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Fano resonance is a well-celebrated weak-coupling phenomenon whereby a small interaction between a
discrete and a continuum of excited states leads to an interference between the respective two transition
amplitudes, resulting in an asymmetric line shape in the excitation spectra. We present the strong-coupling
phase of the Fano’s model where the interaction is localized in a region ξ that is smaller than the collective
coupling between the discrete state and the continuum. We explore the behavior of the excitation probability
σ as a function of ξ , the ratio of the bare transition amplitudes, and the energy of the discrete state. In the
strong-coupling phase, the spectral function of the discrete state splits up and produces up to three complete
destructive interferences or zeros of σ along with ultrasharp features. We also find that the discrete state does not
have to lie within the continuum to produce the well-known weak-coupling profiles of σ as long as the collective
coupling is strong enough. In addition, we consider a broadened state instead of a continuum and present a
method that exactly treats such cases by explicitly including the source of the broadening—a weak coupling to
the continuum of environment states—in the model.
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I. INTRODUCTION

Fano resonance [1] occurs when a discrete or localized
state lies within a continuum of states and weakly interacts
with them. It shows up as a characteristic profile in the cor-
responding scattering cross section, owing to an interference
between the two possible transition paths. The phenomenon
has been observed in a vast variety of systems [2–8] in-
cluding atoms [1,9,10], quantum dots [11], semiconductor
superlattices [12], optical solitons [13,14], Josephson-junction
ladders [15,16], photonic crystal slabs [17], plasmonic nanos-
tructures [18–20], single-electron transistors [21], and nano-
and mesoscopic interferometers [22,23]. Some recent reviews
on Fano resonance in nanostructures [24], metamaterials [25],
and photonic devices [26] sum up the literature beautifully.

Fano introduced his model in 1961 to describe the effect of
a weak interaction between two electronic configurations of a
He atom [1], a discrete doubly excited state and a continuum
of singly excited states, to explain the observed asymmetric
line shape in the excitation spectrum [9]. Fano showed that the
normalized scattering probability σ is described by a simple
yet elegant formula,

σ = (q + ε)2

1 + ε2
, (1)

where ε is reduced energy and q is called the asymmetry
parameter that determines the line shape. It has been applied
to numerous situations ever since but always in the weak-
coupling regime, where a single discrete state produces a
single resonance.

We find that the Fano’s original model also has a strong-
coupling regime, where the discrete state splits up to produce
two additional resonances that are below and above the orig-

inal one. This happens when the interaction is localized in a
region of the continuum ξ that is smaller than its collective
coupling �. In the strong-coupling regime, the formula in
Eq. (1) remains the same but the behavior of ε and q differs
qualitatively. ε becomes a nonmonotonic function of energy
with up to three zeros each leading to a separate resonance,
whereas q acquires a strong energy dependence and cannot be
taken as a parameter anymore.

Figure 1 illustrates the Fano’s model and its two coupling
regimes that are distinguished by the nature of its continuum
eigenstates |�E 〉. A discrete state |φ〉 and a continuum of
states |ψE 〉 are coupled via VE , while we like to study the
probability of excitation from a decoupled state |i〉 [Fig. 1(a)].
The spectral function of |φ〉 defined as Aφ = | 〈φ|�E 〉 |2 is
shown on red to yellow (black to white) scale in Figs. 1(b)
and 1(c), where it is concentrated around the bare energy of
|φ〉 in the weak-coupling regime [Fig. 1(b)] but splits up in
the strong-coupling regime [Fig. 1(c)].

We see that the terminology here shares the same basic
intuition as in the context of various quantum electrodynamic
(QED) systems [27], where the weak-coupling means slightly
modified bare states around their bare energies while the
strong-coupling means emergence of new blue- and redshifted
“resonances” (hybrid states called polaritons). Here in the
Fano’s model the physical quantity that interests us is the
excitation probability σ instead of the spectral function of |φ〉
(which in some cases can be equivalent, e.g., optical absorp-
tion in QED systems [28]) where these resonances exhibit
sharp jumps in the scattering phase shift (of size π , as we
will see later), so there is a single jump in the weak-coupling
regime but additional jumps appear in the strong-coupling
regime. There is another resemblance. While in cavity QED,
the coupling has to overcome the cavity and emitter losses to
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FIG. 1. A depiction of the Fano’s model and its two coupling
regimes. (a) A discrete state |φ〉 interacting with a continuum of
states |ψE 〉 through VE that is localized in small region. We like
to study its effect on the transitions from another state |i〉 to the
continuum of the stationary states |�E 〉 created by |φ〉 and |ψE 〉.
[(b) and (c)] The formation of the stationary states |�E 〉 with the
spectral function Aφ of |φ〉 shown on a red to yellow (black to white)
scale, where (b) it is peaked around the bare energy of |φ〉 in the
weak-coupling regime but (c) splits up to create two peaks in the
strong-coupling regime.

enter the strong matter-light coupling regime, it will have to
overcome the “width” of the interaction in the present case.
Since the losses also introduce a homogeneous broadening to
the cavity and emitter states, introducing a “width” in their
mutual interaction, they play a similar role.

In fact, the interaction between a discrete state and a ho-
mogeneously broadened plasmon state has been studied by
Giannini et al. [18,19] using the Fano’s model by pretending
that the broadened state acts like a flat continuum of states
with its Lorentzian line shape transferred to the interaction
and the bare transition amplitude of the continuum. Following
this work, multiple broadband states of an array of plasmonic
metamolecules coupled to a discrete vibrational state have
also been treated this way [29]. The method successfully
describes the experimental observations [18,19,29] but has
never been used to describe the strong-coupling phase of
the Fano’s model. Besides, it is not suitable for a genuine
continuum for which the bare transition matrix element does
not usually have the specific energy dependence considered
in this method. Considering that a Lorentzian broadening to
an otherwise discrete state is caused by a constant interaction
with a continuum of “environment” states, we will see that
this open quantum system can also be dealt with by including
such an environment into the model explicitly.

In contrast, Fano’s model with a localized interaction can
naturally appear in a closed quantum system. For example,
thermodynamically large numbers of inhomogeneously broad-
ened emitters collectively coupled to a cavity mode can be
swapped perfectly legitimately with a flat continuum with the
original emitters’ density of states (DOS) profile transferred
to the interaction with the cavity mode [28] (details later).
Assuming a Gaussian distribution of emitter energies that is
suitable for the inhomogeneous broadening arising from ran-
dom energetic disorder, and has a relatively localized profile
as well, we have recently demonstrated that both coupling
regimes of the Fano’s model are easily accessible [28].

