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We investigate the interplay between the Kondo effect and the ferromagnetism by a one dimensional Anderson
impurity model with a spin partially polarized bath, using the projective truncation approximation under a
Lacroix basis. The equal-time spatial spin-spin correlation function (SSCF) is calculated. For the case of spin-
unpolarized conduction electrons, it agrees qualitatively with the results from the density matrix renormalization
group. For a system with partially spin-polarized conduction electrons, an oscillation in the envelope of SSCF
emerges due to the beating of two Friedel oscillations associated to two spin-split Fermi surfaces of conduction
electrons. The period is proportional to the inverse of magnetic field h. A fitting formula is proposed to
perfectly fit the numerical results of SSCF in both the short- and long-range regions. For large enough bath spin
polarization, a bump appears in the curve of the integrated SSCF. It marks the boundary between the suppressed
Kondo cloud and the polarized bath sites.
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I. INTRODUCTION

Kondo effect, a well-known many-body strong correlation
phenomena arising from the exchange coupling between the
local spin and that of the conduction electrons, has been
investigated for a long time [1,2]. Most of the previous
investigations focus on the case where the local spin is cou-
pled to paramagnetic electrodes [3,4]. However, in order to
investigate the interplay between the Kondo effect and the fer-
romagnetism, the systems with a quantum dot (QD) coupled
to ferromagnetic electrodes are intensively studied in theories
[5–11] and experiments [12–14].

Theoretical results for such a system, in particular, those
of the numerical renormalization group (NRG) method, show
that the Kondo resonance at the Fermi surface is suppressed
and splits into two peaks. This is attributed to the QD level
splitting, resulting from the spin dependent level renormaliza-
tion induced by the charge fluctuation between the QD and the
electrodes [6,7]. An effective exchange field Bex characterizes
the level splitting. It is observed that if an external magnetic
field B = −Bex is applied to the QD, the Zeeman energy will
compensate the level splitting and restore the Kondo reso-
nance [7]. According to Haldane’s scaling method [15], there
are two kinds of charge fluctuation processes contributing to
the level splitting, the electronlike process and the holelike
process, which can compensate each other by properly tuning
the QD level energy εd (or the gate voltage Vg) in the absence
of B, resulting in the disappearance of the Kondo resonance
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splitting [9,10]. The restored Kondo resonance occurs either
in the local-moment regime or in the mixed-valence regime,
strongly relying on the shape of the density of state (DOS)
of the conduction electrons [9]. As εd approaches the charge
resonance regime, the QD level splitting logarithmically di-
verges as ln(|εd|/|U + εd|) for a flat conduction band, which
indicates that the spin splitting results from many-body cor-
relation effects [9,10]. The εd (Vg) dependence of the level
splitting also provides an applicable way to tune the local spin
direction, which is of importance in the spintronics [9,10,13].
These theoretical results have already been confirmed by the
measurement of the differential conductance in QD systems,
such as C60 molecules [12] or carbon-nanotube (CNT) [13]
coupled to ferromagnetic nickel electrodes, CNT coupled to
ferromagnetic PdNi electrodes, [11], and the superconductor-
QD-ferromagnet hybrid device [14].

These works mainly explored how the local properties are
influenced by the spin polarized electrodes, studying quanti-
ties like the QD spectral function, conductance, differential
conductance, or the occupation of the QD level [5–11,16–18].
Compared to the local properties, far less is known on how the
nonlocal properties are influenced by the ferromagnetic elec-
trodes. Here we consider the equal-time spatial SSCF between
the spins of QD and conduction electrons. It can give a snap-
shot for the profile of Kondo screening cloud. Considering the
difficulty and controversy in the experimental observation of
Kondo screening cloud due to its large spatial scale [19–24],
the study of influence of ferromagnetic electrodes on SSCF
may provide useful information that facilitates experimental
observation of Kondo screening cloud, considering that the
size of Kondo cloud could be suppressed by the spin polariza-
tion of electrodes (see below).
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For the QD system with paramagnetic electrodes, the
nonlocal properties have been well studied [25–28]. In the
paramagnetic case, it is well known that the localized spin
on QD is screened by the surrounding conduction electrons
when the temperature goes below the Kondo temperature TK.
At zero temperature, it is completely screened out and the
ground state becomes a Kondo singlet. In Norziéres Fermi
liquid theory [29], the conduction electrons form a screening
cloud and spread in a spatial region. Scaling theory shows
that the range of the screen cloud is ξK = h̄vF/TK (vF is the
Fermi velocity) [26,30]. According to NRG calculation, at
zero temperature the equal-time spatial SSCF crosses over
from x−1 to x−2 around ξK, where x is the distance from
the impurity [26,27,31]. At finite temperature, another spatial
scale ξT emerges, which cuts off the long-range power law
behavior replaced by an exponential behavior [26,27].

In this paper, we attempt to explore how the partially
spin-polarized conduction bath (ferromagnetic electrodes) in-
fluences the equal-time spatial SSCF at zero temperature.
We study the Anderson impurity model (AIM) with a spin-
polarized conduction bath using the equation of motion of
two-time Green’s functions with projective truncation approx-
imation (PTA-EOMGF) [32,33]. This method is a many-body
numerical calculation technique recently proposed by two of
the authors of the paper. We found that the effect of bath
spin polarization on SSCF is a twofold. First, an additional
oscillation with period proportional to 1/h emerges in the
amplitude of SSCF (here h is the effective Zeeman field in
the spin-polarized electrodes), due to the beating of Friedel
oscillations associated to two spin-split Fermi surfaces of the
bath electrons. Second, the bath spin polarization induces a
spatial scale xb ∼ 1/h in the integrated SSCF �(x), at which
the exponential decay in the intermediate x � xb crosses over
to linear decay in x � xb regime where the conduction elec-
trons are spin polarized. For sufficiently large h, i.e., h � TK ,
xb marks the crossover from the compressed Kondo screening
cloud to spin-polarized bath sites. This shows that the size
of the Kondo cloud can be suppressed by a sufficiently large
bath spin polarization, but the scaling behavior is preserved
in the short-range region. This may be exploited to design an
experimental setup for studying the Kondo cloud.

