably we will show in this paper that con-
tinuous Wigner-Mott transitions are indeed possible. We
describe a low-energy effective field theory for such
transitions and determine many of its universal critical
properties. The WM insulator we find will be frac-
tionalized with a Fermi surface of electrically neutral
spinons.

Our results generalize the theory of continuous Mott tran-
sitions [2] to fillings νc < 1/2 where WM insulators can arise.
To that end we will work with a parton description where
the electron operator at site r and spin α is fractionalized
as a product: crα = br frα where br is a spinless boson (the
chargon) that carries the electric charge of the electron, and
frα is an electrically neutral spin-1/2 fermion (the spinon). In
this representation the conventional Fermi liquid is described
[18] as a superfluid of chargons in the presence of a Fermi
surface of spinons. The WM insulator, on the other hand, is
described as a bosonic WM chargon insulator in the presence
of the spinon Fermi surface. The transition between these two
phases is thus viewed as a superfluid-WM insulator transition
of the bosonic chargons. A direct continuous transition be-
tween these two phases of bosons is forbidden by standard
Landau theory as they break distinct symmetries. However
Landau-forbidden continuous phase transitions are known to
occur, and are described by the theory of deconfined quantum
criticality [19,20]. We will thus first study the possibility of
such a Landau-forbidden superfluid-WM transition of bosons.
For the triangular lattice (which will be our main concern
here) a theory for such a transition was formulated in Ref. [21]
using a dual description in terms of vortex fields. We will
introduce a large-N generalization of this model that allows us
to calculate its properties. We will then include the coupling
to spinons (and associated emergent gauge fields) to study
the electronic WM transition. A cartoon of this transition is
illustrated in Fig. 2(b).

A recent work [22] has also discussed the possibility of
a continuous MIT, where the insulator breaks translational
symmetry, focusing mostly on the case of half filling on
the triangular lattice. Importantly, the authors do not address
the role of the possibly relevant couplings between gauge-
invariant composite operators in the chargon and spinon
sectors, respectively. In the absence of a “dynamical decou-
pling” between these matter sectors (Ref. [2]; see below),
the resulting low-energy theory can become strongly coupled
and the transition need not be described solely in terms of
condensation of the chargon fields. We analyze this aspect in
the present paper carefully, finding a solvable example where
the chargon and spinon sectors decouple dynamically at the
critical point.
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The remainder of this article is organized as follows:
In Sec. II A, we illustrate through several examples the
inherent challenges associated with constructing a simple
order-parameter-based Hartree-Fock type theory for describ-
ing a continuous transition between a metal and a WM
insulator at fixed electron filling (in the absence of fine-
tuning). In Sec. II B, we review the key features associated
with electron “fractionalization” and a parton-based frame-
work that allow us to describe such continuous MIT at fixed
electron filling in the simpler setting of νc = 1/2. In Sec. III,
we use the parton formulation and the charge-vortex duality
to develop a theory for the metal to WM insulator transition at
fixed νc = 1/q. Section IV is devoted to discussing the salient
experimental signatures near the MIT and we end with an
outlook toward a number of pressing questions in Sec. V. A
number of technical details are summarized in the appendices.

II. PRELIMINARIES

A. Limitations of a weak-coupling analysis

In this section, we will discuss two examples of the onset
of simple order parameters in a metal, inspired by the possible
density wave states in the WM insulator at a fixed νc = 1/6 on
the triangular lattice. As expected, in both cases the generic
electronic Fermi surface will not disappear immediately upon
the spontaneous breaking of translational symmetry. Instead,
the phase across the critical point describes a metal with
reconstructed electronic Fermi surfaces. These reconstructed
Fermi surfaces shrink and can eventually be gapped out once
the magnitude of the order parameter becomes large. More
generally, a generic electronic Fermi surface cannot be gapped
entirely due to an order parameter that carries a finite center-
of-mass momentum across a continuous transition, regardless
of its precise microscopic nature.

Let us consider a
√

3 × √
3 electronic charge-ordered state

pictured in Fig. 1; note that the electrons have a remaining
spin degree of freedom, which needs to be accounted for in
order to describe an insulating state. Starting from the long-
ranged Coulomb interactions in the microscopic model, the
magnetic ordering in the insulating state will be determined by
the competition between various ferro- and antiferromagnetic
exchange interactions [15]. A possible state with the spins
forming a 120◦ Néel order on the effective triangular lattice
(
√

3 × √
3) Mott insulator is shown in Fig. 3(a). These or-

derings can be readily implemented at a mean-field level (see
Appendix A 1). As the strength of the magnetic (spin density
wave) order, �, is increased continuously from zero, there
is an onset of a charge gap proportional to � along certain
portions of the electronic Fermi surface. At fixed νc = 1/6, as
� increases to the order of the single-electron bandwidth, the
system eventually becomes a robust band insulator [Fig. 3(a)].
As noted earlier, the electronic Fermi surface does not dis-
appear instantly with the onset of the order, but shrinks to
zero via a Lifshitz-type transition deep inside the magnetically
ordered metallic state.

It is possible to host other forms of translational symmetry
breaking at the same filling; consider, e.g., the case of an
electronic “stripe” order [Fig. 3(b)]. The charge density with
period three arranges itself into unidirectional stripes and we

FIG. 3. Evolution of the electronic Fermi surface with increasing
magnitude of various mean-field order parameters. (a) Left: The
proposed WM insulator is shown in real space, where the blue
circles indicate electronic density and the arrows indicate the spin
configuration. Right: The evolution of the electronic Fermi surface
in the original Brillouin zone as a function of increasing �/t , where
t is proportional to the bandwidth. The Fermi surface disappears
around �/t � 4. The faint traces for the Fermi surface correspond to
smaller values of �/t and are overlayed in each panel for tracking
the shrinking evolution. (b) Left: The proposed WM insulator in
real space with the same notation as in (a). Right: The evolution of
the electronic Fermi surface with increasing �/t . The Fermi surface
disappears for �/t � 1.

must further address the fate of the spin to account for an
insulating phase. A possible state is shown in Fig. 3(b), where
the spins order antiferromagnetically along the unidirectional
stripes. When this density wave is implemented, there are
six sites per unit cell, allowing for a band insulator at filling
νc = 1/6. As discussed in Appendix A 2, once the strength of
the density wave becomes of order the single-electron band-
width, the system will again become a robust band insulator
at filling νc = 1/6. However, as in the previous example, the
Fermi surface will not disappear instantly with the onset of
the combined charge and spin density waves, but will rather
undergo a Lifshitz transition out of a metallic density wave
state.

