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Flat-band ferromagnetism in a correlated topological insulator on a honeycomb lattice
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We study the flat-band ferromagnetic phase of a spinfull and time-reversal symmetric Haldane-Hubbard model
on a honeycomb lattice within a bosonization formalism for flat-band Z2 topological insulators. Such a study
extends our previous one [Phys. Rev. B 104, 155129 (2021)] concerning the flat-band ferromagnetic phase of
a correlated Chern insulator described by a Haldane-Hubbard model. We consider the topological Hubbard
model at 1/4 filling of its corresponding noninteracting limit and in the nearly flat band limit of its lower free-
electronic bands. We define boson operators associated with two distinct spin-flip excitations, one that changes
(mixed-lattice excitations) and a second one that preserves (same-lattice excitations) the index related to the two
triangular sublattices. Within the bosonization scheme, the fermion model is mapped into an effective interacting
boson model, whose quadratic term is considered at the harmonic approximation in order to determine the
spin-wave spectrum. For both mixed- and same-lattice excitations, we find that the spin-wave spectrum is gapped
and has two branches, with an energy gap between the lower and the upper bands at the K and K ′ points of
the first Brillouin zone. We find that the same-lattice excitations are indeed the lowest-energy (elementary)
excitations that characterize the flat-band ferromagnetic phase, a feature that contrasts with the behavior of
a previously studied correlated topological insulator on a square lattice, whose flat-band ferromagnetic phase
is characterized by mixed-lattice excitations. We also find some evidences that the spin-wave bands for the
same-lattice excitations might be topologically nontrivial even in the completely flat band limit.
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I. INTRODUCTION

The first theoretical proposal of a Chern band insulator
came from a pioneering work of Haldane in 1988 [1]. In that
paper, Haldane introduced a spinless tight-binding model on
a honeycomb lattice with broken time-reversal symmetry that
even without an external source of magnetic field displays a
quantum Hall effect. The emergence of this distinct insulating
quantum Hall phase derives from the topologically nontrivial
electronic band structure of the Haldane model: the nonzero
Chern numbers [2] of these electronic bands yield a finite
Hall conductivity at half-filling, i.e., the system exhibits the
so-called anomalous quantum Hall effect [3,4].

The Haldane model on a honeycomb lattice was later
geneneralized by Kane and Mele [5,6], providing the first
microscopic model for a topological insulator [7,8]. Here
the spin degree of freedom is explicitly included and, in
contrast with Haldane model, time-reversal symmetry is pre-
served. Although at half filling time-reversal symmetry yields
a vanishing total Chern number, such a system may exhibit
a quantum spin Hall effect [5,6,9]. Indeed, the Kane-Mele
model is an example of a Z2 topological insulator, a system
which is characterized by a Z2 invariant that distinguishes
between the trivial insulator phase and the topologically non-
trivial one [7,8]. In spite of the fact that the Kane-Mele
model is not experimentally realized so far, the quantum spin
Hall effect was theoretically predicted [10] and later experi-
mentally observed [11] in HgTe/CdTe quantum wells at low
temperatures. Interestingly, experimental implementations of

topological insulators using ultracold atoms in optical lattices
have also been considered [12–14].

Correlation effects on topological insulators have also
been receiving some attention in recent years [15,16]. An
interesting example of a correlated topological insulator on a
honeycomb lattice is the Kane-Mele-Hubbard model [17–26],
which is a generalization of the Kane-Mele model with the
electron-electron interaction being described by an on-site
Hubbard repulsion term. The phase diagram of the model
has been determined [17,20,21] at half filling. In particu-
lar, quantum Monte Carlo simulations have been performed
[20,21], since, in this case, the so-called fermion sign problem
is absent, a feature that is related to the fact that the model
preserves particle-hole symmetry at half filling [20]. It was
shown that, apart from some possible intermediate phases,
a Z2 topological band insulator phase survives for small to
moderate values of the on-site repulsion energy U and that the
system enters a magnetically ordered phase above a critical
on-site repulsion energy Uc. An analytical description of such
Mott transition was recently performed [26].

Another set of interacting topological systems that has
been recently gaining some attention is made out of lat-
tice models that display (nearly) flat and topologically
nontrivial electronic bands in the noninteracting limit [27–34].
In a sense, these papers transport the long discussed subject
of flat-band ferromagnetism [35–37] to the realm of lattice
models with topologically nontrivial free-electronic bands.
Indeed, the merging of these two subjects was motivated by
a series of papers [38–40] that describe tight-binding models,
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specially in two dimensions, with only short-range hoppings
and whose parameters, once fine tuned, may yield nearly flat
and topologically nontrivial electronic bands. In particular,
in Ref. [34], we studied the flat-band ferromagnetic (FM)
phase of a correlated Chern insulator on a honeycomb lattice
described by a Haldane-Hubbard model. We considered the
model at 1/4 filling (half filling of the lower and doubly de-
generated free-electronic band) and in the vicinity of a suitable
choice of the model parameters [38], that yields nearly flat
noninteracting bands. In order to describe such a flat-band
FM phase, we employed a bosonization scheme for flat-band
correlated Chern insulators [29], that was developed by one of
us. Such a formalism allows us to map the Haldane-Hubbard
model to an effective interacting boson model: We considered
the effective boson model within a harmonic approximation
and determined the spin-wave spectrum; it was found that the
excitation spectrum has one gapped and one gapless excitation
branches, with a Goldstone mode at the center of the first
Brillouin zone (a feature that indicates the stability of the
flat-band FM phase) and Dirac points at the K and K ′ points
of the first Brillouin zone (BZ).

In the present paper, we extend our previous study [34]
about the flat-band FM phase of a correlated Chern insulator
on a honeycomb lattice, by considering a similar, but now
time-reversal symmetric, topological Hubbard model (THM)
model on a honeycomb lattice. The noninteracting term of
such correlated Z2 topological insulator is given by a spinfull
version of the Haldane model [1] that preserves time-reversal
symmetry. Similarly to Ref. [34], we consider the THM at
1/4 filling of its noninteracting limit and in the vicinity of
the nearly flat band limit [38] of its lower free-electronic
band. The flat-band FM phase of the time-reversal symmetric
THM is described within a bosonization scheme for flat-band
correlated Z2 topological insulators, a formalism that was
introduced in Ref. [29] and is based on the bosonization
formalism [41] proposed to study the quantum Hall system at
filling factor ν = 1. Again, the THM is mapped to an effective
interacting boson model. We define boson operators [Eq. (26)]
associated with two distinct spin-flip excitations that are
termed mixed-lattice [Eq. (28)] and same-lattice [Eq. (33)] ex-
citations. In both cases, we find that the spin-wave excitation
spectrum is gapped and constituted by two bands completely
separated from each other, a feature that contrasts with the
spin-wave spectrum of the correlated Chern insulator [34],
whose bands touch at the corners of the first BZ. Interestingly,
in contrast with the square lattice correlated topological in-
sulator [29], whose flat-band FM phase is characterized by
mixed-lattice excitations, here, for the correlated topological
insulator on a honeycomb lattice, we find that the same-lattice
ones are indeed the correct mode, which furnishes the lowest-
energy excitations [see Figs. 2(a)–2(f)]. Finally, we also find
some indications that the spin-wave excitation bands for the
same-lattice excitations might be topologically nontrivial,
since the corresponding Chern numbers are nonzero. As far as
we know, this is the first calculation of the spin-wave spectrum
for the flat-band FM phase of a correlated Z2 topological insu-
lator on a honeycomb lattice described by a Haldane-Hubbard
like model.

Our paper is organized as follows. In Sec. II, we in-
troduce the time-reversal symmetric THM on a honeycomb

lattice. In Sec. III, the bosonization formalism for flat-band
Z2 topological insulators [29] is briefly reviewed. In Sec. IV,
the effective interacting boson model, that allows us to de-
scribed the flat-band FM phase of the correlated topological
insulator, is presented; the boson model is considered within
the harmonic approximation: the spin-wave spectrum is de-
termined for homogeneous and sublattice dependent on-site
Hubbard repulsion energies. Section V contains a brief sum-
mary of our main results. Some details of the bosonization
formalism and additional results are presented in the five
Appendices.

II. THE TIME-REVERSAL SYMMETRIC
HALDANE-HUBBARD MODEL

In this section, we introduce a time-reversal symmetric
Haldane-Hubbard model on a honeycomb lattice. Our discus-
sion closely follows the lines of Sec. II from Ref. [34], where
such a Haldane-Hubbard model with broken time-reversal
symmetry is described.

