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Finding spectral gaps in quasicrystals
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We present an algorithm for reliably and systematically proving the existence of spectral gaps in Hamiltonians
with quasicrystalline order, based on numerical calculations on finite domains. We apply this algorithm to prove
that the Hofstadter model on the Ammann-Beenker tiling of the plane has spectral gaps at certain energies,
and we are able to prove the existence of a spectral gap where previous numerical results were inconclusive.
Our algorithm is applicable to more general systems with finite local complexity and eventually finds all gaps,
circumventing an earlier no-go theorem regarding the computability of spectral gaps for general Hamiltonians.
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I. INTRODUCTION

The spectrum of a periodic Hamiltonian is characterized
by bands and gaps or, for example, in the case of incom-
mensurable magnetic fields and two dimensions, by gaps only
(Cantor spectrum) [1–4]. Numerical results on finite patches,
as well as experimental data, suggest that spectral gaps appear
also in systems with aperiodic order, such as the Hofstadter
model on a quasicrystal [5–11]. Since Bloch theory is no
longer available, alternative methods are needed to compute
the spectrum of an infinitely extended aperiodic system. Using
the method of quasimodes (also known as “almost eigenvec-
tors”), one can deduce from the spectrum of the Hamiltonian
restricted to a finite patch that certain intervals contain spec-
trum of the infinite volume Hamiltonian H . See for example
[12,13] for efficient implementations of this strategy for ape-
riodic systems. Nevertheless, crucial physical features of such
systems, such as topological phases [14–16], depend on the
existence and location of spectral gaps, that is the information
that certain intervals do not contain spectrum of the infi-
nite volume Hamiltonian. However, until now, besides certain
specific situations, the location of spectral gaps in aperiodic
systems could only be guessed from numerical data on finite
patches, but not conclusively confirmed.

In this article, we present a method that allows to actually
prove the existence of spectral gaps in infinite aperiodic sys-
tems based on numerical calculations on finite domains. Our
method can be applied to any kind of short-range Hamiltonian
with finite local complexity. We apply it to the Hofstadter
Hamiltonian and to the px py model, both on the Ammann-
Beenker tiling. In particular, for the px py model we prove
that a small energy gap is open, which appears in numerical
calculations on finite balls, but whose existence for the infinite
system was uncertain [11]. This demonstrates that a rigorous
procedure like ours can be useful when numerical results are
otherwise hard to interpret.

Numerical investigations of aperiodic systems necessar-
ily restrict the Hamiltonian to finite patches and then either

apply periodic boundary conditions, or use open boundary
conditions. The first method relies on the construction of the
so-called periodic approximant systems. While it has been
shown that in specific models it is possible to successfully
construct such periodic approximants [17,18], the mathe-
matical justification of this procedure for generic aperiodic
systems is still subject of ongoing research [19–22]. Fur-
thermore, we stress that usually one does not have a precise
control of the rate of convergence of the spectral properties of
the periodic approximants. Using open boundary conditions,
on the other hand, edge-states may appear in gaps of the
bulk spectrum, i.e., in the spectrum of the infinite volume
Hamiltonian. In previous papers, such edge-states, as shown
for example in Fig. 1, have been discarded as “spectral pol-
lution” [12,23]. So far, however, no precise criterion has been
formulated to decide whether a given state is an edge state
and thus does not contribute to the bulk spectrum. Our result
formulated below yields such a criterion. Roughly speaking
we show that if for some spectral window all quasimodes
appearing in boxes of side-length 2L satisfy a quantifiable
“edge-state criterion”, then this spectral window is a gap in
the spectrum of the infinite-volume Hamiltonian. Our crite-
rion can be numerically checked for finite-range Hamiltonians
with finite local complexity, where for a given L > 0 the
restriction of H to a box of side-length 2L centered at an
arbitrary point in space yields a matrix from a finite set of
possible realizations.

II. FINITE-SIZE CRITERION FOR SPECTRAL GAPS

A. General finite-size criterion

We first formulate a general finite-size criterion, which is
equivalent to the existence of a bulk gap. This criterion does
not depend on the finite local complexity, and we merely
assume that the Hamiltonian H is a bounded Hermitian op-
erator on �2(�;H), where H is a separable Hilbert space
and � ⊂ Rd is a countable set. We will also assume that
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FIG. 1. An edge state of a magnetic Hamiltonian on a finite
patch of the Ammann-Beenker tiling (L = 9). The color of the dots
corresponds to the phase of the wave function and the radius to the
modulus. While the infinite system has a spectral gap at this energy,
the finite system has an eigenstate whose mass is concentrated at the
edges.

there is a maximal distance r > 0 such that any point in Rd

is within a distance at most r of a point in �. Throughout
this article we measure distances in Rd using the ∞-norm
‖x‖∞ := max{|x1|, . . . , |xd |}. We also write

BL(x) :=
d∏

j=1

(x j − L, x j + L)

for the open cube of side length 2L centered around the point
x ∈ Rd and BL(x) for its closure BL(x) := ∏d

j=1[x j − L, x j +
L]. For any set A ⊂ Rd and wave function ψ ∈ �2(�;H), we
denote by

‖ψ‖2
A :=

∑
x∈�∩A

‖ψ (x)‖2
H

its �2 mass in A.
Definition 1. Let ε, L > 0 and λ ∈ R. We say that a Hamil-

tonian H is locally ε-bulk gapped at energy λ and scale L if
there exist constants N ∈ N, N � 2, and C < 1/Nd such that
for any x ∈ � and any ψ ∈ �2(�;H) we have the following
implication: Whenever

‖(H − λ)ψ‖BL (x) � ε‖ψ‖BL (x), (1)

then for l := L+r
N + r it holds that

‖ψ‖2
Bl (x) � C‖ψ‖2

BL (x). (2)

In other words, Definition 1 requires that at some scale L all
ε quasimodes (1) have an underproportional mass within the
bulk (2). Although this property depends only on evaluations
of the Hamiltonian H on finite patches, we can show that it
implies that the interval (λ − ε, λ + ε) does not contain any
spectrum of H .

Theorem 1. If a Hamiltonian H on �2(�;H) is locally ε-
bulk gapped at energy λ on some scale L > 0, then the interval

(λ − ε, λ + ε) is a gap in the spectrum of H , i.e.,

σ (H ) ∩ (λ − ε, λ + ε) = ∅.

The complete proof of Theorem 1 is given in Appendix A.
However, the underlying geometric idea is easily explained
and we sketch it here. Suppose that we are in dimension d =
1, and that the statement in Definition 1 holds for l = L/N
instead of the more complicated expression involving r. We
can then show that H has no eigenvalues in (λ − ε, λ + ε)
using a simple decomposition argument: Define the lattices

Zq := 2L(Z + q/N ) for q ∈ {1, . . . , N}.
While for fixed q the larger open intervals BL(x) centered at
different x ∈ Zq are still mutually disjoint, the shorter closed
intervals Bl (x) cover R when taking the union over all q, i.e.,⋃n

q=1

⋃
x∈Zq

Bl (x) = R. (3)

Now assume that ψ is an eigenfunction of H with eigenvalue
λ0 ∈ (λ − ε, λ + ε). Then ψ satisfies (1) for any x, and thus,
by assumption, also (2). This implies

N∑
q=1

∑
x∈Zq

‖ψ‖2
Bl (x) <

1

N

N∑
q=1

∑
x∈Zq

‖ψ‖2
BL (x) = ‖ψ‖2,

while (3) implies

N∑
q=1

∑
x∈Zq

‖ψ‖2
Bl (x) � ‖ψ‖2.

This is a contradiction and thus no such eigenfunction can
exist.

B. A criterion that can be checked numerically

We now discuss how to establish existence of local ε-bulk
gaps, and thus by Theorem 1 spectral gaps for Hamiltoni-
ans with finite-range hoppings and finite local complexity.
We first give a sufficient condition for a Hamiltonian to be
locally ε-bulk gapped that can be easily verified numerically
(see Appendix B). From now on we assume that H has only
finite-range hoppings with maximal hopping length m, namely
Hxy = 0 for all x, y ∈ � with ‖x − y‖∞ > m. For any set
A ⊂ Rd we denote by 1A the characteristic function of A and
set HA := 1AH1A.

Proposition 1. As before, let L > 0, N ∈ N, N � 2,
l := L+r

N + r, and λ ∈ R.
Assume that for every x ∈ � there exists a set A(x) ⊂ �

such that Bl (x) ⊆ A(x) ⊆ BL−m(x), λ /∈ σ (HA(x) ), and

D(x) = ∥∥1Bl (x)(HA(x) − λ)−11A(x)H1BL (x)\A(x)

∥∥
op

satisfies D(x) < N−d/2.
Then H is locally ε-bulk gapped at energy λ and scale L

for any ε > 0 with

ε < inf
x∈�

N−d/2 − D(x)∥∥1Bl (x)(HA(x) − λ)−11A(x)

∥∥
op

. (4)

The proof of Proposition 1 is given in Appendix A. Note
that HA(x) is a sparse matrix and therefore the conditions of
Proposition 1 can be efficiently checked using a sparse LU
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factorization [24]. This way, the condition can be verified even
for values of L for which a direct diagonalization approach
would no longer be computationally feasible.

III. APPLICATION TO QUASICRYSTALS

In order to apply Proposition 1 to quasicrystals � ⊂ Rd ,
we need a way to enumerate all local patches

CL(x) := {y ∈ Rd | x + y ∈ � ∩ BL(x)} ⊂ BL(0)

at scale L that occur for x ∈ �. We say that � has fi-
nite local complexity if the set CL = {CL(x) | x ∈ �} is finite
[25–27]. Those quasiperiodic tilings that are suggested as
models for physical systems all have finite local complexity.
Our method is practical because, for common quasicrystals,
the number of local patches grows only polynomially in L,
while it would grow exponentially without long-range order
[28,29].