B. Review of continuous MIT at νc = 1/2

To describe a continuous MIT at fixed fractional (com-
mensurate) fillings, we will begin by writing the electron
operator in terms of fractionalized degrees of freedom (i.e.,
partons) coupled to emergent, dynamical gauge fields. The
resulting field theory in terms of these new degrees of freedom
is strongly coupled and requires careful analysis. We will
briefly review the key elements of the theory which describes
a transition from a metal to a paramagnetic Mott insulator
with a spinon Fermi surface at νc = 1/2, discussed in more
detail in [2], before generalizing it to other νc = 1/q (q > 2)
in Sec. III below. At the outset, we note that a field theory for
our transition of interest has not been studied before, even in
the setting of the density (or rs) tuned MITs that have been
analyzed extensively in the context of the two-dimensional
electron gas.
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We write the electron operator as crα = br frα , where br is
a spinless, charge-e boson (“chargon”) and frα is a spin-1/2
electrically neutral fermion (“spinon”). In the simplest theory,
both of these fields are coupled minimally to an emergent
dynamical U (1) gauge field, ar ≡ (a0, a). The general form
of the imaginary-time action for the matter fields at any filling
can then be written as

S = S[ f ,a] + Sa + S[b,a] + S[b, f ], (1a)

S[ f ,a] =
∫

τ,k
f †
kα

(
∂τ − ia0 − ε

f
k−a + μ f

)
fkα, (1b)

Sa = 1

2e2
a

f 2
μν, (1c)

S[b, f ] =
∫

dτd2rObO f , (1d)

where (ε f
k − μ f ) represents the spinon dispersion (including

the chemical potential, μ f ) and fμν = ∂μaν − ∂νaμ is the field
strength, with e the gauge coupling. The terms in S[b, f ] include
all gauge-invariant operators, Ob and O f , respectively; a spe-
cific example includes the chargon energy density (Ob = |b|2)
coupled to a fermion bilinear (O f = f † f ). For the case of the
WM transitions considered later, special care will be needed
to address the fate of couplings to a number of physically
relevant Ob.

For the bandwidth-tuned MIT at νc = 1/2, S[b,a] is de-
scribed by the theory for a relativistic boson, b, coupled
minimally to the gauge field, a:

S[b,a] =
∫

τ,r
[|(∂μ − iaμ)b|2 + s|b|2 + λ|b|4 + . . .]. (2)

At the mean-field level, the MIT is tuned by driving a su-
perfluid (〈b〉 �= 0) to Mott insulator (〈b〉 = 0) transition for
the boson. The transverse components of the gauge field a
receive singular frequency and momentum-dependent correc-
tions from the gapless matter fields (at the critical point),
leading to a z = 2 dynamics. However, the feedback of a on
the boson dynamics remains nonsingular and can be ignored;
as a result, S[b,a] is effectively described by a 3D-XY transi-
tion for b in the presence of a spinon Fermi surface coupled
to a. The fate of the MIT and the low-energy field theory is
then dictated solely by S[b, f ]. For the energy-energy coupling
considered earlier, as long as the correlation length exponent
ν > 2/3, the coupling is irrelevant. This is indeed the case for
the 3D-XY transition. Therefore at νc = 1/2, the b and f + a
sectors of the theory decouple dynamically from each other.
This is crucial for describing the fate of the ultimate low-
energy properties of the resulting theory, S , and the complex
temperature-dependent crossovers in the vicinity of the MIT.
The critical point also hosts a sharp electronic Fermi surface
without any low-energy quasiparticles—a “critical Fermi sur-
face” [1].

III. CONTINUOUS WIGNER-MOTT
TRANSITION AT νc = 1/q

Let us now generalize the action, S , for describing continu-
ous bandwidth-tuned transitions at other fixed commensurate

fillings. Specifically, the important modifications will arise in
the form of Sb and S[b, f ], respectively.

A. Criteria for dynamical decoupling

As noted earlier, we will be interested in the second sce-
nario in Fig. 2(b), where the chargons undergo a superfluid to
WM insulator transition with broken translational symmetry.
However, before specifying the action Sb that can describe
such a transition, it is important to note a complication that can
arise due to the onset of broken translational and/or rotational
symmetries in the WM insulator. The ultimate fate of the
continuous MIT at a fixed fractional νc is governed by S[b, f ].
In addition to the possible terms that were already considered
above (e.g., energy-density couplings), the presence of various
crystalline orders can complicate the nature of the transition.

As was already evident in the discussion of Fermi surface
reconstruction across a density wave ordering in Sec. II A,
the interplay of the order parameters that describe the onset
of various crystalline point-group symmetry breaking and the
excitations near the gapless Fermi surface can lead to a non-
trivial dynamics at low energies. The same considerations will
also apply near the MIT, where the electron Fermi surface
disappears and evolves into the spinon Fermi surface; see
Fig. 2(b). Therefore, we need to include a coupling between
the particle-hole fluctuations near the spinon Fermi surface
to Ob ≡ ρQ, N , where ρQ is a charge density wave order at
wave vector Q and N is a nematic order (associated with a
spontaneously broken lattice rotational symmetry) in S[b, f ].