The rest of the paper is organized as follows. In Sec. II, we
introduce the model Hamiltonian and define all the quantities
appearing in the paper. In Sec. III, we introduce the theoretical
aspect of the method. In Sec. IV, we show the numerical
results and discuss the influence of the spin polarization on
the Kondo effect. In Sec. V, we summarize this paper.

II. MODEL AND DEFINITIONS

The Anderson models which describe a QD coupled to
ferromagnetic electrodes are not unique [6,7,9,34]. Here, we
consider an impurity coupled to a semi-infinite conduction
electron chain (see Fig. 1). The spin of the conduction elec-
trons is partially polarized by an effective magnetic field h,
which lifts the spin degeneracy of the conduction electrons.
Here, h arises from the mean-field description of the ex-
change interaction between conduction electrons. The spin
asymmetry in the electrodes is therefore described by the spin
dependent density of states. The Hamiltonian of AIM studied

FIG. 1. AIM studied in this work. The black and red circles rep-
resent the impurity and the semi-infinite conduction electron chain,
respectively.

in this work is given by [35]

H = Hbath + Himp + Hhyb, (1)

where

Hbath = − t
N−2∑

i=0,σ

(a†
iσ ai+1σ + H.c.)

−
N−1∑

i=0,σ

μa†
iσ aiσ +

N−1∑
i=0

hsz
i , (2)

Hhyb = V
∑

σ

(a†
0σ dσ + d†

σ a0σ ), (3)

Himp = Und↑nd↓ +
∑

σ

(εd − μ)d†
σ dσ . (4)

a†
iσ (aiσ ) is the creation (annihilation) operator of the

conduction electron and d†
σ (dσ ) is the impurity creation (an-

nihilation) operator. t = 1 is the nearest neighbor hopping,
which is set as the energy unit. μ is the chemical potential and
is set zero throughout this work. h is the external magnetic
field. sz

i = (ni↑ − ni↓)/2. N is the number of bath sites. V is
the strength of the hybridization between the impurity and
the first site of the chain. U is the Coulomb repulsion energy
and εd is the on-site energy of the impurity. This Hamiltonian,
after proper rescaling of parameters, has identical structure of
conduction electron band as in the work of Holzner [28]. The
degree of the spin polarization is defined by

Rpol(h) =
∑N−1

i=0 (〈ni↑〉 − 〈ni↓〉)∑N−1
i=0 (〈ni↑〉 + 〈ni↓〉)

, (5)

where −1 � Rpol(h) � +1. The sign of Rpol(h) denotes the
direction of the spin polarization in z axis. The equal-time spa-
tial SSCF between the impurity and the conduction electron at
position i (i = 0, 1, . . . , N − 1) is given by

χ (i) = 〈	si · 	sd〉, (6)

which snapshots the spatial extension of the screening cloud.
In this paper, we merely consider the zero temperature case.
Therefore, 〈· · · 〉 denotes the ground state average. Because of
the external magnetic field, SU(2) symmetry of the model is
broken in z direction. In xy plane, the spin is still isotropic.
Therefore, we divide χ (i) into the transverse and longitudinal
parts

χ (i) = χxy(i) + χz(i). (7)

Here,

χxy(i) = 〈a†
i↑ai↓d†

↓d↑〉 (8)
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denotes the spin-spin correlation between the x and y compo-
nents of the spin and

χz(i) = 1

4

∑
σ

(〈niσ ndσ 〉 − 〈niσ nd σ̄ 〉) (9)

is the correlation function between the z component of the
spins. σ̄ represents the opposite spin of σ . Detailed expres-
sions of χxy(i) and χz(i) are given in Appendix A. We also
define the integrated equal-time spatial SSCF

�(x) = 1 +
x∑

i=0

〈	si · 	sd〉
〈s2

d〉
, (10)

which is the same as Holzner’s definition [28]. �(x) describes
the extent to which the local spin at the impurity site is
screened by the conduction electrons from the position i = 0
to i = x. When the local spin is fully screened, �(N − 1) = 0
for a sufficiently long chain, due to the formation of the
Kondo singlet. As for the case where the spin of the conduc-
tion electron is partially polarized by the external magnetic
field, the bath polarization can induce a partial polarization
of the impurity spin in the opposite direction, which leads to
�(N − 1) < 0 (see Fig. 7). In this case the impurity spin is
partially screened.

III. NUMERICAL CALCULATION

The calculation of the equal-time spatial SSCF is challeng-
ing for most of the methods used to investigate AIM, such as
perturbative method and NRG approach. Recently, two of the
authors of the present work proposed a many-body calculation
method, PTA-EOMGF [32,33], and applied it to the Anderson
impurity model. In that work, the continuous bath degrees of
freedom are discretized using the NRG discretization formula,
which improves the energy resolution at the cost of losing
the spatial resolution [36]. In this work, in order to improve
the spatial resolution, instead of using the NRG discretization
formula, we directly diagonalize Hbath using a unitary trans-
formation. This trick balances the energy resolution and the
spatial resolution. In matrix form, Hbath is written as

Hbath =
∑

σ

a†
σ Hσ aσ − μ

∑
σ

a†
σ aσ , (11)

where

Hσ = −

⎛
⎜⎜⎝

− 1
2 hσ t 0 · · ·
t − 1

2 hσ t · · ·
0 t − 1

2 hσ · · ·
...

...
...