A. The fermionic interacting model

Let us consider Ne spin-1/2 electrons on a honeycomb
lattice described by a Haldane-Hubbard model, whose Hamil-
tonian assumes the form

H = H0 + HU , (1)

where the noninteracting term is given by

H0 = t1
∑

i∈A,δ,σ

(
c†

iAσ ci+δBσ + H.c.
)

+ t2
∑

i∈A,τ,σ

(
e−iγσ φc†

iAσ ci+τAσ + H.c.
)

+ t2
∑

i∈B,τ,σ

(
e+iγσ φc†

iBσ ci+τBσ + H.c.
)
, (2)

while the interacting one is an on-site Hubbard repulsion term,

HU =
∑

i

∑
a=A,B

Uaρ̂ia↑ρ̂ia↓. (3)

Here the operator c†
iaσ (ciaσ ) creates (destroys) an electron

with spin σ =↑,↓ on the ith site of the (triangular) sublattice
a = A, B of the honeycomb lattice. The nearest-neighbor and
next-nearest-neighbor hopping amplitudes are both positive
and given by t1 and t2, respectively [see Fig. 1(a)]. Indeed,
the next-nearest-neighbor hopping is complex, t2e±iγσ φ , which
indicates that the electron acquires a (spin-dependent) +γσφ

phase and a −γσφ phase as it moves, respectively, in the
same and opposite directions of the arrows associated with
the dashed lines in Fig. 1(a) (see also note [42]). The com-
plex next-nearest-neibhbor hopping yields a fictitious flux
pattern with zero net flux per unit cell [38]. Importantly,
time-reversal invariance requires that γ↑ = −γ↓ = 1, which
implies that the spin ↑ electrons and the spin ↓ electrons
experience an opposite fictitious flux pattern (see also Sec. II
from Ref. [29]). The index δ indicates the nearest-neighbor
vectors

δ1 = −aŷ, δ2,3 = ±a

2

(√
3x̂ ± ŷ

)
, (4)
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FIG. 1. (a) Schematic representation of the THM model (1) on an honeycomb lattice. Red and blue circles respectively represent the sites
of the (triangular) sublattices A and B. The nearest-neighbor and next-nearest-neighbor hopping energies are given by t1 and t2e±iφ (positive
sign follows arrow direction), respectively, while UA and UB indicate the sublattice dependent on-site Hubbard repulsion energies. The nearest-
neighbor (4) and next-nearest-neighbor (5) vectors are indicate by δi and τ i, respectively. (b) The first BZ, where K = (4π/3

√
3, 0), K′ =

(2π/3
√

3, 2π/3), M1 = (π/
√

3, π/3), and M2 = (0, 2π/3), with the nearest-neighbor distance of the honeycomb lattice a = 1. (c) Schematic
representation of the noninteracting electronic bands (16) in the nearly-flat band limit (17) of the lower bands c. At 1/4 filling, the ground state
is the FM state (25) and low energy excitations are particle-hole pairs (spin flips) within the lower bands. Although the noninteracting bands
c and d are doubly degenerated with respect to the spin degree of freedom, we introduce an offset between the σ =↑ and ↓ bands for clarity.
The Chern numbers (18) of each band are also shown on the right side.

as illustrated in Fig. 1(a), and τ corresponds to the next-
nearest-neighbor vectors τ1 = δ2 − δ3, τ2 = δ3 − δ1, and
τ3 = δ1 − δ2:

τ1 = a
√

3x̂, τ2,3 = −a

2

(√
3x̂ ∓ 3ŷ

)
. (5)

Hereafter, we set the nearest-neigbhor distance a = 1. One
should mention that, for φ = π/2, the tight-binding model (2)
corresponds to the Kane-Mele model in the absence of the
Rashba term [5]. Finally, ρ̂iaσ is the density operator for spin
σ electrons at site i of sublattice a,

ρ̂iaσ = c†
iaσ ciaσ , (6)

and Ua > 0 are the on-site and sublattice-dependent repulsion
energies.

B. Diagonalization of the noninteracting Hamiltonian

In order to diagonalize the noninteracting model (2), one
considers the Fourier transform

c†
iaσ = 1√

Na

∑
k∈BZ

eik·Ri c†
k a σ , (7)

where Na = N is the number of sites of the sublattice a and
the momentum sum runs over the first BZ associated with
the underline triangular Bravais lattice, see Fig. 1(b). The
noninteracting Hamiltonian (2) can then be written in a matrix
form, i.e.,

H0 =
∑

k



†
kHk
k, (8)

where the 4 × 4 Hk matrix reads

Hk =
(

h↑
k 0

0 h↓
k

)
(9)

and the four-component spinor 
k is defined as


k = (ckA↑ ckB↑ ckA↓ ckB↓)T . (10)

The 2 × 2 matrices h↑
k and h↓

k associated with each spin sector
in Eq. (9) can be written in terms of the identity matrix τ0

and the vector τ̂ = (τ1, τ2, τ3), whose components are Pauli

matrices, i.e.,

hσ
k = Bσ

0,kτ0 + Bσ
k · τ̂ , (11)

where Bσ
k = (Bσ

1,k, Bσ
2,k, Bσ

3,k ) and

Bσ
0,k = B0,k = 2t2 cos(φ)

∑
τ

cos(k · τ),

Bσ
1,k = B1,k = t1

∑
δ

cos(k · δ),

Bσ
2,k = B2,k = t1

∑
δ

sin(k · δ), (12)

Bσ
3,k = γσ B3,k = γσ (−2t2) sin(φ)

∑
τ

sin(k · τ),

with γ↑ = −γ↓ = 1 and the indices δ and τ corresponding
to the nearest-neighbor (4) and next-nearest-neighbor (5) vec-
tors, respectively. Although the two matrices associated with
each spin sector are different, they are not independent, since
time-reversal symmetry yields h↑

k = h↓ ∗
−k (see Appendix A

from Ref. [29] for further details).
It is possible to diagonalize the Hamiltonian (8) with the

aid of the canonical transformation

ckA↑ = u∗
kdk↑ + vkck↑, ckA↓ = u−kdk↓ + v∗

−kck↓,

ckB↑ = v∗
kdk↑ − ukck↑, ckB↓ = v−kdk↓ − u∗

−kck↓, (13)

where the coefficients uk and vk are given by

|uk|2, |vk|2 = 1

2

(
1 ± B̂3,k

)
,

ukv
∗
k = 1

2

(
B̂1,k + iB̂2,k

)
, (14)

with B̂i,k being the ith component of the unit vector B̂k =
Bk/|Bk|. The diagonalized Hamiltonian reads

H0 =
∑
kσ

ωc
kc†

kσ ckσ + ωd
kd†

kσ dkσ , (15)

where the dispersions of the lower band c (− sign) and the
upper band d (+ sign) are given by

ω
d/c
k = B0 ±

√
B2

1,k + B2
2,k + B2

3,k. (16)
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Notice that both c and d free-electronic bands are doubly
degenerated with respect to the spin degree of freedom. For
more details, we refer the reader to Fig. 2 from Ref. [34],
where the free-electronic bands (16) are plotted for different
values of the parameters t2/t1 and φ.

As discussed in detail in Refs. [34,38], the noninteracting
band structure (16) have quite interesting properties when the
model parameters t2/t1 and φ are fine tuned. For instance, for
(nearly flat band limit)

φ = 0.656 and t2 = 0.3155t1, (17)

the lower band c and the upper band d are separated by an
energy gap and the lower band c is almost flat. Away from
the nearly flat band limit (17), the lower band c gets more
dispersive, and, in particular, for φ = 0 or t2 = 0, the energy
gap closes at the K and K ′ points of the first BZ (see Fig. 2(a)
from Ref. [34]).

In vicinity of the nearly flat band limit (17), the free-
electronic bands (16) are also topologically nontrivial. Indeed,
for tight-binding models of the form (8), one shows that the
Chern numbers of the upper and lower bands assume the form
[8,13,43]

Cc/d
σ = ±γσ

1

4π

∫
BZ

d2k B̂k · (∂kx B̂k × ∂ky B̂k ). (18)

In particular, for the noninteracting model (2), one finds
Cd

↑ = −Cd
↓ = −1 and Cc

↑ = −Cc
↓ = +1. As discussed in

Sec. IV from Ref. [29], at half-filling, the so-called charge
Chern number Ccharge = (Cc

↑ + Cc
↓)/2 = 0 while the spin

Chern number Cspin = (Cc
↑ − Cc

↓)/2 = 1. Since the tight-
binding model (2) conserves the z-component of the total spin
(see Sec. II A from Ref. [29]), the Z2 topological invariants
[8,13] for the free-electronic bands νc/d = Cc/d

spin mod 2 = ±1,

i.e., the tight-binding model (2) is indeed a Z2 topological
insulator. At half filling, such a system should display the
quantum spin Hall effect [5,6,9] with the spin Hall conduc-
tivity σ SH

xy = eCc
spin/2π .