Integrating out the low-energy fermionic excitations near
the spinon Fermi surface generates terms in the effective ac-
tion in imaginary frequency of the form,

Seff[ρQ,N ] =
∫

ω,q

[
|ω||ρQ|2 + |ω|

q
|N |2

]
, (3)

as a result of familiar Landau damping. In order for Seff to
be an irrelevant perturbation at the critical point between the
metal and WM insulator, we require that the anomalous di-
mension for the charge-order and nematic fields satisfy ηρ >

1 and ηN > 2, respectively. If satisfied, the different matter-
field sectors (i.e., the chargons and spinons) will once again
decouple dynamically, provided the energy-energy couplings
are also irrelevant, just as in the νc = 1/2 MIT. Note that the
above constraints on ηρ and ηN do not depend on the pre-
cise microscopic relationship between the order parameters
and the chargon fields, which we will specify explicitly in
Sec. III D. However, the actual values of ηρ, ηN will depend
on Sb that is appropriate for a given MIT. Importantly, Sb must
describe a continuous superfluid to Wigner crystal transition
of the chargons, which is Landau forbidden. The theory for
the chargons must necessarily be a deconfined quantum phase
transition. In the next few sections, we introduce a theory that
realizes such a deconfined phase transition for the chargons
and analyze its fate in the presence of coupling to the gapless
spinons.

B. Dual vortex theory

Instead of working with the chargon (b) fields directly, it
will be fruitful to consider the dual vortex theory [23], where
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TABLE I. Triangle PSG consistent with the gauge choice for A
made in [21]. Here ω = e2π i/3 and the threefold translational symme-
try is evident. These generators are pictured in Fig. 4.

ϕ0 ϕ1 ϕ2

T1 ϕ1 ϕ2 ϕ0

T2 ωϕ1 ω2ϕ2 ϕ0

R2π/3 ω1/4ϕ2 −iϕ0 ω1/4ϕ1

Id1 ω−1/4ϕ∗
2 −ω1/4ϕ∗

1 ω−1/4ϕ∗
0

Id2 ω−1/4ϕ∗
0 −ω1/4ϕ∗

1 ω−1/4ϕ∗
2

the vortex field is coupled to a noncompact gauge field, A,
dual to the Goldstone mode of the superfluid. The vortex con-
densate is the bosonic Mott insulator and the vortex insulator
is the bosonic superfluid. Importantly, when a vortex winds
around a site containing a boson it will pick up a flux from
A. When the boson density is νb = 2νc, the flux upon winding
around a lattice site is 2πνb. The resulting vortex multiplet
theory then necessarily transforms under the projective sym-
metry group (PSG) of the underlying lattice.

In order to be concrete, we will focus on the case of
νc = 1/6 and describe a MIT from a metal to WM insulator
with charge order. On the triangular lattice, which is of special
interest in light of the moiré TMD experiments, Sb can be
expressed in terms of the vortex multiplet, ϕl (l = 0, 1, 2), as

S[b,a] =
∫

τ,r

[ ∑
l

|(∂μ − iAμ)ϕl |2 + s|ϕl |2

+ λ

[ ∑
l

|ϕl |2
]2

+ g
∑

l

|ϕl |4 + · · ·

+ 1

2e2
A

(
εμνλ∂νAλ

)2 + 1

2π
εμνλaμ∂νAλ

]
. (4)

This action is discussed in much more detail in [21]. The
vortex multiplet, ϕl , represents the “permutative representa-
tion” of the PSG transformations, as listed in Table I (and

FIG. 4. The triangular lattice with bosons in blue and vortices in
red. Vortices live in the center of the triangular cells, or alternatively
on the sites of the dotted dual hexagonal lattice. Each boson will
induce a phase when a vortex path encloses it. Also shown are the
generators of the triangular symmetry group: T1,2 are translations by
a1,2; Id1 , Id2 are reflections about d1, d2; and R2π/3 is a rotation by
2π/3 about the site labeled with a magenta dot.

FIG. 5. (a) Possible mean-field states for g > 0. If w < 0 the
system will prefer stripe order in one of the three possible stripe
directions, while if w > 0 the system will prefer clusters of chargons
that form a triangular superlattice. Note that Eq. (4) and Eq. (6)
have an additional singlet term |ϕ|8 with a positive coefficient that
ensures stability even if w < 0. (b) The RG flow in the N = ∞ limit
of Eq. (6). In this limit the stable fixed point corresponds to λ = 0,
g > 0, or three decoupled O(2N ) models. The charge configuration
in the mean field will thus be one of the two possibilities in (a).

see Fig. 4).1 These vortex flavors can be thought of as tied
to fractional chargons. Indeed if n of the vortex flavors are
condensed then a “vortex” of any of the condensed ϕl , i.e., a
state where the phase of any ϕl winds by ±2π at infinity, will
carry an attached flux of 2π/n and will thus correspond to a
localized boson number of ±1/n. The emergent gauge field
thus couples to the theory via a mutual Chern-Simons term
with Aμ, as εμνλ∂νAλ represents the physical chargon current.

We have included up to fourth-order terms in the expansion
above, consistent with the PSG transformations. In particular,
the equations are consistent with the full permutation sym-
metry of the vortex multiplets implied by the triangle PSG
and with time-reversal symmetry. Additionally they possess
particle-hole symmetry for each vortex multiplet. It is worth
noting that Sb in Eq. (4) is also invariant under an emergent
internal symmetry U (1)3/U (1), which is broken by a term at
the sixth order that is consistent with the PSG transformations:

Lw = w[(ϕ∗
0ϕ1)3 + (ϕ∗

1ϕ2)3 + (ϕ∗
2ϕ0)3 + H.c.]. (5)

At the mean-field level, Sb in Eq. (4) can be analyzed readily.
If g < 0, λ > |g| the ground state for s < 0 corresponds to
having only one of the vortex flavors condensed, leading to
an insulator with a single chargon on every third site [21]; see
Fig. 1. This is the Wigner crystalline phase that one would
expect from purely classical considerations due to the further-
neighbor Coulomb repulsion on the triangular lattice, and is
quite likely the phase observed in certain moiré TMD bilayers
at strong interactions [24]. On the other hand, for g > 0 it

1These variables are denoted ξl in Ref. [21].
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will be energetically favorable to condense all of the vortex
flavors, leading to other charge-ordered insulators [21] [see
Fig. 5(a)]. As discussed above, in these states the chargon will
generically split into three.

