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We present an implementation of the Bethe-Salpeter equation (BSE) for core-conduction band pairs within
the framework of the projector augmented-wave method. For validation, the method is applied to the K edges
of diamond, graphite and hexagonal boron-nitride, as well as four lithium-halides (LiF, LiCl, LiI, LiBr). We
compare our results with experiment, previous theoretical BSE results, and the density functional theory-based
supercell core-hole method. In all considered cases, the agreement with experiment is excellent, in particular,
for the relative position of the peaks as well as the fine structure. Comparing BSE to supercell core-hole spectra,
we find that the latter often qualitatively reproduces the experimental spectrum, however, it sometimes lacks
important details. This is shown for the K edges of diamond and nitrogen in hexagonal boron nitride, where we
can resolve within the BSE experimental features that are lacking in the supercell core-hole method. Additionally,
we show that in certain systems the supercell core-hole method performs better if the excited electron is added
to the background charge rather than to the lowest conduction band. We attribute this improved performance to
a reduced self-interaction.
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I. INTRODUCTION

X-ray absorption spectroscopy (XAS) experiments probe
the transition probability of exciting an electron from a core
state to a conduction-band state. XAS spectra furnish informa-
tion about the local chemical environment of the probed atom,
e.g., coordination number or oxidation state [1]. However,
experimental XAS spectra are difficult to interpret without
theoretical input.

To simulate XAS spectra, two fairly simple ab initio ap-
proaches exist. In the initial-state approximation, the XAS
spectrum is calculated via Fermi’s golden rule, where the
initial state is a core state and the final state a conduction-band
state. In the final-state approximation [2–6], the final-state
wave function is calculated self-consistently using Kohn-
Sham density functional theory (DFT) [7] by removing one
core electron and placing it in the conduction bands.

These methods have a couple drawbacks. In the initial-state
approach, electrons and holes are independent particles and
any interactions between them are neglected. In the final-state
approach, supercells are required to avoid spurious interac-
tions between core holes located in different unit cells. For
this reason, this approach is here called the supercell core-hole
(SCH) method. Further, it is assumed that the approximate
density functionals remain valid for excited states. Finally,
the excited electron is usually placed into the conduction
band edge, and it is implied that the resulting renormalized
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one-electron energies for all conduction bands will be a good
approximation for the XAS fine structure.

By looking at these restrictions, an approach is desir-
able which addresses some of the shortcomings of the SCH
method. In particular, an accurate description of the electronic
structure is needed, ideally including many-body correlations
for the interaction of electrons and holes.

The state-of-the-art approach that resolves both issues
is the GW +BSE method. It combines ab initio ground-
state electronic structure calculations with techniques of
many-body perturbation theory [8]. By calculating the one-
particle Green’s function G, various one-body properties can
be obtained, e.g., quasiparticle band gaps and quasiparticle
energies [9].

For a description of the mutual interaction of electrons and
holes, one needs to go beyond one-particle theory and solve
the equation of motion for the two-particle Green’s function—
the Bethe-Salpeter equation (BSE) [10,11]. The BSE is an
integral equation that can be recast into an eigenvalue equa-
tion, where the exchange and the screened attraction of
electrons and holes are incorporated in the resulting BSE
matrix. The BSE approach was applied to optical spectra
of semiconductors in the late ’70s [12]. Ab initio based ap-
proaches to the BSE followed in the late ’90s [13–16].

In these approaches, the orbitals are usually obtained from
a standard ground-state DFT calculation. In the second step,
the Green’s function is calculated using the DFT orbitals
and one-electron energies. Many-body correlation effects are
included by replacing the Kohn-Sham exchange-correlation
potential with the self-energy in the GW approximation and
by solving the Dyson equation for the interacting Green’s
function. The one-electron energies are then updated by
equating them to the poles of the resulting interacting Green’s
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function. In most cases, a single iteration is performed. Fi-
nally, the two-particle BSE is set up and solved. Often one
refers to this approach as GW +BSE.

The GW +BSE approach has been extended from the
optical to the x-ray regime by covering excitations from
core levels to the conduction band. The earliest imple-
mentation was presented by Shirley and coworkers [17,18]
within a pseudopotential scheme. This work culminated in
the OCEAN package [19–21]. Further adaptions within all-
electron full-potential methods were established by Olovsson
et al. in exciting [22] and subsequently by Laskowski et al.
in WIEN2K [23]. To the best of our knowledge, most avail-
able electronic structure codes that implement the projector
augmented-wave (PAW) methodology calculate XAS spectra
via the SCH method [24–28]. We note that in a recent version
of the OCEAN code [29], an augmentation technique remi-
niscent of the PAW methodology is used for the calculation of
transition matrix elements.

In this paper, we present an implementation of the
GW +BSE scheme in the PAW method for x-ray absorption
spectra. We derive the BSE in the PAW scheme and show what
modifications must be made for core states. Our implemen-
tation is tested by calculating XAS spectra for the K edges
of one prototypical covalent system (diamond), two 2D van
der Waals layered materials (graphite and hexagonal boron-
nitride), and four ionic materials with shallow core states (the
lithium-halides LiF, LiCl, LiBr, and LiI). We benchmark our
results against spectra obtained either by a pseudopotential
or an AE implementation of the BSE and point out where
the GW +BSE implementation within PAW shows improve-
ments. We furthermore compare our results with experiment
and a previously presented implementation of the SCH
method [30].

Finally, we show that previously obtained SCH spectra of
lithium halides can be improved by adding the electron to
the background charge instead of the lowest conduction band.
We argue that the improvement comes from a reduction of
self-interaction errors. We then connect this explanation to the
GW +BSE approach by investigating how the spectra change
if the exchange term of the BSE is omitted.

The necessary theory is presented in Sec. II. In Sec. II A,
we shortly summarize the BSE as well as the basics of the
PAW formalism. In that subsection, we will also point out
the approximations made in the current implementation. In
Sec. II C, we present details concerning the implementation
of the BSE in the PAW formalism. The expressions for the
transition probabilities and the dielectric function are then
found in Sec. II D. In Sec. III, we summarize the computa-
tional methods, followed by a presentation of the results in
Sec. IV. In Sec. V, we present the improved SCH spectra
for lithium halides and the discussion of the suggested self-
interaction effect. Finally, we summarize and conclude the
paper in Sec. VI.

II. THEORY

A. Bethe-Salpeter equation

We use notations consistent with a previous publication
[31] in which further details on the implementation of the BSE
in the PAW can be found. We use the commonly used notation

for space and time variables: 1 = {r1, t1}, etc. The systems
investigated in this work are nonmagnetic and treated on a
scalar relativistic level, however, the equations can be easily
generalized to include spin indices. Furthermore, spin-orbit
coupling is neglected, as no heavy elements are present in the
considered systems.

The BSE is the Dyson equation for the two-particle corre-
lation function L:

L(1, 2, 3, 4) = L0(1, 2, 3, 4) + L0(1, 5, 8, 4)

× I (5, 6, 7, 8)L(6, 2, 3, 7). (1)

The independent propagation of a particle from point 1 to
point 2 and a hole from point 4 to point 3 is described by L0,

L0(1, 2, 3, 4) = G(2, 1)G(4, 3), (2)

and the irreducible interaction kernel I is given in the GW
approximation [12,32,33]:

I (1, 2, 3, 4) = δ(1, 4)δ(2, 3)v(1, 2)

− δ(1, 2)δ(4, 3)W (1, 4). (3)

The interaction kernel consists of the repulsive bare Coulomb
interaction v(1, 2) and the frequency-dependent attractive
screened interaction W (1, 2). In Eq. (1), integration over re-
peated indices is implied. The first and second terms of the
irreducible interaction are obtained by varying the Hartree po-
tential or the exchange and correlation part of the self-energy,
respectively, with respect to the Green’s function.