C. Interaction term in momentum space

To find the expression of the on-site Hubbard repulsion
term (3) in momentum space, we start writing the Fourier
transform of the electron density operator (6),

ρ̂iaσ = 1

N

∑
q∈BZ

eiq·Ri ρ̂aσ (q). (19)

After substituting Eq. (19) into Eq. (3), we obtain

HU = 1

N

∑
a=A,B

∑
q

Uaρ̂a↑(−q)ρ̂a↓(q). (20)

In terms of the fermion operators c†
k a σ [see Eq. (7)], the

electron density operator ρ̂aσ (q) reads

ρ̂aσ (q) =
∑

p

c†
p−q a σ cp a σ . (21)

Substituting Eq. (13) into (21) and neglecting the terms that
contain the fermions dk σ , one finds the expression of the

electron density operator (21) projected into the lower non-
interacting bands c (see Eq. (28) from Ref. [29])

ρ̄a σ (q) =
∑

p

Ga σ (p, q)c†
p−q σ cp σ , (22)

where the Ga σ (p, q) functions are given by

Ga σ (p, q) = δa,A(δσ,↑v∗
p−qvp + δσ,↓v−p+qv

∗
−p)

+ δa,B(δσ,↑u∗
p−qup + δσ,↓u−p+qu∗

−p), (23)

with uk and vk being the coefficients (14).
Finally, we quote the expression of the on-site Hubbard

term (20) projected into the lower noninteracting bands c,
which follows from Eq. (20) with ρ̂aσ (q) → ρ̄aσ (q):

H̄U = 1

N

∑
a=A,B

∑
q

Uaρ̄a↑(−q)ρ̄a↓(q). (24)

III. BOSONIZATION FORMALISM FOR FLAT-BAND Z2

TOPOLOGICAL INSULATORS

Here we summarize the bosonization formalism for a Z2

topological insulator introduced by one of us in Ref. [29] for
the description of the flat-band FM phase of a square lattice
correlated Z2 topological insulator. Our discussion follows the
lines of Sec. III from Ref. [34].

In order to introduce the bosonization scheme, one needs to
define a reference state. Let us consider a spinfull topological
insulator on a bipartite lattice whose Hamiltonian assumes the
form (8), choose the model parameters such that (at least)
the lower band c is (nearly) flat, and focus on the 1/4 filling
of the electronic bands: the number of electrons Ne = NA =
NB = N , with NA and NB being, respectively, the number of
sites of the sublattices A and B. Assuming that the lower band
c ↑ is completely occupied [see Fig. 1(c)], the ground state of
the noninteracting system (the reference state) is completely
spin polarized:

|FM〉 =
∏

k∈BZ

c†
k↑|0〉. (25)

Excited states are generated by spin flips: As illustrated in
Fig. 1(c), the lowest-energy neutral excitations above the
reference state (25) are particle-hole pairs within the lower
bands c, since the lower flat bands c are separated from the
upper ones d by an energy gap; such an excited state with
well-defined momentum can be written as |
k〉 ∝ S−

k |FM〉.
Interestingly, it is possible to define boson operators that are
associated with such spin-flip excitations (see Ref. [29] for
details),

bα,q = S̄+
−q,α

Fαα,q
= 1

Fαα,q

∑
p

g∗
α (−p, q)c†

p+q↑cp↓,

b†
α,q = S̄−

q,α

Fαα,q
= 1

Fαα,q

∑
p

gα (p, q)c†
p−q↓cp↑, (26)

with α = 0, 1, that obey the commutation relations

[bα,k, b†
β,q] = δα,β δk,q,

[bα,k, bβ,q] = [b†
α,k, b†

β,q] = 0. (27)
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Concerning the definition of the projected spin operators
S̄±

q,α in Eq. (26), we consider two distinct proposals.
(i) Mixed-lattice excitations. Motivated by previous results

[29] concerning a correlated Z2 topological insulator on a
square lattice, we define S̄±

q,α as

S̄±
q,α = S̄±

q,AB + (−1)α S̄±
q,BA, (28)

where

S̄±
q,ab = S̄x

q,ab ± iS̄y
q,ab. (29)

The operator S̄λ
q,ab, with λ = x, y, z and a, b = A, B, is the spin

operator Sλ
q,ab projected into the lower noninteracting bands c.

The spin operator Sλ
q,ab is indeed the Fourier transform of the

operator

Sλ
i,ab = 1

2

∑
μ,ν=↑,↓

c†
iaμσλ

μ νcibν, (30)

where σλ
μ ν is the matrix element of the Pauli matrix σλ.

The spin operators (28) are indeed related with spin-flip ex-
citations that also change the sublattice index. Due to such
a feature, we denote the excitations defined by the boson
operators (26) and the spin operator (28) as mixed-lattice
(ML) excitations. The F 2

αβ,q function reads

F 2
αβ,q =

∑
p

gα (p, q)g∗
β (−p + q, q), (31)

with gα (p, q) defined in terms of the coefficients (14),

gα (p, q) = −upv−p+q − (−1)αvpu−p+q. (32)

Interestingly, the F 2
αβ,q function can be explicitly expressed in

terms of the Bi,k functions (12), see Eq. (A1).
(ii) Same-lattice excitations. Motivated by our previous

study [34] about a honeycomb lattice correlated Chern insu-
lator, we also consider spin-flip excitations that preserve the
sublattice index. In this case, one defines

S̄±
q,α = S̄±

q,A + (−1)α S̄±
q,B, (33)

where S̄±
q,a is also given by Eqs. (29) and (30) with a = b,

i.e., S̄±
q,a = S̄±

q,aa; again, boson operators are defined as done in
Eq. (26), with F 2

αβ,q also given by Eq. (31), but now gα (p, q)
assumes the form

gα (p, q) = v−p+qvp + (−1)αu−p+qup, (34)

with uk and vk being the coefficients (14). Since the spin
operators (33) preserve the sublattice index, we denote such
excitations as same-lattice (SL) excitations. The expression of
the F 2

αβ,q function in terms of the Bi,k functions (12) is shown
in Appendix B, see Eq. (B1). Finally, one should note that, for
both ML and SL excitations,

bα,q|FM〉 = 0, (35)

which indicates that the spin-polarized (reference) state (25)
is indeed the vacuum for the boson operators (26), regardless
the definition of the projected spin operators.

As discussed in detail in Ref. [29], it is possible to find
the bosonic representation of any operator that is written
in terms of the fermions c†

kσ and ckσ . For instance, in terms of
the boson operators (26) (either defined in terms of the ML or

the SL excitations), the bosonic representation of the projected
electron density operator (22) reads

ρ̄aσ (k) = 1

2
Nδσ,↑δk,0 +

∑
α,β,q

Gαβaσ (k, q)b†
β,k+qbα,q, (36)

where the Gαβaσ (k, q) function is defined by Eq. (A2). Similar
to the F 2

αβ,q function (31), Gαβaσ (k, q) can also be written
in terms of the coefficients (12), see Eqs. (A3) and (B2) for
ML and SL excitations, respectively. As discussed in the next
section, both the Hamiltonian (2) and the interaction term (3),
projected into the lower noninteracting bands c, can also be
expressed in terms of the boson operators (26). Apart from
the expressions of F 2

αβ,q and Gαβaσ (k, q), the bosonic repre-
sentation (36) of the density operator (22) and the effective
boson model [see Eq. (46) below] derived from the THM (1)
are equal, regardless the nature of the excitations considered
(ML or SL ones); due to such a feature, we employ the same
notation for the boson operators (26) for both ML (28) and SL
(33) excitations.

Finally, it is important to emphasize that, for the square lat-
tice π -flux model [29], only the ML excitations (28) yield two
sets of independent bosons operators b0 and b1. Such a fea-
ture distinguishes the time-reversal symmetric square lattice
π -flux model from the generalized Haldane one [Eq. (2)],
which, in principle, allows us to define boson operators
from both ML (28) and SL (33) excitations. Interestingly,
for the generalized square lattice π -flux model [29] and the
generalized Haldane model [34], both with broken time-
reversal symmetry, the SL excitations (33) are the lowest-
energy excitations of the corresponding correlated Chern
insulators.