To enumerate the tilings, we make use of the cut-and-
project construction of quasiperiodic tilings [30,31]. The
Ammann-Beenker tiling [32,33] can be defined by a cut-and-
project method using two “projections”,

p =
(

1 a 0 −a
0 a 1 a

)
and κ =

(
1 −a 0 a
0 a −1 a

)
,

both maps from R4 to R2, where a = 1/
√

2. We call p and κ

“projections” since they represent orthogonal projections onto
two orthogonal two-dimensional subspaces of R4, which are
then both identified with R2. Furthermore, let R ⊂ R2 be the
regular axis-aligned octagon centered at 0 with side length 1.
The vertices of the Ammann-Beenker tiling are the set

�AB = { p(z) | z ∈ Z4, κ (z) ∈ R }.
An edge is introduced between p(z1) and p(z2) whenever z1

and z2 differ by a unit vector in R4. Because a is irrational,
every point x ∈ �AB has exactly one pre-image z ∈ Z4 such
that p(z) = x.

What local patches CL(x) can occur when x varies in �AB?
Let z ∈ Z4 be such that p(z) = x ∈ �AB, and consider the set
of all v ∈ Z4 such that p(z + v) ∈ �AB ∩ BL(x). There is only
a finite number of v ∈ Z4 that can occur across all x, because
v has to fulfill the two conditions,

p(z + v) ∈ BL(x) and κ (z + v) ∈ R. (5)

By the linearity of p, the first condition reduces to

p(v) ∈ BL(0) (6)

and since κ (x) ∈ R, the second condition implies

κ (v) ∈ 2R, (7)

where 2R is the octagon of side length 2.
Both (6) and (7) state that a linear image of v lies in some

compact set. Since p and κ have orthogonal kernels, these two
conditions define a set ṼL linearly equivalent to the cartesian
product of BL(0) and 2R, which is itself compact and hence
contains only finitely many integer points. Let VL = ṼL ∩ Z4

be this set of “candidate points”. An algorithm for computing
VL is described in Appendix B, Algorithm 1.

FIG. 2. The octagonal acceptance region for the Ammann-
Beenker tiling decomposed into subpolygons corresponding to the
different local patches in CL (x), for L = 5. The color of each polygon
corresponds to D(x) computed for N = 2 with A(x) = BL−1(x) (in
this case m = 1), drawn in a logarithmic scale with base 10, for the
Hofstadter Hamiltonian at magnetic field b = 1 and energy 1.5. At
scale L = 5, D(x) never falls below the required bound 1/2. At scale
L = 50 one finds that D(x) < 1/2 for every local patch, proving the
gap.

According to (5), for any v ∈ VL the patch CL(x) contains
the point p(z + v) if and only if

κ (z) ∈ R − κ (v), (8)

i.e., if κ (z) lies in the shifted octagon R − κ (v). Put differ-
ently, every candidate point v ∈ VL decomposes the octagon R
into two disjoint sets P0(v) and P1(v), delineating for which
κ (z) the point p(z + v) is or is not in �AB. The enumera-
tion algorithm then merely consists of computing all possible
intersections

⋂
v∈V Piv (v), where i ∈ {0, 1}|V |. One can show

that the number of such intersection that are nonempty, and
hence the number of local patches, grows quadratically in L
for the Ammann-Beenker tiling [34]. They can be enumerated
efficiently using a dynamic programming approach described
in Appendix B, Algorithm 2. Figure 2 shows the resulting
decomposition of the octagon R for L = 5.

A. Two explicit models

We now study two physical systems on the Ammann-
Beenker tiling. The px py model is a model for a weak topo-
logical superconductor whose real-space description allows
it to be defined on aperiodic sets [35]. The matrix elements
of the Hamiltonian are

Hxy = −tσ3 − i
2	σ1 cos(αxy) − i

2	σ2 sin(αxy),

Hxx = −μσ3,
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FIG. 3. The Hofstadter butterfly of the magnetic Laplacian on the
Ammann-Beenker tiling with some points selected for investigation
using our method.

for ‖x − y‖2 � 1, and Hxy = 0 otherwise. Here σ1, σ2, σ3 are
Pauli matrices, μ,	 ∈ R and αxy is the signed angle between
the edge xy and the e1 axis.

For μ very large, this Hamiltonian can be considered as a
small perturbation of μσ3, thus its spectrum has a gap around
0, without edge states when restricted to finite domains. As
μ decreases, the gap eventually closes and the system is
expected to undergo a quantum phase transition into a topo-
logically nontrivial phase. This topological regime has been
studied in [11]. Employing computational K theory, convinc-
ing evidence was found that a large gap around zero indeed
reopens. But the numerical data also suggested a second small
gap might open. In the absence of a decisive criterion, the
author had to leave open whether this gap persists in the
thermodynamic limit [11, p. 9]. Using our method, we could
prove that there really is a small second gap around energy
0.804 in the infinite system.

As a second example, we applied our method to the Hofs-
tadter model on the Ammann-Beenker tiling. In the symmetric
gauge, the matrix elements of the Hofstadter Hamiltonian
are Hxy = eib det(x,y) for ‖x − y‖2 � 1, and Hxy = 0 other-
wise, where b ∈ R denotes the strength of the magnetic field
perpendicular to the tiling. It was previously observed that
patterns related to the Hofstadter butterfly also emerge in qua-
sicrystalline systems [36–38]. We approximated the density
of states of the Hofstadter butterfly (see Fig. 3) by diago-
nalization of a finite system and created a set of possible
gap locations by taking all local minima of a kernel density

FIG. 4. Comparison of our lower bound for the distance to spec-
trum (for L = 50) to the upper bound computed with the method
of [12]. We computed both bounds for 50 equally spaced ener-
gies in the Hofstadter model at a constant magnetic field b = 1.
The combination of these bounds allows us to bound the extent of
the spectral gap containing energy 1.5. The endpoints of the gap
must be contained in the lighter shaded areas around energies 1.2
and 1.82.

estimate with bandwidth 0.1 of the spectra. In this way we
generated 187 combinations of magnetic field and energy
where a gap might be expected. Applying our algorithm with
L = 50, we could show for 44 of these points that there is
a spectral gap in the infinite system, increasing to 49 points
with L = 100. For L = 50, this required checking 15 139 local
patches, while for L = 100, we had |CL| = 60 601.

IV. COMPUTATIONAL COMPLEXITY OF
SPECTRAL COMPUTATIONS

We computed a cross section of our lower bound on the
distance to the spectrum at different energies for a fixed mag-
netic field, see Fig. 4. Comparing our lower bound to the
upper bound in [12] shows that the curves are similar and
increase linearly towards the center of the gap. Both estimates
approximate the distance to the spectrum well. See Fig. 5
in the Appendix for a similar plot for the Fibonacci crys-
tal, showing multiple gaps. The combination of both bounds
yields rigorous and precise information on the positions of the
edge of the spectral gap.

This should be compared to the no-go theorem of [12] that
an algorithm with two-sided error control (see Appendix D,
Definition 3) for general Hermitian operators on a given
Hilbert space does not exist. While the precise formulation
of this no-go theorem requires some preparation and is given
only in Appendix D, the basic idea is easily explained. An
algorithm with two-sided error control has as input a Hamil-
tonian H from a certain set � of Hamiltonians and an error
margin. It is supposed to return a subset of the reals that ap-
proximates the spectrum σ (H ) within the given error margin
in Hausdorff distance.

It also needs to be specified which properties of the Hamil-
tonian the algorithm can access directly. In the setting of the
no-go theorem, it can access the matrix elements Hi j of H
with respect to some orthonormal basis (ei )i∈N . Of course any
algorithm that stops after finite time can evaluate only finitely
many matrix elements. Now it is clear that no such algorithm
can, for example, after having evaluated a finite number of
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matrix elements of an operator in

�diag := {H = diag(λ1, λ2, . . .) | λi ∈ [0, 1], i ∈ N},

decide that any interval (a, b) ⊆ [0, 1] is free of spectrum.
To do so, it would have to exclude that λi ∈ (a, b) for any
i ∈ N, which is impossible based on a finite sample of the
λi. So while one can find convergent approximations to the
spectrum, one can never prove the existence of a gap in this
example. However, this would be required in order to obtain
error control in Hausdorff distance.

Our algorithm circumvents this no-go theorem by assum-
ing the additional structure of finite local complexity and
finite-range hoppings (interactions). In fact, one can prove
that for any energy λ that is not in the spectrum of such a
Hamiltonian, it is possible to determine an L with which our
algorithm shows that some neighborhood of λ is contained
in a gap. The required L only depends on the distance to
the spectrum as well as on the norm and maximum hopping
length of the Hamiltonian. This means that the gap estimate
in Fig. 4 can be made arbitrarily accurate by choosing L large
enough and computation of the spectrum with two-sided error
control is possible in the case of finite local complexity. In
the framework of the solvability complexity index [39,40], this
corresponds to a decrease in the complexity class from �A

1 to
	A

1 . More information on this is given in Appendix D.