At this point, we make the static approximation to the
screened interaction W (1, 2) [34]. In this approximation,
the full frequency-dependent screened interaction is approx-
imated by its static value: W (1, 2) ≈ W (r1, r2, ω = 0). Using
this approximation, the irreducible interaction I is frequency
independent and Eq. (1) can be solved in frequency space for
L(ω):

L(ω)−1 = L0(ω)−1 − I. (4)

Until now, all equations involved quantities which are con-
tinuous functions of space. A basis is needed to cast Eq. (4)
into a matrix form. Since we consider neutral electron-hole
excitations, a suitable basis are the products of occupied and
unoccupied orbitals, called resonant and antiresonant two-
orbital states,

�r
K (r, r′) = ϕi(r)ϕ∗

a (r′),

�a
K (r, r′) = ϕa(r)ϕ∗

i (r′), (5)

where the indices i, j, . . . and a, b, . . . enumerate occupied
and unoccupied states, respectively. Here and in the following,
we use the notations K = {i, a} and J = { j, b}. In general,
one also needs to include a k-point index, K = {ik, ak}, J =
{ jk′, bk′}, but for brevity we will suppress it in the following.
It can be easily restored by adding k to i and a, and k′ to j
and b.

Using this basis, resonant-resonant and resonant-
antiresonant matrix elements of L0 and I in Eqs. (5) need
to be computed. However, in the present paper, we use the
well-known Tamm-Dancoff approximation [35,36] and thus
neglect the resonant-antiresonant matrix elements. We further
use the analytical property that response functions derived
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from L(ω) are even functions of ω. A method to include
the resonant-antiresonant coupling and to go beyond the
Tamm-Dancoff approximation is discussed in a previous
publication [31].

The resonant-resonant matrix elements of L0 then take the
form

(L0(ω)−1)(r,r)
KJ = (ω − (εa − εi ))δi jδab. (6)

The resonant-resonant matrix elements of the irreducible in-
teraction can be written as

H(r,r)
KJ =

∫
dr1 . . . dr4�

r
K

∗(r2, r4)

× I (r1, r2, r3, r4)�r
J (r3, r1). (7)

Using the more compact Dirac notation, the resonant-resonant
antisymmetrized two-electron integrals corresponding to the
interaction I are written as

H(r,r)
KJ = 〈bi|V | ja〉 − 〈bi|W |a j〉. (8)

We have now arrived at a matrix representation of Eq. (4) in
the Tamm-Dancoff approximation:

(L(ω)−1)KJ = (ω − (εa − εi ))δi jδab − H(r,r)
KJ . (9)

Elementary excitations are determined by the poles of L(ω), in
other words, those frequencies � for which the right-hand side
of Eq. (9) is not invertible. This, in turn, means that the kernel
of the matrix on the right-hand side of Eq. (9) is nontrivial.
Using the shorthand notation

A = (εa − εi )δi jδab + H(r,r)
KJ , (10)

this argument leads us to the simplified eigenvalue problem:

AX = �X. (11)

We have now summarized the BSE formalism and its main
ingredients, the matrix elements of the resonant-resonant ma-
trix A, Eq. (7), and the eigenvalue Eq. (11). In the next section,
we summarize the pertinent parts of the PAW method, specif-
ically, the basic principles and how core states are treated.

B. Basics of the PAW formalism

The PAW method is an all-electron (AE) method in which
the exact orbital |ψ〉 is obtained from the pseudo (PS) orbital
|ψ̃〉 via a linear transformation [37]

|ψ〉 = |ψ̃〉 +
∑

n

(
cn

∣∣φ1
n

〉 − cn

∣∣φ̃1
n

〉)
, (12)

where |ψ̃〉 are the PS orbitals represented on a plane-wave
grid—these are the variational quantities, and |φ1〉 and |φ̃1〉
are all-electron partial waves and PS partial waves, respec-
tively, both defined on a radial grid. We use a superscript 1
to denote one-center quantities located inside PAW spheres
and evaluated on a radial grid. The coefficients cn are projec-
tions of the PS orbitals on projectors defined inside the PAW
spheres:

cn = 〈p̃n|ψ̃〉. (13)

The index n is a shorthand for an atomic site index τn, an-
gular ln, and magnetic quantum numbers mn, as well as an

additional index for the reference energy εn. Here and in
the following, compound indices n and m are used to index
the projectors, partial waves, and coefficients cn. The on-site
expansion

∑
n cn|φ̃1

n〉 must be equal to |ψ̃〉 inside the PAW
spheres, which implies that∑

n

|φ̃1
n〉〈p̃n| = 1. (14)

For core states, the coefficients in the transformation Eq. (12)
are unity [37]:

|ψc〉 = |ψ̃c〉 + ∣∣φ1
c

〉 − ∣∣φ̃1
c

〉
. (15)

In practice, one can safely assume that all quantities in the
above equation are entirely localized inside the PAW spheres,
hence |ψ̃c〉 = |φ̃1

c 〉 and |ψc〉 = |φ1
c 〉. Furthermore, we will

make the assumption that |ψ̃c〉 = |φ̃1
c 〉 = 0 (these approxi-

mations are used to the best of our knowledge in all PAW
implementations). This is justified, since the core orbitals do
not contribute outside of the PAW spheres, and in the PAW
method one is free to make any choice for the PS partial waves
|φ̃1

c 〉, as long as they are identical to the AE partial waves |φ1
c 〉

outside the PAW spheres. Since |φ1
c 〉 is zero outside the PAW

spheres, and hence |φ̃1
c 〉 is also zero outside the PAW spheres,

one can also assume that φ̃1
c (r) = 0 and thus ψ̃c(r) = 0 every-

where in space. We will give further support to this argument
toward the end of the next subsection.

Inside the PAW spheres, the AE partial waves are solutions
of the radial Schrödinger equation for a specific energy εn and
angular momentum quantum numbers ln, mn,

φ1
n (r) = 1

r
uεn,ln (r)Yln,mn (θ, φ), (16)

with radial functions u(r) and spherical harmonics Yl,m(θ, φ).
These are calculated for isolated atoms when the PAW poten-
tials are generated. The AE core orbitals are also calculated
for the Kohn-Sham potential of the isolated atom, imposing
the boundary condition that core orbitals become zero at the
radius of the PAW sphere [37,38]. This is done in a prepro-
cessing step within the VASP code. Note that except for a
Bloch phase-factor eik·r, the core orbitals are identical at all
k points.

The PS partial waves φ̃1
n (r) = 〈r|φ̃1

n〉 are analogously
given as

φ̃1
n (r) = 1

r
ũεn,ln (r)Yln,mn (θ, φ), (17)

and determined by pseudizing the AE partial waves inside a
suitably chosen core radius.

In the next section, we describe in detail how to evaluate
the matrix elements in the PAW method, and how the expres-
sions need to be modified when core states are included in the
transitions.

C. BSE matrix elements within PAW

We now evaluate the two-electron integrals in Eq. (7).
Defining charge densities

nab(r) = ϕ∗
a (r)ϕb(r), (18)
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the two terms of the resonant-resonant matrix elements,
Eq. (8), can be written as

〈bi|V | ja〉 =
∫

drdr′nia(r)v(r − r′)n∗
jb(r′), (19)

〈bi|W |a j〉 =
∫

drdr′ni j (r)W (r, r′)n∗
ab(r′). (20)

Following convention, we refer to the terms involving v and
W as exchange and direct terms, respectively [8].

To calculate the matrix elements of Eqs. (19) and (20), we
need to treat the long-range electrostatic interaction accurately
within the PAW. This is achieved by introducing augmentation
charges, as discussed extensively for valence electrons in the
PAW papers of Blöchl [37] and Kresse and Joubert [38]. Aug-
mentation charges are constructed such that inside the PAW
spheres, the sum of PS charge density and the augmentation
charge n̂ has the same moments as the exact charge density,∫

�r

[n1(r) − ñ1(r) − n̂(r)]|r|lY ∗
lm(θ, φ)dr = 0, (21)

where the coordinate system is centered on a particular PAW
sphere. Details on the explicit construction of the augmenta-
tion charges can be found in Ref. [38]. With this definition of
the augmentation charge, we write the exact charge density as
a sum of three terms, cf. Eq. (17) of Ref. [39]:

nab(r) = [ñab(r) + n̂ab(r)] + n1
ab(r) − [

ñ1
ab(r) + n̂1

ab(r)
]
. (22)

The first term is the plane-wave charge density plus the aug-
mentation charge on the regular grid, the second term is the
AE charge density, and the last term is the PS charge density
plus PS augmentation charge on the radial grid.