IV. FLAT-BAND FERROMAGNETISM IN THE
TOPOLOGICAL HUBBARD MODEL

In this section, we study the flat-band FM phase of
the THM (1). We consider the model at 1/4 filling of its
corresponding noninteracting limit and assume that the non-
interacting lower bands c are in the vicinity of the nearly flat
band limit (17). We focus on the determination of the disper-
sion relation of the elementary particle-hole pair excitations
(spin-waves) above the (flat-band) FM ground state (25): ML
[Eq. (28)] and SL [Eq. (33)] excitations are discussed sepa-
rately, since they are two distinct proposals for the definition
of the boson operators (26); most importantly, we find that the
SL excitations (33) are indeed the lowest-energy excitations.

A. Effective interacting boson model

Here we derive an effective interacting boson model from
the THM (1) within the bosonization formalism summarized
in Sec. III. Our presentation closely follows the lines of
Sec. IV A from Ref. [34] and more details can be found in
Ref. [29].

First of all, we project the Hamiltonian (1) into the lower
noninteracting bands c (such a restriction is justified, once
the on-site repulsion energies Ua fullfil some conditions, see
comment above Eq. (35) from Ref. [34]),

H → H̄ = H̄0 + H̄U , (37)
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where the projected noninteracting Hamiltonian H̄0 is ob-
tained from Eq. (15),

H̄0 =
∑
kσ

ωc
kc†

kσ ckσ , (38)

and H̄U is given by Eq. (24). In terms of the boson operators
(26), the noninteracting (kinetic) term H̄0 reads

H̄0,B = E0 +
∑
αβ

∑
q∈BZ

ω̄αβ
q b†

β,qbα,q, (39)

where E0 = ∑
k ωc

k is a constant related to the action of the
Hamiltonian H̄0 into the reference state (25) and

ω̄αβ
q =

∑
p

(
ωc

p−q − ωc
p

)gα (p, q)g∗
β (−p + q, q)

Fαα,qFββ,q
, (40)

with Fαβ,q given by Eqs. (A1) (ML excitations) and (B1) (SL
excitations) and gα (p, q) given by Eqs. (32) (ML excitations)
and (34) (SL excitations). The on-site Hubbard term H̄U can
be cast into its bosonic representation with the aid of Eqs. (24)
and (36); after normal-ordering the resulting expression, one
arrives at [29]

H̄U,B = H̄ (2)
U,B + H̄ (4)

U,B, (41)

where the quadratic and quartic terms are given by

H̄ (2)
U,B =

∑
αβ

∑
q

εαβ
q b†

β,qbα,q, (42)

H̄ (4)
U,B = 1

N

∑
k,q,p

∑
αβα′β ′

V αβα′β ′
k,q,p b†

β ′,p+kb†
β,q−kbαqbα′p, (43)

with the coefficient ε
αβ
q assuming the form

εαβ
q = 1

2

∑
a

UaGαβa↓(0, q)

+ 1

N

∑
a,α′,k

UaGα′βa↑(−k, k + q)Gαα′a↓(k, q), (44)

and the boson-boson interaction being defined by

V αβα′β ′
k,q,p = 1

N

∑
a

UaGαβa↑(−k, q)Gα′β ′a↓(k, p). (45)

One should recall that, in terms of the coefficients (12), the
Gαβaσ (k, q) functions are given by Eqs. (A3) and (B2) for
ML and SL excitations, respectively. In summary, the effective
interacting boson model, which allows us to describe the
flat-band FM phase of the THM (1), reads

H̄B = H̄0,B + H̄ (2)
U,B + H̄ (4)

U,B. (46)

It is important to emphasize that the effective boson model
(46) is quite general, since, in principle, it can describe the
flat-band FM phase of a correlated Z2 topological insula-
tor described by a THM on a bipartite lattice, as long as
its corresponding noninteracting term assumes the form (8)
and its free-electronic bands can be made almost dispersion-
less by carefully choosing the model parameters (see Sec. V
from Ref. [34] for more details): recall that, all terms of the
Hamiltonian (46) can be written in terms of the functions
(12), which completely characterize tight-binding models of
the form (8).

B. Spin-wave spectrum

We now determine the spin-wave spectrum of the flat-band
FM phase of the THM (1) with the aid of the effective boson
model (46). In the lowest-order (harmonic) approximation, the
Hamiltonian (46) reads

H̄B ≈ H̄0,B + H̄ (2)
U,B. (47)

The Hamiltonian (47) can be diagonalized with the aid of
the following canonical transformation

b0,q = u∗
qa+,q + vqa−,q, b1,q = v∗

qa+,q − uqa−,q. (48)

One then easily shows that

H̄B = E0 +
∑
μ=±

∑
q∈BZ

�μ,qa†
μ,qaμ,q, (49)

where the constant E0 = ∑
k ωc

k = (−1.69 t1)N for the nearly
flat band limit (17), the dispersion relation �μ,q of the bosons
a± (the spin-wave spectrum) is given by

�±,q = 1

2

(
ε00

q + ε11
q

) ± εq, (50)

with εq = 1
2

√
(ε00

q − ε11
q )2 + 4ε01

q ε10
q , and the coefficients uq

and vq satisfy the relations

|uq|2, |vq|2 = 1

2
± 1

4εq

(
ε00

q − ε11
q

)
,

uqv
∗
q = ε01

q

4εq
, vqu∗

q = ε10
q

4εq
. (51)

Note that the vacuum state for the bosons a± is the ground
state of the Hamiltonian (49). Indeed, due to the form of the
canonical transformation (48), one sees that the vacuum for
the bosons a± corresponds to the spin-polarized ferromagnet
state (25), which is the vacuum (reference) state for the bosons
b0 and b1 [see Eq. (35)]. Such a result points to the stability of
a flat-band FM phase for the THM (1).

The spin-wave spectra (50) for the ML excitations (28) are
shown in Figs. 2(a)–2(c), while the results for the SL ones
(33) are displayed in Figs. 2(d)–2(f) and 3(a) and 3(b). In the
following, we concentrate on the spin-wave spectrum for the
SL excitations, since they are the lowest-energy excitations
that characterize the flat-band FM phase of the THM (1). A
detailed discussion about the ML excitations can be found in
Appendix C.

SL excitations

In order to determine the spin-wave spectrum (50) for
the SL excitations (33), one needs to calculate the ki-
netic coefficients (40) and the coefficients (44) associated
with the quadratic term (42). In this case, one should con-
sider the expressions of the gα (p, q), Fαβ,q, and Gαβaσ (p, q)
functions given by Eqs. (34), (B1), and (B2), respectively.
Differently from the ML excitations (see Appendix C), for
the SL excitations, one finds that the kinetic coefficients (40)
vanishes, ω̄

αβ
q = 0. Moreover, the quadratic term (42) of the

effective boson model (46) is Hermitian, since the coefficients
εαα

q are real quantities while ε01
q and ε10

q are complex ones
with ε01

q = (ε10
q )∗ [see Eq. (44) and Fig. 6(c)]; such a feature
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FIG. 2. Dispersion relation (50) (spin-wave spectrum) of the effective boson model (47) in the harmonic approximation for the nearly flat
band limit (17) along paths in the first BZ [Fig. 1(b)]. Solid and dashed lines respectively represent the real part of �±,q and the imaginary
part of �+,q = −�−,q, where the latter is multiplied by a factor of 20 for clarity. The spin-wave spectrum (solid magenta line) for the ML
excitations (28) are shown in (a)–(c), while (d)–(f) correspond to the spin-wave spectrum (solid green line) for the SL excitations (33). The
on-site Hubbard repulsion energies are UA = UB = U [(a) and (d)], UB = 0.8UA = 0.8U [(b) and (e)], and UB = 0.6UA = 0.6U [(c) and (f)].

is distinct from the ones found for the ML excitations (see
Appendix C) and for the correlated Chern insulator [34],
whose corresponding quadratic Hamiltonians (42) are non-
Hermitian. Finally, similarly to the ML excitations (see Fig. 4)
and the correlated Chern insulator [34], one finds that the
condition

Fαβ,q = δα,βFαα,q (52)

is not fulfilled for all momenta within the first BZ [see
Figs. 6(a) and 6(b)]; the validity of the condition (52) is an
important ingredient for the definition (26) of the two sets
of independent boson operators b0 and b1; for a detailed
discussion about this important issue, we refer the reader to
Appendix C and to Appendix B from Ref. [34].