⎞
⎟⎟⎠ (12)

and aσ = (a0σ , a1σ , . . . , aN−1σ )T . σ = 1 (σ = −1) for spin
up (down). The superscript T denotes the matrix transpose.
In the following, we always use a bold symbol to denote a
matrix. Hσ is a Hermitian matrix, which is diagonalized by a
unitary matrix

Hσ = Uσ�σUT
σ . (13)

Here �σ is a diagonal matrix and (�σ )kk = εkσ . Uσ is a real
unitary matrix. We have UT

σ Uσ = UσUT
σ = 1, where 1 is the

identity matrix. Substituting Eq. (13) into Eq. (11), we get

Hbath =
∑

σ

c†
σ�σ cσ − μ

∑
σ

c†
σ cσ , (14)

where

cσ = UT
σ aσ , c†

σ = a†
σUσ . (15)

The inverse transform is readily obtained:

a jσ =
∑

k

U jkσ ckσ , a†
jσ =

∑
k

c†
kσ

U jkσ . (16)

For Hhyb, Eq. (16) gives us

Hhyb =
∑
kσ

Vkσ (c†
kσ

dσ + d†
σ ckσ ), (17)

where Vkσ = VU0kσ . Consequently, we obtain the Hamilto-
nian H in the diagonal representation of Hbath:

H =
∑
kσ

(εkσ − μ)c†
kσ

ckσ +
∑
kσ

Vkσ (c†
kσ

dσ + d†
σ ckσ )

+ Und↑nd↓ +
∑

σ

(εd − μ)d†
σ dσ . (18)

Substituting Eq. (16) into Eq. (8) and Eq. (9), we obtain

χxy(i) =
∑
k1k2

U ik1↑U ik2↓〈c†
k1↑ck2↓d†

↓d↑〉 (19)

and

χz(i) = 1

4

∑
k1k2σ

U ik1σU ik2σ 〈c†
k1σ

ck2σ (ndσ − nd σ̄ )〉. (20)

In the PTA-EOMGF approach, χxy(i) and χz(i) are evaluated
as full two-body correlation functions. The same quantities
have also been studied by the finite-U slave boson mean-field
approximation method [30,37]. In the same way, the spin
dependent occupancy at the position i is expressed as

〈niσ 〉 =
∑
k1k2

Uik1σUik2σ 〈c†
k1σ

ck2σ 〉. (21)

The averages appearing in Eq. (19), Eq. (20), and
Eq. (21) are directly calculated by PTA-EOMGF [32,33]. We
take the Lacroix basis 	A = {A1, A2k, A3, A4k, A5k, A6k} (k =
1, 2, . . . , N ), where [38]

A1 = dσ , A2k = ckσ , A3 = nσ̄ dσ ,

A4k = nσ̄ ckσ , A5k = d†
σ̄ ckσ̄ dσ , A6k = c†

kσ̄
dσ̄ dσ . (22)

The equation of motion of the retarded Green’s function ma-
trix is

ωG( 	A| 	A†)ω = 〈{ 	A, 	A†}〉 + G([ 	A,H]| 	A†)ω, (23)

where ω is the frequency. In general, the component of the
commutator [ 	A,H] reads

[Ai,H] =
∑
j=1

M jiA j + Bi, (24)

where Bi is a new higher order operator outside the basis 	A.
We define the inner product of two arbitrary operators A and
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B as

(A|B) ≡ 〈{A†, B}〉. (25)

The curly bracket denotes the anticommutator. 〈Ô〉 = Tr(ρÔ),
where ρ = e−βH/Tr(e−βH) is the equilibrium density opera-
tor and β = 1/T (T is the temperature). In this paper, we take
the nature unit. In order to truncate the EOMGF, we project
Eq. (24) to the basis operator Ak ,

L = IM + P, (26)

where Lki = (Ak|[Ai,H]), Ik j = (Ak|Aj ), and Pki = (Ak|Bi ).
We neglect those components of Bi that are orthogonal to
the basis set, i.e., Bi ≈ ∑

j=1 N jiA j . Therefore, P = IN. By
defining Mt = M + N, we have L = IM t. Hence

[ 	A,H] ≈ MT
t

	A. (27)

Substituting Eq. (27) into Eq. (23), we obtain a formal approx-
imate solution

G( 	A| 	A†)ω ≈ (ω1 − MT
t )−1IT . (28)

We calculate G( 	A| 	A†)ω by solving a generalized eigenvalue
problem numerically. More details about PTA-EOMGF can
be found in Refs. [32,33]. The averages are directly calcu-
lated by the corresponding retarded Green’s function via the
fluctuation-dissipation theorem

〈AiAj〉 = − 1

π

∫ +∞

−∞
dω

Im[G(Aj |Ai )ω]

eβω + 1
, (29)

where Im[G(Aj |Ai )ω] denotes the imaginary part of
G(Aj |Ai )ω.

The unitary transformation defines a correspondence be-
tween the real space and the energy space. The chain form
of Hamiltonian used in this work is equivalent to a uniform
linear discretization in energy space. As a result, the spatial
correlation between any two positions is obtained at the cost
of reducing the energy resolution. If we want to improve
the energy resolution, we need to increase the length of the
conduction electron chain. In this work, we typically used
chain length N = 500–1000, which is sufficient for discussing
the competition between Kondo screening and bath spin po-
larization.

IV. RESULTS AND DISCUSSIONS

In this section, we will show the results of two cases: the
paramagnetic case and the ferromagnetic case. For the param-
agnetic case, the conduction electron bath is in the absence
of the external magnetic field and Rpol = 0. For the ferro-
magnetic case, an effective magnetic field h is applied to the
conduction electron bath to mimic the internal field from the
ferromagnetic exchange interaction. It induces Rpol 
= 0. Here,
we first give the results of the paramagnetic case in order to
benchmark our numerical calculation. For the ferromagnetic
case, we discuss the competition between Kondo screening
and bath spin polarization in terms of the equal-time spatial
SSCF.

FIG. 2. Dependence of �(x) on the chain index x for various con-
duction electron chains (N = 100, 200, 300, 400, 500) at T = 0.0,
U = 1.0, εd = −U/2, V = √

0.2, and h = 0.0. This set of parame-
ters is equivalent to that used in Fig. 1 of Holzner’s work [28]. Panel
(a) shows the result of DMRG, which is obtained by digitizing Fig. 1
in Ref. [28]. Panel (b) shows the result of PTA-EOMGF. The inset
shows the dependence of χ (i) on the chain index i for a chain of
length N = 300.

A. Paramagnetic case: Rpol = 0

Following Eq. (7), Eq. (19), and Eq. (20), we use the
extended PTA-EOMGF method to calculate χ (i). The inset
of Fig. 2(b) shows the dependence of χ (i) on the site in-
dex i. χ (i) has an even-odd oscillation between positive and
negative values. The magnitude decays algebraically. It has
been known that the decay of the spin-spin correlation with
distance i crosses over from i−1 to i−2 around ξK [26,27]. Our
result is in qualitative agreement with both the density matrix
renormalization group (DMRG) result and the perturbation
result [25,28].