By constructing the augmentation charges as in Eq. (21),
the correct moments of the AE charge density are taken into
account and restored. This leads to moment-restoration. Addi-
tionally, the exact AE charge density inside the PAW spheres
can be reconstructed by adding so-called shape-restoring
functions to the augmentation charges [40]. This process is,
accordingly, called shape restoration. Using moment as well
as shape restoration makes the PS charge density very similar
to the AE charge density for low Fourier components. Typi-
cally, both match up to a kinetic energy cutoff of 150–200 eV.
With this in mind, we make an important simplification and
neglect the second and third terms of Eq. (22):

nab(r) ≈ [ñab(r) + n̂ab(r)]. (23)

This approximation is made consistently in the VASP code for
the GW , RPA, and BSE implementations [40]. The construc-
tion of the augmentation charges, including moment as well
as shape restoration, is outlined in the Appendix.

Using this approximation, we can write an explicit expres-
sion for the exchange and direct terms, respectively,

〈bi|V | ja〉 =
∫

drdr′[ñia(r) + n̂ia(r)]

× v(r − r′)[ñ jb(r′) + n̂ jb(r′)]∗, (24)

〈bi|W |a j〉 =
∫

drdr′[ñi j (r) + n̂i j (r)]

×W (r, r′)[ñab(r′) + n̂ab(r′)]∗. (25)

These expressions have already been implemented previously
for the case of transitions from valence to conduction band
states [31].

We now discuss the case of core states in more detail. If one
of the occupied states i is a core state c, then there are three
combinations of orbitals possible: ncc′ (two core states), nci (a
core state and a valence band state), or nca (a core state and
a conduction band state). For a core state c inside a particular
PAW sphere, this core state is confined entirely to the sphere
and vanishes beyond this PAW sphere. It is then evident that
each of the three charge densities mentioned above contributes
only inside the PAW sphere in which the core state c is located.

We show here how this implies that the plane-wave con-
tributions ñ in Eqs. (24) and (25) vanish. We first use the
formula for the expectation value of a local operator in the
PAW scheme for the real-space projection operator |r〉〈r|, see
Eq. (11) of Ref. [37]:

〈ϕi|r〉〈r|ϕb〉 = 〈ϕ̃i|r〉〈r|ϕ̃b〉 +
∑
nm

〈ϕ̃i| p̃n〉〈p̃m|ϕ̃b〉
〈
φ1

n

∣∣r〉〈r∣∣φ1
m

〉
−

∑
nm

〈ϕ̃i| p̃n〉〈p̃m|ϕ̃b〉
〈
φ̃1

n

∣∣r〉〈r∣∣φ̃1
m

〉
. (26)

We now restrict state i to a core state c, while state b is a
conduction-band state. As argued above, the charge density
〈ϕc|r〉〈r|ϕb〉 has contributions inside the PAW spheres only.
Hence, we can use the completeness relation in Eq. (14), so
the first and third terms of Eq. (26) cancel. This finally implies
that the plane-wave charge densities ñ in Eqs. (24) and (25)
can be neglected, so the exchange and direct terms can be
written as

〈bc|V |ca〉 =
∫

drdr′n̂ca(r)v(r − r′)n̂∗
cb(r′) (27)

and

〈bc|W |a j〉 =
∫

drdr′n̂c j (r)W (r, r′)[ñab(r′) + n̂ab(r′)]∗,

(28)

respectively. As shown in Eq. (21), the augmentation charges
are constructed in such a way that they restore the exact
multipoles of the AE charge density. This implies that even
though we use only augmentation charge densities, the long-
range electrostatic effects are exactly accounted for. The
argument laid out here also confirms that the assumption
φ̃1

c (r) = ψ̃c(r) = 0 everywhere in space is a valid choice. The
expressions above have been implemented in the VASP code
for core-conduction as well as core-valence transitions.

D. Transition probabilities and dielectric function

The dielectric function is finally calculated as

εM(q, ω) = 1 + lim
q→0

v(q)
∑


(
1

� − ω
+ 1

� + ω

)

× 1

Nk

{ ∑
k

∑
a,c

〈ak + q|eiq·r|ck〉X (ck,ak)


}
{c.c.};

(29)
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compare Eqs. (50) and (51) of Ref. [31]. Here, index  labels
the eigenvalues � and eigenvectors X of the eigenvalue
problem in Eq. (11). The total number of k points is de-
noted as Nk , and v(q) is the Coulomb kernel, in CGS units
v(q) = (1/V )4πe2/|q|2, where V is the volume of the unit
cell. For clarity, the k-point index was added back. The limit
q → 0 is justified for the systems investigated in this paper.
The energy range considered here is from 60 eV to 420 eV, so
if we assume that variations of the system are of the order 1Å,
then corrections to the long-wavelength limit (i.e., quadrupole
transitions) are at most of order (1 Å/30 Å)2 ≈ 10−3.

Although the present implementation allows for simulta-
neous treatment of core-conduction and valence-conduction
pairs, we did not consider the valence states in our present
BSE calculations. Then, the key ingredient here is the transi-
tion probability between core and valence-band states,

lim
q→0

√
v(q)〈ak + q|eiq·r|ck〉, (30)

which in k · p perturbation theory is approximated as√
4πe2/V 〈ak|∇|ck〉/(εc − εak). (31)

The ∇ term is evaluated inside the PAW sphere between the
exact AE partial waves of the core orbitals and the AE partial
waves corresponding to the considered conduction band state
ck. Note that the present implementation [Eq. (31)] involves
the momentum operator and not the velocity operator, as is in
principle required for nonlocal potentials [41,42]. However,
it was shown that the momentum operator can give very ac-
curate results within the PAW method if the PAW potentials
include projectors for large angular quantum numbers L [43].

The required core eigenvalues εc are assumed to be iden-
tical to the DFT core eigenvalues and identical for all k
points. The conduction band energies εak are the approximate
quasiparticle energies in the GW calculations. VASP routinely
calculates the DFT core eigenvalues by evaluating the expec-
tation value of the frozen core orbitals in the self-consistent
Kohn-Sham potential. Alternatively, one can specify the core
eigenvalue as input. However, results are largely independent
of εc. Changing εc changes the onset of absorption and scales
all intensities by roughly a constant value.

Absolute core energies and hence the onsets of absorption
are not yet accurately predicted by standard DFT [44,45].
Absolute core energies are commonly calculated using the
�-self-consistent field (�SCF) and related methods [46,47]
or, recently, the GW approximation [48,49]. However, these
are not yet available within the frozen core PAW VASP im-
plementation. Hence, in this paper, only the conduction band
energies are GW corrected, and we adjust the onset of the
absorption spectrum to the experimental value.

III. COMPUTATIONAL METHODS

A. Numerical details

All ab initio electronic structure calculations were per-
formed with the AE plane-wave code VASP [50], which uses
the PAW-implementation of Kresse and Joubert [38]. The
workflow is the following.

We start with a standard DFT calculation, yielding the
Kohn-Sham energies and Kohn-Sham orbitals. In all DFT

TABLE I. Plane-wave energy cutoffs used in the present work
for the plane-wave expansion of the orbitals.

System Ecut (eV)

Diamond, graphite 434.9
h-BN 400.0
LiF 487.7
LiCl 262.4
LiBr 216.3
LiI 175.6

calculations, we used the exchange-correlation functional by
Perdew et al. [51]. The energy cutoffs are listed in Table I. We
perform a single-shot GW calculation (G0W0) to calculate the
quasiparticle energies and the dynamic screened interaction in
momentum space WG,G′ (ω). The static approximation for W
is made at the beginning of the BSE calculation. Note that the
orbitals are kept fixed at the DFT level. After a convergence
study for LiF, the energy cutoff of the response function
is set to 150 eV in all systems. Then, the BSE eigenvalue
equation is set up using the GW quasiparticle energies and
the PBE orbitals. Finally, the BSE equation is solved and the
BSE dielectric function is calculated.