V. CONCLUSIONS

We have described a method to systematically and conclu-
sively establish the existence and location of spectral gaps
for infinite aperiodic Hamiltonians with finite local com-
plexity. The method is based on the characterization of the
support of quasimodes for finite volume subsystems of the
aperiodic Hamiltonian: Although a spectral gap may close
by introducing boundary conditions on a finite subsystem,
the states filling such a bulk gap are localized at the edge of
the subsystem. We formulate an edge state criterion, namely
Definition 1, and show that if all quasimodes near a certain
energy λ in all finite patches of a certain size are edge states
in the sense of Definition 1, the corresponding energy must be
in a bulk gap, see Theorem 1.

We provide a way to check this criterion numerically by
computing certain resolvents in the finite systems, that is
Proposition 1, which can be implemented efficiently using
sparse numerics. We also derive a lower bound for the size
of the gap. To apply this method to quasicrystals, we describe
an algorithm enumerating all local patches of a quasiperiodic
tiling, using the cut-and-project construction of quasicrystals.
Based on this, we investigate two physical models on qua-
sicrystals, the px py model and the Hoftstadter model, and
rigorously establish the existence of their spectral gaps, even
in situations where previous numerical computations gave
inconclusive results [11].

Gaps that are suggested by finite-system computations can
be proven to be gaps in the bulk using our method. In fact, one
can prove the existence of any gap by choosing the subsystem
size large enough. Therefore, we show that, unlike in the gen-
eral case where only one-sided error control of the spectrum
is possible [12], the spectrum of operators with finite local

complexity is computable with error control in Hausdorff
distance.

Finally, we would like to stress that while in this paper we
only apply our method to quasicrystals, the class of operators
with finite local complexity is general enough to encompass
a wide range of models used in physical applications, such
as periodic systems, quasicrystalline materials, systems with
edges, heterostructures, or disordered systems. We show that
the spectrum is computable with two-sided error control in
all such cases (see Appendix D). However, in some systems
the number of local patches grows so fast that applying our
method may not be practical. For example, in disordered
systems, the number of local patches may grow exponentially
fast in L. Nevertheless, there are many cases of physical inter-
est, for instance low-dimensional defects in quasicrystalline
systems or junctions between noncommensurate materials, in
which the number of local patches grows only polynomially.
In all these cases, our method can easily be adapted to prove
the existence of spectral gaps.
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APPENDIX A: FULL MATHEMATICAL PROOFS

In this section we provide a complete proof of Theorem
1 and Proposition 1. For the convenience of the reader, we
briefly recall our framework together with relevant definitions
and the statements of the results.

The Hamiltonian H is a bounded Hermitian operator on
�2(�;H), where � ⊂ Rd is a countable set and H is a sep-
arable Hilbert space. We assume that there is a maximum
distance r > 0 such that any point in Rd is at most a distance
r away from a point in �. Recall that distances in Rd are
measured in the norm ‖x‖∞ := max{|x1|, . . . , |xd |}. The open
cube with side-length 2r around x ∈ Rd is

Br (x) := {y ∈ Rd | ‖x − y‖∞ < r}
and its closure Br (x) := {y ∈ Rd | ‖x − y‖∞ � r}. For any
set A ⊂ Rd and wave function ψ ∈ �2(�;H), we denote by
‖ψ‖2

A := ∑
x∈�∩A ‖ψ (x)‖2

H its �2 mass in the region A.
Definition 1 makes precise the idea that a Hamiltonian is

gapped in the bulk at a certain energy λ and a certain length
scale L, if all ε-quasimodes at that energy that are supported in
a region of that scale, see (1), are disproportionately supported
near the edge of the region (2).

Definition 1. Let ε, L > 0, and λ ∈ R. We say that a
Hamiltonian H is locally ε-bulk gapped at energy λ and scale
L if there exist constants N ∈ N, N � 2, and C < 1/Nd such
that for any x ∈ � and any ψ ∈ �2(�;H) we have the follow-
ing implication: Whenever

‖(H − λ)ψ‖BL (x) � ε‖ψ‖BL (x), (1)

then for l := L+r
N + r it holds that

‖ψ‖2
Bl (x) � C‖ψ‖2

BL (x). (2)
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In the following we call any ψ ∈ L2(Rd ) that satisfies the
inequality (1) an L-local ε-quasimode at x. In these terms,
Definition 1 says that every L-local ε-quasimode at x has
most of its mass in BL(x) concentrated outside of Bl (x). This
terminology is useful in the proof of the main theorem.

Theorem 1. If a Hamiltonian H on �2(�;H) is locally ε-
bulk gapped at energy λ on some scale L > 0, then the interval
(λ − ε, λ + ε) is a gap in the spectrum of H , i.e.,

σ (H ) ∩ (λ − ε, λ + ε) = ∅.

Proof. Assume that H is locally ε-bulk-gapped at energy
λ and scale L > 0. Let l, N and C be as in Definition 1. We
generalise the proof strategy presented in the main text. For
every q ∈ {1, . . . , N}d let

Z̃q := 2(L + r)(Zd + q/N ) (A1)

and

fq : Z̃q → �, x̃ 
→ fq (̃x) := the point in � closest to x̃.
(A2)

In the case where several points in � minimize the distance
to x̃, we arbitrarily pick one of them in the definition of fq (̃x).
By the assumption on � we have that ‖̃x − fq (̃x)‖∞ � r for all
x̃ ∈ Z̃q. Since two distinct points in Z̃q have at least distance
2(L + r), this implies that the map fq is one-to-one. Hence, as
a map onto its image

Zq := fq(Z̃q) ⊂ �, (A3)

the map fq : Z̃q → Zq is a bijection and we think of Zq as a
deformation of Z̃q.

It is now straightforward to see that the large boxes BL(x)
are still mutually disjoint when x varies in one of the deformed
sublattices Zq and that the small boxes Bl (x) still cover all of
Rd if x varies in the union ∪qZq:

Disjointness: For any q ∈ {1, . . . , N}d and two different
points x, y ∈ Zq

BL(x) ∩ BL(y) = ∅. (A4)

Proof. Let x̃ := f −1
q (x) and ỹ := f −1

q (y). Then x̃ and ỹ are
two distinct points in the square lattice Z̃q and thus their dis-
tance is at least 2(L + r). Using the inverse triangle inequality
we conclude that

‖x − y‖∞ = ‖x̃ − ỹ + x − x̃ + ỹ − y‖∞
� ‖x̃ − ỹ‖∞ − ‖x − x̃‖∞ − ‖ỹ − y‖∞
� 2(L + r) − 2r

= 2L.

Thus, the boxes BL(x) and BL(y) do not overlap. �
Covering: ⋃

q∈{1,...,N}d

⋃
x∈Zq

Bl (x) = Rd . (A5)

Proof. Note that the union

Z̃ :=
⋃

q∈{1,...,N}d

Z̃q

is a square lattice with side length 2(L + r)/N . Thus, for every
p ∈ Rd , there exists a q ∈ {1, . . . , N}d and x̃ ∈ Z̃q such that

‖p − x̃‖∞ � (L + r)/N . The triangle inequality now implies

‖p − fq (̃x)‖∞ � ‖p − x̃‖∞ + ‖̃x − fq (̃x)‖∞
� (L + r)/N + r = l (A6)

and therefore p ∈ Bl (x) for x := fq (̃x) ∈ Zq. �
These two properties allow us to prove by contradic-

tion that the spectrum σ (H ) does not contain the interval
(λ − ε, λ + ε).

Suppose there exists ν ∈ (λ − ε, λ + ε) ∩ σ (H ). Then, ac-
cording to Weyl’s criterion, there exist arbitrarily precise
quasimodes for the energy ν. More precisely, for any δ > 0
there exists ψ ∈ �2(�,H) such that

‖ψ‖ = 1 and ‖(H − ν)ψ‖ < δ. (A7)

We now fix δ > 0 such that

δ < (ε − |λ − ν|)2, (A8a)

δ < N−d − C, (A8b)

and choose a corresponding ψ ∈ �2(�,H) that satisfies (A7).
Notice that if ψ is a δ-quasimode on Rd , this does not im-

ply that ψ is an L-local δ-quasimode for all x ∈ Rd . However,
we have that the total mass of ψ on those squares BL(x) for
which ψ is not an L-local δ-quasimode is small (it is of order
δ). To see this, we split each Zq into two subsets

Z+
q := {

x ∈ Zq | ‖(H − ν)ψ‖BL (x) �
√

δ‖ψ‖BL (x)

}
,

Z−
q := {

x ∈ Zq | ‖(H − ν)ψ‖BL (x) >
√

δ‖ψ‖BL (x)

}
.

Around the points x ∈ Z+
q , ψ is an L-local ε-quasimode, since

‖(H − λ)ψ‖BL (x) � ‖(H − ν)ψ‖BL (x)+ |λ − ν|‖ψ‖BL (x)

� (
√

δ + |λ − ν|)‖ψ‖BL (x)

< ε‖ψ‖BL (x). (A9)

For the last step of the above, we rewrite (A8a) as

δ < (ε − |λ − ν|)2 ⇒
√

δ < ε − |λ − ν|
⇒

√
δ + |λ − ν| < ε.