The role of fluctuations beyond the mean-field level and
the associated low-energy properties of Sb are not presently
known. To make controlled analytical progress and examine
the key theoretical issues that determine the nature of the MIT,
including the fate of dynamical decoupling, we will construct
a “solvable” large-N limit in the next subsection, where the
low-energy properties can be worked out reliably.

C. Large-N extension of the dual vortex theory

Let us promote each of the vortex flavors to complex vec-
tors with N components (∈ CN ): {ϕ0, ϕ1, ϕ2} → {ϕ0,ϕ1,ϕ2},
and promote the action in Eq. (4) to

Sb →
∫

τ,r

[∣∣∣∣
(

∂μ − i√
3N

Aμ

)
ϕ

∣∣∣∣
2

+ s|ϕ|2 + λ(|ϕ|2)2

+ g
2∑

l=0

(|ϕl |2)2 + 1

2e2
A

(εμνλ∂νAλ)2

]
, (6)

where ϕ = (ϕ0,ϕ1,ϕ2) ∈ C3N .2 Note that we have rescaled
the noncompact U (1) gauge field Aμ so that it will properly
drop out in the N → ∞ limit; see [25].

In this limit the theory then has an emergent internal O(6N )
symmetry which is broken to O(2N )3

� S3 due to the term
proportional to g. Based on a (4 − ε) expansion [26], the
theory has the following four fixed points [Fig. 5(b)]:

(1) the Gaussian fixed point with g = λ = 0,
(2) the fully O(6N ) symmetric theory with g = 0, λ > 0,
(3) three decoupled O(2N ) models with λ = 0, g > 0, and
(4) the O(2N )3

� S3 fixed point with λ, g �= 0 [27].
Furthermore the stable fixed point will be (3), i.e., when

λ = 0 and g > 0 [26], implying that the N → ∞ theory will
condense all vortex flavors at the mean-field level on the
insulating side. Note that the resulting charge density wave
order will not be given by the usual

√
3 × √

3 pattern, as in
Fig. 1. Instead, the mean-field charge density patterns will
be as shown in Fig. 5(a), depending on the sign of the w

term in Eq. (5). Within our present large-N framework, we
will investigate next whether a continuous MIT is possible
between a metal without any broken symmetries and either
of the two ordered WM insulators shown in Fig. 5(a). This
primarily requires addressing the fate of dynamical decou-
pling, as determined by the terms contained in S[b, f ] [Eq. (1d)]
and Seff[ρQ,N ] [Eq. (3)]. Note that at the fixed point (3) all

2This theory has an internal SU (3N ) symmetry which is broken
to a U (N )3

� S3/U (1) symmetry by the g term. Note that the PSG
transformations act trivially on the additional degrees of freedom.
The w term in Eq. (5) will further break this to a U (N ) � S3/U (1) �
SU (N ) � S3 symmetry. The large-N extension displays an extra
global SU (N )/ZN symmetry; our ultimate interest is in the physical
N = 1 limit of this construction. The SU (N ) � S3 symmetry group
preserved by the w term is the smallest internal symmetry group that
is consistent with the both the permutation required by the triangle
PSG in Table I and the requirements for global SU (N ) symmetry.

FIG. 6. The Fermi surface at νc = 1/6 produced by a third-
nearest-neighbor hopping model on the triangular lattice with t2/t1 =
2, t3/t1 = −1.25. (a) The Fermi surface is shown in black. The re-
ciprocal lattice vectors b1, b2 are also pictured in purple. (b) The
Fermi surface shifted by the wave vector Q01 = b2/3 is shown in
purple; it avoids hot spots with the original Fermi surface. Though
not shown this Fermi surface also avoids hot spots for all Qmn with
m �= n. (c) The Fermi surface shifted by Q11 = (b1 + b2)/3 is shown
in purple; parts of it are nearly nested with the original Fermi surface.

terms that are sixth order or higher, e.g., the w term, will be
marginally irrelevant in (2 + 1) dimensions.

D. Dynamical decoupling and fate of continuous MIT

In the N → ∞ limit, for the fixed point denoted (3) in
the previous subsection and Fig. 5(b), the correlation length
exponent

ν = 1 − O

(
1

N

)
, (7)

and the singlet operator thus has scaling dimension �S = d −
1/ν = 2 + O(1/N ). At the decoupled O(2N ) critical point
the singlet operator is any linear combination of the |ϕl |2.
All other operators have the scaling dimensions they exhibit
at the Gaussian fixed point, i.e., the naive scaling dimension
[28]. This allows us to immediately dispatch with the energy-
energy couplings expressed in S[b, f ]. Based on the arguments
we reviewed in Sec. II B, such couplings will be irrelevant at
the critical point [2] since ν = 1 > 2/3 in the N = ∞ limit.
The only thing remaining then is to investigate whether the
effective action that is generated in Eq. (3) is irrelevant at the
same critical point.

Let us begin by considering a general density observable,

ρ(r) =
∑
m,n

ρmnω
mr1+nr2 , (8)

where r = r1a1 + r2a2 (a1,2 ≡ basis vectors) and the ρmn are
order parameters for the various density wave states with wave
vector Qmn = (mb1 + nb2)/3, and b1, b2 are shown in Fig. 6.
In the N = 1 limit of Eq. (6), the ρmn can be expressed in terms
of the vortex flavors as [21]

ρmn ∝ ω−mn/2+(n−m)/6
∑

l

ϕ∗
l ϕl+m+2nω

m(l+m+n−1), (9)

with a proportionality scalar factor, S(m, n), not prescribed
solely by the PSG. When we promote ϕl to ϕl we will re-
quire that the global SU (N ) symmetry of our theory space is
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unbroken, so the ϕl variables in the above relation will be
trivially extended to ϕl .