We reiterate that in this paper we only investigate K edges.
Furthermore, transitions from valence states to conduction
states are excluded from the calculations. The number of
conduction bands included in the transitions is 8 in diamond,
12 in graphite, 12 in h-BN, and 15 in all four lithium-halides.
These values are chosen so the modeled spectra first reproduce
all relevant peaks and, second, cover the same energy range as
the experimental spectrum.

We employ the shifted grid technique in all GW +BSE
calculations [31] to reduce the computational demand and
still obtain highly accurate spectra. First, we generate all ir-
reducible k-points k1,...,L and corresponding weights w1,...,L

of an n×n×n k-mesh. Then, we perform L independent cal-
culations with an m×m×m k-mesh, where the k-point grid is
shifted by one of the L irreducible k points. This procedure
generates all k points of a regular (m · n)×(m · n)×(m · n)
k-mesh. Finally, we average the L so-obtained dielectric func-
tions, ε = ∑L

i wiεi/
∑L

i wi.
For diamond, graphite, and h-BN, we compare the

GW +BSE spectra to those of the SCH calculations im-
plemented previously [30]. In all SCH calculations, the
supercells contain 128 atoms. Previous publications observed
converged results for these supercells [30,52]. In Table II, we
list the k meshes used in the GW +BSE and SCH calculations.

In the available experimental absorption spectra of graphite
[53] and of boron in h-BN [54], the incoming radiation was
incident at an angle α of 40◦ and 45◦ to the surface normal,
respectively. In these cases, we have averaged the imaginary
parts of the perpendicular and parallel components of the
dielectric function according to absorption ∝ cos(α)2ε(2)

xx +
sin(α)2ε(2)

zz , where εxx, εyy are the in-plane and εzz the out-of-
plane components of the dielectric function. Details on the
polarization are missing for the K edge of nitrogen in h-BN
[55]. For this system, we have weighted each component by a
factor of 1/3.
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TABLE II. Table of k meshes used for the shifted grid technique
and for the supercell core-hole calculations (SCHs). Shifted grid
technique: An n×n×n mesh results in L irreducible k points. Meshes
of size m×m×m are then shifted by these L different k points, cre-
ating an (m · n)×(m · n)×(m · n) k-mesh. All meshes are centered at
the � point. For the SCH calculations, we specify both the supercell
size (number of atoms) and the k-point grids.

Method BSE BSE BSE SCH SCH
System n L m×m×m atoms k points

Diamond 3 4 10×10×10 128 9×9×9
Graphite 4 12 16×16×4 128 4×4×2
h-BN 3 4 12×12×4 128 5×5×3
Lithium-halides 3 4 10×10×10 128 8×8×8

In all the presented spectra for C, B, and N, an energy-
independent Lorentzian broadening of 0.3 eV is applied. To
facilitate comparison of our spectra with the results of other
authors, a reduced broadening of 0.1 eV is used for the
lithium-halides.

Finally, we note that neither the GW +BSE nor the SCH
method can quantitatively determine the onset of absorption,
hence the energy axes of the modeled spectra are always
shifted to obtain best agreement with the experimental spectra.

B. Model dielectric function approach

In the GW +BSE approach, the screened interaction W is
the output of the G0W0 step. Since we perform single-shot
GW calculations, W is calculated in the RPA approximation
from the PBE orbitals and eigenvalues. GW calculations are
computationally demanding, scaling with the fourth power of
the system size and quadratic with the number of k points
[56]. We investigate whether W can be obtained more cheaply
and still sufficiently accurately by using the model dielectric
function approach [57]. In this approach, a standard DFT cal-
culation is done as a preparatory step. Then, the G0W0 step is
skipped and the screened interaction is instead calculated via
W = ε−1v, where ε−1 is approximated by a diagonal model
dielectric function. In this paper, we use the model dielectric
function

ε−1
GG

(
ε−1
∞ , μ

) = 1 − (
1 − ε−1

∞
)
e−G2/4μ2

, (32)

with G = |G|. It was shown that this model dielectric function
yields reasonable results for the diagonal of the dielectric
function [57–59] as well as for optical spectra [57,59]. Addi-
tionally, it has only two parameters. In the preceding equation,
the macroscopic dielectric function ε∞ is obtained by averag-
ing the diagonal elements of the macroscopic dielectric tensor
corresponding to W in the GW calculations. The screening
parameter μ (in Å−1) results from a fit of the model-dielectric
function to ε−1

GG(q → 0, ω = 0), where the long-range and
short-range limits are set to 1/ε∞ and 1, respectively.

This approach is tested for diamond and B in h-BN and
compared to the parameter-free GW +BSE spectra. Further-
more, we need to assess how well this approach approximates
the diagonal elements of W . To do this, we also show for
these two systems GW +BSE spectra where the off-diagonal
elements of W have been set to zero in the BSE step.

FIG. 1. XAS spectra of the K edge of C in diamond. Blue
filled curve: Experiment [60]. Black curve: GW +BSE spectrum,
this paper. Green dash-dotted curve: SCH calculation. Red dashed
line: BSE-spectrum from [18]. Arrow: Location of the excitonic
shoulder in the GW +BSE spectrum. Inset: GW +BSE result using
an 18×18×18 k-mesh and a reduced Lorentzian broadening. All
modeled XAS spectra are centered and adjusted in scale on the peak
at 305.5 eV (dotted line).

In summary, we compare for diamond and B in h-BN three
spectra: a GW +BSE spectrum using the full screened interac-
tion including off-diagonal elements, a GW +BSE spectrum
using only the diagonal elements of W , and, finally, a BSE
spectrum using the model dielectric function.

IV. RESULTS

A. Diamond

In Fig. 1, we compare the K edge of diamond using
the present PAW–GW +BSE implementation with experiment
[60], a pseudopotential BSE implementation [18], and an
SCH spectrum. Comparing the modeled spectrum to exper-
iment, we see that the positions of the peaks agree very
well, but the spectrum lacks intensity toward higher energies.
Interestingly, the differences between the theoretical and ex-
perimental spectra seem to be mostly a background present in
the experimental spectrum: For instance, the intensity mod-
ulations around the individual peaks follow the experimental
intensity modulations exceedingly well. This is most obvious
around the minimum at 302 eV: both on the left- and right-
hand sides, the experimental and theoretical spectrum change
by roughly the same amount. The background consistently
increases from the leftmost first peak toward the right, and
can be roughly modeled by a parabolic curve with the onset of
the parabola located around the onset of absorption. The same
discrepancy will be noticeable for all spectra that we show in
the present paper. We are not certain about the origin of the
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FIG. 2. Inverse dielectric function ε−1
GG of diamond. Crosses:

Inverse dielectric function ε−1
GG(q → 0, ω = 0) at the RPA level. Or-

ange line: Model dielectric function ε−1
GG(0.18, 1.7), see Eq. (32),

where μ is given in 1/Å. Blue broken line: ε−1
GG(0.18, 3.2). All lines

intercept the y axis at ε−1
∞ = 0.18.

discrepancy, but speculate that it is related to multiple scatter-
ing events involving core-conduction band pairs at other sites
or, alternatively, high energy valence-conduction band pairs.
Both are not accounted for by the present level of theory.

Returning to the diamond spectrum, we note that in the
experimental spectrum at around 290 eV, a slight, most likely
excitonic peak is visible. Compared to the other spectra, our
result shows a slight shoulder located at around the same
energy (see arrow in Fig. 1). To show that this feature is not
an artifact of the shifted grid technique, we plot in an inset
up to the first maximum at 291 eV the result of a calculation
using a standard nonshifted 18×18×18 k-point mesh. Clearly,
this spectrum also shows a peak. To make it more visible, we
have reduced the Lorenzian broadening in this calculation to
0.2 eV.

In summary, for the case of diamond the present spectrum
agrees very well with the experimental spectrum for all peak
positions. Even small features in the experimental spectrum
are resolved. However, deviations are observed for the abso-
lute intensities of the peaks. We attribute this to the lack of
background in the theoretical modeling caused by multiple
scattering events in the experiment.