As far as the scattering probability is concerned, the math-
ematical structure of the model with a genuine continuum
is different from that with a broadened state due to a dif-

ferent energy dependence of their bare transition amplitudes.
However, the physical meaning of the eigenstates of the two
models distinguishes them at a more fundamental level. The
eigenstates continuum is formed by a continuum of system
states in one case but a continuum of environment states in
the other (details later), which requires a projection back onto
the system Hilbert space. This restores the relative importance
of the broadened state making the “eigenstates” of the system
more hybrid (but still broadened of course) in contrast to the
other case where the system continuum destroys the hybrid
nature of its eigenstates at moderate interaction widths. This
point has also been explained in a different manner elsewhere
[28] by discretizing the continuum in an equispaced grid with
the separation between two states playing the role of the
homogeneous broadening of the states.

Here we first show how an important class of physical
systems—cavity QED with energetic disorder—is described
by the Fano’s model with a localized interaction, thus pro-
viding us with a strong motivation to study both its phases.
We will then consider the generic Fano’s model with a tun-
able interaction and explore its behavior as we move from
the weak- to the strong-coupling regime. The discrete state
splits up in the strong-coupling regime and creates destructive
interference at multiple energies where σ can vanish com-
pletely. We also find that if the coupling is strong enough,
then the weak-coupling profiles of σ [24] can be mimicked
even when the discrete state lies well outside the continuum.
Considering that a localized interaction is also relevant in case
of a broadened state [18] instead of a genuine continuum,
for completeness, we will describe a method to deal with
broadened states in lossy systems that explicitly considers the
source of the broadening—a weak coupling to a continuum of
environment states—to make it a closed system and compute
the desired quantities by diagonalizing this closed system.

Section II shows the emergence of Fano’s model from
the Tavis-Cummings (TC) model [30,31] that describes the
collective interaction of a large ensemble of energetically
disordered emitters to a cavity mode. In Sec. III, we give a
brief overview of the Fano’s seminal work [1] and describe
the condition for the strong-coupling regime. Our calculations
and results for a tuneable Gaussian interaction are presented in
Sec. IV, where Sec. IV A gives the expressions for the Fano’s
parameters, Sec. IV B relates them to the weak-coupling case,
Sec. IV C compares the Fano profile in the two-coupling
regime, and Sec. IV D gives the phase diagram of the model
when the discrete state coincides with the interaction maxi-
mum. The effect of a finite detuning is discussed in Sec. IV E,
a special case of which with the discrete state lying outside the
continuum is presented in Sec. IV F. Finally, Sec. V presents
our approach to deal with a system with broadened states.

II. MOTIVATION: DISORDERED TAVIS-CUMMINGS
MODEL

An important physical system where the interaction be-
tween a discrete state and a continuum of states turns out to
be strongly localized is a microcavity with an energetically
disordered ensemble of emitters. While the single photon state
of the microcavity is a discrete state, we find that the emitters’
states can be transformed to a nondegenerate continuum of
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bright (superradiant) states, with their interaction to the cavity
state determined by the emitters’ DOS, which is usually a lo-
calized Gaussian distribution [28]. This system can realize the
strong-coupling phase of the Fano’s model where the eigen-
states of the system become hybrid light-matter excitations
called polaritons at low energetic disorder [28]. Such hybrid
matter-light systems are important due to their technological
prospects [32–36] and have been extensively studied [37–43].

Consider N emitters (two level systems) with transition en-
ergies {Ex,n} randomly chosen from a probability distribution
PE . If these emitters couple to a common cavity mode, then
the system is described by the TC model [30,31] that, in the
single excitation space (one cavity photon or a single excited
emitter), can be written as

HTC = Ec |1P〉 〈1P| +
N∑

n=1

Ex,n |↑n〉 〈↑n|

+ �R√
N

{|1P〉 〈↑n| + |↑n〉 〈1P|}, (2)

where |1P〉 is the cavity state with a photon at energy Ec, |↑n〉
is the state with nth emitter excited, and �R is the collective
coupling of the emitters. The effects of the inhomogeneous
broadening on the optical absorption of the TC model has
been studied before by considering the continuous limit of the
model and treating the homogeneous broadening of the cav-
ity and emitter states as imaginary components of their bare
energies as in the Green’s function method [44–46]. Here we
focus on the emergence of the Fano’s model as a result of the
inhomogeneous broadening [28]. If Ex,n = E0, ∀n ∈ [1,N ],
then the bright and dark states [47] given by

|B〉 = 1√
N

N∑
n=1

|↑n〉 , (3)

|dk〉 = 1√
N

N∑
n=1

eikn2π/N |↑n〉 , (4)

where k ∈ [1,N − 1], block diagonalize HTC. That is
HTC = HTC,B + HTC,D where

HTC,B = Ec |1P〉 〈1P| + E0 |B〉 〈B|
+�R{|1P〉 〈B| + |B〉 〈1P|} (5)

is the bright sector of the model that is decoupled from the
dark sector given by

HTC,D = E0

N−1∑
k=1

|dk〉 〈dk| . (6)

This is an important transformation as it reduces the problem
size from N + 1 to only 2, along with a set of N − 1 dark
eigenstates {|dk〉} at bare emitter energy E0. The same trans-
formation fails to decouple the bright and dark sectors if the
emitters’ transition energies are different.

Interestingly, however, if we make subsets of degenerate
emitters and apply the same transformation to individual de-
generate energy levels, then we can still decouple the bright
and dark sectors to obtain one bright state per energy level
[28], as follows. Suppose there are a total of N energy levels
with mth level at energy Em being Km-fold degenerate. We

can relabel the emitters according to these levels so that if
Ex,n = Em for emitter n, |↑n〉 → |↑m, j〉 with j ∈ [1, Km]. Us-
ing the above recipe, the set of bright states we obtain is

|Bm〉 = 1√
Km

Km−1∑
j=1

|↑m, j〉 , (7)

where m ∈ [1, N]. Focusing on the bright sector HTC,B in this
case, we thus have

HTC,B = Ec |1P〉 〈1P| +
N∑

m=1

Em |Bm〉 〈Bm|

+Vm{|1P〉 〈Bm| + |Bm〉 〈1P|}, (8)

where Vm = �R
√

Km/N . At N → ∞, the emitters’ DOS be-
comes continuous so N → ∞ and we can take the continuous
limit of HTC,B above to obtain

HTC,B = Ec |1P〉 〈1P| +
∫

dE{|BE 〉 〈BE |
+ VE (|1P〉 〈BE | + |BE 〉 〈1P|)}, (9)

where VE = �R
√

PE and the bright states |BE 〉 are now nor-
malized per unit energy and represent a flat continuum of
states. Combined with the ground state of the emitter-cavity
system, |vac〉, which has no cavity photon or molecular excita-
tion, the state |1P〉 and the continuum |BE 〉, realize the Fano’s
model [1] illustrated in Fig. 1(a), with the correspondence
|vac〉 ↔ |i〉, |1P〉 ↔ |φ〉, and |BE 〉 ↔ |ψE 〉.