Since H is locally ε-bulk-gapped on the scale L, (A9) implies
that for every x ∈ Z+

q the inequality (2) holds true. Summing
over all x ∈ Z+

q , we get∑
x∈Z+

q

‖ψ‖2
Bl (x) � C

∑
x∈Z+

q

‖ψ‖2
BL (x). (A10)

By the disjointness condition shown before, we have that
BL(x) and BL(y) are disjoint for different x and y in Z+

q . Since
for disjoint sets A and B, we have ‖ψ‖2

A + ‖ψ‖2
B = ‖ψ‖2

A∪B,
we obtain ∑

x∈Z+
q

‖ψ‖2
BL (x) = ‖ψ‖2

U � ‖ψ‖2 = 1 (A11)

for U := ⋃
x∈Z+

q
BL(x). Combining Eqs. (A11) and (A10), we

get ∑
x∈Z+

q

‖ψ‖2
Bl (x) � C. (A12)
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Let now x ∈ Z−
q , then by definition of Z−

q we have

‖ψ‖2
BL (x) <

1

δ
‖(H − ν)ψ‖2

BL (x). (A13)

By taking the sum over all x ∈ Z−
q we get

∑
x∈Z−

q

‖ψ‖2
Bl (x) �

∑
x∈Z−

q

‖ψ‖2
BL (x) <

1

δ

∑
x∈Z−

q

‖(H − ν)ψ‖2
BL (x)

� 1

δ
‖(H − ν)ψ‖2,

where we used the disjointness of the BL(z) for z ∈ Zq in the
last step. Since ψ is a δ-quasimode, meaning ‖(H − ν)ψ‖2 <

δ2, we get ∑
x∈Z−

q

‖ψ‖2
Bl (x) < δ. (A14)

Combining (A12) and (A14) and using the covering property
(A5), we finally obtain

‖ψ‖2 �
∑

q∈{1,...,N}d

∑
x∈Zq

‖ψ‖2
Bl (x)

=
∑

q∈{1,...,N}d

⎛
⎝∑

x∈Z+
q

‖ψ‖2
Bl (x) +

∑
x∈Z−

q

‖ψ‖2
Bl (x)

⎞
⎠

�
∑

q∈{1,...,N}d

(C + δ) = Nd (C + δ) < 1,

where in the last inequality we used the hypothesis (A8b) on δ.
Since ‖ψ‖2 < 1 contradicts the normalisation of ψ assumed
in (A7), such a δ-quasimode cannot exist, and ν is not in the
spectrum of H . �

Remark 1. Notice that neither Definition 1 nor Theorem 1
require the boundedness of the Hamiltonian and can be easily
generalized to unbounded operators taking into account only
vectors that belong to the domain of the Hamiltonian.

Next we prove the numerically verifiable criterion for the
property of being locally ε-bulk gapped. Recall that for any
set A ⊂ Rd we denote by 1A the characteristic function of A
and we use the shorthand notation HA := 1AH1A.

Proposition 1. As before, let L > 0, N ∈ N, N � 2,
l := L+r

N + r, and λ ∈ R.
Assume that for every x ∈ � there exists a set A(x) ⊂ �

such that Bl (x) ⊆ A(x) ⊆ BL−m(x), λ /∈ σ (HA(x) ), and

D(x) = ∥∥1Bl (x)(HA(x) − λ)−11A(x)H1BL (x)\A(x)

∥∥
op

satisfies D(x) < N−d/2.
Then H is locally ε-bulk gapped at energy λ and scale L

for any ε > 0 with

ε < inf
x∈�

N−d/2 − D(x)∥∥1Bl (x)(HA(x) − λ)−11A(x)

∥∥
op

. (4)

Proof. Let x ∈ � and suppose that for some ψ ∈ �2(�;H)
property (1) holds, i.e.,

u := 1BL (x)(H − λ)ψ

satisfies

‖u‖ < ε‖ψ‖BL (x), (A15)

with ε > 0 satisfying (4). We need to show that this implies
(2). Writing

(HA(x) − λ)1A(x)ψ

= 1A(x)(H − λ)1A(x)ψ

= 1A(x)(H − λ)ψ − 1A(x)(H − λ)1A(x)cψ

= 1A(x)u − 1A(x)H1A(x)cψ

and multiplying this equality by (HA(x) − λ)−1 gives

1A(x)ψ = (HA(x) − λ)−1(1A(x)u + 1A(x)H1A(x)cψ ).

Since we need to estimate ‖ψ‖Bl (x), we can multiply by 1Bl (x)

to obtain

1Bl (x)ψ = 1Bl (x)(HA(x) − λ)−1(1A(x)u + 1A(x)H1A(x)cψ ).

Using the triangle inequality, we obtain

‖ψ‖Bl (x) � Q1 + Q2 (A16)

with

Q1 = ∥∥1Bl (x)(HA(x) − λ)−11A(x)u
∥∥

Q2 = ∥∥1Bl (x)(HA(x) − λ)−11A(x)H1A(x)cψ
∥∥.

The first term is easily bounded using (A15),

Q1 < M(x) ε‖ψ‖BL (x)

with

M(x) := ∥∥1Bl (x)(HA(x) − λ)−11A(x)

∥∥
op.

Because of the finite-range hypothesis on H and the fact that
A(x) ⊂ BL−m(x), we can rewrite the second term Q2 using

1Bl (x)(HA(x) − λ)−11A(x)H1A(x)cψ

= 1Bl (x)(HA(x) − λ)−11A(x)H1BL (x)\A(x)ψ.

Thus, Q2 can be estimated using the assumption on D(x) and
we find that

‖ψ‖Bl (x) < M(x) ε‖ψ‖BL (x) + D(x)‖ψ‖BL (x)\A(x)

� (D(x) + εM(x))‖ψ‖BL (x).

Since (4) implies that

sup
x∈�

(D(x) + εM(x))2 < sup
x∈�

(
D(x) + N−d/2 − D(x)

M(x)
M(x)

)2

= N−d ,

(2) holds for any C with

sup
x∈�

(D(x) + εM(x))2 < C < N−d .

�

APPENDIX B: DESCRIPTION OF THE ALGORITHMS

In this section we explain in detail how to apply the gen-
eral results of Theorem 1 to Hamiltonians modelled over
the Ammann-Beenker tiling by enumerating all local patches
on a certain scale L and then checking the conditions of
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Proposition 1. The method can be easily generalised to other
cut-and-project tilings. Moreover, Proposition 1 can be ap-
plied in principle to any Hamiltonian that has finite local
complexity. The problem of enumerating all possible local
restrictions of HBL (x) on a scale L then needs to be solved in a
way specific to the structure of � and H .

We first describe an algorithm to determine all the different
local patches that can occur in the Ammann-Beenker qua-
sicrystal �AB defined with the cut-and-project method, that
is to determine the set CL := {CL(x) | x ∈ �AB} of all local
patches CL(x) := {y ∈ Rd | x + y ∈ �AB ∩ BL(x)}.

Recall that the vertices of the Ammann-Beenker tiling are
defined as the set

�AB = { p(z) | z ∈ Z4, κ (z) ∈ R },
where a = 1√

2
, R ⊂ R2 is the regular axis-aligned octagon

centered at 0 with side length 1, and

p =
(

1 a 0 −a
0 a 1 a

)
, κ =

(
1 −a 0 a
0 a −1 a

)

are the two “projections” as maps from R4 to R2.
The first algorithm we describe determines the set VL ⊆ Z4

of “candidate points” defined as

VL = { v ∈ Z4 | p(v) ∈ BL(0) and κ (v) ∈ 2R }.
As explained in the main text, this set is defined such that for
every z ∈ Z4, the points of �AB ∩ BL(p(z)) are all of the form
p(z + v) for some v ∈ VL. Thus to determine which points are
part of the local patch around p(z), we only need to check the
points z + v for v ∈ VL.

The set of candidate points VL only depends on L and
hence we only have to compute it once at the beginning of the
algorithm. To compute it, it would be possible in principle to
simply check the two conditions p(v) ∈ BL(0) and κ (v) ∈ 2R
for all integer points in a four-dimensional cube around 0
with radius 2L, say, but this would be very inefficient as it re-
quires checking O(L4) points. Because the condition κ (v) ∈ R
means that all points in VL lie close to the two-dimensional
hyperplane defined by κ (v) = 0, it should only be necessary
to check the conditions for O(L2) points.

To compute VL efficiently, consider the matrix

t =

⎛
⎜⎜⎝

1 0
a a
0 1

−a a

⎞
⎟⎟⎠.

The matrix t satisfies κt = 0 and pt = 2 · 1. Because the
columns of t together with the second and fourth canonical
basis vectors e2 and e4 form a linear basis of R4, we can write
any v ∈ VL as

v = t

(
w1

w2

)
+ q1e2 + q2e4 =

⎛
⎜⎝

w1

a(w1 + w2) + q1

w2

a(w2 − w1) + q2

⎞
⎟⎠. (B1)

Because v ∈ Z4, also w1,w2 ∈ Z. The condition κv ∈ 2R that
holds for all v ∈ VL can be used to bound q1 and q2. In fact,

using κt = 0 we conclude that(
a a

−a a

)(
q1

q2

)
= κ (q1e2 + q2e4) = κ (v) ∈ 2R. (B2)

Since the matrix

A =
(

a a
−a a

)
,

and hence also its inverse, are symmetries of R (that is, AR =
R), (B2) just becomes (

q1

q2

)
∈ 2R.

In particular, this condition on (q1, q2) is independent of
L. This is what allows enumerating all points according to
Eq. (B1) with q1, q2 in only O(L2) steps.

We now compute the range of values that w1 and w2 can
take such that (B1) defines an element v ∈ VL. Using

pt =
(

2 0
0 2

)
,

we find

p(v) = p

[
t

(
w1

w2

)
+ q1e2 + q2e4

]
= 2

(
w1

w2

)
+ AT

(
q1

q2

)
.

As also AT leaves R invariant, (q1, q2) ∈ 2R implies

p(v) − 2

(
w1

w2

)
∈ 2R.

Since v ∈ VL requires pv ∈ BL(0) and since the ∞-norm of
2R is bounded by 1 + √

2, we find that

2

(
w1

w2

)
∈ BL+1+√

2(0).