We further sum up χ (i) according to Eq. (10) and show the
obtained �(x) in the main panel of Fig. 2(b). To benchmark
the PTA-EOMGF method, we compare our result with that of
DMRG [see Fig. 2(a)]. The DMRG result is obtained by digi-
tizing Fig. 1 in Holzner’s work [28]. Here, we take five various
conduction electron chains (N = 100, 200, 300, 400, 500) in
order to show the finite-sized effect. Both results share some
common features. For each N , �(x) decays quickly at small x,
then transits into an exponential decay before it finally drops
to zero at some point. With increasing N , the intermediate
range with stabled exponential decay enlarges, showing that
the finite-size effect is reduced gradually. For the present
Lacroix basis, �(x) calculated via PTA-EOMGF decays with
x faster than that of DMRG, indicating that the Kondo screen-
ing length scale ξK obtained by PTA-EOMGF is smaller than
that of DMRG.

The qualitative correctness of PTA results is not surprising.
The original Lacroix approximation already well describes the
Kondo effect because the operators of spin exchange have
been kept in the truncation approximation. Our PTA further
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FIG. 3. Scaling analysis of �(x). The dash line shows the scaling
function obtained by DMRG. By scaling analysis, we obtain the
screen length scale ξK, which is shown in the inset (black cycles).
The red squares are the result of DMRG. We take T = 0.0, U = 1.0,
εd = −U/2, h = 0.0, and N = 801. DMRG data are obtained by
digitizing Fig. 2(b) in Holzner’s work [28].

optimizes the truncation using operator projection. Quantita-
tively, a tiny breaking of SU(2) symmetry, i.e., a 10−4 relative
difference between SSCFs in z and x (y) directions, is ob-
served in the PTA result. This does not influence �(x) in small
x regime (corresponding to high energy part), but makes �(x)
in large x regime (low energy part) less accurate. In particular,
it accelerates the decay of �(x) and makes it negative in
the large x regime [not shown in Fig. 2(b)]. As a result, the
exponential behavior of �(x) in the intermediate x regime is
sustained in a smaller region of x and the obtained ξK is also
smaller in comparison with the DMRG result.

According to the discussion of Holzner et al., �(x) has a
universal form characterized by the Kondo screening length
ξK, when ξK is significantly shorter than the length of the con-
duction electron chain N [28]. Theoretically, ξK is determined
by the Kondo temperature TK via ξK = h̄vF/TK. It depends on
U , V , and εd in the form [28]

ξK = h̄vF√
U�

exp

[
π |εd ||εd + U |

2U�

]
, (30)

where � = V 2/t . Note that for both Holtzner’s and our Hamil-
tonians, h̄vF = 2.0 in the natural unit. To further benchmark
our numerical method, we do a scaling analysis of �(x) to
extract the screening length ξK and compared it with the
DMRG result. Due to the finite-sized effect, the numerical
result of �(x) deviates from the universal form gradually with
increasing x (see Fig. 2). Equation (30) indicates that at the
condition εd = −U/2, ξK reduces gradually with the reduc-
tion of U/�. Thus, for smaller U/�, the condition ξK � N is
met better and the finite-sized effect is smaller. Therefore, in
the scaling process, we pin the curve with the smallest U/�,
namely the curve of V = 1.2, and collapse other curves from
the smallest to the largest U/� onto the curve of V = 1.2 by
adjusting ξK. The inset of Fig. 3 shows the dependence of
(U�)0.5ξK on U/� on a semilog plot, where ξK is extracted

from the scaling analysis of �(x). We use p(U�)0.5/TK to
fit our result. It is found that our result is fitted well by the
function p(U�)0.5/TK, obtaining p = 2.2, which suggests that
ξK obtained by PTA-EOMGF is consistent with Eq. (30). The
red squares are the result of DMRG, which are fitted as well.
Holzner et al. obtained p = 6.8, which is 3.1 times larger than
our result [28]. To compare the universal function �(x/ξK) of
PTA-EOMGF with that of DMRG, we use 3.1 times of our ξK

in the plot (see the main panel of Fig. 3). It is found that both
methods produce a similar �(x/ξK) curve. The PTA-EOMGF
result decreases slower with increasing x/ξK.

In the inset of Fig. 3, we find that ξK obtained by PTA
follows Eq. (30) in a larger region than that of DMRG. Due to
the finite-size effect, a perfect scaling analysis is only possible
when ξK is much smaller than the length of chain N . Since
DMRG produces larger ξK, i.e., larger Kondo cloud, the finite
length of the chain exerts a greater influence on the scaling
analysis and makes ξK deviate early from the theoretical curve
as U/� increases. In contrast, PTA gives a smaller ξK for the
same U/�; the finite-size effect has a smaller influence on the
scaling analysis. The scaling analysis can thus be preformed
well for larger U/� for the same chain length N .

It should be noted that in Fig. 3, the data collapse is done in
the linear-log plot. By using this plot, we effectively increase
the weight of data in the small x regime in the fitting, which
is more accurate than the data in the large x regime. The
exponential form in �(x) in the intermediate x regime (see
Fig. 2) calls for a data collapse analysis in the log-linear
plot. However, since the data quality is poorer in the large x
[i.e., small �(x)] regime due to finite-size effect and SU (2)
symmetry breaking error, we find it much more difficult to
perform the analysis in the log-linear plot.

To conclude, the equal-time spatial SSCF obtained by
PTA-EOMGF is not quantitatively comparable with that
of DMRG, but qualitatively correct. It correctly follows
the theoretical expectation [see Eq. (30)]. The precision of
PTA-EOMGF is largely dependent on the dimension of the
projection space. It has been demonstrated for the Anderson
impurity model that using a larger basis can systematically
reduce the truncation error [32,33]. We therefore expect that
our results can be improved by enlarging the bases set. In this
paper, we focus on a qualitative discussion and Lacroix’s basis
is large enough for this purpose.