In Fig. 3, we compare the experiment to four GW +BSE
spectra. In each panel, we use a different approximation for
the screened interaction, as outlined in the computational
methods section. All spectra are centered on and adjusted in
scale to the peak of the experimental spectrum at 305.5 eV,
marked by a vertical dotted line. Comparing the results
obtained by including [Fig. 3(a)] or excluding [Fig. 3(b)]
off-diagonal elements of W , we see that the magnitude of
the first peak is vastly overestimated when only the diagonal
elements are included. In Fig. 3(c), we use a model-dielectric
function ε−1

GG(0.18, 1.7). As in Fig. 3(b), the first feature is
overestimated. In Fig. 3(d), we use a model-dielectric function
with unchanged ε−1

∞ and the screening parameter adjusted to

FIG. 3. K-edge spectrum of C in diamond, comparing experi-
ment [60] (blue filled curves) to GW +BSE spectra, using different
approximations for the screened interaction W : (a) W from G0W0

step, (b) same as (a) excluding off-diagonal elements, (c) model
dielectric function ε−1

GG(0.18, 1.7), see Eq. (32), where μ is given in
1/Å. (d) model dielectric function ε−1

GG(0.18, 3.2), μ adjusted to fit
experiment.

μ = 3.2 Å−1. Increasing μ restores the amplitude of the first
peak to that of Fig. 3(a).

Neglecting the off-diagonal elements of the screened in-
teraction from Figs. 3(a) to 3(b) or only using the diagonal
model-dielectric function in Fig. 3(c) overestimates the first
peak and redshifts the peak at 297 eV slightly to the left. In
Fig. 2, we plot the diagonal elements of the RPA dielectric
matrix as well as the model dielectric functions ε−1

GG(0.18, 1.7)
and ε−1

GG(0.18, 3.2). From this plot, we see that for a given
wave vector G increasing μ decreases ε−1

GG and hence de-
creases W = ε−1v.

From all these observations, we conclude that the off-
diagonal elements of the screened interaction are indispens-
able for an accurate description of excitonic peaks of localized
core states. Neglecting off-diagonal elements of ε−1

GG′ amounts
to the neglect of local-field effects [9,16]. Local-field effects
describe the microscopic variation of the screening field in-
duced by a homogeneous electric charge. Although adjusting
the screening length in the model dielectric function can
mimic the effect of local-field effects on the spectra, this
remains a rather ad hoc approach. Also, the model dielectric
function after adjustment of μ clearly does not follow the
ab initio results; compare Fig. 2. As to why the off-diagonal
components are relevant, we note that one makes similar
observations for small molecules and in general for strongly
localized states. The diagonal approximation in momentum
space is not adequate when dealing with a mixture of localized
and itinerant states, whereas it accounts well for transitions
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FIG. 4. XAS spectra of the K edge of C in graphite. Blue filled
curve: Experiment [53]. Black curve: GW +BSE spectrum, this
paper. Green dashed curve: BSE-spectrum from Ref. [61]. Red dash-
dotted curve: SCH calculation. All modeled spectra are centered at
285 eV and adjusted in height to match the integral over the first
peak.

involving only bandlike itinerant states. This is an important
observation that most likely exposes and underlines the limits
of a simple diagonal screening approach.

B. Graphite

In Fig. 4, we present a comparison of our PAW–GW +BSE
result of the K edge of graphite to experiment [53], to an AE
full-potential BSE spectrum [62], and an SCH spectrum. In
Ref. [62], perpendicular and parallel components are shown
separately, so we have averaged them in the same way as our
result. The GW +BSE and SCH peaks have been adjusted in
height to the first peak in experiment. Since the spectrum of
Olovsson et al. [62] has been calculated using less broaden-
ing, we have adjusted its height to approximately match the
integral over the first peak. Comparing the PAW–GW +BSE
spectrum of this paper and the AE result of Ref. [62], we
see that both results can match the energy difference of the
experimental peak positions at 285 eV and 292 eV.

Graphite is a 2D van der Waals material and we show the
in-plane and out-of-plane components of the imaginary parts
of the dielectric function in Fig. 5: The peak at 285 eV can be
fully attributed to the out-of-plane component ε(2)

zz .
While our result as well as the spectrum from Ref. [62]

can reproduce the intensity ratio of the peaks at 287 eV and
292 eV reasonably well, the SCH spectrum overestimates
the second peak. We also note the difference in amplitude
of our result and experiment in the ranges 285–292 eV and
from 292 eV upward. Furthermore, above 305 eV, we find no
intensity, whereas the experimental signal remains quite sub-
stantial. As before, the experimental data show a substantial

FIG. 5. Imaginary parts of in-plane and out-of-plane compo-
nents of the dielectric function for the K edge of C in graphite.
Black curve: Averaged components, absorption ∝ cos(40◦)2ε(2)

xx +
sin(40◦)2ε(2)

zz . Red dashed curve: In-plane component, ε(2)
xx . Green

dash-dotted curve: Out-of-plane component, ε(2)
zz .

background at higher energies that is lacking in our theoretical
calculations. We note that as for diamond, the fine structure of
the experimental XAS spectrum is very well-resolved in our
theoretical calculations: the peaks at 292, 293, 295, 296, and
303 eV are also visible in the experimental spectrum at least
as slight humps.

In Ref. [62], it was suggested that the double-peak structure
at 292 eV and 293 eV is due to a breaking of degeneracy
induced by the electron-phonon interaction. While we can-
not exclude that electron-phonon coupling will enhance the
splitting, we clearly observe two peaks even in the absence
of any lattice distortions. In the previous BSE calculations
of Ref. [62], this feature was not discernible. Reference [62]
also discusses the controversy concerning the σ ∗

2 peak. It is
mentioned that some studies interpret this peak as a delocal-
ized bandlike contribution [63]. If we interpret the shoulder
in our spectrum tentatively as the σ ∗

2 peak, then an expla-
nation might be given why we can see the shoulder in our
spectrum and not in the work of Ref. [62]: delocalized states
are necessarily localized in reciprocal space. The shifted grid
technique can sample the reciprocal space sufficiently accu-
rately to capture this feature. Olovsson et al. on the other hand,
used a 11×11×3 k-mesh. While this grid is sufficiently dense
to reproduce the main features, it might not be sufficient to
resolve the fine structure.

C. Hexagonal boron-nitride

1. Boron

In Fig. 6, we compare an experimental K-edge spectrum
of boron in h-BN [54] to the XAS spectrum obtained with
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FIG. 6. XAS spectra of the K edge of B in h-BN. Blue filled
curve: Experiment [54]. Black curve: GW +BSE spectrum, this pa-
per. Green dashed curve: SCH-spectrum from Ref. [64]. Violet dotted
curve: BSE-spectrum from Ref. [62]. Green dash-dotted curve: SCH
spectrum. All modeled spectra are centered at 192 eV and adjusted
in height to match the integral over the first peak.

the present PAW–GW +BSE implementation and to an AE
full-potential BSE spectrum [62]. We also show two SCH
spectra, one obtained with an AE APW implementation [64]
and an SCH spectrum calculated using the implementation
presented previously [30]. All spectra have been adjusted in
height such that the integrals over the first peak match. All
methods reproduce the distance between the exciton peak at
192 eV and the center of the double peak structure, located
at 199 eV, while no spectrum can reproduce the double-peak
structure or the smaller peak at 194 eV. The latter peak may
be caused by double-electron excitations [65,66]. In this case,
neither the SCH nor the GW + BSE implementation presented
in this paper can capture that feature. As for graphite, the
double peak structure has been attributed to a breaking of
the degeneracy induced by the electron-phonon interaction
[30,62]. Here our results are unambiguous: without the in-
clusion of electron-phonon couplings, one cannot reproduce
the double-peak structure. We note that the experimental dou-
ble peak is also much more pronounced and distinct than in
graphite.