We have studied both the weak- and the strong-coupling
phases [Figs. 1(b) and 1(c)] of the model in Eq. (9) in the
context of organic microcavities in Ref. [28], where the most
relevant excitation spectrum that is usually measured in the
experiments is the optical absorption. The response to inelas-
tic electron scattering can also be interesting in some cases.
Since different excitation processes have different bare tran-
sition amplitudes for the discrete and continuum states, the
form of q = qE varies for different physical spectra. As the
Fano’s model is very versatile and often applied to a variety
of physical systems with a range of bare transition amplitudes,
the model has to be studied in its full parameter space. This
is the main goal of this article. We will henceforth consider
the generic Fano’s model and explore its parameter space to
study its behavior without making any assumptions on the
underlying physical system that it describes.

III. FANO’S MODEL

Consider the model illustrated in Fig. 1. We have a discrete
state |φ〉 at energy Eφ and a continuum of states {|ψE 〉} at en-
ergies {E} with a coupling VE between them. There is another
low-energy discrete state |i〉 and our main goal is to calculate
the effect of the interaction VE on the probability with which
the system can be excited from this state. Fano solved this
model [1] to explain the asymmetric line shape of a peak in
the excitation spectra of He atoms observed in the inelastic
scattering of electrons. Let us briefly review the solution of
this model.
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The Hamiltonian of the system is given by

H = Eφ |φ〉 〈φ| +
∫

dE ′{|ψE ′ 〉 〈ψE ′ |
+ VE ′ (|φ〉 〈ψE ′ | + |ψE ′ 〉 〈φ|)}, (10)

If VE �= 0, |φ〉 and {|ψE 〉} are not the eigenstates of the system.
The eigenstates {|�E 〉} of the above Hamiltonian are calcu-
lated by Fano [1] and can be written as

|�E 〉 = sin 


πVE
|�〉 − cos 
 |ψE 〉 , (11)

where

|�〉 = |φ〉 + −
∫

VE ′

E − E ′ |ψE ′ 〉 dE ′, (12)


 = − arctan

[
π |VE |2

E − Eφ − FE

]
, (13)

FE = −
∫ |VE ′ |2

E − E ′ dE ′, (14)

δ is the Dirac δ function, and −
∫

evaluates the (Cauchy) princi-
pal value of the integral.

Assume that there is some mechanism that can excite the
system from |i〉 to |φ〉 and {|ψE 〉}, and hence {|�E 〉}. The ex-
citation probability will depend on the squared matrix element
|ME |2 of the corresponding transition operator T̂ between the
initial and the final state. ME can be written as [1]

ME ≡ 〈i|T̂ |�E 〉 ,

= 1

πVE
〈i|T̂ |�〉 sin 
 − 〈i|T̂ |ψE 〉 cos 
. (15)

Since 
 is an odd function of E − Eφ − FE [Eq. (13)], the
sine and cosine terms in Eq. (15) will interfere constructively
on one side of the resonance at E = Eφ − FE but destructively
on its other side. 
 sharply changes around this resonance
resulting in a sharp dip and a peak structure in the excitation
spectrum. This is called Fano resonance after Ugo Fano who
explained it decades ago, as discussed below.

The transition operator T̂ must couple the initial state
|i〉 to, at least, the continuum {ψE }. That is, we must have
|〈i|T̂ |ψE 〉 | > 0 for the states |ψE 〉 around the resonance so
that the interference between sine and cosine terms in Eq. (15)
can occur. The normalized transition probability σ can be
written in terms of a reduced energy ε and an asymmetry
“parameter” q, as [1]

σ = | 〈i|T̂ |�E 〉 |2
| 〈i|T̂ |ψE 〉 |2 ,

= (q + ε)2

1 + ε2
, (16)

where

ε = E − Eφ − FE

π |VE |2 , (17)

q = 1

πVE

〈i|T̂ |�〉
〈i|T̂ |ψE 〉 . (18)

Equation (16) is the famous Fano formula [also given in
Eq. (1)]. If the interaction is weak, then E − Eφ − FE = 0 has

a single root where the phase 
 in Eq. (13) jumps between
±π/2 and a resonance occurs, so ε in Eq. (17) is a monotonic
function of E . This is the case Fano originally considered.
However, these results are valid for any interaction VE for
the eigenstates {|�E 〉} lying within the original continuum,
which also includes a “strong-coupling” regime that is qual-
itatively different from the above weak-coupling regime. In
the strong-coupling regime, ε becomes a nonmonotonic func-
tion as E − Eφ − FE = 0 is satisfied at multiple energies with
corresponding jumps in 
 indicating resonances.

σ is the physical quantity that is measured in the experi-
ments. Depending on exactly what spectrum we like to study
in a particular physical system, the ratio γ of the bare transi-
tion amplitudes of the discrete state and the continuum for the
relevant processes determines q, which, along with ε, in turn
determines the corresponding excitation spectrum σ . So, the
analysis presented in this paper is general and can be applied
to a given case by selecting appropriate value of γ , as will be
discussed later.

A. Strong- and weak-coupling regimes

It is simple to understand that if the collective coupling �

defined as

�2 ≡
∫

|VE |2dE , (19)

is much larger than the bandwidth W of the continuum, i.e.,
� � W , the band will act as a highly degenerate level and we
will get two discrete eigenstates around the continuum (with
an effective 2 × 2 description in terms of the discrete state
|φ〉 and the symmetric superposition of the continuum states∫

dE ′ |ψE ′ 〉 /
√

W ).
However, there is another interesting strong-coupling

regime. If the coupling VE is localized in a narrow region ξ

of the continuum such that

ξ < � � W, (20)

then the discrete level |φ〉 still splits but remains inside the
continuum. We can confirm this from appearance of new res-
onances, discontinuities or jumps in the phase 
. The spectral
function Aφ of the discrete state |φ〉 splits into multiple peaks
around these new resonances under such a condition.