Thus w1 and w2 must both lie in the interval (−L/2 −
s, L/2 + s) with s = (1 + √

2)/2.
Thus, when determining whether v ∈ Z4 lies in VL, the

values of v1 = w1 and v3 = w2 can be restricted to integers
in this range (line 1 in Algorithm 1). For q1 and q2, it suffices
to consider all values in 2R ⊂ B2s(0) such that the resulting
values for v2 and v4 become integral (line 2 in Algorithm 1).

Next, we describe the algorithm to enumerate the local
patches of the Ammann-Beenker tiling. As we have discussed
in the main text, the local patch CL(x) centered at x = p(z) ∈
�AB can be characterized by which of the candidate points in
VL “become part of the tiling”. Namely, for every v ∈ VL, we

Algorithm 1. Enumerate “candidate set” VL .

1: for all integers v1, v3 in (−L/2 − s, L/2 + s) do
2: for all integers v2 ∈ a(v1 + v3) + [−2s, 2s]

and v4 ∈ a(v1 − v3) + [−2s, 2s] do
3: if p(v) ∈ BL (0) and κ (v) ∈ 2R then
4: add v to VL

5: end if
6: end for
7: end for
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have

p(z + v) ∈ �AB ⇔ κ (z + v) ∈ R ⇔ κ (z) ∈ R − κ (v). (B3)

Defining for v ∈ R4 the following decomposition of the ac-
ceptance region,

P1(v) := R ∩ (R − κ (v))

P0(v) := R \ P1(v),

(B3) entails that for every v ∈ VL it holds that

p(v) ∈ CL(x) ⇔ κ (z) ∈ P1(v). (B4)

By labeling the points in the set VL with an index i ∈
{1, . . . , |VL|}, we can uniquely associate to each bit string
b = (b1, . . . , b|VL |) ∈ {0, 1}|VL | a local patch

CL,b := { p(vi ) | bi = 1, i ∈ {1, . . . , |VL|}}.
From (B4) we conclude that

CL(x) = CL,b ⇔ κ (z) ∈ P(bi ) :=
|VL |⋂
i=1

Pbi (vi ). (B5)

For many bit strings b the set P(bi ) turns out to be empty
and thus not all local patches CL,b defined by bit strings b of
length |VL| correspond to actual local patches of the Ammann-
Beenker tiling. In fact, the number of local patches (also
referred to as the “patch counting function” or, in [34], “com-
plexity”) of the Ammann-Beenker tiling is of order O(L2), cf.
[34], while the number of possible bit strings is O(2|VL |), with
|VL| growing like L2.

To enumerate those bit strings that correspond to actual
local patches (i.e., for which the set P(bi ) is not empty), we
can use a dynamic programming approach. To do so, we
first extend the definition (B5) of P(bi ) to shorter bit strings
(bi ), namely to (bi ) ∈ {0, 1}m, 1 � m � |VL|, by taking into
account only the intersections up to the mth place of the bit
string.

Our algorithm then proceeds step by step by computing all
nonempty P(bi ) for bit strings (bi ) of length 1, of length 2, and
so on. By (B5), we can go from a bit string of length n to a bit
string of lenght n + 1 using the following recursion relation:

P(bi )⊕1 = P(bi ) ∩ P1(vi+1),

P(bi )⊕0 = P(bi ) ∩ P0(vi+1). (B6)

Suppose we have computed a set Jn of all bit strings (bi )
of length n and their associated sets P(bi ) for all (bi ) where
P(bi ) is not empty. We can then compute the set Jn+1 by
computing, for every (bi ) ∈ Jn, the two intersections on the
right hand sides of (B6) and adding those of the two bit string
(bi ) ⊕ 0 and (bi ) ⊕ 1 for which the intersection is not zero.
This procedure can be implemented algorithmically by simply
maintaining a list J of nonempty regions P(bi ) and the associ-
ated bit strings, as described in the pseudocode in the loop in
line 2 of Algorithm 2. The following algorithm is formulated
to decompose an area R0 ⊆ R. While setting R0 = R will lead
to an enumeration of all patches, it is sometimes advantageous
to compute only the decompositions corresponding to κ (z) ∈
R0 for some smaller R0, as described in Algorithm 2.

Usually we decompose the entire region of acceptance R
according to the previous procedure. However, it can be useful

Algorithm 2. Enumerate the local patches CL (x).

1: Initialize J = {(R0, ‘ ’)}.
2: Compute VL using Algorithm 1
3: for all v ∈ VL do
4: set P1(v) = R − κ (v).
5: Initialize J2 = {}
6: if R0 ⊆ P1(v)
7: set J ← {(Q, s ⊕ ‘1’) | (Q, s) ∈ J}
8: continue with next v

9: end if
10 if R0 ∩ P1(v) = ∅ then
11: set J ← {(Q, s ⊕ ‘0’) | (Q, s) ∈ J}
12: continue with next v

13: end if
14: for all (Q, s) ∈ J do
15: if P1(v) ∩ Q �= ∅ then
16: Add (P ∩ Q, s ⊕ ‘1’) to J2

17: end if
18: if Q\P1(v) �= ∅ then
19: Add (Q\P, s ⊕ ‘0’) to J2

20: end if
21: end for
22: Update J ← J2.
23: end for

to decompose only a smaller polygon R0 ⊆ R. The reason for
this is twofold. First, there are some symmetries of R, which
can allow us to decompose a smaller region. For example, the
tiling corresponding to κ (z) = (k1, k2) is exactly the mirror
image of the tiling corresponding to (k2, k1). Therefore, con-
sidering

R0 := R ∩ {(x, y) ∈ R2 | x > 0, y > 0, y < x},

is sufficient for enumerating all local patches up to all mirror
symmetries. In that case one may replace R by R0 in Algo-
rithm 2.

Apart from the case where one has to check only part of
the acceptance region R for symmetry reasons, splitting R into
subpolygons can improve the performance of the algorithm. In
the default case, for every candidate point vi ∈ VL, the inter-
section of the set P1(vi ) with all polygons P(b j ) distinguished
up to that point has to be computed. The time taken for this ap-
pears to be quadratic in the final number |CL| of local patches
distinguished. If one only computes the decomposition of a
smaller polygon R′ ⊆ R, the intersection computation can be
skipped in all cases where either R′ ⊆ P1(vi ) or R′ ⊆ P0(vi ),
because the intersections are trivial (either empty or all of
P(b j )). This is implemented in lines 2 to 13 of Algorithm 2 by
replacing R by R′. In practice, we have found that splitting
the region R into many convex polygonal pieces R′

j , such
that

⋃
j R′

j = R0 (we used 80 pieces R′
j for L = 100) greatly

improved the running time of the algorithm. The fact that
some tilings could occur in several of the pieces was found to
play a negligible role in terms of performance. Additionally,
this method allows the algorithm to be parallelized across
multiple cores or nodes, since the computation for every piece
R′

i is independent of all others.
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Having enumerated the candidate set, we now describe
how to use the enumeration Algorithm 2 to check whether
the Hamiltonian on each patch satisfies the condition in
Proposition 1. Specifically, we have to compute the norms

D(x) = ∥∥1Bl (x)(HA(x) − λ)−11A(x)H1BL (x)\A(x)

∥∥ (B7)

and check that

D(x) < N−d/2 (B8)

for all x ∈ �. Let us first explain in detail how we choose A(x).
Since the norm of (HA(x) − λ)−1 is expected to fall off expo-
nentially in the distance between 1Bl (x) and 1A(x)H1BL (x)\A(x),
D(x) is expected to be minimal for A(x) = BL−m(x). It turns
out that this is true in most cases. However, if λ is very close to
the spectrum of HBL−m (x), which happened in our simulations
only for a few local patches, then the norm of (HBL−m (x) − λ)−1

and thus D(x) may become too large. In those cases we
computed (B7) again with a different choice of A(x). We
found that already removing one site chosen at random from
the edge set �AB ∩ (BL−m(x)\BL−m−1(x)) from BL−m(x) was
usually enough to perturb the spectrum of HBL−m (x) sufficiently
to remove outliers in the value of D(x).

To actually compute the norm in (B7), the most obvious
method would be to invert (HA(x) − λ), compute the matrix
products as written, and then compute the norm. However,
computing matrix inverses is expensive and prone to numer-
ical error, and it would not be feasible at all for matrices
of the size we are considering in this paper. The method of
computing D(x) we present now, by contrast, even works with
sparse matrices, which makes it efficient enough that it can
be employed for values of L where an investigation of the
spectrum of HBL (x) by direct diagonalization would not be
possible. (Although many algorithms are of course available
for approximating the spectrum of sparse Hermitian operators
[41].)

Instead of computing the matrix product as written in the
right-hand side of (B7), we compute the individual entries of
the matrix. Let M(x) := 1Bl (x)(HA(x) − λ)−11A(x)H1BL (x)\A(x).
Then, for x̃ ∈ � ∩ Bl (x) and ỹ ∈ � ∩ (BL(x)\A(x)), we com-
pute the matrix entries

M(x)x̃ỹ = 1{x̃}(HA(x) − λ)−11A(x)H1{ỹ}.

Depending on whether there are more x̃’s or ỹ’s to consider,
we compute either the vector

1{x̃}(HA(x) − λ)−11A(x)H

or

(HA(x) − λ)−11A(x)H1ỹ.