We first consider the relevance of the order parameters,
ρmn, for m �= n. These can include the density wave states
with the ordering wave vectors seen in Fig. 5(a), i.e., those we
expect at the mean-field level. Based on Eq. (9), we conclude
that ρmn with m �= n does not transform as a singlet opera-
tor; the naive scaling dimension �ρmn = (d − 2 + ηρmn )/2 =
1, and thus ηρmn = 1. Based on our earlier arguments of
Sec. III A, we conclude that this is a marginal coupling and so
the effect of the charge order on the spinon Fermi surface must
be considered. However, the ordering wave vector, Q, will
only couple the spinon Fermi surface to the chargon density
wave if Q connects points along the Fermi surface that are
separated by 2kF , leading to “hot spots.” Fortunately, at the
densities of interest and for sufficiently generic Fermi sur-
faces, such hot spots can be avoided altogether (i.e., |2kF | <

Q). Consider, for instance, a dispersion generated by including
up to third-nearest-neighbor hopping on the triangular lattice,
with t2/t1 = 2, t3/t1 = −1.25 (Fig. 6); we can avoid the hot
spots altogether for Q = b2/3. In fact this choice of hoppings
will avoid hot spots for all Qmn, m �= n. This serves as a proof
of principle that it is not unreasonable for the hot spots to be
absent for Qmn, m �= n, at the densities of interest.

While the Fermi surface may avoid hot spots at the wave
vectors noted above, it exhibits near nesting for Q11 and Q22.
These correspond to the

√
3 × √

3 charge order discussed
earlier (Fig. 2), and we thus must consider the relevance of
this charge order. We note that for ρmn with m = n, ρnn ∝∑

l |ϕl |2ωnl . This is a linear combination of singlet operators
at the decoupled O(2N ) fixed point. Hence, �ρnn = �S = 2,
leading to ηρnn = 3. Using the same arguments from earlier,
ρnn is now irrelevant at the fixed point. Thus, even when the
Fermi surface is nearly nested for these special wave vectors
and can host hot spots (Fig. 6), any possible

√
3 × √

3 density
wave in the chargon sector will decouple dynamically from
the spinon Fermi surface.

Finally, we must also examine the effects of coupling
the particle-hole fluctuations near the Fermi surface to the
nematic order N , as outlined in Eq. (3). The lowest order pos-
sible nematic parameter constructed out of the vortex degrees
of freedom that preserves the global SU (N ) symmetry will be
of the form

N (ϕ,ϕ†) =
∑
l,k

clkϕ
†
l ϕk, (10)

where clk ∈ C. In the presence of only a spontaneously
broken rotational symmetry (i.e., no other form of broken
translational symmetry), we have clk = cl−1,k−1 and clk =
ωl−kcl−1,k−1 from T1 and T2 in Table I. But then we must
have that clk ∝ δlk and N ∝ |ϕ|2. This is clearly invariant
under R2π/3 and thus cannot be a valid nematic order pa-
rameter. Thus N must be at least quartic in the ϕ fields,
since it must also preserve global U (1) symmetry. This means
�N = (d − 2 + ηN )/2 � 2 and thus ηN � 3. Once again,
the coupling of the nematic order to the spinon Fermi surface
is irrelevant.

To conclude, for our specific large-N generalization of
the model, we arrive at the remarkable result that the dual
vortex theory for the chargons decouples dynamically from

the spinons for N → ∞. In our discussion so far, we did
not explicitly state the role of the transverse gauge-field fluc-
tuations, a. Including the effects of these fluctuations does
not modify these conclusions and the matter fields remain
decoupled (see Appendix B 3). The situation is reminiscent
of the bandwidth-tuned transition at νc = 1/2 [2]; the Landau
damping term for a that is generated from the Fermi surface
behaves like a “Higgs mass” term when the dynamical critical
exponent z = 1 for the chargons. Thus, the fluctuations of a do
not affect the chargon dynamics, and neither can the f affect
the chargons indirectly via a coupling to a.

IV. EXPERIMENTAL SIGNATURES

Based on our theoretical framework, we can make a num-
ber of predictions for experimentally measurable quantities
near the metal-WM insulator critical point. Interestingly, a
number of these signatures are qualitatively similar to the
behavior near the bandwidth-tuned transition for νc = 1/2
[2], while the exact critical singularities are different. The
technical details are summarized in Appendix B and we only
focus on the results here.

As the critical point is approached from the insulating side
the charge gap will vanish continuously with exponent zν,
where z = 1; within our large-N formulation, νz = 1. Going
beyond this limit, even to N = 1, a second-order transition of
the kind we describe is only possible if ν > 2/3, z = 1.

Upon approaching the critical point from the metallic side,
the fermion self-energy due to scattering off the fluctuations
of the renormalized U (1) gauge field will be given by

� f (K, iω) = iaω

{
2 ln(1/ρs), on the FL side,
ln(1/|ω|), at the critical point, (11)

where a is a constant and K lies on the spinon Fermi surface.
At the critical point we recover a marginal Fermi liquid form
for the self-energy; in the Fermi liquid (FL), the singular form
is cut off by ρs ∼ 1/ξ , the superfluid stiffness associated with
the chargons, and ξ the correlation length. On the FL side, the
quasiparticle residue will behave as Z ∼ |s − sc|2β/ ln(1/|s −
sc|), where s is the parameter tuning the transition. For the
theory at large N , we have β = 1/2. Additionally the effec-
tive mass of the quasiparticle will diverge logarithmically as
the transition is approached from the FL side, which will
likely manifest itself in a Kadowaki-Woods scaling of the
coefficient of the T 2 resistivity and in the Sommerfeld co-
efficient associated with the specific heat. The Ioffe-Larkin
rule (Appendix B 4) for the electronic compressibility, κ−1 =
κ−1

b + κ−1
f , with κb ∼ ρs, also leads to the conclusion that

κ vanishes continuously upon approaching the critical point
from the metallic side.