B. Ferromagnetic case: Rpol �= 0

For the ferromagnetic case, an effective magnetic field h
is applied to the conduction electrons. The spin of the con-
duction electrons is partially polarized. In Fig. 4, we apply
h = 0.2 and obtain a conduction electron polarization Rpol ≈
−0.03 [see the inset of Fig. 7(a)]. The minus sign means that
the spin is antiparallel to the external field. The equal-time
spatial SSCF χ (i) at T = 0 as a function of position i is
calculated and shown in Fig. 4 (spheres). It is found that in
the short range regime, χ (i) behaves similarly to that of the
paramagnetic case shown in the inset of Fig. 2(b). Besides
the even-odd oscillation, a wavelike pattern arises in the long-
range regime due to bath spin polarization. To get an insight
into the pattern in the long distance, two components of χ (i),
χxy(i), and χz(i) are calculated and shown in Figs. 5 and 6,
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FIG. 4. Equal-time spatial SSCF χ (i) as a function of distance
i. The spheres indicate the PTA-EOMGF result, Eq. (7); the curves
denote the fitting result, Eq. (31). We use N = 709, T = 0.0, U =
2.0, εd = −U/2, V = 0.85, and h = 0.2. The ratio of the conduc-
tion electrons been polarized is Rpol ≈ −0.03. Because χ (i) reduces
rapidly with i, we show the result in two panels. The left (right) panel
shows the result in the short-range (long-range) part.

respectively. Shown together in Figs. 5 and 6 are the zero-field
curves and our fitting curves (to be discussed below). Due
to breaking of SU(2) symmetry by the effective field, χxy(i)
and χz(i) behave quite differently in the long-range regime.
In the short-range regime (i � 16 in Figs. 5 and 6), both
χxy(i) and χz(i) are close to their zero-field counterpart, χ0

xy(i)
and χ0

z (i), respectively. In the long-range regime (i � 16), the
envelope of χxy(i) has a periodic wavelike pattern, while that

FIG. 5. Dependence of χxy(i) on distance i. The olive (light-gray)
spheres indicate the PTA-EOMGF result, Eq. (19) for the case Rpol 
=
0 (Rpol = 0); the curves denote the fitting result, Eq. (32). We use the
same parameters as those given in the caption of Fig. 4. For clarity,
the short-range (long-range) part of the result is shown in the left
(right) panel.

FIG. 6. Dependence of χz(i) on distance i. The olive (light-gray)
spheres indicate the PTA-EOMGF result, Eq. (20) for the case Rpol 
=
0 (Rpol = 0); the curves denote the fitting result, Eq. (35). To compare
the results (Rpol 
= 0 and Rpol = 0), we move χ 0

z (i) by c = −5.39 ×
10−4. We use the same parameters as those given in the caption of
Fig. 4. For clarity, the short-range (long-range) part of the result is
shown in the left (right) panel.

of χz(i) shows a wave-packet pattern. χxy(i) seems to obtain
an oscillating envelope component superimposed on χ0

xy(i).
The magnitude of this component decays with increasing
i. In contrast, the wave-packet pattern in χz(i) can only be
described as an oscillating factor multiplied to the smoothly
decaying envelope of χ0

z (i), giving rise to additional nodes in
the envelope curve.

These features in χxy(i) and χz(i) can be traced back to the
roles of bath spin polarization and Kondo screening. In both
Figs. 5 and 6, comparison with zero-field quantities reveals
that the oscillating envelope patterns solely arise from the spin
polarization, i.e., the splitting of the bath Fermi surface. The
periods pxy and pz of the envelope oscillation in χxy(i) and
χz(i) are found to scale as pxy = 2pz ∼ 1/h [see Fig. 7(c)
and the discussion in Appendix B]. It is also observed that
the envelopes of χxy(i) and χz(i) are both confined by the
corresponding zero-field curves. This indicates that the de-
cay of the magnitude of the envelope oscillation is governed
mainly by the Kondo effect. As a check to this conclusion,
we have calculated χ (i), χxy(i), and χz(i) at U = 0, where the
Kondo effect is absent. We find that the long-range oscillating
pattern remains, but the magnitude is one order of magni-
tude smaller than that at U 
= 0, where the Kondo effect is
present.

Many theories have been developed to explore the spatial
SSCF, including the perturbative method, the renormalization
group (RG) method, and the conformal field theory method.
As for the perturbative method, it is only applicable at high
temperature. The RG method focuses much on the short-
range correlations [39]. Barzykin and Affleck have developed
a renormalization group improved perturbative technique to
calculate the spatial SSCF, but it still cannot access the re-
gion T < TK. The conformal field theory approach succeeds
in dealing with the low temperature, long distance spin-spin
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FIG. 7. (a) �(x) as a function of x for various h values. The
scatters show the position xb of the bump, which appears for all of
the curves h 
= 0. The inset shows the dependence of Rpol(h) on h.
(b) The dependence of xb on h. The red curve shows the fitting result
of xF

b = 6.36h−1.28. (c) The dependence of pxy and 2pz on h. The red
curve shows the fitting result of pF

xy = 12.18h−1.03. We take T = 0.0,
U = 1.0, εd = −U/2, and V = 0.7.

correlation, but failed in dealing with the correlation in the
Kondo screening region [26]. To get some insight into the low
temperature, short distance spin-spin correlation, Affleck and
others considered the multichannel Kondo model [40–42]. It
is difficult in theory to find an exact formula in the region
T < TK, which can describe χ (i) as a function of distance i in
both the short- and long-range regions. Our results shown in
Figs. 5 and 6 provide a unique opportunity to draw some quan-
titative knowledge for the SSCF in low temperatures. Below,
we intend to extract a formula that is able to fit the numerical
result of χ (i) in both the short- and long-range regions. The
roles of the Kondo screening and bath spin polarization in
SSCF are encoded into the formula. The fitting results for
χF(i), χF

xy(i), and χF
z (i) are shown as red curves in Figs. 4–6,

respectively.
Due to breaking of SU(2) symmetry, we seek two formulas

χF
xy(i) and χF

z (i) that can fit χxy(i) and χz(i), respectively.
χF(i) is then obtained by

χF(i) = χF
xy(i) + χF

z (i) (i � 2). (31)

