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Hallmarks of Majorana mode leaking into a hybrid double quantum dot
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We investigate the spectral and transport properties of a double quantum dot laterally attached to a topological
superconducting nanowire, hosting the Majorana zero-energy modes. Specifically, we consider a geometry, in
which the outer quantum dot is embedded between the external normal and superconducting leads, forming
a circuit. First, we derive analytical expressions for the bound states in the case of an uncorrelated system
and discuss their signatures in the tunneling spectroscopy. Then, we explore the case of strongly correlated
quantum dots by performing the numerical renormalization group calculations, focusing on the interplay and
relationship between the leaking Majorana mode and the Kondo states on both quantum dots. Finally, we discuss
feasible means to experimentally probe the in-gap quasiparticles by using the Andreev spectroscopy based on
the particle-to-hole scattering mechanism.
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I. INTRODUCTION

Two quantum dots contacted in various arrangements
with external macroscopic reservoirs have been proposed
as promising building blocks of future nanoelectronic, spin-
tronic, and quantum information technologies [1,2]. For
instance, double quantum dot (DQD) configurations provide
a versatile platform for the implementation of spin-based
quantum information processing systems [3]. Moreover, a
rapid progress in materials science of superconducting hybrid
nanostructures [4,5] stimulated vivid interest in constructing
quantum bits out of the Andreev bound states [4,6–9]. Further
perspectives for the realization of topological superconduct-
ing qubits are related to nanostructures involving DQDs
coupled to topological superconducting wires, hosting the
Majorana zero-energy modes (MZMs) at their ends, the so-
called Majorana wires (MWs) [10–15]. Such platforms allow
for the implementation of fault-tolerant quantum computing
protocols, which are in the center of interest of quantum
information research [16].

The main motivation for studying the hybrid nanostruc-
tures composed of quantum dots and Majorana wires is
associated with a tendency of such end-modes to leak into
the neighboring objects [17] initially predicted theoretically
in Ref. [18]. Effectively, this gives rise to fractional values
of the differential conductance, which serve as fingerprints of
the exotic character of MZMs [19]. Various situations have
been investigated so far, considering mainly single quantum
dots and exploring the interplay of correlation effects with
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the Majorana quasiparticles [20–28]. In this regard, much less
attention has been paid to hybrid systems composed of double
quantum dots hybridized with topological superconducting
wires. Therefore, this work aims to shed some light on the
transport properties of DQD-MW hybrid structures, focusing
specifically on the setup displayed in Fig. 1.

It is important to note that the properties of double quantum
dots proximitized with conventional superconductors have
been studied experimentally by the tunneling spectroscopy,
using InAs [5,29–32], InSb [12], Ge/Si [33], carbon nan-
otubes [34,35], and by the scanning tunneling microscopy
(STM) applied to magnetic dimers deposited on supercon-
ducting surfaces [36–39]. In-gap bound states of the double
quantum dots (dimers) have been thoroughly analyzed by a
number of groups [40–57], in particular predicting quantum
phase transitions, in which the total spin could vary be-
tween the singlet, doublet, and triplet states [58,59]. However,
the properties of proximitized DQDs, additionally interacting
with Majorana modes, are much less explored [60].

Recently, a fusion of individual bound states into their
molecular (hydrogen atomlike) structure has been realized
by a controllable change of the hybridization between the
quantum dots contacted with superconducting reservoirs [61].
A similar process for topological bound states would be highly
desirable, therefore this issue triggers intensive activities [62].
Motivated by such achievements and trends, we study the
transport behavior of a hybrid double quantum dot setup,
where the central quantum dot (QD1) is embedded between
the superconducting (S) and the normal metallic (N) lead
(provided by, e.g., an STM tip), forming a circuit. We assume
QD1 to be connected through the second quantum dot (QD2)
to the topological superconducting nanowire, see Fig. 1. Prac-
tically, such quantum dots can be considered as being a
piece of a nontopological segment of the nanowire consisting
of two sites, in analogy to the experimental hybrid system
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FIG. 1. Scheme of the considered hybrid structure, comprising
the quantum dot (QD1) placed between the normal (N) and super-
conducting (S) electrodes and side attached to the second quantum
dot (QD2) bridged with the topological superconducting nanowire,
hosting Majorana end-modes described by the operators γ1 and γ2.
An STM tip, attached to QD1 with the coupling strength �N , allows
for probing the spectroscopic features of the system.

that provided the first evidence for leakage of the Majorana
quasiparticles [17,25]. To obtain the most reliable predictions
for the behavior of the considered system when correlations
play an important role, we resort to the density-matrix nu-
merical renormalization group (NRG) calculations [63–67].
Moreover, to provide the complete picture and deepen the
understanding of transport properties of the considered DQD-
MW hybrid structure, we also perform analytical calculations
for an uncorrelated case.