The Ioffe-Larkin rules also determine the evolution of the
resistivity across the critical point. In the clean limit, there is
a jump in the resistivity at the critical point of order ∼Rh/e2,
with R a universal number [2,29]. However, there is a minor
modification beyond the considerations of the bandwidth-
tuned transition at νc = 1/2, arising from the structure of the
dual vortex multiplet theory. Specifically, the fixed point in
the large-N limit of our theory is described by three CPN−1

models coupled by the noncompact U (1) gauge field Aμ. The
WM insulator corresponds to each of the ϕl condensed, where
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each CPN−1 will have a topological defect that corresponds to
the winding of the phase of ϕl . As noted earlier, these defects
correspond to fractionalized chargons and carry charge e/3
[21] and the universal jump in resistivity at the critical point
will be given by

ρb = Rh

3(e/3)2
= 3Rh

e2
, (12)

which is three times the size of the jump absent any frac-
tionalization. This enhancement is discussed in greater detail
in [22]. Note that the above relation assumes the underlying
large-N limit. More generally, the universal jump in the resis-
tivity at this filling will have a magnitude that is different from
the corresponding jump at half filling.

Turning our attention now to the effects of translation sym-
metry breaking, which is a new ingredient beyond the MIT
at νc = 1/2, there is a continuous onset of charge density
order upon entering the WM insulator. The density-density
correlations for the various order parameters are controlled
by the corresponding scaling dimensions, �ρ . Specifically
for our large-N formulation of the theory, we anticipate the√

3 × √
3 ordering to have a scaling dimension �ρnn = 2, with

all other charge orderings having scaling dimension 1.
The magnetic properties across the MIT can be probed

through measurements of the spin susceptibility, as has al-
ready been done in the recent experiments of νc = 1/2
bandwidth-tuned transition in moiré TMD materials [8]. For
the MIT discussed in this paper, the spin susceptibility in
the WM will be temperature independent at the lowest tem-
peratures due to the presence of the spinon Fermi surface.
Moreover, the susceptibility will evolve smoothly across the
transition to the expected Fermi liquid form on the metal-
lic side. However, the bandwidth associated with the spinon
Fermi surface is expected to be small, as it is controlled
by the exchange interactions that are generated due to the
longer range hopping and interaction scales in the ordered
Wigner crystal. Therefore, as a function of increasing tem-
peratures, the spinons are expected to crossover into their
“high-temperature” state and can exhibit an analog of a
“Pomeranchuk effect” with a significant enhancement in their
entropy from the fluctuating local moments.

V. OUTLOOK

Preliminary thermodynamic measurements studying the
bandwidth-tuned transition at fixed commensurate fillings out
of certain WM insulators in moiré TMD materials find no
evidence of hysteresis [8]. These platforms provide an ideal
playground for investigating the continuous metal-insulator
transitions that have been the focus of the present theoretical
study. We have used a large-N approach to describe the transi-
tion analytically in a controlled fashion and demonstrated the
possibility of realizing such a continuous transition without
any fine-tuning. However, the physical situation at N = 1 lies
beyond the strict regime of control within our approach and is
possibly described by an entirely different fixed point. More-
over, the specific form of translational symmetry breaking at
large-N in our theory is different from the

√
3 × √

3 charge
ordering observed experimentally [24]. It would be very in-
teresting and helpful to the community to use a combination

of more sophisticated numerical and analytical techniques to
directly study the strongly coupled theory in the N = 1 limit
in the future.

The Wigner-Mott insulator in the present theoretical dis-
cussion hosts a Fermi surface of neutral spinons. It is natural
to address the possibility of a direct transition from a metal to
a Wigner-Mott insulator without gapless Fermi surfaces of any
excitations. Such a transition presents a significant challenge
to theory and requires the spinon Fermi surface to disappear
infinitesimally away from the critical point on the insulating
side without any fine-tuning. A possible route to describing
such transitions has been discussed in another context recently
[30–32].

Finally, it would be interesting to study the effect of doping
slightly away from νc = 1/6 on the insulating side. There are
at least three possibilities. In the simplest scenario, the excess
carriers form a small Fermi surface, behaving as a spectator to
the MIT described above without altering its criticality. How-
ever, at these low densities in the experimental setup, quantum
localization corrections and effects of long-wavelength disor-
der likely play an important role. More interestingly, if the
excess carriers get fractionalized due to strong-correlation
effects on the insulating side, the corresponding chargons can
condense. However, this can immediately lead to a transi-
tion into a metallic state where the spinon Fermi surfaces
reveal themselves and become electronic Fermi surfaces con-
sistent with the full Luttinger count in the reduced Brillouin
zone (due to the underlying translational symmetry break-
ing). Additionally, we also note that the excess doping could,
in principle, enlarge the spinon Fermi surface enough to
introduce “hot spots” at the relevant charge-ordering wave
vectors, and change the nature of the underlying fixed
point.
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APPENDIX A: MEAN-FIELD THEORY OF ELECTRONIC
DENSITY WAVE ORDERING

1. 120◦ Néel order

Consider a single spin density wave of the form discussed
in Sec. II A, e.g., one that rotates the spins by 120◦ as they
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increment along the a2 direction (shown in Fig. 4) but leaves
them unchanged in the a1 direction. The spin wave order
parameter will thus be given by

mi =�S2

[
cos

(
1

3
(b2 · ri )

)
x̂ + sin

(
1

3
(b2 · ri )

)
ŷ
]
, (A1)

mq =�S2

2
[(δq,Q2

+ δq,−Q2
)̂x − i(δq,Q2

− δq,−Q2
)̂y], (A2)

where Q2 = b2/3 is the spin density wave vector. The spin
density wave (SDW) Hamiltonian will then be

HSDW,2 =
∑
k,q

c†
k,α

mq · σαβck+q,β (A3)

= �S2

∑
k

c†
k,↑ck+Q2,↓ + c†

k,↓ck−Q2,↑. (A4)