If the condition in Eq. (20) does not hold for any region
of the continuum, then we are in the weak-coupling regime
where the phase 
 jumps only once. The extreme case, ξ �
�, describes the case originally considered by Fano, where 


jumps almost at the bare energy Eφ of the discrete state |φ〉
with Aφ localized around it. In this case, ε is a linear function
of E and q can be taken as an energy-independent parameter,
as will later be shown in this article.

In this work, we will assume that � � W and all eigen-
states lie within the continuum so that all the above results
hold. We will take a tuneable interaction to explore the behav-
ior of the model as we go from weak- to the strong-coupling
regime.
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FIG. 2. The weak- and strong-coupling regimes. (a) Reduced
energy ε changes from a monotonic to a nonmonotonic function
of energy E along with appearance of new resonances as we move
from the weak (ξ/� � 1) to the strong-coupling regime (ξ/� < 1).
(b) The spectral function of the discrete state Aφ splits up as we enter
the strong-coupling regime.

IV. TRANSITION BETWEEN THE WEAK- AND THE
STRONG-COUPLING REGIMES

Let us consider a Gaussian interaction that is localized
around E = 0, given by

V 2
E = �2 1√

2πξ 2
e−E2/2ξ 2

, (21)

so that we can tune its width ξ to move between the weak-
and the strong-coupling regimes. Using Eq. (21) and Eq. (14),
and noting that the contribution of the off-resonant states
exponentially decay, we can integrate over the whole interval
E ∈ [−∞,∞] to obtain

FE =
√

2�2

ξ
D(E/

√
2ξ ), (22)

where D is the Dawson function given by
D(x) = √

πe−x2
erfi(x)/2 and erfi is the imaginary error

function. Using Eq. (22) and Eq. (21), ε in Eq. (17) can be
written as

ε =
√

2

π

ξ

�2
eE2/2ξ 2

(E − Eφ ) − erfi(E/
√

2ξ ). (23)

Figure 2(a) shows ε as a function of E/� at
ξ/� = 2, 1, 0.7, 0.5 that show transition from weak to
the strong coupling as ξ/� drops below 1. At ξ/� � 1, ε has
a single zero at E = 0 but it obtains a curvature as ξ/� → 1
and at ξ/� = 1 this zero becomes an inflection point. At
ξ/� < 1, ε acquires two more zeros around E = 0 indicating
the appearance of new resonances there.

−π/2

0

π/2

Δ

(a)

ξ/Ω = 10

(b)
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E/Ω
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σ
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−2 −1 0 1 2

E/Ω
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FIG. 3. Fano resonance in the two coupling regimes at ξ/� =
10, 0.2 and Eφ = 0 assuming q = 1. In the weak-coupling regime
(ξ/� = 10), there is only a single abrupt jump (a) in the phase angle

 and hence a single Fano resonance exhibited by (b) the normalized
excitation probability σ . In the strong-coupling regime (ξ/� = 0.3),
on the other hand, we see that (c) 
 jumps at three locations and so
(d) σ develops three Fano resonances.

The spectral function Aφ is given by

Aφ ≡ | 〈φ|�E 〉 |2 = V 2
E

(E − Eφ − FE )2 + π2V 4
E

,

= 1

π2V 2
E

1

1 + ε2
, (24)

where Eqs. (12), (13), and (17) have been used. Figure 2(b)
shows Aφ as a function of E/� at the same values of ξ/�

as in Fig. 2(a). We see that the appearance of new zeros of ε

accompanies the usual signature of the strong coupling: Aφ

splitting up into two new peaks. There is in fact an exponen-
tially small residual peak of Aφ at E = 0 that is invisible in
the figure. It is suppressed due to a factor of ξ arising from the
prefactor 1/V 2

E in Eq. (24). We find that going from the weak
to the strong-coupling regime, Aφ develops two new peaks at
ξ/� > 1 before the weak-coupling resonance actually splits
at ξ/� = 1, as exhibited by the emergence of new zeros of ε

(or corresponding jumps in the phase angle 
, shown below).
We ignore this detail in this work.

Establishing the above distinction between the two cou-
pling regimes, we can now see how the Fano resonance
compares for them. As we will see later, despite the fact that
the asymmetry parameter q in Eq. (18) can be assumed con-
stant over the relevant energy window in the weak-coupling
regime, it is a function of E in general. But, to focus on the
effect of nonmonotonic nature of ε, let us ignore the energy
dependence of q for the time being. We will see how it affects
the resonance later.

Figure 3 shows the phase angle 
 and normalized excita-
tion probability σ at ξ/� = 10, 0.3 and q = 1. We see that
while there is a single jump of size π in the phase 
 in
the weak-coupling regime [Fig. 3(a), ξ/� = 10], there are
three such jumps in the strong-coupling regime [Fig. 3(b),
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ξ/� = 0.3], with the two new resonances being ultrasharp.
This is reflected in the corresponding excitation probabilities
σ , shown in Figs. 3(c) and 3(d), where we see one and three
Fano resonances. In the context of the weak-coupling case
[1], the two new resonances in the strong-coupling regime
have the asymmetry parameter q > 0 but it seems as if the
sign of q for the middle resonance is flipped, exchanging the
dip and peak locations. This means that the constructive and
destructive interference have switched their places around the
resonance. Looking at the evolution of the Fano resonance
from weak- to the strong-coupling regimes, we find that this
is due to the fact that the two new resonances are evolved
from the dip and the peak of the original one and the middle
resonance simply has to flip to smoothly connect the two.

In Figs. 3(c) and 3(d), we assumed that q in Eq. (18) is a
constant parameter. However, since this approximation holds
only in special circumstances for realistic situations, let us
now see how the energy dependence of q changes this picture.

A. Energy dependence of q and Fano profile

The energy dependence of q cannot be ignored in general.
In this section, we will explore how σ behaves when full
energy-dependent q is considered.