As for graphite, we also show the in-plane and out-of-plane
components of the imaginary parts of the dielectric function
in Fig. 7. Here we see that the strong peak at 192 eV cor-
responds to the out-of-plane component, while the features
around 199 eV are attributable to the in-plane components.

In Fig. 8, we compare the experiment to BSE spectra.
As for diamond, we use different approximations for the
screened interaction, as outlined in the section on compu-
tational methods and as explored for diamond before. We

FIG. 7. Imaginary parts of in-plane and out-of-plane components
of the dielectric function for the K edge of B in h-BN. Black curve:
Averaged components, absorption ∝ cos(45◦)2ε(2)

xx + sin(45◦)2ε(2)
zz .

Red dashed curve: In-plane component, ε(2)
xx . Green dash-dotted

curve: Out-of-plane component, ε(2)
zz .

FIG. 8. K edge of B in h-BN, comparing different approaches
to the screened interaction W . (a) W from G0W0 step. (b) Same as
(a), excluding off-diagonal elements. (c) Model dielectric function
ε−1

GG(0.27, 1.38), see Eq. (32), where μ is given in 1/Å. Blue filled
curve: Experiment [54].
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FIG. 9. XAS spectra of the K edge of N in h-BN. Blue filled
curve: Experiment [55]. Black curve: GW +BSE spectrum, this
paper. Red dashed curve: OCEAN BSE-spectrum, extracted from
[29]. Green dash-dotted curve: SCH-spectrum. Violet dotted curve:
GW +RPA spectrum. All simulated spectra, except for GW +RPA,
are centered on the maximum at 408 eV.

use either (a) W including off-diagonal elements, (b) exclud-
ing off-diagonal elements, or (c) a model dielectric function
ε−1

GG(0.27, 1.38). Here, only the GW +BSE spectrum includ-
ing the off-diagonal elements [Fig. 8(a)] can reproduce the
energy difference between the first peak at 192 eV and the
middle of the double peak structure located at 199 eV. The
model dielectric function or using the diagonal elements of
W only cannot reproduce the position of the center of the
double peak structure. However, the model-dielectric function
approach performs slightly better, since in that case the second
peak is shifted by approximately 0.1 eV toward the center of
the double peak at 199 eV.

2. Nitrogen

In Fig. 9, we show an experimental K-edge spectrum of
nitrogen in h-BN [54], a modeled spectrum using the current
PAW–GW +BSE implementation, a spectrum obtained via the
OCEAN package [29], and an SCH spectrum. Compared to
the SCH spectrum, we are able to better reproduce the energy
separation between the π∗ resonance at 401 eV and the σ ∗
peak at 408 eV. Furthermore, the GW +BSE spectrum shows
a shoulder at 403 eV and a pronounced side peak at 406 eV.
These experimental features are missing in the SCH spectrum.
We also see that the shape of the first peak of the GW +BSE
spectrum agrees better with experiment. Comparing our re-
sults with the results obtained by OCEAN, we see that both
spectra agree overall. Slight improvements can be seen in our
spectrum regarding the peak at 401 eV and the side peak at
406 eV: In the OCEAN spectrum, these are blueshifted with
respect to experiment by ≈0.1 eV.

FIG. 10. Imaginary parts of in-plane and out-of-plane compo-
nents of the dielectric function for the K edge of N in h-BN. Black
curve: Average of all components, 1

3 (ε(2)
xx + ε(2)

yy + ε(2)
zz ). Red dashed

curve: In-plane component, ε(2)
xx . Green dash-dotted curve: Out-of-

plane component, ε(2)
zz .

Again, we show the in-plane and out-of-plane components
in Fig. 10. Analogously to graphite, we see that the first peak
at 401 eV can be attributed to the out-of-plane component and
is identified with the π∗ resonance.

We want to briefly discuss the influence of the direct terms
on XAS spectra and plot to this end in Fig. 9 a GW +RPA
spectrum. The latter is obtained by omitting the direct terms
in the GW +BSE Hamiltonian. Note that we employ in this
paper the Tamm-Dancoff approximation, and that in principle
a treatment beyond Tamm-Dancoff is needed to obtain a full
RPA spectrum. However, as was shown in a previous publica-
tion [31], omitting the direct terms restores the symmetry of
resonant-resonant and antiresonant-resonant matrix elements.
This means that we, strictly speaking, do not use the Tamm-
Dancoff approximation in the calculation of the GW +RPA
spectrum. Overall, including the direct term shifts the peaks
downward by about 4 eV (420 → 415 eV, 411 → 408 eV,
and 405 → 401 eV). GW +RPA is not able to reproduce
the spectrum. In particular, the excitonic peak at 401 eV is
missing from the GW +RPA spectrum. This is analogous to
results for optical transitions [8,67–69]. GW +RPA results for
the K edges of diamond, graphite, hBN, and LiF can be found
elsewhere [18,70].

D. Lithium-halides

In Fig. 11, we show the results for the XAS spectra of
four lithium-halides with shallow core-states: LiF, LiCl, LiI,
and LiBr. In each panel, we compare our PAW–GW +BSE
results to experiment [71] and to an AE full-potential BSE
spectrum [22]. The XAS spectra of this paper as well as those
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FIG. 11. XAS spectra for the K edge of lithium in four lithium-
halides. Blue filled curves: Experiment [71]. Black curves: GW +BSE
spectra, this work. Red dashed lines: BSE spectra from Ref. [22].
All modeled spectra are centered on the vertical dashed line in each
panel.

of Olovsson et al. can reproduce the edge positions and the
fine structure found in the experimental spectrum, however,
our result better matches the peak positions of some features.
This can likely be attributed to the fact that in the GW step
we calculate quasiparticle energies of each conduction band
individually, while in the spectra of Olovsson et al. the bands
were rigidly shifted via a scissor operator. We note that we
also used a much finer k-point sampling. Using a finer grid
can also change the shape and slightly the position of some
peaks.

V. SELF-INTERACTION EFFECTS
IN SCH CALCULATIONS

The main issue that we will discuss in this paragraph is the
dependence of the SCH method on where one places the ex-
cited electrons. To this end, we collect calculated SCH spectra
for diamond, N in h-BN, and lithium-halides in Fig. 12. The
technical details for the supercell calculations are collected in
Table II.

We start with a brief discussion of the SCH method as it is
commonly used in quantum chemistry and solid-state physics.
The most refined approach is to create a potentially fractional
core hole, and at the same time add a fractional charge to
a conduction band state and perform a self-consistent DFT
calculation. Ideally, self-consistent calculations should be per-
formed for any of the many possible conduction band states.
Then the transition probability from the ground state into the
excited state is calculated and the spectrum is obtained by
combining all these calculations, where the excitation energy
is given by the energy difference between the ground state
and the excited state and the amplitude by the transition prob-

FIG. 12. XAS spectra for the K edges of various systems. We
show experimental spectra [55,60,71] (blue filled curves), spectra
using the current GW +BSE implementation (black curves), XCH
spectra where the electron was added to the lowest conduction band
(red dashed curve), and FCH spectra where the electron was added
to the background charge (green dash-dotted curves). In (a) and (e),
we also show with a dotted line GW +BSE spectra without exchange
term.

ability. This requires many DFT calculations and is highly
impractical for solids since it is impossible to place the elec-
tron in a selected conduction band if many k points are used.
So, in practice, in solids, the excited electrons are only placed
into the conduction band edge or, even simpler, treated as
negative background charge [72,73].

All yet reported SCH spectra of this paper have been ob-
tained by adding the core electron back to the conduction band
edge, performing a single self-consistent DFT calculation and
then calculating the transition probabilities into all available
conduction band states. In quantum chemistry, this approach
is sometimes more specifically referred to as excited electron
and core-hole method (XCH) [73]. Placing the electron into
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the background charge, hence essentially omitting the excited
electron density distribution in the self-consistent calcula-
tions, is sometimes referred to as the full core-hole (FCH)
method, since a full electron is removed from the core [72].