As discussed in Sec. II A the full SDW will be described
by competing SDW states: one state that wants the spins to
increment by 120◦ as they travel along a2 but be aligned along
a1 and the other which wants alignment along a2. This second
state will be given by HSDW,1, otherwise written the same as
above but with the order parameter �S1 and the spin density
wave vector now given by Q1 = b1/3. The full Hamiltonian
will then be given by

H = Ht + HSDW,1 + HSDW,2, (A5)

where Ht is the hopping Hamiltonian. Since Q1 and Q2 are
both commensurate with the original Brillouin zone the bands
can be folded into the reduced Brillouin zone spanned by Q1
and Q2. As each Q has periodicity 3 the enlarged unit cell
will contain 9 sites, as we noted it must. Accounting for spin
this means there will be 18 bands. This gives us a chance of
observing a band gap at fixed filling νc = 1/6.

We can numerically tune the order parameters �Si with
a specific model of the hopping and confirm that there is
indeed a band gap at νc = 1/6 filling at large �S . First, we
take �S1 = �S2 = � in order to get maximal frustration and
encourage the charge density wave pattern seen. Next we
consider

Ht =
∑

k

ξkc†
kσ

ckσ , (A6)

where ξk is the dispersion given by nearest-neighbor hopping
on the triangular lattice, accompanied by a chemical potential
term meant to keep the system at νc = 1/6. The results are
displayed as Fig. 3(a). With increasing �/t the Fermi surface
is eventually gapped out. We further measure this gap to
be proportional to �, so it is not sensitive to the details of
the hopping Hamiltonian.

2. Stripe order

In the case of the stripe order shown in Fig. 3(b) we have
a SDW with period 2 along the a2 direction and a charge
density wave with period 3 along the a1 direction. The SDW
Hamiltonian is given by

HSDW = �S

∑
k

c†
k,α

σ z
αβck+Q2,β

, (A7)

where Q2 = b2/2. The charge density wave order will not
couple to the spins and can be written simply as

HCDW = �C

∑
k,σ

c†
k,σ

ck+Q1,σ
, (A8)

where Q1 = b1/3. Note that in real space this is given by

HCDW =
∑
ri,σ

[
�C cos

(
1

3
(b1 · ri )

)]
nri,σ . (A9)

Since we want to make it energetically favorable to fill the first
site, ri = 0, and not the next two, ri = a1, 2a1, we must take
�C < 0. Finally, we note that the enlarged unit cell will now
contain 6 original lattice sites, making it possible to observe a
band insulator with filling νc = 1/6.

In order to numerically check this we take −�C = �S =
� > 0. With the same hopping Hamiltonian Eq. (A6) we find
that a gap does open up for νc = 1/6 as �/t is increased.
Further we find that this gap is proportional to � for large
�, so it is again not sensitive to the details of the hopping
Hamiltonian.

APPENDIX B: FURTHER DETAILS OF THE
LOW-ENERGY FIELD THEORY

In this Appendix, we will compute the effective action of
the emergent gauge field aμ and use this to understand the
physics of the low-energy field theory.

1. Effective action for emergent U (1) gauge field

The effective action for the emergent gauge field, aμ, in-
cludes dynamical contributions from both the gapless spinons
and the chargon fields. The spinons couple minimally to a
and lead to a familiar contribution, once the particle-hole
fluctuations near the Fermi surface are integrated out. At small
|ω| and |q| (the momentum deviation from the FS), the spinon
polarizability is

� f (q, iω) = k0|ω|
vF0 |q| + χd |q|2 + · · · , (B1)

where k0 is of order the typical spinon Fermi momentum, vF0

is the typical spinon Fermi velocity, and χd represents the
diamagnetic susceptibility of the spinons.

In the original chargon description, the emergent gauge
field aμ will couple via a term aμ jμb , where jμb is the chargon
number current. On the dual side, this current is given by
εμνλ∂νAλ/2π ; physically this is because the presence of a
boson corresponds to 2π flux from A. Thus on the dual side
there will be no direct coupling of aμ to the vortices, instead
they will be coupled indirectly via a mutual Chern-Simons
term with Aμ. The effective action for the transverse parts of
A and a will then be given by

Seff [a, A] =
∫

q,ω

[
�[a, f ](q, iω)|a(q, ω)|2 + iεμνλqν

2π
Aμaλ

]

+ Seff [A], where (B2)

�[a, f ](q, iω) =q2

e2
a

+ � f (q, iω) (B3)
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and Seff [A] is the effective quadratic action in terms of Aμ

when the vortex fields are integrated out, which we return to
later. Note the presence of an i factor in the mutual Chern-
Simons term above; this is because of its extra factor of i even
in a Euclidean path integral framework. The effective action
for the transverse components of a, after integrating out the A
field, is given by

Seff [a] =
∫

q,ω

(
�[a, f ](q, iω) + q2

(4π )2�A(q, iω)

)
|a(q, ω)|2,

(B4)
where �A(q, iω) is the vortex polarizability. We thus see
that the behavior of the effective action for aμ when the
matter fields are integrated out requires knowledge of �A.
In order to calculate this in a sensible way the N counting
must be done correctly. With the action given in Eq. (6) the
gauge field Aμ will drop out of any correlators involving
the vortex multiplets in the N → ∞ limit [25]. However,
the reverse is not true and the ϕl fields will affect the effec-
tive action of A when they are integrated out, i.e., make �A

nontrivial.

2. Approach from Fermi liquid side

After integrating out the gapped vortex fields (i.e., con-
densed chargons) within our large-N formulation, the effec-
tive action for (the transverse part of) Aμ to quadratic order is
given by

Seff [A] =
∫

q,ω

(
q2

e2
A

+ �ϕ (q, iω)

)
|A(q, ω)|2, (B5)

where �ϕ is the polarizability of a single species of vortices;
the N normalization is chosen such that �ϕ is O(1). The
polarizability will have the form

�ϕ (q, iω) = σϕ

√
ω2 + c|q|2P

(√
ω2 + c|q|2

ρs

)
, (B6)

where P is some function which scales as P(x → 0) ∼ x/π
and P(x → ∞) ∼ 1, σϕ is the universal vortex conductivity at
the critical point, and ρs and c are the superfluid stiffness and
velocity of the chargons, respectively.