Our study reveals that: (i) besides the conventional
in-gap quasiparticle branches (originating from the hy-
bridization of both quantum dots) there appear additional
structures induced by the Majorana mode in the form of a
constructive/destructive interference pattern imprinted on the
spin-down/spin-up sectors of QD1; (ii) in the Kondo regime
(when the Coulomb repulsion prevails over the supercon-
ducting proximity effect) the spin-resolved spectral functions
indicate the detrimental/constructive influence of the Majo-
rana mode on ↑ / ↓ spin sectors of QD1. For such a strongly
correlated system, we predict the optimal Andreev conduc-
tance near a crossover from the doublet to the BCS-type
singlet configurations of proximitized QD1.

The paper is organized as follows. In Sec. II we introduce
the microscopic model of the studied DQD-MW system, de-
scribing our setup. Next, in Sec. III we discuss the properties
of the considered hybrid structure, neglecting the Coulomb
repulsion on both quantum dots. In Sec. IV we address the
correlation effects in the Kondo regime, using the numerical
renormalization group approach. Finally, we summarize our
findings in Sec. V.

II. MODEL

In what follows, we analyze the spectroscopic and trans-
port properties of N-QD1-S branch (see Fig. 1), focusing
on the subgap energy region. The second quantum dot QD2
transmits the Majorana mode(s), which in turn affects the
transport by interferometric effects. We study those effects
in detail, considering the fully polarized case VM↓ = VM and
VM↑ = 0, where VMσ is the coupling between the second dot
and Majorana wire for spin σ . Some results for the arbitrary

spin-dependent couplings VMσ [25,68–70] are presented in
Appendix A.

Our hybrid structure (Fig. 1) can be modeled by the fol-
lowing Hamiltonian:

H = HN + TN + HDQD + HMW + HSC, (1)

where

HN =
∑
kσ

εNkc†
Nkσ cNkσ (2)

describes the metallic lead with the operators c†
Nkσ creating

electrons with spin σ , momentum k, and energy εNk. The sec-
ond term in Eq. (1) describes the tunneling processes between
the metallic lead and the first quantum dot

TN =
∑
kσ

VN (d†
1σ cNkσ + c†

Nkσ d1σ ), (3)

where VN is the momentum independent tunneling matrix
element and d†

1σ operator creates electrons with spin σ at the
central quantum dot. When this quantum dot is coupled to
the external contacts, it leads to the broadening of the dot
level described by �N = πρNV 2

N , where VN is assumed to be
real, while ρN is the density of states of the metallic lead. For
calculations we use the bandwidth of the metallic lead as a
convenient energy unit (D ≡ 1).

The double quantum dot part is given by

HDQD =
∑

jσ

ε jd
†
jσ d jσ +

∑
j

Ujd
†
j↑d j↑d†

j↓d j↓

+
∑

σ

t (d†
1σ d2σ + H.c.), (4)

where d†
jσ creates a spin-σ electron on the jth quantum dot

with energy ε j . The repulsive Coulomb potential Uj between
the opposite spin electrons on individual quantum dots shall
be assumed equal U1 = U2 = U . These quantum dots are
interconnected through the hybridization, denoted by t .

The low-energy quasiparticles of the topological nanowire
can be described by the following term [71,72]:

HMW =
√

2VM (d†
2↓γ1 + γ1d2↓) + iεMγ1γ2. (5)

The first part couples the spin-↓ electrons of the second quan-
tum dot with the Majorana mode described by the operator γ1

through the tunneling element VM . The role of the coupling
of Majorana quasiparticles to both spins of QD2 is briefly
discussed in Appendix A. The Majorana operators can be
rewritten in terms of an auxiliary fermion operator f as γ1 =
( f † + f )/

√
2 and γ2 = i( f † − f )/

√
2. In the case of a short

nanowire, we should assume the overlap εM between the wave
functions of the Majorana modes. However, here we focus on
the long wire case, i.e., when the Majorana quasiparticles do
not overlap and εM = 0.
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The last part of the Hamiltonian (1) refers to the supercon-
ducting substrate and its coupling to QD1

HSC =
∑
kσ

εSkc†
Skσ cSkσ −

(
�SC

∑
k

c†
Sk↑c†

S−k↓ + H.c.

)

+
∑
kσ

VS (d†
1σ cSkσ + c†

Skσ d1σ ). (6)

In the limit of large pairing gap �SC → ∞, these terms give
rise to the proximity induced on-dot pairing

HSC ≈ −�1(d†
1↑d†

1↓ + d1↓d1↑), (7)

with the effective pairing potential �1 = �S , and �S denoting
the coupling strength between QD1 and the superconductor.