Comparing χ0
xy(i) with χxy(i) in Fig. 5, we find that the local

minimums of χxy(i) coincide with χ0
xy(i) and their difference

is a cosine function with a decaying amplitude. We therefore
propose the following formula:

χF
xy(i) = χ0

xy(i) + ϒ(i). (32)

The function ϒ(i) due to spin polarization reads

ϒ(i) = f (i)

[
cos

(
2π

pxy
i

)
+ 1

]
, (33)

where pxy is the period of the envelope oscillation. For best
fitting of the curve, we found that the decaying function f (i)
must be a power function

f (i) = c1iα + c2. (34)

In the long-range limit, limi→∞ ϒ(i) = c2 cos(2π i/pxy) + c2.
Hence c2 is the wave amplitude at the long-range limit. In
Fig. 5, we fit the numerical result of χxy(i) with Eq. (32),
resulting in α = −1.5, c1 = 0.12, c2 = 5.9 × 10−5, and pxy =
66. Note that c2 is negligibly small.

In Fig. 6, χ0
z (i) is moved downward by c to compare with

χz(i). We find that the two branches of envelope of χ0
z (i) +

c contain that of χz(i) in the middle. The spin polarization
does not result in any additional decay function in the fitting
formula of χz(i). Considering an oscillating factor multiplied
to χ0

z (i) and taking care of the difference on even and odd sites
[the upper envelope of χ0

z (i) is composed of i even and the
lower one of i odd], we arrive at the following fitting formula
for χz(i):

χF
z (i) = χ1

z (i) + χ2
z (i) + κ (i) (i � 2), (35)

where

χ1
z (i) = βχ0

z (i) cos

(
π

pz
i

)
, (36)

χ2
z (i) = γχ0

z (i − 1) cos

[
π

pz
(i − 1)

]
cos[π (i − 1)], (37)

κ (i) = 1
4

[
2χ0

z (i) + χ0
z (i + 1) + χ0

z (i − 1)
] + c. (38)

Here, κ (i) is the average height of the curve χ0
z (i) within two

sites interval plus a tiny shift c. It accurately describes the
height of the χz(i) curve at node points. χ1

z (i) and χ2
z (i) are

introduced to handle the up-down asymmetry of the envelope
function of χ0

z (i). For details of the fitting for χz(i), see Ap-
pendix B. In this equation, the fitting parameters are β and γ .
pz is the period of the wave packet. In Fig. 6, we use Eq. (35)
to fit χz(i) and obtain β = 0.7, γ = 0.3, c = −5.39 × 10−4,
and pz = 33.

Figure 4 shows the fitting result of χ (i). The main features
induced by spin partial polarization are captured by the fitting
formulas. The fitting curves for χF

xy(i) and χF
z (i) are shown

in Figs. 5 and 6, respectively. They agree quite well with
the corresponding numerical results. The biggest deviation
between χ (i) and χF(i) occurs at the neighbor of i = 30.
Because we take i � 2 in Eq. (35), χ (i) and χz(i) at i = 1
have not been fitted by the corresponding fitting formulas.
These fitting results show that at the present accuracy level,
the Kondo screening mainly determines the decay of SSCF
through χ0

z (i), while the bath spin polarization produces the
oscillation in the envelope by additive or multiplicative terms
for χxy(i) and χz(i), respectively.

We studied the dependence of all the fitting parameters on
U and V (see Table I in Appendix C). We find that among all
the fitting parameters in Eqs. (32)–(34) and Eqs. (35)–(38),
α ≈ −1.5 is independent on U and V within the allowed
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fitting error range, which indicates that the decay rate of the
envelope oscillation in χxy(i) is universal. Our present finding
that −2 < α < −1 suggests that the spin polarization makes
the crossover weaker, considering that χ0(i) crosses over from
i−1 to i−2 behaviors around ξK [26,27]. Therefore, it would
be more difficult to determine the boundary of the Kondo
screening region when the spin of the conduction electrons
is partially polarized. When we scan U and V , we also find
that both pxy and pz are independent on U and V , which
indicates that the envelope oscillation only results from the
splitting of the Fermi surface. In Fig. 7(c), pxy and 2pz are
shown as functions of h. We find pxy = 2pz, as expected (see
Appendix B). The result of pxy is fitted by pF

xy = 12.18h−1.03,
indicating pxy ∼ 1/h. At the limit h = 0, the period di-
verges. Hence, in the paramagnetic case, the period pattern is
absent.

The above fitting formula, Eqs. (32) and (35), and the
1/h dependence of the oscillation period of the envelope
function have a nice interpretation from the beating of two
Friedel oscillations associated to two spin-split Fermi sur-
faces of conduction electrons. To show this, we consider an
approximate solution of χxy(i) [Eq. (8)] and χz(i) [Eq. (9)]
at U = 0. The finite h splits the Fermi surfaces of spin up
and down conduction electrons. Using Wick’s theorem and
borrowing the formula for a quadratic bath electron disper-
sion [43], we obtain 〈d†

σ aiσ 〉 ∝ cos(ikFσ a). It describes the
Friedel oscillation due to the existence of the Fermi sur-
face, with the period modulated by the Fermi momentum
kFσ of spin-σ conduction electrons. kFσ is determined by
equation

−2t cos(kFσ a) = μ − 1
2σh. (39)

Using μ = 0 and expanding kFσ at h = 0, we obtain kFσ =
kF − σh/(4ta), with kF = π/(2a). Finally, we obtain

χxy(i) ∝ cos(ikF↑a) cos(ikF↓a)

= cos(2kF ai) + cos

(
h

2t
i

)
. (40)

For χz(i), we obtain

χz(i) ∝ cos2(ikF↑a) + cos2(ikF↓a)

= cos(2kF ai) cos

(
h

2t
i

)
. (41)

These results have strong similarity to our fitting formula
Eqs. (32) and (35): additive correction in χF

xy and multiplica-
tive correction in χF

z (i). The fitted period shown in Fig. 7(c),
pF

xy = 2pF
z = 12.18h−1.03, agrees well with the result pxy =

2pz = 4π/h = 12.57/h from the above analysis. We therefore
get strong support to our fitting formula and confirm that
the additional oscillation in the envelope function of SSCF
arises from the beating of two Friedel oscillations. The Kondo
screening effect is mainly embodied in the spatial decay be-
havior and the coefficient of the oscillation. As to be discussed
below, the influence of Zeeman field on Kondo screening is
more easily observed in the spatial distribution of the inte-
grated SSCF �(x).