Let us take

α = 〈i|T̂ |φ〉 , (25)

β = 〈i|T̂ |ψE 〉 , (26)

and assume that β is independent of E in the relevant energy
window. This is a fair assumption for genuine continua [1]
in contrast to a broadened state described as a continuum,
where β has to be strongly energy dependent [18] to give
the correct excitation spectrum, as we have already discussed
in the introduction section. We can now evaluate Eq. (18) to
obtain

qπVE = α

β
+ �

4
√

2πξ 2
−
∫

e−E ′2/4ξ 2

E − E ′ dE ′, (27)

= α

β
+ �

4
√

2πξ 2
πe−E2/4ξ 2

erfi(E/2ξ ), (28)

q = γ

√
ξ

�

4

√
2

π3
eE2/4ξ 2 + erfi(E/2ξ ), (29)

where γ = α/β
√

� is a dimensionless parameter. Taking �

as the energy scale, we now have two independent parameters
of the model, γ and ξ , that control the scattering probability
σ .

For hybrid light-matter systems described in Sec. II, we
have the following correspondance |1P〉 ↔ |φ〉, |BE 〉 ↔ |ψE 〉,
and can be interested in scattering of two types of excita-
tions, photon and electrons [28]. The first is optical absorption
where we have α �= 0, β = 0 so γ = ∞ (we can avoid the
normalization with β = 0, however), whereas in the second
case, it is the inelastic scattering of electrons for which
α = 0, β �= 0 so γ = 0 [28]. The inelastic electron scattering
can be relevant when the emitters are in the gas phase. Here we
explore the behavior of σ at general γ to study the behavior of
the model without limiting ourselves to a particular physical
system or a particular scattering mechanism.

−10

0

10 (a)(a)

ξ/
Ω

=
10

γ = 0

ε
q

(b)(b)

γ = γ1

(c)(c)

γ = 2γ1

(d)(d)

γ = 10γ1

0.0

0.5

1.0

σ
1+

σ
0 (e)

(f) (g) (h)

−10

0

10 (i)(i)

ξ/
Ω

=
0.

3 ε
q

(j)(j) (k)(k) (l)(l)

−1 0 1

E/Ω

0

1

2

σ
1+

σ
0 (m)

−1 0 1

E/Ω

(n)

−1 0 1

E/Ω

(o)

−1 0 1

E/Ω

(p)

FIG. 4. Comparison between exact weak- and strong-coupling
results at ξ/� = 10, 0.3 and γ /γ1 = 0, 1, 2, 10, where
γ1 = √

1/10(π 3/2)1/4 sets γ /γ1 � q in the weak-coupling
regime. Panels (a)–(d) and (i)–(l) show q, ε. We see that in (a)–(d) q
is practically a constant and ε has a linear energy dependence, while
both are strongly energy dependent in (i)–(l). The corresponding
σ is shown in (e)–(h) (that shows well-known weak-coupling
profiles) and (m)–(p), respectively. We see multiple ultrasharp Fano
resonances in the latter case.

B. q and ε in the weak-coupling regime

We find that at ξ/� � 1, i.e., in the weak-coupling regime,
we can take E/ξ � 1 and expand q to O(E/ξ ) using erfi(x) �
2x/

√
π at x � 1. We obtain

q �
√

ξ

�

(
2

π3

)1/4

γ + 1√
πξ

E , (30)

≈
√

ξ

�

(
2

π3

)1/4

γ , (31)

as the factor 1/ξ in the second term makes it too small to be
significant at the relevant energies. q can thus be taken as an
energy-independent parameter in this case. Similarly, we can
reduce Eq. (23) to

ε �
√

2

π

ξ

�2
(E − Eφ ), (32)

where FE � (�/ξ )2E can be ignored as it only produces a
very small shift at ξ � �. Equations (31) and (32) show that,
as expected for the weak-coupling regime, q, ε can be taken
as parameters to describe the Fano resonance.

C. Fano profile

Considering the energy dependence of q as well, we now
present the exact results for the line shape or profile in the
two coupling regimes. Figure 4 shows ε, q, σ/(1 + σ0) at
ξ/� = 10, 0.3 and γ /γ1 = 0, 1, 2, 10, where σ0 is the value
of σ at E = 0 and γ1 = √

1/10(π3/2)1/4 is chosen to set
γ /γ1 ≈ q at ξ/� = 10. ξ changes along the rows while γ
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changes along the columns, so the first two rows, Figs. 4(a)–
4(h), show the weak-coupling case while the other two rows,
Figs. 4(i)–4(p), contain the strong-coupling case. Since ε does
not depend on γ , Figs. 4(a)–4(d) or Figs. 4(i)–4(l) show the
same ε as dotted lines. We clearly see that the energy de-
pendence of q in Figs. 4(a)–4(d) is simply unnoticeable and
q ≈ γ /γ1. The corresponding evolution of the Fano profile in
Figs. 4(e)–4(h) is well known [24]. σ has a dip reaching zero
at γ = 0, a characteristic feature of the Fano resonance arising
from complete destructive interference between the transition
paths/amplitudes to the modified discrete state |�〉 and the
continuum {|ψE 〉}. As γ increases above zero, this zero (at
ε = −q) moves to lower E and a peak (at ε = 1/q) develops
alongside the dip [Figs. 4(f) and 4(g)], which eventually be-
comes the dominant feature at γ � 1, as shown in Fig. 4(h).

In the strong-coupling regime, the behavior of q, ε, σ is
very different. In Figs. 4(i)–4(l), we see that q has a strong
energy dependence, which, combined with that of ε, produce
a much richer picture. We see that at γ = 0, where q is
antisymmetric, σ is symmetric about E = 0 [Fig. 4(m)] with
three zeros exhibiting complete destructive interference. As γ

increases, this symmetry is lost and the central zero moves to-
ward the positive root [Figs. 4(n) and 4(o)]. A further increase
in γ merges these zeros and then eliminates them leaving only
a partial destructive interference [Fig. 4(p)]. The profile at the
other dip (zero of σ ) flips during this evolution, i.e., the dip
and the peak exchange sides as can be seen here while going
from Fig. 4(o) to Fig. 4(p). These results can be summarized
in a phase diagram in γ -ξ plane as follows.

D. Phase diagram in γ-ξ plane

On the γ -ξ plane, ξ/� = 1 separates the weak- and the
strong-coupling regions. The weak-coupling case, ξ/� > 1,
has a simple behavior. There is always a single zero of ε and a
single zero of σ . An increase (decrease) of γ away from γ =
0 produces a peak at positive (negative) energies. However,
the strong-coupling region ξ/� < 1 is much more interesting.
We will divide the phase space depending on two interesting
features as follows.