At this point, it is expedient to study these two approxi-
mations, XCH method, and the FCH method for the materials
scrutinized here. In the case of diamond and h-BN, Figs. 12(a)
and 12(b) show that the XCH and FCH spectra are almost
identical—compare red and green dashed lines. This implies
that the electron that we place into the conduction band is well
approximated by a homogeneous background charge. This in
turn suggests that the localization of the excited electron is not
very sizable in the XCH method for diamond and h-BN.

However, this is not the case for the lithium-halides,
Figs. 12(c)–12(f). Here we observe significant differences
between placing the electron into the conduction band edge
or into the background; again compare red and green lines.
Compared to the experimental spectrum and GW +BSE, the
homogeneous background method (FCH, green line) yields
clearly improved results for the peak positions compared to
the more often used XCH method (red line). The peak posi-
tions for LiCl, LiBr, and LiI are in almost perfect agreement
with the GW +BSE results, whereas for the XCH method the
higher energy excitations are far too close to the main peak.
Obviously, placing the excited electron into the lowest con-
duction band (LCB) and then calculating the entire spectrum
is not a good approximation for lithium-halides, but works
reasonably well for diamond and h-BN. To rule out finite-
size effects, we repeated the same procedure for LiBr using
a supercell containing 250 atoms. The differences persisted
even with this larger supercell.

We will now try to explain why the SCH method often
works well and when it tends to fail. The first crucial point
is that the SCH method yields a reasonable approximation to
the BSE, in particular, to the crucial term that describes the
electrostatic interaction between the core-hole and the excited
conduction band electrons. This is related to the W term
(direct term) in the BSE method. In the SCH method, a core
hole is created and all the other valence electrons will screen
this local core -hole. The screening of the valence electrons is
described by the static DFT dielectric function, so effectively
the conduction band electrons see an effective screened core
hole

∫
ε−1(r′, r)/|r − rc|d3r if the core hole is positioned at

rc. This implies that the SCH method mimics the effects of the
direct term in the BSE very well. The successes and failures of
the SCH method are then mainly related to the self-interaction
of the conduction band electron.

This will be discussed by inspecting the scheme shown
in Fig. 13. The FCH spectrum of the K edge of Li in Li-
halides is schematically shown vertically in the left part of
the figure. The LCB level is indicated by the line labeled
LCB. For the FCH method, this level is unoccupied, since the
excited electron is moved to the homogeneous background. To
represent the orbital of the excited conduction band electron,
we show schematically a p-like orbital. In the XCH method,
this orbital LCB becomes occupied with a single electron that
essentially experiences the screened Coulomb potential (see
above). The resulting localized charge density is added to
the total charge density and, in turn, this further modifies the
Hartree and DFT exchange-correlation potentials. Unless the

FIG. 13. Sketch describing how the self-interaction error of the
additional electron in XCH method can change the spectra. See text
for description.

DFT functional is canceling the self-interaction error, this will
lead to a sizable self-interaction of the electron. In particular,
this self-interaction error is more substantial if the conduction
band electron is strongly localized, as it is for the Li-halides.

The self-interaction error in turn causes two effects: First, it
shifts the energy level of the conduction band electron up from
the initial energy to the new energy LCB’. Second, it delocal-
izes the electron, which we have visualized by spreading out
the p orbital. These effects negatively impact the spectrum of
the XCH method, as shown schematically in the left part of the
figure. The delocalization reduces the oscillator strength, in
turn reducing the amplitude of the first peak. The upshift of the
eigenvalue, on the other hand, shifts the position of the peak
to higher energies. Furthermore, this conduction band electron
somewhat screens the core hole. The energies of higher lying
unoccupied conduction band states are then determined in the
presence of the screened core-hole potential and the potential
of the added electron. This also shifts their energies upward
from a, b to a′, b′. However, since these states are necessarily
orthogonal to the LCB state and since these states are also not
as well localized as the LCB state, the energy shift a → a′
is much smaller than from LCB → LCB′. This negatively
impacts the calculated spectrum and results in a too-small
energy separation between the main peak (LCB′) and the other
peaks (a′ and b′).

To summarize, the main issue with the conventional XCH
method is that the conduction band edge is shifted up-
ward due to self-interaction errors present in most semilocal
DFT functionals. If the additional electron is placed into the
background, this problem is not observed. Note that self-
interaction is unphysical and would not be present for the
exact DFT functional. One might well argue that the con-
ventional XCH methods in combination with DFT functionals
that are not self-interaction free is bound to be fairly inaccu-
rate for localized excitons.

At this point, we want to quantify the mechanism outlined
above. We do this by calculating the energy differences of the
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bands corresponding to the DFT conduction band minimum
and DFT valence band maximum at the � point. We have
obtained these values for the DFT, FCH, and XCH calcula-
tions for LiBr of Fig. 12(e). These values are 4.94 eV (DFT),
3.37 eV (FCH), and 4.41 eV (XCH). The additional electron
in the XCH method shifts the energy of the LCB upward by
approximately 1 eV relative to the valence band edge. This
orbital shift to higher energies in the XCH method will shift
the onset of absorption by the same amount, as outlined in the
previous paragraphs.

To make a connection to the GW +BSE approach and to
further substantiate our claims, we have also investigated how
the exchange terms contribute to the GW +BSE spectra. We
first discuss the effect of the exchange term in general. The
exchange term has a positive sign and is related to the change
of the Hartree potential. It accounts for the repulsive elec-
trostatic interaction of the individual electron-hole pairs, see
Eq. (19). If the electron-hole pairs are strongly localized, then
including the exchange term will shift oscillator strengths to
higher energies. Conversely, omitting the exchange term for
strongly localized electron-hole pairs shifts the spectrum to
lower energies. We now discuss the effect of the exchange
term on excitons, in particular. Above we have argued that
self-interaction Hartree effects come into play for strongly
localized excitons. Hence, for excitons involving conduction
band states where the Hartree self-interaction is large, we
should also see a noticeable energy shift of the excitonic peaks
when the exchange term is omitted.

In Figs. 12(a) and 12(b), we show the GW +BSE results
for diamond and Li in LiBr where the exchange terms were
omitted (black dashed line). For diamond, this hardly changes
the spectrum, in agreement with the observation that the XCH
and FCH methods are very similar. For LiBr though, the first
peak, and the first peak only, is shifted toward the left by
almost 1 eV. This is also very close to the difference between
the XCH and FCH methods. It confirms that the excitation
into the first conduction band state in LiBr creates a strongly
localized exciton, whereas all the other excitations in LiBr
as well as in diamond are fairly delocalized, in line with our
previous arguments.

A final note is in place: In the BSE method, changes of the
Hartree potential are considered for all excitations individu-
ally. On the other hand, in the XCH method, one places the
electron into the LCB and assumes that changes of the Hartree
potential for this case mimic the changes of the Hartree po-
tential if one would place the electrons into other conduction
band states. This is obviously a crude approximation if the
LCB state is strongly localized, whereas the other states are
delocalized. It seems wiser to leave changes of the potential
related to the occupation of the LCB entirely out, as done for
the FCH method.

VI. SUMMARY AND CONCLUSION

In the present paper, we have discussed how to implement
the BSE within the PAW methodology for the calculation of
x-ray absorption spectra. After reviewing the basic theory, we
have detailed how to evaluate the matrix elements of the BSE
Hamiltonian and explained how the expressions need to be
modified when core states are included. In particular, we have

discussed that we approximate the overlap charge densities
involving core states using augmentation charges only. This
suffices, since the augmentation charges are designed to de-
scribe long-range electrostatic interactions essentially exactly.
However, for the transition probabilities, we use the exact AE
core orbitals and the AE partial waves corresponding to the
conduction band electrons. We have tested our implementa-
tion on four materials classes: a covalent system (diamond),
two 2D van der Waals layered materials (graphite and h-BN)
and four ionic systems with shallow core states (Li-halides).

For diamond, we found that our result could reproduce all
relevant peak positions very well. Compared to other theo-
retical spectra, our spectrum features an additional shoulder
at around 290 eV, which we assign to the excitonic peak
of the experimental spectrum. As was the case for the SCH
method and previous BSE calculations, our spectrum lacks
intensity at higher energies. This seems to be mostly related
to a background that is present in the experimental data but
missing at the level of theory that is commonly used. The
origin of the lack of background in the present theories is not
entirely clear to us, but could be related to interactions with
core-conduction band pairs at other sites or the admixture of
core-valence pairs.