The dispersion relation (50) [the spin-wave spectrum for
the SL excitations (33)] for the nearly flat band limit (17) and
on-site repulsion energies UA = UB = U is shown in Fig. 2(d).
Notice that, instead of the nearest-neighbor hopping energy

t1, the energy scale of the spin-wave spectrum is given by the
on-site repulsion energy U , since the kinetic coefficients (40)
(associated with the noninteracting bands c) are neglected.
Similarly to the ML excitations [Fig. 2(a)], the spin-wave
spectrum for the SL excitations is also gapped and has two
branches: the gap of the lower branch is at the � point of the
first BZ while the gap of upper one is at the K and K ′ points.
In contrast with the correlated Chern insulator [34], whose
spin-wave spectrum has a Goldstone mode at the � point
related to a continuous SU(2) symmetry that is spontaneously
broken, the flat-band FM phase of the correlated topological
insulator (1) has a gapped spectrum: such a feature, that is
properly described by the bosonization formalism, is due to
the fact that both the Hamiltonian (1) and the ground state (25)
preserve a U(1) spin rotation symmetry (see Sec. II A from
Ref. [29] and Ref. [28] for more details). Differently from the
corresponding correlated Chern insulator [34], whose spin-
wave spectrum has Dirac points at the K and K ′ points, here
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one finds an energy gap between the lower and upper bands at
the K and K ′ points,

�(K ) = �+,K − �−,K = 4.96 × 10−2 U ; (53)

such a gap is large than the one [Eq. (C1)] found for the
ML excitations. Interestingly, apart from the energy gaps
at the �, K , and K ′ points, the spin-wave spectrum shown
in Fig. 2(d) qualitatively resembles the one of the corre-
lated Chern insulator on the honeycomb lattice that we have
previously studied (see Fig. 6(a) from Ref. [34]). Finally,
since the quadratic boson term (42) is Hermitian, the spin-
wave excitations (50) are real quantities, i.e., the decay rates of
the spin-wave excitations vanish, in contrast with the behavior
of the ML excitations, which display a quite small decay rate
[see Figs. 2(a) and 2(d)]. Importantly, for each momentum
within the first BZ, the excitation energy associated with the
upper band of the SL case is lower than the corresponding
value of the ML case, a feature also found for the lower
bands [see Figs. 2(a) and 2(d)]. Therefore the SL excitations
are indeed the lowest-energy excitations that characterize the
flat-band FM phase of the THM (1), a feature that contrasts
with the square lattice correlated Z2 topological insulator [29],
whose elementary excitations of the corresponding flat-band
FM phase are of the ML type.

In addition to the THM (1) with homogeneous on-site re-
pulsion energies UA = UB = U , the spin-wave spectrum with
a sublattice dependent on-site energy Ua was also determined.
We show the spin-wave spectrum (50) for the nearly flat-
band limit (17) and UB = 0.8UA = 0.8U and UB = 0.6UA =
0.6U in Figs. 2(e) and 2(f), respectively. Similarly to the ML
excitations [Figs. 2(b) and 2(c)], we find that a finite �U =
UA − UB modifies the spin-wave spectrum as compare to
the homogeneous case UA = UB = U . In particular, it breaks
the symmetry at the K and K ′ points displayed by the spin-
wave spectrum in the homogeneous case. Such an asymmetry
at the K and K ′ points of the spin-wave spectrum as �U
increases was also found for the correlated Chern insulator
[34] and it might be related to the fact that a Hubbard term
with UA 
= UB breaks inversion symmetry. Notice that, as the
diference �U increases: The energies of the spin-wave exci-
tations decrease; the energy gap between the lower and upper
bands at the K point decreases,

�(K ) = 1.82 × 10−2 U for �U = 0.2U,

�(K ) = 1.34 × 10−2 U for �U = 0.4U,

while the one at the K ′ point increases,

�(K ′ ) = 7.11 × 10−2 U for �U = 0.2U,

�(K ′ ) = 9.26 × 10−2 U for �U = 0.4U .

For UB > UA (not shown here), similar features are observed,
but now the energy gap at the K point increases instead of the
one at the K ′ point. Again, similarly to the homogeneous case,
the energies of spin-wave spectrum of the SL case are lower
than the corresponding ones of the ML case for a fixed �U .

We also investigate how the spin-wave spectrum (50)
modifies as the THM (1) is tuned away from the nearly
flat band limit (17), once the next-nearest-neighbor hopping
amplitude t2 and the phase φ are modified while the on-
site Hubbard energies Ua are kept fixed. As mentioned in

FIG. 3. SL excitations (33). Spin-wave spectrum (50) along
paths in the first BZ for on-site repulsion energies UA = UB = U and
the next-nearest-neighbor hopping amplitude t2 given by cos(φ) =
t1/(4t2). Solid and dashed lines respectively represent the real part of
�±,q and the imaginary part of �+,q = −�−,q. Phase φ = 0.4 [blue
line in (a)], φ = 0.5 [green line in (a)], φ = 0.656 (magneta line),
φ = 0.7 [green line in (b)], and φ = 0.8 [blue line in (b)].

Sec. II B(see also Fig. 2 from Ref. [34]), the noninteracting
electronic bands c [Eq. (16)] become more dispersive as the
model (1) moves away from the nearly flat band limit (17).
In the following, we describe the effects on the spin-wave
spectrum only due to variations of the parameters t2 and φ.
We refer the reader to Appendix D for a similar discussion
concerning the effects of a finite staggered on-site energy term
in the Hamiltonian (1).

In Fig. 3(a), it is shown the spin-wave spectrum (50) for
φ = 0.656, 0.7, and 0.8, hopping amplitude t2 determined by
cos(φ) = t1/(4t2), and on-site repulsion energies UA = UB =
U . We find that the spin-wave spectrum (in units of the on-site
Hubbard energy U ) for φ = 0.7 and 0.8 is rather similar to the
one for the nearly-flat band limit (17), which corresponds to
φ = 0.656. As the parameter φ increases, one sees that only
the excitation energies of the lower band in the vicinity of
the � point increases while the rest of the spectrum remains
almost the same as compared with the one obtained for the
nearly flat band limit (17). Indeed, for φ = 0.8, the energy
gap of the lower band moves from the � to the Mi points.
On the other hand, as shown in Fig. 3(b), a decreasing of
the parameter φ from φ = 0.656 yields: A decreasing of the
excitation energies of the lower band in the vicinity of the �

point; an increasing of the excitation energies of the upper
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TABLE I. Chern numbers of the lower spin-wave bands (50) for
both the ML (CML) and the SL (CSL) excitations at the nearly flat band
limit (17).

UA = UB = U UB = 0.8UA = 0.8U

CML ±0.29 ±0.18
CSL ±1.17 ±1.08

band around the same point; and a small decreasing in the
energy gap between the lower and upper bands at the K and K ′
points. Indeed, one finds that such energy gap �(K ) = �+,K −
�−,K = 3.81 × 10−2 U (φ = 0.4), 4.35 × 10−2 U (φ = 0.5),
4.96 × 10−2 U (φ = 0.656), 5.19 × 10−2 U (φ = 0.7), and
5.34 × 10−2 U (φ = 0.8). We believe that such rather small
modifications in the spin-wave spectrum as the model (1) is
tuned away from the nearly flat band limit (17) might be due
to the fact that the main effects associated with the dispersion
of the lower noninteracting band c, that are encoded in the
kinetic coefficients (40), are not properly taken into account
by the bosonization scheme.

Concerning the topological properties of the spin-wave
bands, we find some evidences that the spin-wave bands for
the SL excitations (33) might be topologically nontrivial. In
Table I, we present the Chern numbers CSL of the lower spin-
wave bands (50) for the SL excitations shown in Figs. 2(d)
and 2(e) [the corresponding Chern numbers CML for the ML
excitations shown in Figs. 2(a) and 2(b) are also included for
comparison]. Such a feature contrasts with the one found for
the corresponding correlated Chern insulator on a honeycomb
lattice [32,34], whose spin-wave bands are topologically
trivial in the completely flat band limit. For more details about
the topological properties of the spin-wave bands, we refer the
reader to Appendix E.

V. SUMMARY

In summary, in this paper we studied the flat-band FM
phase of a correlated Z2 topological insulator on a honeycomb
lattice described by a topological Hubbard model, whose non-
interacting limit is given by a generalization of the spinless
Haldane model [1]. Such a study complements our previous
one [34] concerning the flat-band FM phase of a correlated
Chern insulator described by a Haldane-Hubbard model. We
considered the model at 1/4 filling of its noninteracting limit
and study the system within a bosonization scheme for flat-
band correlated Z2 topological insulators. Our main result
[Figs. 2(d)] is the calculation of the spin-wave excitation spec-
trum for the nearly flat band limit (17) of the noninteracting
lower bands and equal on-site repulsion energies associated
with the sublattices A and B (UA = UB = U ). Moreover, we
also determined the spin-wave spectrum when an offset in the
on-site repulsion energies is introduced (UA 
= UB), and when
the width of the lower noninteracting bands increases due
to changes in the parameters of the noninteracting electronic
Hamiltonian.