1. Zeros of σ

The scattering probability σ can completely vanish owing
to a complete destructive interference, which is a zero of σ

at the relevant energy. At ξ/� < 1 (and Eφ = 0), there are
always three zeros of ε and, depending on γ and ξ , one
or three zeros of σ . In Fig. 5, the region with one zero is
white, whereas the region with three zeros is shaded. Their
boundary is shown as a dotted line labeled as γz, so |γz| is
the value of |γ | above which σ has one zero. We see that |γz|
decreases as ξ/� increases. By expanding q + ε = 0 at γ = 0
at small E , it is simple to see (Appendix A 1) that |γz| → 0 at

ξ/� →
√

1 − 1/
√

2 when a zero of σ at E �= 0 approaches
its zero at E = 0.

2. Profile flips

The behavior of the Fano profile is well known in the weak-
coupling regime where it flips around the resonance at ε = 0
as q is varied across zero, say, −1 → +1, because the con-

FIG. 5. Phase diagram in γ -ξ plane at Eφ = 0. γz separates the
shaded region with three zeros of σ from the rest with one zero. γ f is
the boundary where the profiles of σ flips at one peak. At ξ/� � 1,
we are in the weak-coupling regime where γz, γ f = 0, and σ always
has a single zero when the peak and dip exchange position as we
move around γ = 0.

structive and destructive interference exchange places around
the resonance. Similar behavior can also be seen for the res-
onances in the strong-coupling regime. As γ is changed, a
zero of q crosses a zero of ε (the resonance location) at some
specific value γ = γ f , where the dip and peak structures of
σ around the corresponding resonance switch sides. Let us
see how γ f depends on ξ . We can numerically calculate the
nonzero roots of ε = 0 and then use that to calculate the value
of γ at which q = 0 is also satisfied. Using Eq. (29), we can
thus write

γ f =
√

�

ξ

4

√
π3

2
e−E2

0 /4ξ 2
erfi(E0/2ξ ), (33)

where E0 is the root of ε = 0 where this flip occurs. In Fig. 5,
γ f is shown on the phase diagram as a dashed line. We can see
that as ξ/� → 1, E0 → 0 and erfi(E0/2ξ ) ∼ E0 so γ f → 0 as
well. This is expected at ξ/� � 1 but it is interesting to note
that it applies to the whole weak-coupling regime ξ/� � 1.

E. Finite detuning from the center of VE: Eφ �= 0

We take the location of the maximum of the interaction VE

at E = 0, so Eφ measures its detuning from the discrete state.
We know that the Fano resonance simply shifts with Eφ in the
weak-coupling regime. We find that, in the strong-coupling
regime, the effect of Eφ �= 0 at small values is, roughly speak-
ing, to cooperate or compete γ , depending on the relative sign
of Eφ and γ . Figure 6 shows σ at ξ/� = 0.3 at three values of
Eφ/� = −0.5, 0, 0.5 (rows), and three values of γ = 0, 1, 5
(columns). The effect of γ on σ at Eφ = 0 is discussed in
Sec. IV C. Here the middle row, Figs. 6(d)–6(f), shows the
same again. We see that at negative Eφ , Figs. 6(a)–6(c), the
effect of γ is enhanced, while at positive Eφ , Figs. 6(g)–6(i),
it is compensated by a finite Eφ . At negative γ (not shown),
the profile would be mirrored around E = 0 and the role of
±Eφ would be swapped.
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FIG. 6. Effect of detuning Eφ �= 0 in the strong-coupling regime.
σ at ξ/� = 0.3 at Eφ/� = −0.5, 0, 0.5 (rows), and γ = 0, 1, 5
(columns). We see that Eφ < 0 cooperates with γ and enhances its
effect [compare (d) and (e) with (a)–(c)] while Eφ > 0 competes with
it and suppresses its effect [compare (d) and (e) with (g) and (h)].

F. Discrete state outside the continuum

The Fano resonance in the weak-coupling regime requires
the discrete state to lie within the continuum. We find that if
the coupling is strong enough, σ can still obtain its charac-
teristic features around the center of VE , even if the discrete
state lies well outside the continuum. This is plausible as a
large detuning would reduce the effective coupling between
the discrete state and the continuum and thus could lead to
the results similar to the weak-coupling regime. In our cal-
culations, at Eφ � ξ , we do not actually need to limit the
bandwidth of the continuum to push the discrete state outside.
Instead, we can focus on the continuum states around E = 0
that are coupled to the discrete state and ignore the continuum
states well outside the interaction range (a few ξ ) that are
practically uncoupled from the discrete state.

Figure 7 shows σ at ξ/� = 0.3, Eφ/� = 5.0 and four
values of γ chosen to present four characteristic profiles that

−1

0

1

2
(a) γ = 0

σ q − q(0) ε − ε(0)

(b) γ = 4

−1 0 1
E/Ω

0

2

4

6
(c) γ = −5

−1 0 1
E/Ω

(d) γ = 15

FIG. 7. A discrete state outsite the continuum in the strong-
coupling regime. q, ε, σ are shown at ξ/� = 0.3, Eφ/� = 5.0, and
γ = −5, 0, 4, 15. σ exhibits features similar to the weak-coupling
regime (a)–(c) and (d) a new profile with two zeros around a peak.

can be obtained in such a case. It also shows corresponding q
and ε (shifted by their values at E = 0) to show the origin
of these profiles. We see that σ in Figs. 7(a)–7(c), resem-
bles the characteristic weak-coupling cases corresponding to
the constant asymmetry parameter q = −1, 0,∞. In addition,
Fig. 7(d) shows a profile with two zeros around a peak that
does not exist in the weak-coupling case.

We can understand this behavior by noting that at large
Eφ � �, the discrete state and the continuum states within
the interaction peak will slightly perturb each other, exchang-
ing a tiny bit of their spectral weights (transferring it to the
eigenstates at their locations). This will create a small peak
in the spectral component cφ of |φ〉 around E = 0 and a
corresponding small dip in the spectral components cψ of the
“local” continuum states |ψE 〉, which is 1 everywhere around
E = 0 but at this dip. The interference between the transition
amplitudes from these spectral components is controlled by
γ and, at |γ | � 1 [Figs. 7(b)–7(d)] where we can ignore
the “nonlocal” continuum dragged along with cφ , we have
σ � (γ cφ − cψ )2. At γ = −5 [Fig. 7(c)], γ cφ becomes a dip
and adds up to the dip in cψ , creating a large peak in σ . At
positive γ , the peak of γ cφ increases with an increase in γ

and at some point meets it, creating a dip structure [Fig. 7(b)].
At larger γ , the peak of γ cφ crosses the dip of cψ making
σ → 0 at two locations where the two amplitudes cancel each
other completely [Fig. 7(d)]. The dip and peak structure in
Fig. 7(a) seen at γ = 0 is caused by the interference between
the local continuum states and the nonlocal continuum states
pulled along by |φ〉 (the |ψE 〉 components of |�〉), instead of
|φ〉 itself.