For diamond, we have also investigated the influence of
different approximations to the screened interaction W on
the spectrum. We found that the off-diagonal elements of
the screened interaction play an important role for accurate
predictions of the individual peaks in the x-ray absorption
spectrum. Neglecting the off-diagonal components leads to
a quite significant deterioration of the results compared to
experiment. This also means that simplified approaches that
attempt to model the screening using a diagonal model lead to
inaccurate results.

In graphite, the peak positions and intensity ratios also
match the experiments well. In our results, we found a shoul-
der in the σ ∗ peak that can be tentatively assigned to the
σ ∗

2 peak, suggested by some authors to be related to a de-
localized bandlike contribution [63]. So, strictly speaking,
electron-phonon coupling may not be required to explain the
splitting of the σ ∗ peak. However, we also do not doubt that
the splitting will be enhanced by electron-phonon coupling, as
suggested by other authors [62].

For the boron K edge in h-BN, we found again good
agreement with experiment and previous BSE and supercell
calculations. The results for the nitrogen K edge are somewhat
more notable. The GW +BSE approach is able to describe
all relevant peaks observed experimentally, while the SCH
calculation lacks important features in the spectrum. Specifi-
cally, the distance between the π∗ and σ ∗ peaks is in excellent
agreement with experiment as well as state-of-the-art results
of other authors.

For the Li-halides, we again found excellent agreement be-
tween the BSE results and experiment. Compared to previous
BSE spectra employing a scissor shift, a slight but notice-
able improvement of the peak positions is observed. We have
tentatively related this to improved quasiparticle energies, as
our calculations rely on the G0W0 band structures, whereas
previous calculations only employed a scissor-corrected DFT
band structure. We also note that our vastly improved k-point
sampling may have positively impacted our predicted spectra.
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Finally, we have carefully scrutinized the SCH method for
diamond, h-BN, as well as the Li-halides. As discussed, the
SCH method comes in two variants, one where the excited
electron is placed in the conduction band edge and the other
where the electron is treated as a homogeneous background
charge. For diamond and h-BN, both approaches yield almost
identical results. For the halides, treating the excited electron
as a background charge gives much-improved peak positions
almost on par with the BSE. We have tried to argue that the
self-interaction errors of present density functionals are the
most likely explanation for the failure of the SCH method with
the excited electron in the LCB. Self-interaction erroneously
pushes the first excitonic peak to too high energies.

In summary, the present paper shows that excellent predic-
tions for x-ray absorption spectra are possible using the PAW
method and the BSE approach.
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APPENDIX: CONSTRUCTION OF
AUGMENTATION CHARGES

The construction of the augmentation charges proceeds in
two steps: first moment restoration and then shape restoration.

We start with moment restoration and write the defining
equation for the augmentation charges. This is the requirement
that the augmentation charges have the same moments as the
difference of the AE and PS charge densities inside the PAW
sphere,∫

�r

[n1(r) − ñ1(r) − n̂(r)]|r|LY ∗
LM (�)d3r = 0, (A1)

where Y ∗
LM (�) are the spherical harmonics, L and M the total

orbital and magnetic quantum numbers, and � = {θ, φ} the
angular variables. In the PAW method, the charge density
difference n1(r) − ñ1(r) is written as [38]

n1(r) − ñ1(r) =
∑
nm

ρnmQnm(r), (A2)

with the functions

Qnm(r) = φ∗
n (r)φm(r) − φ̃∗

n (r)φ̃m(r) (A3)

and occupancies (or one-center density matrix)

ρnm = 〈ψ̃ | p̃n〉〈p̃m|ψ̃〉. (A4)

Furthermore, the indices n, m are compound indices: n =
{εn, ln, mn}.

We now calculate the moments of the charge difference:

qLM
nm =

∫
�r

Qnm(r)|r|LY ∗
LM (�)r2drd�. (A5)

In the PAW formalism, AE and PS partial waves, Eqs. (16) and
(17), respectively, are products of radial waves and spherical
harmonics. Inserting these into the preceding equation, the

integral separates into radial and angular parts:

qLM
nm =

∫ rc

0
(ukn,ln ukm,lm − ũkn,ln ũkm,lm )|r|Ldr

×
∫

Yln,mn (�)Ylm,mm (�)Y ∗
LM (�)d�. (A6)

The radial integral of three spherical harmonics (also called
Gaunt coefficients) imposes conditions on the angular mo-
menta ln, lm, and L. In particular, all the usual rules of the
addition of angular momentum apply: mn + mm = M and

L = |ln − lm|, |ln − lm| + 2, . . . , |ln + lm|. (A7)

After having calculated the moments, Eq. (A6), the aug-
mentation charge is

n̂ =
∑
LM

ln,mn,lm,mm
n,m

ρnmqLM
nm YLM (�). (A8)

The one-center density matrix ρnm is indexed by the angular
momenta ln, mn, lm, mm. On the other hand, the augmentation
charge that will be added to the plane-wave grid is indexed
by the total orbital and magnetic quantum numbers L, M.
Therefore, we need a change of basis to a ρLM density matrix.
To achieve this, we sum over the l, m indices in the preceding
equation. This results in the required L, M-dependent density
matrix ρLM and the L, M-dependent moments qLM

nm :∑
ln,mn,lm,mm

qLM
nm ρln,mn,lm,mm = qLM

nm ρLM . (A9)

We then obtain our final result for the moment-restoring aug-
mentation charges:

n̂ =
∑
LM
n,m

ρLMQ̂LM
nm , (A10)

Q̂LM
nm = qLM

nm YLM . (A11)

These augmentation charges are added to the PS charge den-
sity on the plane-wave grid, as in Eq. (23). We note that the
augmentation charges are directly added in real space.

Up to this point, we neglected one-center terms and recon-
structed the augmentation charges from the moments of the
exact charge density inside the PAW sphere. For post-DFT
methods, it can be beneficial to approximate the contributions
of the one-center terms and to add these contributions to the
augmentation charges. This process is called shape restora-
tion. We add to the right-hand side of Eq. (A9) for each
total angular momentum L shape-restoring radial functions
�gL(r), with coefficients cL

nm to be determined:

n̂ =
∑
LM
n,m

ρLM
[
qLM

nm YLM (�) + cL
nm�gL(r)YLM (�)

]
, (A12)

where the shape-restoring functions are written as a sum of
two spherical Bessel-functions:

�gL(r) =
2∑

β=1

αL
β jL

(
qL

βr
)
. (A13)
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The coefficients αL
β and qL

β are chosen such that the l, m
multipole of the shape restoring charge contribution vanishes
and that the Hankel transforms of �gL(r) and Qnm(r),

Qnm(q) =
∫ Rc

0
Qnm(r) jL(qr)rLdr, (A14)

�gL(q) =
∫ Rc

0
�gL(r) jL(qr)rLdr, (A15)

are identical at chosen values of q.
To calculate the coefficients cL

nm, we subtract from the
radial part of the charge density difference, Eq. (A3), the radial
part of the moment-restoring contribution to the augmentation
charge:

δQnm(r) = Qnm(r) − Q̂nm(r). (A16)

In the next step, we write the quantity δQ(r) as a superposition
of shape restoring functions:

δQnm(r) =
∑

L

cL
nm�gL(r). (A17)

We then multiply the preceding equation by jL(qL
βr) and inte-

grate over rL:∫
jL

(
qL

βr
)
δQnm(r)rLdr

=
∑

L

cL
nm

∫
jl
(
qL

βr
)
�gL(r)rLdr. (A18)

Introducing coefficients

bβ =
∫

jL
(
qL

βr
)
δQnm(r)rLdr, (A19)

Aβ,L =
∫

jL
(
qL

βr
)
�gL(r)rLdr, (A20)

Eq. (A18) can be recast as a system of linear equations:∑
L

Aβ,LcL
nm = bβ, (A21)

which can be solved by standard methods to determine the
coefficients cL

nm.
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