Differently from the correlated Chern insulator [34], for the
correlated topological insulator (1), one can, in principle, de-
fine two sets of boson operators b0 and b1 as done in Eq. (26)
considering both the spin-flip excitations (28), that changes

the sublattice index (ML excitations), and the spin-flip excita-
tions (33), that preserves the sublattice index (SL excitations).
We found that the spin-wave spectrum for both ML and SL
excitations are gapped and have two branches, with an energy
gap between the lower and upper bands at the K and K ′
points of the first BZ. Such features are in contrast with the
ones found for the correlated Chern insulator on a honeycomb
lattice [34], whose spin-wave spectrum has a Goldstone mode
at the center of the BZ (� point) and Dirac points at the K
and K ′ points. Mostly important, the lowest-energy excitations
are the SL ones, a feature that is distinct from the one found
for the square lattice π -flux model [29], whose flat-band FM
phase is characterized by ML excitations: while both cor-
related Chern insulators on the square [29] and honeycomb
[34] lattices are characterize by the SL excitations, such a
common feature seems to be not shared by the corresponding
topological insulators. Finally, our findings indicated that the
spin-wave bands for the SL excitations might be topologically
nontrivial, even in the completely flat band limit, a feature
that also contrasts with the behavior of the corresponding
correlated Chern insulator [32].
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APPENDIX A: THE Fαβ,q AND Gαβaσ (k, q) FUNCTIONS FOR
THE ML EXCITATIONS

In this Appendix, the expansions of the Fαβ,q [Eq. (31)] and
the Gαβaσ (k, q) functions in terms of the coefficients (12) are
quoted. Such expressions were previously derived by one of
us in Ref. [29].

From Eqs. (13), (14), and (32), one easily shows that
Eq. (31) can be written as

F 2
αβ,q = 1

4

∑
p

[(−1)α + (−1)β](1 − B̂3,pB̂3,−p+q)

− [(−1)α − (−1)β](B̂3,p − B̂3,−p+p)

+ [1 + (−1)α+β ](B̂1,pB̂1,−p+q + B̂2,pB̂2,−p+q)

− i[1 − (−1)α+β](B̂1,pB̂2,−p+q − B̂2,pB̂1,−p+q),

(A1)

where α, β = 0, 1 and B̂i,k = Bi,k/|Bk|. The F 2
αβ,q function

for the nearly flat band limit (17) is shown in Fig. 4. It is
clear that the condition (52) is not completely fulfilled by the
Haldane model (2), since ImF 2

01,q and ImF 2
10,q are finite in the

vicinity of the M1 and M2 points. As discussed in Appendix B
from Ref. [34], in principle, such a result indicates that it is not
possible to define the two sets of independent boson operators
b0 and b1 as done in Eq. (26), a feature that distinguishes the
Haldane model (2) from the square lattice π -flux model [29].
Due to the similarities between the topological insulator (2)
and the Chern insulator [34] and the fact that the bosonization
scheme provides reasonable results for the correlated Chern
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FIG. 4. ML excitations. The real (solid line) and imaginary (dashed line) parts of F 2
αβ,q [Eq. (31)] for the Haldane model (2) in the nearly-flat

band limit (17) along paths in the first BZ: (a) F 2
00,q and −F 2

11,q and (b) F 2
01,q and F 2

10,q.

insulator described by the Haldane-Hubbard model, we follow the lines of Ref. [34] and assume that, for the topological insulator
(2), the bosons operators b0 and b1 can be defined by Eq. (26) and that they constitute two sets of independent boson operators.

Once the expansion of the F 2
αβ,q function in terms of the coefficients (12) is known, one can easily determine the

kinetic coefficients (40) [compare the integrands of Eqs. (31) and (40)]. For instance, in Figs. 5(a) and 5(b), one shows the
kinetic coefficients (40) for the nearly flat band limit (17).

The Gαβaσ (k, q) function is defined as

Gαβa↑(k, q) = −
∑

p

Ga ↑(p, k)

Fαα,qFββ,k+q
gα (p − k, q)g∗

β (−p + k + q, k + q),

Gαβa↓(k, q) = +
∑

p

Ga ↓(p − q, k)

Fαα,qFββ,k+q
gα (p, q)g∗

β (−p + k + q, k + q), (A2)

where Ga σ (p, q) is given by Eq. (23). With the aid of Eq. (14), one finds that

Gαβaσ (k, q) = − γσ

1

8
[δa,A + δa,B(−1)α+β ]

1

Fαα,qFββ,k+q

×
∑

p

ζ1(σ )[1 + γσ (−1)aB̂3(1)][1 − γσ (−1)aB̂3(2)][1 − (−1)aB̂3(3)]

+ ζ2(σ )[B̂1(2)B̂1(3) + B̂2(2)B̂2(3) + i(−1)a(B̂1(2)B̂2(3) − B̂2(2)B̂1(3))][1 − (−1)aB̂3(1)]

+ ζ3(σ )[B̂1(1)B̂1(3) + B̂2(1)B̂2(3) + i(−1)a(B̂1(1)B̂2(3) − B̂2(1)B̂1(3))][1 − (−1)aB̂3(2)]

+ ζ4(σ )[B̂1(1)B̂1(2) + B̂2(1)B̂2(2) + iγσ (−1)a(B̂2(1)B̂1(2) − B̂1(1)B̂2(2))][1 − (−1)aB̂3(3)], (A3)

where the coefficient γ↑ = −γ↓ = 1, the coefficients ζi(σ ) read

ζ1(↑) = (−1)α, ζ2(↑) = (−1)β, ζ3(↑) = 1, ζ4(↑) = (−1)α+β,

ζ1(↓) = (−1)β, ζ2(↓) = (−1)α+β, ζ3(↓) = (−1)α, ζ4(↓) = 1, (A4)

and the B̂i( j) functions, with i, j = 1, 2, 3, are given by

B̂i(1) = B̂i,−p+k+q, B̂i(2) = B̂i,p, B̂i(3) = B̂i,+p−k, for σ =↑,

B̂i(1) = B̂i,−p+k+q, B̂i(2) = B̂i,p, B̂i(3) = B̂i,−p+q, for σ =↓ . (A5)

Equations (A1) and (A3) allow us to determine the coef-
ficients (44). In particular, the coefficients ε01

q and ε10
q for the

nearly flat band limit (17) and on-site repulsion energies UA =
UB = U are plotted in Fig. 5(c). One sees that ε01

q 
= (ε10
q )∗,

which implies that the quadratic bosonic Hamiltonian (42) is
non-Hermitian for the ML excitations (28).

APPENDIX B: THE Fαβ,q AND Gαβaσ (k, q) FUNCTIONS FOR
THE SL EXCITATIONS

In this Appendix, we present the equivalent of Eqs. (A1)–
(A5) for the SL excitations (33). Indeed, such kind of spin-flip
excitations were considered in Ref. [34] in the description
of the flat-band FM phase of a correlated Chern insulator

155142-10



FLAT-BAND FERROMAGNETISM IN A CORRELATED … PHYSICAL REVIEW B 106, 155142 (2022)

FIG. 5. ML excitations. The real (solid line) and imaginary (dashed line) parts of the kinetic coefficients (a) ω̄00
q and ω̄11

q and (b) ω̄01
q

[Eq. (40)] along paths in the first BZ for the Haldane model (2) in the nearly-flat band limit (17). (c) The real (solid line) and imaginary
(dashed line) parts of the coefficients ε01

q and ε10
q [Eq. (44)] for the THM (1) in the nearly-flat band limit (17) and on-site repulsion energies

UA = UB = U .

described by a Haldane-Hubbard model. However, since the
canonical transformation (13) differs from the one employed
in the study of the correlated Chern insulator (see Eq. (13)
from Ref. [34]), the expressions of the Fαβ,q and Gαβaσ (k, q)

functions are distinct from the ones shown in Appendix A
from Ref. [34].