We then obtain

�A(q, iω) = q2

e2
A

+ σϕqP

(
q

ρs

)
, (B7)

where q =
√

ω2 + c|q|2. In the Fermi liquid, ρs > 0, such that
for q � ρs, P(q/ρs) ∼ q/(πρs). As expected, integrating out
the gapped ϕ fields leads to nonsingular terms that simply
renormalize 1/e2

A → 1/e2
A + σϕ/πρs. The effective theory for

a at low energies is then given by

Seff [a] =
∫

q,ω

(
k0|ω|
vF0 |q|+

q2

(4π )2[q2/e2
A+σϕq2/πρs]

)
|a(q, ω)|2

∼
∫

q,ω

(
k0|ω|
vF0 |q| + πρs

(4π )2σϕ

)
|a(q, ω)|2, (B8)

as ρs becomes small relative to eA. As in the example of the
MIT at νc = 1/2 [2], the term proportional to ρs cuts off the
singular divergence of the fermion self-energy due to scatter-
ing off the a fluctuations, leading to a regular � f (K, iω) ∼

iω ln(1/ρs). The ρs term is an analog of a Higgs term for
the emergent gauge fields at low energies. This term is pro-
portional to the chargon phase stiffness ρs. Clearly, at the
critical point ρs → 0 and the critical vortex (or, equivalently,
the chargon) fluctuations will lead to singular contributions
to the effective action for a, which will affect the fermion
self-energy.

3. Low-energy theory at the critical point

At the critical point, the form of the effective action
for a is modified primarily due to the contribution from
the gapless bosonic matter fields. In this limit, the action
becomes

Seff [a] =
∫

q,ω

(
k0|ω|
vF0 |q| + c2|q|2

(4π )2[c2|q|2/e2
A + σϕc|q|]

)
|a|2

=
∫

q,ω

(
k0|ω|
vF0 |q| + c

(4π )2σϕ

|q|
)

|a(q, ω)|2. (B9)

We note that the above low-energy effective action is nearly
identical to the critical theory for the bandwidth-tuned transi-
tion at νc = 1/2 [2]. As expected, our formulation leads to
the appearance of the vortex resistivity, ∼1/σϕ , instead of the
boson conductivity, σ0, which are related to each other [33].
On a quantitative level, this universal conductivity (resistivity)
describes the contribution from a superfluid to charge-order
deconfined critical point, unlike that of the 3D XY critical
point for the νc = 1/2 transition.

As anticipated, the effect of the above z = 2 gauge field
is to lead to a � f (K, iω) ∼ iω ln(1/|ω|) form of the fermion
self-energy at the critical point; the chargon self-energy re-
ceives only analytic corrections from the gauge field. The
chargons are described by zb = 1 and the Landau damping
term in Eq. (B9) effectively behaves as a Higgs mass. As a
result, the fluctuations of a in the chargon sector and their
criticality will thus be unaffected by a, and hence by any
indirect coupling from f to a.

4. Ioffe-Larkin rules

In this Appendix, we review the Ioffe-Larkin rules for
the effective electromagnetic (and related) response functions,
starting from the dual vortex side. We imagine coupling the
system to an external (probe) U (1) gauge field Aext

μ . Since
we have assigned the physical electric charge to the chargons,
and not the spinons, Aext

μ only couples to these matter fields.
In the original chargon description this coupling would be of
the form Aext

μ jμb with jμb the chargon number current. By the
same arguments given in Appendix B 1, we see that on the
dual vortex side Aext will thus couple to εμνλ∂νAλ/2π and the
effective action in terms of a and A [Eq. (B2)] will gain a
term

−
∫

q,ω

i

2π
AμεμνλqνAext

λ . (B10)

When A is integrated out, as done in Appendix B 1, we
will now have that the effective action in terms of a is
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given by

Seff [a, Aext] =
∫

q,ω

[� f (q, iω)|a|2 + �b(q, iω)|a − Aext|2],

(B11)

�b(q, iω) = q2

(4π )2�A(q, iω)
. (B12)

The coefficient of the a − Aext term is �b(q, iω), since this is
how it must appear in the chargonic description of the theory.
We have also dropped the unrenormalized a propagator from
the �[a, f ] term since this will turn out to be irrelevant for our
interests. If we now integrate out the internal gauge field aμ

we recover the Ioffe-Larkin result [34] for the effective theory
in terms of the external gauge field Aext,

�(q, iω)−1 = � f (q, iω)−1 + �b(q, iω)−1. (B13)

The above can be used immediately to obtain, e.g., the
compressibility and resistivity. In terms of the polarizability
the compressibility of a system is given by

κ = lim
|q|→0

�(q, iω = 0), (B14)

such that κ−1 = κ−1
b + κ−1

f . On the FL side where ρs > 0, we
have

κb = ρs

16π [πρs/e2
A + σϕ]

∼ ρs

16πσϕ

. (B15)

Thus κb ∼ ρs ∼ 1/ξ as the critical point is approached.
The conductivity is given by

σ = lim
ω→0

1

ω
Im�(q = 0, iω → ω + iδ), (B16)

and ρ = ρb + ρ f . In the presence of some weak disorder, σ f

is finite; the chargon conductivity is infinite on the FL side,
while on the insulating side it must be zero. At the critical
point we will have

σb = lim
ω→0

1

ω
Im

[ −ω2

(4π )2[−ω2/e2
A + iσϕω]

]
= 1

(4π )2σϕ

.

(B17)

Note that the universal value at the critical point for σϕ will
determine the jump in the resistivity (the Rh/e2 coefficient
introduced earlier).
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