Figure 7(a) shows the field dependence of �(x) on h. For
a fixed h, �(x)|h 
=0 follows the curve of �(x)|h=0 in the small

FIG. 8. �(x) as a function of x for various U/� values at fixed
h = 0.4. From bottom to top on the left, U/� = 0.510, 2.041, 3.781,
5.355, 10.796, 11.755, and 12.755. We use fixed U� = 0.49 and
εd = −U/2. The arrows mark out the position of ξK(h = 0) esti-
mated using ξK = p/TK, with p = 2.2 and TK from Eq. (30). The
positions of bumps at xb are marked out by circles.

x range and deviates from �(x)|h=0 when x is larger than a
crossover scale xb, at which a huge bump appears. For x � xb,
�(x) decreases linearly with increasing x. For sufficiently
large x, �(x) < 0 occurs (not shown). Apparently, the bump
and the subsequent linear decrease in �(x)|h 
=0 originates from
the bath spin polarization induced by h. When the bath Fermi
surface is split by the field h, the population of spin up and
down electrons on the impurity site is redistributed to find
the lowest energy for the whole system. This induces a net
impurity spin antiparallel to those of the bath and gives rise to
a negative χz(i). In the large x limit, where the bath electrons
are mainly those located at the Fermi surface, χz(i) tends to
a negative constant in large i, leading to a linearly decreasing
�(x).

The position of the bump xb moves to the impurity with
increasing h. When h tends to zero, the bump moves to infinity
and �(x)|h=0 is recovered. In Fig. 7(a), the positions xb of the
bump for all of the curves are marked by triangles. We show
xb as a function of h and its fitting result xF

b = 6.36h−1.28 in
Fig. 7(b).

It is tempting to relate the bump position xb to the size of
the Kondo cloud for the system with a spin polarized bath.
However, this is not the case at least for small h. At h =
0, xb = ∞, while ξK recovers its paramagnetic value ξ 0

K ≡
h̄vF/TK and it is finite. To investigate this issue, we investigate
in Fig. 8 the evolution of �(x) with U/�, for fixed h = 0.4 and
U� = 0.49. According to Eq. (30), the paramagnetic Kondo
cloud size ξ 0

K increases exponentially with increasing U/�. In
Fig. 8, we mark out the estimated ξ 0

K by an arrow for each
U/� value. The circles mark out the bump that separates the
small x regime where �(x) is identical to the h = 0 case and
the large x regime where �(x) decreases linearly. We find that
xb does not depend on U/�, while ξ 0

K increases exponentially
with U/�. At ξ 0

K ∼ xb, �(x) crossover smoothly from small x
to large x regimes and the bump is absent (see U/� = 5.355
and 10.796 in Fig. 8).
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A scenario of the competition between Kondo screening
and bath polarization can be drawn as the following. As
stated above, the linear decrease of �(x) is a signal of spin
polarization of bath electrons near the Fermi surface. For h �
TK, this amounts to breaking of Kondo screening between
impurity electron and the bath electrons, leading to xb � ξ 0

K.
In this case, the Kondo screening cloud is suppressed and the
actual Kondo screening length is dominated by xb. On the
other hand, for h � TK, the spin polarization of bath electrons
near the Fermi surface is not sufficient to break the screening
of impurity spin by the high energy part of bath electrons.
In this case, xb � ξ 0

K and the actual Kondo screening length
is still dominated by ξ 0

K. Therefore, we conclude that, for
h � TK, the bump position at xb marks out the real space
boundary between the Kondo screened regime (x < xb) and
the regime where Kondo screening is broken by bath spin
polarization while, for h � TK, the xb only reflect the real
space boundary between spin-polarized and unpolarized bath
electrons.

In Fig. 7(a), we obtain xb ∼ h−1.28, with an exponent close
to −1. Considering that our data for small h is less accurate
due to the finite-size effect, we believe that the present result
is in line with the following picture. In the absence of h,
�(x) has a decay range of ξ 0

K ∼ 1/TK, which controls the
Kondo screening length. For h � TK, the polarization does
not influence the Kondo screening length while, for h � TK,
the size of the Kondo screening cloud is suppressed and
dominated by h, leading to the expectation that ξK ∼ min
(1/TK, 1/h).

V. SUMMARY

We extended the formulation of PTA-EOMGF into real
space to calculate the equal-time spatial SSCF of impurity
and bath electrons for the Anderson impurity model with a
spin-polarized bath. The results are benchmarked with DMRG
data at zero bath bias h = 0 and qualitative agreement is
reached. For finite h, due to spin polarization of bath electrons
close to Fermi energy, an oscillation emerges in the envelope
function of SSCF curve, with period proportional to 1/h. The
corresponding integrated SSCF curve shows a bump at xb ∼
h−1.28 which marks the boundary between the Kondo screened
regime and the Kondo-broken regime. Based on our data, we
propose a fitting formula for the transverse and longitudinal
SSCF, respectively. They perfectly fit χxy(i) and χz(i) in both
the short- and long-range regions. A simple description of the
influence of Kondo screening and bath spin polarization on
SSCF is thus obtained.
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APPENDIX A: SSCFs: χxy(i) AND χz(i)

In this section, we give formulas for χxy(i) and χz(i). Ac-
cording to the definition of the equal-time spatial SSCF, we
have

χ (i) = 〈sx
i sx

d〉 + 〈sy
i sy

d〉 + 〈sz
i s

z
d〉. (A1)

Here, the direction of the effective magnetic field h is in z
direction. Because of h, the SU(2) symmetry of spin is broken
in z direction. In xy plane, the spin is still isotropic. In terms
of s±

i = sx
i ± isy

i , we have

χ (i) = 1
2 (〈s+

i s−
d 〉 + 〈s−

i s+
d 〉) + 〈sz

i s
z
d〉. (A2)