From Eqs. (13), (14), and (34), one shows that, for the SL
excitations, Eq. (31) assumes the form

F 2
αβ,q =1

4

∑
p

[1 + (−1)α+β ](1 + B̂3,pB̂3,−p+q) + [(−1)α + (−1)β](B̂1,pB̂1,−p+q − B̂2,pB̂2,−p+q)

− [1 − (−1)α+β ](B̂3,p + B̂3,−p+p) − i[(−1)α − (−1)β](B̂1,pB̂2,−p+q + B̂2,pB̂1,−p+q), (B1)

where α, β = 0, 1 and B̂i,k = Bi,k/|Bk|. For the nearly flat band limit (17), Eq. (B1) is plotted in Figs. 6(a) and 6(b). Similarly
to the ML excitations, one sees that ImF 2

01,q and ImF 2
10,q are finite in the vicinity of the M1 and M2 points, implying that the

condition (52) is not satisfied by all momenta in the first BZ.
For the SL excitations, Gαβaσ (k, q) is also defined by Eq. (A3), but now it reads

Gαβaσ (k, q) = − γσ

1

8
[δa,A + δa,B(−1)α+β]

1

Fαα,qFββ,k+q

×
∑

p

[1 − (−1)aB̂3(1)][1 − (−1)aB̂3(2)][1 − (−1)aB̂3(3)]

+ ζ1(σ )[B̂1(2)B̂1(3) + γσ B̂2(2)B̂2(3) + i(−1)a(B̂1(2)B̂2(3) − γσ B̂2(2)B̂1(3))][1 + γσ (−1)aB̂3(1)]

+ ζ2(σ )[B̂1(1)B̂1(3) − γσ B̂2(1)B̂2(3) + i(−1)a(B̂1(1)B̂2(3) + γσ B̂2(1)B̂1(3))][1 − γσ (−1)aB̂3(2)]

+ ζ3(σ )[B̂1(1)B̂1(2) − B̂2(1)B̂2(2) − i(−1)a(B̂1(1)B̂2(2) + B̂2(1)B̂1(2))][1 − (−1)aB̂3(3)], (B2)

FIG. 6. SL excitations. The real (solid line) and imaginary (dashed line) parts of F 2
αβ,q [Eq. (31)] for the Haldane model (2) in the nearly-flat

band limit (17) along paths in the first BZ: (a) F 2
00,q and F 2

11,q and (b) F 2
01,q and F 2

10,q. (c) The real (solid line) and imaginary (dashed line) parts
of the coefficients ε01

q and ε10
q [Eq. (44)] for the THM (1) in the nearly-flat band limit (17) and on-site repulsion energies UA = UB = U .
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where the coefficient γ↑ = −γ↓ = 1, the coefficients ζi(σ ) are given by

ζ1(↑) = (−1)α+β, ζ2(↑) = (−1)α, ζ3(↑) = (−1)β,

ζ1(↓) = (−1)α, ζ2(↓) = (−1)α+β, ζ3(↓) = (−1)β, (B3)

and the B̂i( j) functions, with i, j = 1, 2, 3, are defined as

B̂i(1) = B̂i,−p+k+q, B̂i(2) = B̂i,p, B̂i(3) = B̂i,+p−k, for σ =↑,

B̂i(1) = B̂i,−p+k+q, B̂i(2) = B̂i,p, B̂i(3) = B̂i,−p+q, for σ =↓ . (B4)

With the aid of Eqs. (B1) and (B2), one can calculate the
coefficients (44). For instance, the coefficients ε01

q and ε10
q for

the nearly flat band limit (17) and on-site repulsion energies
UA = UB = U are shown in Fig. 6(c). Since ε01

q = (ε10
q )∗, the

quadratic bosonic Hamiltonian (42) is Hermitian for the SL
excitations (33).

APPENDIX C: SPIN-WAVE SPECTRUM FOR THE ML
EXCITATIONS

Here we discuss in details the behavior of the spin-wave
spectrum (50) for the ML excitations (28). In this case,
one should consider the expressions of gα (p, q), Fαβ,q, and
Gαβaσ (p, q) respectively given by Eqs. (32), (A1), and (A3)
in order to determine the kinetic coefficients (40) and the
coefficients (44).

Before discussing the behavior of the spin-wave spectrum
for the ML excitations, a few remarks here about the disper-
sion relation (50) are in order: (i) We follow the procedure
adopted in our previous study [34] for the flat-band FM
phase of a correlated Chern insulator described by a Haldane-
Hubbard model, and completely neglect the contribution of
the kinetic coefficients (40); indeed, for the ML excitations,
we find that ω̄αα

q are real while ω̄01
q and ω̄10

q are finite complex
quantities, but rather small in units of the nearest-neighbor
hopping energy t1 [see Figs. 5(a) and 5(b)]; as discussed
in detail in Ref. [34], we believe that such finite values for
ω̄

αβ
q are related to the symmetries of the Haldane model (2)

and to the fact that the condition (52) is not fulfilled for all
momenta q within the first BZ (see Fig. 4). (ii) Concerning the
coefficients (44), we find that they are also complex quantities,
with εαα

q having a quite small imaginary part and ε01
q 
= (ε10

q )∗
as shown in Fig. 5(c); such features imply that the quadratic
Hamiltonian (42) is non-Hermitian, a behavior previously
found for the correlated Chern insulator [34]; at the moment,
we believe that the non-Hermiticity of the Hamiltonian (42)
might be an artifact of the bosonization formalism associated
with the fact that the condition (52) is not completely satisfied
by the Haldane model (2); however, for the correlated Chern
insulator [34], the presence of the off-diagonal terms (α, β ) =
(0, 1) and (1,0) of the quadratic bosonic Hamiltonian (42) are
indeed important, since they yield a spin-wave spectrum with
Dirac points at the K and K ′ points of the first BZ (see Fig. 6
from Ref. [34]), in agreement with the numerical calculations
[32]; therefore, for the ML excitations, we also consider the
complete and non-Hermitian quadratic Hamiltonian (42). For
more details about these two important issues, we refer the
reader to Sec. VI B and Appendix B from Ref. [34].

Figure 2(a) shows the dispersion relation (50) for the nearly
flat band limit (17) and on-site repulsion energies UA = UB =
U . One sees that the spin-wave spectrum for the ML excita-
tions is gapped and has two branches: the gap of the lower
branch is at the Mi points of the first BZ while the gap of
the upper one is at the K and K ′ points. Small energy gaps
between the lower and upper bands at the K and K ′ points are
found,

�(K ) = �+,K − �−,K = 1.04 × 10−2 U, (C1)

in contrast with the corresponding correlated Chern insulator
[34], whose spin-wave spectrum displays Dirac points at the
K and K ′ points. Due to the non-Hermiticity of the quadratic
boson term (42), one finds that the spin-wave excitations (50)
have a quite small decay rate (the imaginary part of �±,q)
along the K-M1-K ′ line, i.e., at the border of the first BZ
[see the dashed line in Fig. 2(a) and note the multiplicative
factor 20]. Such a feature was also found in the study of the
correlated Chern insulator in Ref. [34].

The spin-wave spectra (50) for the nearly flat-band limit
(17) and on-site repulsion energies UB = 0.8UA = 0.8U
and UB = 0.6UA = 0.6U are shown in Figs. 2(b) and 2(c),
respectively. One sees that, as the diference �U = UA − UB

increases: The energies of the spin-wave excitations decrease;
the energy gap between the lower and upper bands at the K
point increases,

�(K ) = 1.95 × 10−2 U for �U = 0.2U,

�(K ) = 2.85 × 10−2 U for �U = 0.4U,

while the energy gap at the K ′ point also varies,

�(K ′ ) = 6.97 × 10−4 U for �U = 0.2U,

�(K ′ ) = 1.12 × 10−2 U for �U = 0.4U .

For UB > UA (not shown here), similar features are observed,
but now the energy gap at the K ′ point increases instead of the
one at K point with the same overall intensities. Similarly to
the homogeneous configuration UA = UB = U , the spin-wave
excitations (50) at the border of the first BZ also have finite
decay rates, which decrease as the diference �U = UA − UB

increases.
The behavior of the spin-wave spectrum (50) when the

THM (1) is moved away from the nearly flat band limit (17)
was also considered. One calculates the spin-wave spectrum
(50) for φ = 0.4, 0.5, 0.7, and 0.8, hopping amplitude t2 given
by the relation cos(φ) = t1/(4t2), and homogeneous on-site
repulsion energies UA = UB = U (not shown here). Similarly
to the SL excitations [Figs. 3(a) and 3(b)], one finds that the
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FIG. 7. (a) Free electronic band structure (16) with the additional staggered on-site energy term (D1) along paths in the first BZ [Fig. 1(b)]
for the nearly flat band limit (17) and staggered on-site energy M = 0.1 t1: σ =↑ (magenta) and σ =↓ (green). (b) ML excitations (28).
Spin-wave spectrum (50) along paths in the first BZ for the nearly flat band limit (17), on-site Hubbard repulsion energies UA = UB = U ,
and staggered on-site energy M = 0.05 (green) and M = 0.1 t1 (magenta); solid and dashed lines respectively represent the real part of �±,q

and the imaginary part of �+,q = −�−,q, where the latter is multiplied by a factor of 10 for clarity. (c) Similar to panel (b), but for the SL
excitations (33).

spin-wave spectra are quite similar to the one obtained for the
nearly-flat band limit (17), φ = 0.656.