This is easier because for a given vector z we can compute
(HA(x) − λ)z using the sparse matrix HA(x). The efficiency of
the algorithm can be greatly increased by preparing a decom-
position of (HA(x) − λ) that can be used to solve (HA(x) −
λ)−1z for different vectors z; we use a sparse LU decompo-
sition [24] for our computations. We then compute the norm
D(x) from these matrix entries. Algorithm 3 describes the
computation we use to check (B8).

The two branches of the “if” statement in line 3 of Algo-
rithm 3 always compute the same number, and the condition

Algorithm 3. Check Eq. (B8).

1: Compute the sparse LU factorization of HA(x) − λ

2: Initialize an empty matrix m × n matrix T , where
m = |Bl (x)|� and n = |BL (x)\A(x)|�

3: if n < m then
4: for all ỹ ∈ (BL (x)\A) ∩ � do
5: Set b = (Hδỹ )|A(x) as a vector in l2(A(x) ∩ �)
6: Solve (HA(x) − λ)y = b using the LU factorization
7: Put y in the column of T corresponding to ỹ
8: end for
9: else
10: Initialize an m × P matrix T̃ , where P = |A(x)|� .
11: for all x̃ ∈ Bl (x) ∩ � do
12: Set b = δx̃ as a vector in l2(A ∩ �)
13: Solve (HA(x) − λ)y = b using the LU factorization
14: Put y in the row of T̃ corresponding to x̃
15: end for
16: Set T = T̃ H1BL (x)\A(x), an m × n matrix.
17: Set D(x) = ‖T ‖op and check D(x) < N−d/2.
18: end if

is only an optimization that transposes the matrix product in
(B7) in order to reduce the number of linear systems that have
to be solved.

Finally, Algorithm 4 summarizes our general strategy, us-
ing the enumeration of the local patches from Algorithm 2 and

Algorithm 4. Prove a gap at energy λ.

1: Split the region R into n smaller polygons
R1, . . . , Rj, . . . , Rn (for efficiency)

2: for all polygons Rj do
3: Using Algorithm 2, decompose Rj into a number of

polygons P(bi ) corresponding to local patches in CL .
4: Initialize rmin, j = ∞, the minimum gap size
5: for all polygons P(bi ) corresponding to a bit string (bi ) do
6: Construct the Hamiltonian H on BL (x), for an x

with κ (p−1(x)) ∈ P(bi )

7: Generate a finite list Ak of values of A(x) to try.
We always set A1 = BL−m(x), while A2, A3, . . . , At are
generated by removing random points from the edge of A1.

8: for all A = A1, A2, . . . , At do
9: Set A = BL−m(x)
10: Use Algorithm 3 to check Eq. (B8)
11: if Eq. (B8) is fulfilled then
12: Set rmin, j ← min(rmin, j, ε], where ε is the

maximum allowed by Eq. (4).
13: continue with next polygon P(bi )

14: end if
15: end for
16: if Eq. (B8) was not fulfilled for any A then
17: end computation, no gap could be proven
18: end if
19: end for
20: Let rmin = min(rmin,1, . . . , rmin,n)
21: end computation, the infinite Hamiltonian has a gap

of size rmin at energy λ.
22: end for
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FIG. 5. Upper and lower bounds for the distance to the spectrum for the Fibonacci Hamiltonian for L = 500, N = 6, α = 1. The transparent
blue intervals display the minimal and maximal sizes (defined as in Fig. 4) of the gaps centered around the local maxima of the lower bound.
For the Fibonacci quasicrystal, multiple gaps can be seen and proven to exist. As L → ∞, the number of gaps will grow as the spectrum of
the infinite Hamiltonian is a Cantor set.

checking the condition of Propositon 1 on each of them using
Algorithm 3. The loop in line 4 can be performed on different
computer nodes if necessary.

APPENDIX C: APPLICATION TO ONE-
DIMENSIONAL SYSTEMS

The Fibonacci quasicrystal is a simple one-dimensional
quasicrystal that was studied even prior to the discovery of
physical quasicrystals [42,43]. In recent years, significant at-
tention has been devoted to the mathematical rigorous study
of the spectrum of the Hamiltonian associated to the Fibonacci
quasicrystals [44–46] and also of its generalization for contin-
uum Schrödinger operators [47,48]. In particular, it has been
proved that the spectrum of the Fibonacci Hamiltonian is a
Cantor set [49,50]. In this section, we will describe how our
method can be applied to systems in one dimension using
the explicit example of the Fibonacci quasicrystal, which has
the advantage that many of the constructions are easier to
visualize in such case. In particular, we compute upper and
lower bound for the distance to the spectrum for the Fibonacci
Hamiltonian, which clearly show the fractal structure of its
spectrum, see Fig. 5.

1. Cut-and-project construction of the Fibonacci quasicrystal

As in the Ammann-Beenker case, we will define two pro-
jections, in this case from R2 to R, corresponding respectively
to the real space and to the additional dimension,

p = (1 ϕ) κ = (−ϕ 1), (C1)

where ϕ := 1+√
5

2 is the golden ration. Clearly the kernels of
p and κ are again orthogonal.

The acceptance region in the case of the Fibonacci qua-
sicrystal consists simply of the interval

R = [0, 1). (C2)

This is the projection of the vertical interval {0} × [0, 1)
via κ .

We can then define the Fibonacci lattice as

�Fib = {
p(z)

∣∣ z ∈ Z2, κ (z) ∈ R
}
.

The condition κ (z) ∈ R corresponds to the “cutting” step, the
expression p(z) is the “projection” step.

Figure 6 contains a pictorial representation of this cut-and-
project construction. The yellow shaded area in Fig. 6 shows
points in R2 for which κ (z) ∈ R.

This definition of the Fibonacci quasicrystal is equivalent
to the more common one that uses the substitution rules

S → L L → LS.

FIG. 6. Cut-and-project construction of the Fibonacci quasicrystal.
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Starting from the string “L”, this substitution rule gives a
sequence of strings “LS”, “LSL”, “LSLLS”, “LSLLSLSL”. . .
in which the nth string is a prefix of the (n + 1)-th and a suffix
of the (n + 2)th. This allows one to define a Fibonacci string
that is infinite in both directions.

The equivalence is based on the fact that neighboring
points in the Fibonacci lattice form either “long” or “short”
distances, corresponding to the letters “L” and “S” in the
substitution definition. As one can see in Fig. 6, successive
points z with κ (z) ∈ R always differ by either the vector (1, 1)
or the vector (1,2). Under the projection p, these vectors map
to offsets

(1 + ϕ) and (1 + 2ϕ).

The intervals of length (1 + 2ϕ) are the “long” intervals L and
the intervals of length (1 + ϕ) are the “short” intervals S. The
quotient between the lengths is again ϕ.

2. Enumeration of local patches

Let us show how to enumerate all local patches CL of the Fi-
bonacci quasicrystal. As in the case of the Ammann-Beenker
tiling, for any x ∈ �Fib, the local patch around x is the set

CL(x) = { x̃ − x | x̃ ∈ �Fib ∩ BL(x) }.
Since every point in x ∈ �Fib has exactly one preimage z ∈ Z2

with p(z) = x and κ (z) ∈ R, by exploiting the linearity of p
and κ , the set of local patch can be rewritten in the usual form
as

CL(x) = { p(v) | v ∈ Z2, κ (v) ∈ R − κ (z), |p(v)| < L}.
This description of the local patch only depends on κ (z),
where z is the integer preimage of x under p (which is unique
by irrationality considerations). Our enumeration algorithm
will decompose the interval [0,1) in which κ (z) lies into subin-
tervals corresponding to different local patches.

It turns out that for any given L, there are only finitely many
points v ∈ Z2, which can fulfill the two conditions κ (v) ∈
R − κ (z) and |p(v)| < L, across all z ∈ Z2 with κ (z) ∈ R.
Indeed, for a point v ∈ Z2 to be able to satisfy the condition
κ (v) ∈ R − κ (z) for any z with κ (z) ∈ R, we must have

κ (v) ∈ R + (−R)

where R + (−R) denotes the Minkowski sum. This equals the
interval R + (−R) = (−1, 1). As for the Ammann-Beenker
tiling, we define the set of “candidate points” as

VL := {v ∈ Z2 | κ (v) ∈ (−1, 1) ; p(v) ∈ (−L, L) }.
Because the two projections p and κ have orthogonal ker-

nels, the two sets where the two conditions κ (v) ∈ (−1, 1) and
p(v) ∈ (−L, L) respectively are fulfilled are two orthogonal
strips, whose intersection is a rectangle, as shown in Fig. 7.
Any finite rectangle contains a finite number of points, there-
fore the set VL is finite.

It is also easy to enumerate these candidate points algo-
rithmically. To do so we describe here an algorithm similar
to Algorithm 1 that we used for the Ammann-Beenker tiling.
In this case we can choose any vector in R2 to be a right
inverse for p (up to a constant factor) and we just need to
impose that such vector is in the kernel of κ . Consider the

FIG. 7. The set of candidate points is defined by the two con-
straints |p(v)| < L and κ (v) ∈ (−1, 1). In this picture, the constraint
on p(v) is indicated by the blue shaded area, and the restriction
on κ (v) by the orange shaded area. Because the projections have
orthogonal kernel, it is clear that the intersection of both sets is
compact and contains only finitely many integer points.

vector t := (1 ϕ), we have pt = (1 + ϕ2) and we also have
that κt = 0. Therefore, every point v ∈ VL can be written as

v = ty + qe2

for some y, q ∈ R. Moreover, v ∈ Z2 implies that y ∈ Z,
while κv ∈ (−1, 1) implies that q ∈ (−1, 1). Thus, any can-
didate point is of the form v = (v1, v2), with v1 ∈ Z and
v2 ∈ ϕv1 + (−1, 1). If we then consider also the condition
pv ∈ (−L, L), we get that v1 ∈ (−L,L)+(−1,1)

1+ϕ2 . In particular, if
we want to count all the candidate points v such that pv ∈ I ,
with I a given interval, we have to enumerate all the integers
v1, v2 such that

v1 ∈ I + (−1, 1)

1 + ϕ2
v2 ∈ ϕv1 + (−1, 1),

which results in two loops (over v1 and v2) similar two the
loops in Algorithm 1.