We find that, for Eφ → −Eφ and γ → −γ , σ (E ) →
σ (−E ), so had we used Eφ/� = −5.0, we would have ob-
tained q = +1 profile at γ = 0 instead of Fig. 7(a).

V. A HOMOGENEOUSLY BROADENED STATE INSTEAD
OF A CONTINUUM

A localized interaction with a continuum can also arise in
case of various open quantum systems, e.g., plasmonic and
photonic nanostructures that host broad resonances, which can
couple to relatively narrow electronic, vibrational, or other
states. Such broadened states are known only through their
density of states or spectral function.

To calculate the scattering from a broadened state that is
coupled to a localized discrete state, Giannini et al. introduced
a method in Ref. [18] that treats the broadened state like a
continuum of states but with its interaction with the narrow
state and its bare transition matrix element proportional to
the square root of its spectral function. Here we provide an
alternative approach to treat the same problem that is not
only physically motivated but mathematically more rigorous
as well. Besides, it gives a deeper insight into the behavior
of the system and can also be generalized to treat interaction
between multiple broadened states to study their weak- and
strong-coupling regimes, for instance.

Our approach is simple. We enlarge the Hilbert space to
include the environment in the model and work with the
underlying eigenstates that produce the desired spectral dis-
tribution of the broadened state. Let us suppose AE ,φ̄ is the
spectral function of a broadened state. If the broadening is
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Lorentzian centered around an energy Eφ̄ , then

AE ,φ̄ = 1

π

�φ̄/2

(E − Eφ̄ )2 + �2
φ̄
/4

, (34)

where �φ̄ is the width of the distribution. We can consider
a constant coupling V̄E = √

�φ̄/2π (the subscript E is used
for consistency) between the parent discrete state |φ̄〉 and
the continuum of its environment states |ψ̄E 〉, which form
a continuum of eigenstates |ψE 〉 that describe the spectral
function AE ,φ̄ correctly (self-consistently). Now, to describe
the interaction of the broadened state with a discrete state,
|ψE 〉 can be coupled to it instead.

Assuming we have a discrete state |φ〉 at energy Eφ with a
coupling λ to the state |φ̄〉, we can compute the corresponding
coupling VE between |φ〉 and |ψE 〉 and calculate the eigen-
states of the full (closed quantum) system |�E 〉. Following
this procedure (see Appendix A 2), and expressing |�E 〉 in
terms of the bare states of the system and the environment, we
obtain

|�E 〉 = cE ,φ |φ〉 + cE ,φ̄ |φ̄〉 + −
∫

dE ′cE ,ψ̄E ′ |ψ̄E ′ 〉,

cE ,φ = sin 
E

πVE
,

cE ,φ̄ = sin 
E

πVE

FE

λ
− cos 
E

VE

λ
,

cE ,ψ̄E ′ = sin 
E

πVE

(
V̄E ′GE ,E ′

λ
− VE ′ cos 
̄E ′

E − E ′

)

− VE cos 
EV̄E ′

λ(E − E ′)
+ cos 
E cos 
̄Eδ(E − E ′), (35)

where

GE ,E ′ = −
∫

dE ′′ V 2
E ′′

(E − E ′′)(E ′′ − E ′)
,


̄E = − arctan[πV̄ 2
E /(E − Eφ̄ )],


E = − arctan[πV 2
E /(E − Eφ − FE )],

VE = λ
sin 
̄E

πV̄E
,

FE = λ2 E − Eφ̄

(E − Eφ̄ )2 + �2
φ̄
/4

. (36)

We can now write the scattering amplitude
ME = 〈i|T̂ |�E 〉 in terms of the scattering amplitudes
Mφ = 〈i|T̂ |φ〉 and Mφ̄ = 〈i|T̂ |φ̄〉 of the bare states |φ〉 and
|φ̄〉, and that of the environment Mψ̄E ′ = 〈i|T̂ |ψ̄E ′ 〉, as

ME = cE ,φMφ + cE ,φ̄Mφ̄ + −
∫

dE ′cE ,ψ̄E ′Mψ̄E ′ . (37)

Assuming that Mψ̄E ′ vanishes identically for the consid-
ered scattering process, and Mφ,Mφ̄ are real, the scattering
probability |ME |2 can be simplified to obtain

|ME |2 = (EMφ̄ + λMφ )2AE ,φ̄

E2 + [
λ2 − 2E (E − Eφ̄ )

]
2πλ2

�φ̄
AE ,φ̄

, (38)

where Eφ = 0 is taken as reference. It can be cast into the
form obtained by Giannini et al. [18] by normalizing it with
AE ,φ̄M2

φ̄
(see Appendix A 2).

As discussed in the Introduction, this model also exhibits
the strong-coupling regime, where the “secular equation”
E − Eφ̄ − FE = 0 admits multiple solutions, indicating the
emergence of new hybrid states that split off the two bare
states, similarly to the appearance of lower and upper po-
laritons in microcavities, for instance. We find that the
strong-coupling regime occurs at λ > �φ̄/2 in this case, which
agrees to the typical criterion in microcavities assuming only
one of the emitter and cavity states is broadened or lossy. The
method can be generalized to treat multiple broadened states
by including their environment(s) in the picture.

Apart from the obvious application to study various scat-
tering spectra of systems involving broadened states similar
to Ref. [18], the fact that this method can use the con-
cepts and tools of closed quantum systems makes it much
more powerful. For example, the eigenstates |�E 〉 of the
“system+environment” can be used to study the transition
between weak- and strong-coupling regimes of the system, the
exact non-Markovian dynamics of the system in either of the
phases, and the redistribution of the spectral weights of the
broadened states as in spectral hole burning [48].