Even though the ML excitations are not the lowest-energy
ones for the correlated topological insulator (1), it would be
interesting to see whether the linear combinations (28) and
(33) could be slightly modified (e.g., with momentum depen-
dent coefficients) such that the condition (52) is now satisfied
by all momenta in the first BZ. Such an modification may
yield an Hermitian effective boson model not only for the ML
excitations, but also for the SL excitations of the correlated
Chern insulator [34]. We left this issue for a future work.

APPENDIX D: STAGGERED ON-SITE ENERGY TERM

Here we briefly comment on the effects on the spin-wave
spectrum (50) due to the presence of an staggered on-site
energy term,

HM =
∑

iσ

M(c†
iAσ ciAσ − c†

iBσ ciBσ ), (D1)

which breaks inversion symmetry when added to the
noninteracting model (2). In the presence of the term (D1), it
is easy to see that the Hamiltonian (2) also assumes the form
(15), with the dispersion of the free-electronic bands given by
Eq. (16) apart from the modification

Bσ
3,k → Bσ

3,k + M = γσ B3,k + M. (D2)

As discussed in detail in Sec. II B from Ref. [34], a fi-
nite on-site energy M increases the bandwidth of the lower
free-electronic band c, i.e., it allows us to move away from the
nearly flat-band limit, keeping the optimal parameter choice
(17) for t2 and φ. Distinct from the Chern insulator on the
hexagonal lattice [34], the staggered on-site energy term (D1)
breaks the symmetry between the spin ↑ and the spin ↓ free-
electronic bands as illustrated in Fig. 7(a) [note the γσ factor
in Eq. (D2)].

Figures 7(b) and 7(c) show the spin-wave spectrum (50)
for t2 and φ given by the optimal parameter choice (17),
staggered on-site energy M = 0.05 and 0.1 t1, and on-site
repulsion energies UA = UB = U = t1. For the ML excitations

(28) [Fig. 7(b)], a finite M = 0.05 t1 yields minor effects on
the spin-wave spectrum as compared with the homogenous
case M = 0 [Fig. 2(a)]. Even for M = 0.1 t1, the effects re-
main small, with just a decreasing of the spin-wave energies
around the K point and an increasing in the energy gap be-
tween the lower and the upper bands at the K ′ point. Also,
the decay rates (the imaginary part of �±,q) display quite
little modifications due to a finite M. On the other hand, for the
SL excitations (33), the effects related to a finite M are more
pronounced; see Fig. 7(c). Comparing with the homogeneous
case M = 0 [Fig. 2(d)], one notices that, as M increases: The
energy gap between the lower and upper bands increases at
the K point and it has a nonmonotonic behavior at the K ′
point; the excitation gap of the lower band decreases and it
moves from the � point to the K one. Such effects are qualita-
tively similar to the ones found for on-site repulsion energies
UA 
= UB; see Figs. 2(e) and 2(f). Interestingly, for M = 0.1 t1,
the excitation energy almost vanishes at the K point, a feature
that could indicate an instability of the flat-band FM phase.
One should mention that, for the correlated Chern insulator
[34], an instability of the flat-band FM phase was found for
any finite M. Finally, one should point out that, for M < 0 (not
shown here), the modifications in the spin-wave spectrum in
the vicinity of the K and K ′ points are reversed.

The fact that the energy of the excitation gap monotonically
decreases as M increases, as found for the SL excitations, was
previously observed for a time-reversal symmetric THM on a
square lattice [28].

APPENDIX E: CHERN NUMBERS OF THE SPIN-WAVE
BANDS

In this Appendix, we briefly describe the procedure em-
ployed to numerically calculate the Chern numbers of the
spin-wave bands (50).

We start casting the effective quadratic boson model (42)
in a matrix form as done in Sec. II B for the noninteracting
Hamiltonian (2),

H̄ (2)
U,B =

∑
q

�†
qh̃q�q, (E1)
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FIG. 8. Contour plot of the Berry curvature of the lower spin-
wave band within the first BZ for the nearly flat band limit (17)
and on-site repulsion energies UA = UB = U . (a) ML [Fig. 2(a)] and
(b) SL [Fig. 2(d)] excitations.

where the two-component spinor �k = (b0,q b1,q)T , and the
2 × 2 matrix h̃q assumes the form

h̃q = B̃0,qτ0 +
3∑

μ=1

B̃μ,qτμ. (E2)

Here τ0 is the identity matrix, τμ is a Pauli matrix, and

B̃0,q = 1

2

(
ε00

q + ε11
q

)
, B̃1,q = 1

2

(
ε01

q + ε10
q

)
,

B̃2,q = 1

2i

(
ε01

q − ε10
q

)
, B̃3,q = 1

2

(
ε00

q − ε11
q

)
, (E3)

with ε
αβ
q being the coefficients (44).

Due to the similarities between the forms of the
Hamiltonians (8) and (E1), the Chern numbers of the spin-
wave bands (50) are also given by Eq. (18), apart from the γσ

factor and the replacement B̂μ,k → B̃μ,k/|B̃k|, where |B̃k| =√
B̃2

1,k + B̃2
2,k + B̃2

3,k. Moreover, for the ML excitations, we

assume that ε01
q = (ε10

q )∗ in order to obtain real Chern num-

bers: Recall that, only for the ML excitations, the quadratic
Hamiltonian (42) is non-Hermitian, see Appendix C; such an
assumption was also made in Ref. [34] in order to determine
the Chern numbers of the spin-wave bands of a correlated
Chern insulator.

The Berry curvature, which is defined as one-half of the
integrand of Eq. (18), of the lower spin-wave band (50) for the
nearly flat-band limit (17) and on-site repulsion energies UA =
UB = U is shown in Fig. 8. For both ML and SL excitations,
one sees that the Berry curvatures peak at the K and K ′ points
of the first BZ.

The Chern numbers of the lower spin-wave bands (50)
for both the ML (CML) and the SL (CSL) excitations, which
are determined by numerically integrating Eq. (18) and
considering the coefficients (E3), are shown in Table I. For
the SL excitations shown in Figs. 2(d) and 2(e), one sees that
the Chern numbers are close to one. We believe that the small
deviations from the unit might be due to the fact that the
numerical procedure used to calculated the Chern numbers
does not properly take into account the behavior of the Berry
curvature [Fig. 8(b)] at the corners of the first BZ. On the other
hand, for the ML excitations shown in Figs. 2(a) and 2(b), the
Chern numbers are finite, but smaller than one. In addition
to possible numerical issues [see Fig. 8(a)], such fractional
values for the Chern numbers might also be associated to the
fact that it is necessary to assume that ε01

q = (ε10
q )∗ in order to

obtain real Chern numbers.
The nonzero Chern numbers found for the spin-wave bands

of the correlated topological insulator are in constrast with the
topological properties of the corresponding correlated Chern
insulator on a honeycomb lattice [32,34]. In the completely
flat band limit, i.e, when the dispersion of the noninteracting
electronic bands is neglected (an approximation similar to the
assumption ω̄

αβ
q = 0 made in Appendix C and in Ref. [34]

that the kinetic coefficients (40) vanish), it was found that the
spin-wave bands of the correlated Chern insulator are topo-
logically trivial [32,34]. Indeed, our previous results [34] are
in agreement with the exact diagonalization calculations [32].
Moreover, it was also numerically shown [32] that the spin-
wave bands of the correlated Chern insulator acquire nonzero
Chern numbers when the dispersion of the free-electronic
bands is explicitly taken into account (see also Sec. V from
Ref. [34]).

Although it is not clear whether the spin-wave bands for
the ML excitations (28) are topologically nontrivial, one finds
some evidences that the spin-wave bands for the SL exci-
tations (33) might be topologically nontrivial, even in the
completely flat band limit of the free-electronic bands, a fea-
ture that contrasts with the behaviour of the corresponding
correlated Chern insulator.
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