As we have explained in Appendix B, once a set of candi-
date points has been computed, we can categorize the values
κ (z) by which local patch we get. The local patch is com-
pletely determined by which points z + v ∈ Z2 become part
of the tiling. All points in the candidate set VL fulfill

|p(v)| < L.

Therefore |p(z + v) − p(z)| < L. Thus, the condition |p(z̃) −
p(z)| < L is always fulfilled for all points in our candidate set.

Instead, whether the other condition is fulfilled, namely
κ (z̃) ∈ R, depends on the base point z, or more precisely
on κ (z). We have κ (z̃) = κ (z + v) = κ (z) + κ (v) ∈ R, which
implies

κ (z) ∈ R − κ (v). (C3)
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FIG. 8. Successive splitting of the intervals as more candidate points are added, for L = 10. The intervals correspond to the sets P(bi ), the
strings to the partial bit strings b. The large blue interval on the left-hand side is the interval [0,1) associated to the empty string. Steps where
no interval is split are not shown.

For a given candidate point v ∈ VL, the right hand side of (C3)
is just an interval, thus for every candidate point v ∈ VL, we
get one such interval. The local patch of scale L around p(z)
only depends on which of these intervals the point κ (z) lies in.

Let us enumerate the candidate points as VL = {vi | i =
1, . . . , |VL|}. This corresponds to an enumeration of the cor-
responding intervals Ii = R − κ (vi). Now, a local patch can
be described by a bit string b ∈ {0, 1}|VL |, by setting bi = 1 if
κ (z) ∈ Ii and bi = 0 otherwise.

Of course, not every bit string will occur in this way. For
every bit string b, the portion of the acceptance region for
which this patch occurs is given by

P(bi ) =
|VL |⋂
i=1

Pbi (vi )

where

P1(vi ) = R ∩ Ii, P0(vi ) = R \ P1(vi ).

For every k = κ (z) ∈ P(bi ), the bit string associated to the local
patch around x = p(z) is exactly P(bi ). If a bit string b = (bi )
does not actually occur, the set P(bi ) will be empty.

To enumerate all actually possible bit strings (bi ), we can
start with only the first candidate point {v1}, then with the
first two {v1, v2} and so on, proceeding iteratively. As in Ap-
pendix B, we extend the notation P(bi ) to bit strings of length
|b| � |VL| simply by setting

P(bi ) =
|b|⋂

i=1

Pbi (vi ).

For every candidate we add, we can go from a bit string of
length n to a bit string of length n + 1 using the following
recursion relation:

P(bi )⊕1 = P(bi ) ∩ P1(vi+1), P(bi )⊕0 = P(bi ) ∩ P0(vi+1).

This suggests a simple algorithm for the enumeration of all
nonempty P(bi ), with string length |b| = |VL|, and their associ-
ated bit strings.

The algorithm consists of |VL| + 1 steps, k = 0, . . . , |VL|.
At every step, we maintain a list Lk of all bit strings b of length
k for which P(bi ) is nonempty, together with the associated
P(bi ). Initially, the list only consists of the empty bit string ∅.
The associated set is S∅ = [0, 1).

In the kth step, we are given the list Lk−1 and want to
compute Lk . So for every bit string b ∈ Lk−1, we compute
the two sets Sb0 and Sb1 as described above, which simply
amounts to an intersection of intervals. In many cases, one
of these sets will be empty (but not both). We then add to the
list Lk all those strings b′ = (b′

i ) for which P(b′
i ) is not empty.

In the end, the list L|VL | will contain all the bit strings b for
which P(bi ) �= ∅. See Fig. 8 for a visualization of this interval
splitting procedure.

3. Gap bounds

With the method of enumerating local patches of the tiling
described above, we will now describe how our lower bound
and the upper bound of [12] can be computed in the Fibonacci
case.

We consider the Fibonacci Hamiltonian given by the stan-
dard Laplacian on �2(Z) with an electric potential given by
the Fibonacci sequence. That is, if we denote by f (n) the
sequence with f (n) = 1 if the nth character of the infinite
Fibonacci sequence is L and f (n) = 0 otherwise, we can
define an operator on �2(Z) by

Hxy =
⎧⎨
⎩

α f (x) x = y
−1 |x − y| = 1
0 otherwise

,

where α ∈ R is a constant. For α = 0, the operator is the stan-
dard Laplacian on �2(Z) with absolutely continuous spectrum.
As α moves away from 0, gaps will open in the spectrum
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of the Laplacian. An enumeration of the local patch of the
Fibonacci string can be made similarly to what is described
above.

The upper bound of [12] becomes quite simple in a one-
dimensional setting like ours. Indeed, following the procedure
described in [12], in order to compute the upper bound to the
distance to the spectrum of a given energy λ, one is reduced
to analyze the rectangular matrix

B = 1[−(n+1),...,n+1](H − λ1)1[−n,n].

Let s be the lowest eigenvalue of B∗B, then the upper bound
on the distance from λ to the spectrum that is given in [12]
is simply

√
s. Although we could verify that the algorithm

utilizing the Cholesky decomposition to compute s given in
[12] is faster for large sparse matrices, a standard eigenvalue
decomposition was sufficient to compute the values corre-
sponding to the black line in Fig. 5.

To compute our lower bound, an enumeration of the pos-
sible tilings as outlined above was first made. Using N = 6
and r = 1, we split each interval BL(x) into an outer part
BL(x)\A(x), a middle part A(x)\Bl (x) and an inner part Bl (x).
It turned out that it was sufficient to always pick the maximal
choice A(x) = BL−1(x). This way, the outer part BL(x)\A(x)
has only two elements. Thus, to compute the norm in (4), we
only need to compute

1Bl (x)(HA(x) − λ)−11A(x)H1BL (x)\A(x)x̃i

= 1Bl (x)(HA(x) − λ)−11A(x)H x̃i

for the two vectors x̃1 = δx+L and x̃2 = δ−L+x. The constant
M−1(x) may be computed as the lowest eigenvalue of the
matrix

1Bl (x)
(H − λ)1BL−1(x).

The values of this lower bound are plotted as the red curve
in Fig. 5. It can be seen that our method can resolve even the
fine fractal gap structure of the Fibonacci Hamiltonian and
gives exact bounds on the extent of gaps of different orders of
magnitude.

APPENDIX D: FURTHER DETAILS ON THE
COMPUTATIONAL COMPLEXITY
OF SPECTRAL COMPUTATIONS

The existence of the algorithm presented in this paper
seemingly contradicts the statement in [12] that it is impossi-
ble to compute spectra with error control in a general setting.
In fact, even the spectrum of a diagonal operator on an infinite
Hilbert space cannot be computed by an algorithm access-
ing the matrix elements one-by-one. It is only by requiring
the additional structure of finite local complexity that such
an algorithm can be found. This can be further elucidated
in the framework of the solvability complexity index (SCI)
[39,40,51]: We show that computing the spectrum of an op-
erator of finite local complexity and finite-range hoppings is
a problem that can be solved with error control, whereas it is
known that this is not possible in the general case [39].

Definition 2. A computational problem consists of a tu-
ple (�,�, (M, d ), �). Here � is the domain, or the set of
problems. (In our case, � will be a set of operators on a

Hilbert space.) The metric space (M, d ) is the set of possi-
ble solutions, which in our case will be the power set of R
equipped with the Hausdorff metric, i.e., the possible spectra
of Hermitian operators. The problem function � : � → M
describes the exact solution of the problem (for example, the
function that maps every operator to its spectrum). Finally,
� is a set of functions, fi : � → R, the evaluation functions,
which the algorithm uses to access information on the given
object in �.

The role of the evaluation function is to provide informa-
tion about the objects in � in a form that can be used by the
numerical algorithm. In the original formulation of [39], the
evaluation functions will just evaluate matrix entries 〈ei|H |e j〉
in some given basis (ei )i∈N of the Hilbert space. The set of
evaluation function plays a critical role in the formulation of a
problem. If we restrict the set of operators � to operators pos-
sessing a particular structure (such as finite local complexity
below), we will have to change the set of evaluation functions
to allow the algorithm to make use of this additional structure.
For example, when discussing the spectral problem for peri-
odic operators, the evaluation functions would have to make
information about the periods accessible to the algorithm.

Definition 3. A computational problem (�,�, (M, d ), �)
is said to have solvability complexity index 1 if and only if
there exists a sequence �n of functions �n : � → M such
that:

(1) Every function �n can be computed using a finite num-
ber of elementary arithmetical operations and comparisons
from a finite number of evaluations fi : � → R.

(2) For every A ∈ �, the computations �n(�) converge to
� that is

d (�n(A), �(A)) → 0 as n → ∞.

We write 	A
2 for the set of all problems with solvability

complexity index 1.
If in addition we have that for every A ∈ �, the computa-

tions �n(�) converge to � in a controlled way, that is

d (�n(A), �(A)) < 2−n, (D1)

we say that the computational problem (�,�, (M, d ), �) is
solvable with two-sided error control. The set of all compu-
tational problem that is solvable with error control is denoted
by 	A

1 .
The condition (D1) is equivalent to giving an algorithm �n

and a computable (without limits) error control function En :
� → R such that d (�n(A), �(A)) < En(A) for all A ∈ � and
En(A) → 0 as n → ∞. This can be proven by passing to a
subsequence [40].