VI. SUMMARY AND DISCUSSION

We showed that the Fano’s model with a strongly localized
interaction can appear in important physical systems involving
a genuine continuum of states. Using a Gaussian interaction
profile, we showed that the model exhibits a strong-coupling
phase for the Gaussian width ξ (standard deviation) below
the collective coupling �. We find that new resonances with
ultra sharp features appear in the strong-coupling phase where
the scattering probability for a generic scattering process can
exhibit complete destructive interference at one or three posi-
tions, depending on the ratio of its bare transition amplitudes
γ . We calculated the phase diagram of the model in the
space of its two parameters γ , ξ and find that above a critical

value ξ/� =
√

1 − 1/
√

2, complete destructive interference
can occur once at most. We also find that a discrete state far
detuned from the center of the interaction or even outside the
continuum can produce some features of the weak-coupling
Fano resonances if its collective coupling is strong enough.

We also considered systems involving a broadened state
instead of a continuum of states and present a method to treat
such problems. We explicitly consider the continuum states
of the environment that induces the broadening and show
that it is possible to calculate the eigenstates of the resulting
closed quantum system. The application of this method is
not limited to calculating the scattering probability, however.
The eigenstates can be used to exactly calculate the static and
dynamic properties of the system without any approximations
on the correlations between the system and its environment,
which is typically intractable.

In addition to the disordered Tavis-Cummings model, an-
other interesting cavity QED system where a continuum of
states collectively couple to a discrete state with a localized
interaction is a single emitter coupled to a cavity if the cavity
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confines the electromagnetic field in less than all three spatial
dimensions, e.g., a planner microcavity. In such cases, the cav-
ity modes at a continuum of the in-plane wave vectors k‖ exist,
which form the cavity band that couples to the discrete emitter
state. Since the electric dipole interaction depends on the
relative orientation of the emitters’ transition dipole moment
�d and the electric field �E , the interaction contains a factor of
cos θ , where θ is the angle between �E and �d , which will be a
function of k‖ for a fixed emitter. The interaction VE ∝ cos2 θ

will then be localized around θ = 0 that maps to a localization
in k‖ and hence energy of the band. In the single excitation
space, this becomes Fano’s model and the results presented in
this article and in Ref. [28] would be relevant to it as well.
Since the role of the cavity and emitter states is exchanged in
this case as compared to energetically disordered TC model
studied in Ref. [28], γ = 0 for the the optical spectrum here
so we should observe complete destructive interference in it at
one or three energies as in Figs. 4(e) and 4(m). Furthermore,
as the exact eigenstates of the model can be computed, we
can also study an effective coupling between the continuum of
cavity states induced by their collective coupling to the emit-
ter, which would be similar to an effective coupling induced
between multiple emitters when they collectively couple to a
common cavity mode.

The phase diagram at Eφ = 0 that is presented in this work
is only a slice in the full γ , ξ, Eφ space. It would certainly
be interesting to explore how it evolves with Eφ = 0 to com-
pletely characterize the model. An experimental study to ver-
ify our results and finding other realizations of the model with
a localized interaction can also be interesting future works.

Fortunately, the approach to treat a broadened state pre-
sented here is also tractable for multiple broadened states
interacting with each other, whether the broadening is caused
by a single common environment or different individual
environments. Systems where narrow and broad states in-
teract, e.g., plasmonic nanostructures, can thus be treated
with this method taking into account the broadening of all
states involved. This observation also creates a temptation
to apply it to paradigmatic models of cavity QED, e.g.,
Jaynes-Cummings model, to treat the cavity and emitter losses
“exactly” to investigate their effects on the eigenstates and the
weak- to strong-coupling transition. Our preliminary calcu-
lations show that some interesting aspects of the nature of
the polariton states in such lossy systems can be revealed
with this method. For instance, the exact relation between
the linewidths of the polariton states and the linewidths of
its parent states can be explored. Questions like these can be
addressed in a future study.
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APPENDIX

1. A single zero of σ at ξ/� �
√

1 − 1/
√

2

Setting γ = 0 in Eq. (29) and using it with Eq. (23), we
can expand q + ε = 0 at small E to obtain

erfi(E/2ξ ) +
√

2

π

ξ

�2
eE2/2ξ 2

E − erfi(E/
√

2ξ ) = 0, (A1)

[
√

2 + 2(ξ/�)2 − 2 + (E/�)2]E = 0. (A2)

Considering the root E �= 0, the term in the brackets

gives ξ/� =
√

1 − 1/
√

2 − (E/�)2/2, which approaches

ξ/� =
√

1 − 1/
√

2 � 0.54 as this root E approaches E = 0.

2. Interaction between a discrete state and a broadened state:
Calculation of the eigenstates

Considering a coupling V̄E = √
�φ̄/2π between |φ̄〉 and

|ψ̄E 〉, their continuum of eigenstates |ψE 〉 have the same struc-
ture as Eq. (11) and are given by

|ψE 〉 = sin 
̄E

πV̄E

(
|φ̄〉 + −

∫
V̄E ′

E − E ′ dE ′ |ψ̄E ′ 〉
)

− cos 
̄E |ψ̄E 〉 , (A3)

where 
̄E = − arctan[πV̄ 2
E /(E − Eφ̄ )].

The spectral function of the state |φ̄〉 is given by the square
of its coefficient in |ψE 〉, i.e., AE ,φ̄ = sin2 
̄E/π2V̄ 2

E , and we
can easily see that it agrees to Eq. (34), showing the desired
consistency between V̄E and AE ,φ̄ .

We can now couple |ψE 〉 to the state |φ〉 at energy Eφ . If λ

is the coupling between |φ〉 and |φ̄〉, the coupling VE between
|φ〉 and |ψE 〉 becomes VE = λ sin 
̄E/πV̄E , which is equal
to λ

√
AE ,φ̄sign(Eφ̄ − E )—similarly to Ref. [18] except for a

possibly negative sign at E > Eφ̄ . The eigenstates of the full
(closed quantum) system |�E 〉 can now be easily written down
in an analogy to Eq. (11) again, given by

|�E 〉 = sin 
E

πVE

(
|φ〉 + −

∫
VE ′

E − E ′ dE ′ |ψE ′ 〉
)

− cos 
E |ψE 〉 , (A4)

where 
E is given in Eq. (36). |ψE 〉 in Eq. (A3) can now be
substituted into Eq. (A4) to obtain Eq. (35) in the main text.

The final expression for the scattering probability
that is given in Eq. (38) in the main text can be
compared with Eq. (6) in Ref. [18] using the fol-
lowing correspondence: (λ, Eφ, Eφ̄ , �φ̄ ) ↔ (v, Ed , Ep, �p),
(Mφ,Mφ̄ ,ME ) ↔ (w, c, 〈i|W |�〉), and AE ,φ̄ ↔ 2

π�p
L(E )

(L(E ) is unnormalized).
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