It is obvious that 〈s+
i s−

d 〉 = 〈s−
i s+

d 〉, because s+
i s−

d = (s−
i s+

d )†

and the average 〈· · · 〉 is real. Therefore,

χ (i) = χxy(i) + χz(i). (A3)

Here,

χxy(i) = 〈s+
i s−

d 〉 (A4)

denotes the transverse spin-spin correlation and

χz(i) = 〈sz
i s

z
d〉 (A5)

FIG. 9. Dependence of f (i) on the distance i. Panel (a) shows the
numerical results of χz(i) and κ (i). Panel (b) shows the numerical
results of χ 0

z (i), χ 1
z (i), χ 2

z (i), and χ 1
z (i) + χ 2

z (i). This is to illustrate
the contribution of χ 1

z (i) and χ 2
z (i) to fitting the numerical result

of χz(i). We show three periods (labeled by P1, P2, P3), which are
divided by the red dash lines. We use the same parameters as shown
in the caption of Fig. 4.
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TABLE I. Value of parameters in the fitting formulas.

U V α c1 c2 pxy β γ c pz

0.5 0.7 −1.6 0.11 3.07 × 10−5 66 0.62 0.4 −3.16 × 10−4 31
1.0 0.7 −1.4 0.08 3.43 × 10−5 66 0.66 0.4 −4.68 × 10−4 32
1.5 0.7 −1.5 0.14 5.20 × 10−5 65 0.68 0.38 −6.67 × 10−4 33
2.0 0.7 −1.6 0.22 1.40 × 10−4 66 0.7 0.38 −9.00 × 10−4 33
2.5 0.7 −1.6 0.27 1.90 × 10−4 66 0.72 0.36 −1.19 × 10−3 33
3.0 0.7 −1.5 0.23 2.03 × 10−4 66 0.72 0.34 −1.42 × 10−3 34
3.5 0.7 −1.6 0.33 2.20 × 10−4 67 0.72 0.32 −1.52 × 10−3 35
2.0 0.5 −1.5 0.25 2.42 × 10−4 67 0.74 0.38 −2.27 × 10−3 34
2.0 0.55 −1.7 0.41 2.70 × 10−4 66 0.72 0.36 −1.89 × 10−3 34
2.0 0.6 −1.7 0.38 2.48 × 10−4 66 0.7 0.36 −1.49 × 10−3 33
2.0 0.65 −1.7 0.33 1.82 × 10−4 67 0.7 0.36 −1.16 × 10−3 33
2.0 0.75 −1.5 0.16 6.20 × 10−5 65 0.7 0.38 −7.57 × 10−4 33
2.0 0.8 −1.6 0.18 7.40 × 10−5 66 0.7 0.38 −6.5 × 10−4 33
2.0 0.85 −1.5 0.12 5.90 × 10−5 66 0.7 0.38 −5.39 × 10−4 33

denotes the longitudinal spin-spin correlation. The α (α =
x, y, z) component of 	si is

sα
i = 1

2

∑
σσ ′

a†
iσ σα

σσ ′aiσ ′ , (A6)

where σα are the Pauli matrices. Hence we have

s+
i = a†

i↑ai↓, s−
i = a†

i↓ai↑, sz
i = 1

2 (ni↑ − ni↓). (A7)

In the same way, the spin operators of the impurity are

s+
d = d†

↑d↓, s−
d = d†

↓d↑, sz
d = 1

2 (nd↑ − nd↓). (A8)

Substituting Eq. (A7) and Eq. (A8) to Eq. (A4) and Eq. (A5),
we obtain

χxy(i) = 〈a†
i↑ai↓d†

↓d↑〉 (A9)

and

χz(i) = 1

4

∑
σ

(〈niσ ndσ 〉 − 〈niσ nd σ̄ 〉). (A10)

APPENDIX B: NUMERICAL RESULTS: κ(i), χ1
z (i), AND χ2

z (i)

In Fig. 9, we show the numerical results of χ1
z (i), χ2

z (i),
and κ (i), which are the components of χF

z (i), defined by
Eqs. (36)–(38), respectively. To conveniently discuss the in-
dividual contribution to the fitting of χz(i) data, we also show
χz(i), χ0

z (i), and χ1
z (i) + χ2

z (i). In Fig. 9(a), we see that κ (i)
perfectly fits the node points of χz(i). The curve χz(i) − κ (i)
is almost symmetric about zero. We use χ0

z (i) multiplied with
cosine functions to fit it. χ0

z (i) has an even-odd oscillation.
The upper and lower envelopes are composed of data points

at even and odd i, respectively. They are not symmetric about
zero. This makes it necessary to fit χz(i) − κ (i) with two
cosine functions multiplied with each envelope of χ0

z (i). The
one-site shift in the formula of χ1

z (i) and χ2
z (i) are for this

purpose. The additional factor cos[π (i − 1)] in the formula
of χ2

z (i) is to turn the two terms into the same phase. For i
even, χ1

z (i) uses the upper envelope of χ0
z (i) and χ2

z (i) uses
the lower one, and vice versa for i odd.

In Fig. 9(b), three periods (P1, P2, and P3) are shown. For
χz(i) fit, as shown in Eqs. (36) and (37), the cosine function
changes sign when i increases by pz sites. This leads to in-
terchange of upper and lower envelope curves and forms an
effective period of pz in the fitting function f (i). The two
adjacent peaks of the fitting function are sitting on even and
odd sites, respectively. Note that in the fitting formula for
χxy(i), Eq. (32), the period is pxy. This explains the fact that
our fitting always gives pxy = 2pz [see Fig. 7(c)]. The total
contribution of χ1

z (i) and χ2
z (i) is thus

f (i) = χ1
z (i) + χ2

z (i)

= βχ0
z (i) cos

(
π

pz
i

)
+ γχ0

z (i − 1)

× cos

[
π

pz
(i − 1)

]
cos[π (i − 1)]. (B1)

APPENDIX C: FITTING RESULTS

In Table I, we list the value of the parameters in the fitting
formulas. We fit χxy(i) with the first 211 data points. As for
χz(i), we fit with the first 111 data points.
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