We can also define the class 	A
0 as the set of all com-

putational problems for which there is a single algorithm �

that requires only a finite number of elementary arithmetical
operations and evaluations and such that �(A) = �(A) for all
A ∈ �. This class is said to have solvability complexity index
equal to zero.

It is also possible to further characterize the problems with
solvability complexity 1 that are not solvable with two-sided
error control. One can consider the intermediate classes �A

1
and �A

1 , which are defined to provide error control in only one
direction (this requires the set of solutions M to be a ordered
by set inclusion, as in the case of the spectral problem). For
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example, we say that a problem is in class �A
1 if �n(A) →

�(A) and there exist Xn(A) ∈ M such that �n(A) ⊆ Xn(A),
and d (Xn(A), �(A)) < 2−n.

These classes define a hierarchy of sets of computational
problems arranged as follows:

�A
1 �A

2

� � � �

	A
0 � 	A

1 	A
2 	A

3 · · ·
� � � �

�A
1 �A

2

We will not use the higher complexity classes �A
2 , �A

2 ,	A
3 .

They describe computational problems for which several lim-
its are needed, for example a family (or “tower”) �m,n of
algorithms such that

lim
m→∞ lim

n→∞ �m,n(A) = �(A)

for all A ∈ �. Such classes are needed for more complex
spectral problems, concerning nonself-adjoint operators for
example. See [39,40] for precise definitions and applications.
The superscript A in the complexity classes defined above
refers to the arithmetic towers of algorithms [40]. One can
define analogous hierarchies of classes by allowing different
operations in the algorithms �n, for example taking radicals
or arbitrary functions.

The general spectral problem, even for finite-range self-
adjoint operators on a Hilbert space, is not solvable with
two-sided error control [39]; In fact, we have the following
no-go theorem:

Theorem 2. For every Nmax ∈ R and m ∈ R, define the set
� as the set of all Hamiltonians H on uniformly discrete sets �

with ‖H‖op � Nmax and maximum hopping length m, together
with an enumeration (ei )i∈N of �. Let � be the set of functions

fi j (A) = 〈δei |A|δe j 〉
evaluating the matrix entries of an operator. Then the compu-
tational problem (�,�, (M, d ), �|�) is not in 	A

1 .
The proof of this no-go theorem is surprisingly simple

and works independently of the operations allowed for the
algorithms in the tower. In fact, the authors remark that it
even generalizes to the class of diagonal operators. It is based
on the fact that any algorithm can only see a finite part of a
given infinite matrix, and by changing the matrix in one place
outside this range, we can change the spectrum in a way that
cannot be detected by the given algorithm (the counterexam-
ple matrix thus depends on the algorithm).

While the general spectral problem is thus not in 	A
1 , one

can still determine algorithmically sets that are provably close
to parts of the spectrum. But one can never be sure to have
found all parts of the spectrum. Put differently, one can not
detect gaps and the general spectral problem is therefore in
�A

1 , with only one-sided error control possible [12].
It was suggested in [40, Remark 9.1] that it might be a

fruitful avenue of research to find some additional structure
under which one can reduce the SCI, and that this could lead to
new algorithms. We show here, using the algorithm described
in the previous sections, that by adding the structure of finite
local complexity, two-sided error control becomes possible,
and the spectral problem in this setting is therefore in 	A

1 .

Definition 4. A Hamiltonian on a set � is a bounded
self-adjoint operator on the Hilbert space �2(�,H), for some
finite-dimensional Hilbert space H.

Definition 5. A set � ⊆ Rd is called uniformly discrete if
there exists an ε > 0 such that every two points x, y ∈ � have
distance d (x, y) � ε.

Definition 6. A set � ⊆ Rd is said to have finite local
complexity if for every L, the set

CL = {{y − x|y ∈ �, d (x, y) < L} | x ∈ �},
called the set of local patches, is finite.

Definition 7. Let � be a uniformly discrete set. A Hamilto-
nian H on �2(�,H) is said to have equivalent action on BL(x)
and BL(y) if

(BL(x) ∩ �) − x = (BL(y) ∩ �) − y,

and if there are unitaries U (z) ∈ U (H) for every z ∈ BL(x) −
x (defining the change of gauge in the case of the magnetic
Hamiltonian) such that for every t1, t2 ∈ (BL(x) ∩ �) − x we
have

Hx+t1,x+t2 = U (t1)∗ Hy+t1,y+t2U (t2).

Definition 7 defines an equivalence relation on � for every
L ∈ N. The operator H is said to have finite local complexity
if the set of equivalence classes is finite for all L.

We also need to define a set of evaluation functions that
allow the algorithm to make use of this additional structure. It
would be sufficient to add some evaluation functions describ-
ing the size R(L) of the smallest ball BR(L)(0) that contains
representatives of all equivalence classes of patches of size L.
But to keep the description of our algorithm closer to the way
we implemented it for quasiperiodic Hamiltonians, we assume
that the algorithm can directly access an enumeration of local
patches and the Hamiltonians on them.

Let �flc be the set of operators H of finite local complexity.
For each such operator, we can describe the structure of local
patches by a combination of the following objects:

(1) A function CH : N → N (counting the number CH (L)
of local patches of size L).

(2) For every L ∈ N and k ∈ {1, . . . ,CH (L)}, a number
QH (L, k) ∈ N (counting the number of sites in the kth patch
at scale L).

(3) For every L ∈ N, k ∈ {1, . . . ,CH (L)}, and j ∈
{1, . . . , QH (L, k)}, a d-dimensional point pH (L, k, j), defin-
ing the relative position of the jth site in the kth patch.

(4) For every L ∈ N and k ∈ {1, . . . ,CH (L)}, a
QH (L, k) × QH (L, k)-matrix GH (L, k) with entries in L(H).

Such that the following is fulfilled: If L ∈ N and x ∈ �,
there is a k ∈ {1, . . . ,CH (L)} such that

(i) We have |� ∩ BL(x)| = QH (L, k).
(ii) There is an enumeration (ẽ j ) j=1,...,QH (L,k) of � ∩ BL(x)

and there are QH (L, k) unitary operators Uj ∈ U (H), j =
1, . . . , QH (L, k), such that

(a) For all j = 1, . . . , QH (L, k), we have ẽ j − x =
pH (L, k, j).

(b) For all i, j ∈ {1, . . . , QH (L, k)}2, we have

U ∗
i Hi jUj = GH (L, k)i j,

where Hi j refers to the matrix entries (hoppings) of H
between ẽi and ẽ j .
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Based on this, we can define the set of evaluation functions
in �flc, which are functions � → R, by basically interchang-
ing indices and arguments of the functions above. For exam-
ple, for every L ∈ N we can define an evaluation function

f C
L (H ) = C(LH ).

We can further let

f Q
L,k (H ) =

{
QH (L, k) if k � CH (L)
0 otherwise

for all L, k ∈ N. We have defined the evaluation functions
for k > CH (L) to be zero since the number of evaluation
functions can obviously not depend on H . We can similarly
define evaluation functions describing pH and GH with
the appropriate number of indices. The union of all these
functions defines the set �flc. With these definitions, we can
state the following theorem.

Theorem 3. The computational problem (�flc,�flc,

(M, d ), �) is in 	A
1 .

A detailed proof of this theorem will be given in a future
publication. Basically, one can combine the upper bound on
the distance to the spectrum from [12] with the computable
lower bound we provide here. The pertinent theorem on the
upper bound from [12, Supplementary Material, Theorem 3]
can be formulated as follows:

Theorem 4 ([12]). Let A ∈ �2 and let �
up
n (A), Eup(n) be

computed using the algorithm in [12] with size parameter
n. Then �

up
n (A) → Spec(A) and Eup(n) → 0 as n → ∞ and

�
up
n (n) is contained in the Eup(n) neighbourhood of Spec(A).

Moreover, �n can be implemented using finitely many arith-
metic operations and comparisons on the matrix elements
of A.

Using the algorithm in this article, we can also give the fol-
lowing statement on a computable lower bound for operators
of finite local complexity:

Theorem 5. For the computational problem (�flc,�flc,

(M, d ), �), there exists an algorithm computing a spectral
approximation �low

n (H ) and an error estimate E low
n such that

Spec(H ) is contained in an E low
n neighbourhood of �low

n .
These two theorems show that the spectral problem

in our setting lies in �A
1 (Theorem 4) and �A

1 (Theo-
rem 5). Since the intersection �A

1 ∩ �A
1 = 	A

1 , the problem
(�flc,�flc, (M, d ), �) is in 	A

1 , that is, two-sided error con-
trol in Hausdorff distance is possible.

The proof of Theorem 5 is based on the following result, a
partial inverse implication of the one contained in Theorem 1.

Theorem 6. Let H be an operator on a uniformly discrete
set � ⊆ Rd with finite hopping length m ∈ R. Then for every
δ > 0 there exists an ε > 0 and an L ∈ N such that H is
locally ε-bulk gapped at scale L for all energies λ where the
distance to the bulk spectrum d (λ, Spec(H )) > δ.

The tuple (ε, L) can be computed explicitly and de-
pends only on ‖H‖op, on m and on �. The proof of
Theorem 6, which will be presented in a future publication, re-
lies on a discrete version of the well-known Combes-Thomas
estimates [52].
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