III. THE CASE OF THE UNCORRELATED SYSTEM

Let us start our analysis by investigating the spec-
tral and transport properties in the case of uncorrelated
quantum dots, i.e., when U = 0. For this purpose we
use the Green’s function method. The influence of the
topological nanowire on the quantum dots can be cap-
tured by the matrix Green’s function defined in the
particle-hole (Nambu) notation Ĝ(ω) = 〈〈
; 
†〉〉ω, with 
 =
(d1↑, d†

1↑, d1↓, d†
1↓, d2↑, d†

2↑, d2↓, d†
2↓, f , f †). For U = 0, the

matrix equation for the Green’s function takes the following
form:

G−1(ω) = ωÎ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε1 + i�N 0 0 �S −t 0 0 0 0 0
0 ε1 + i�N −�S 0 0 t 0 0 0 0
0 −�S −ε1 + i�N 0 0 0 −t 0 0 0
�S 0 0 ε1 + i�N 0 0 0 t 0 0
−t 0 0 0 −ε2 0 0 0 0 0
0 t 0 0 0 ε2 0 0 0 0
0 0 −t 0 0 0 −ε2 0 −VM −VM

0 0 0 t 0 0 0 ε2 VM VM

0 0 0 0 0 0 −VM VM 0 0
0 0 0 0 0 0 −VM VM 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where Î stands for the identity matrix.

A. Resonant bound states for �N = 0

Consider first the conventional bound states of the proxim-
itized double quantum dot in the absence of coupling to the
Majorana nanowire [73]. In the limit of �N → 0 such in-gap
resonant states are formed at

ε±
AD1 = ± 1√

2

√
A +

√
A2 − 4B,

ε±
AD2 = ± 1√

2

√
A −

√
A2 − 4B, (9)

where A = ε2
1 + ε2

2 + �2
S + 2t2 and B = (ε1ε2 − t2)2 +

(ε2�S )2. The quasiparticles ε±
AD1 represent the Andreev bound

states of QD1, E±
A = ±

√
ε2

1 + �2
S , now slightly modified by

the hybridization t to QD2. The other quasiparticles ε±
AD2

originate from the energy level of QD2 owing to the induced
electron pairing (via its coupling to QD1).

The attachment of the topological superconductor
nanowire to the double quantum dot substantially affects the
spectrum of this setup, revealing signatures of the zero-energy
Majorana mode. Now, besides the initial quasiparticles ε±

AD1
and ε±

AD2 there emerge additional states at

ε±
MD1 = ± 1√

2

√
AM +

√
A2

M − 4BM ,

ε±
MD2 = ± 1√

2

√
AM −

√
A2

M − 4BM , (10)

where AM = A + 4V 2
M and BM = B + 4V 2

M (ε2
1 + �2

S + t2). Let
us notice that such new features depend on the coupling
strength VM . We recognize that the quasiparticle states ε±

MD1
and ε±

MD2 are driven by a direct coupling of the QD2 and
an indirect coupling of the QD1 (via QD2) to the Majorana
mode. The quasiparticle energies ε±

ADi and ε±
MDi (i = 1, 2) are

displayed in Figs. 2 and 3 by dashed lines.

B. Quasiparticle spectrum for �N �= 0

To discuss the empirically measurable properties of our
setup (Fig. 1), let us now examine the effective spectrum for
a finite (yet small) coupling �N . The continuous electronic
spectrum of the normal lead broadens the subgap quasiparticle
states, which acquire finite lifetimes. Because the transport
properties of the considered system can be related to the
spectral function of the first quantum dot, in the following
we shall focus on its behavior. We have computed spectral
function

Aiσ (ω) = − 1

π
Im〈〈diσ ; d†

iσ 〉〉ω+i0+ , (11)

choosing such model parameters that allow for clear identifi-
cation of the role played by the Majorana mode. For specific
numerical calculations we use: �N = 0.002, �S = 0.02, t =
0.01, and ε1 = 0 in units of bandwidth D ≡ 1. Figure 2 refers
to the case of identical quantum dot energies ε1 = ε2, while
Fig. 3 presents the case of detuned energies ε1 �= ε2, respec-
tively.

In the absence of topological nanowire (see the orange
curves in Figs. 2 and 3), we notice two pairs of the

155123-3



PIOTR MAJEK et al. PHYSICAL REVIEW B 106, 155123 (2022)

FIG. 2. The normalized spectral function π�N Aiσ (ω) of QD1 (a) and (b) and QD2 (c) and (d) obtained for ε1 = ε2 = 0, �S = 0.02, �N =
0.002, and t = 0.01. Positions of the quasiparticle energies ε±

ADi and ε±
MDi, given by Eqs. (9) and (10), are indicated by the dashed lines [ε±

AD1

(green), ε±
AD2 (red), ε±

MD1 (blue), and ε±
MD2 (magenta)]. All energies are expressed in units of the bandwidth (D ≡ 1).

Andreev peaks centered at ε±
AD1 and ε±

AD2 accompanied by
the interferometric (Fano-type) structure at ω = ε2. The direct
coupling of QD2 to the topological nanowire indirectly affects
the electronic states of QD1. Such influence is transmitted via

spin-↓ electrons of the second quantum dot. In consequence,
the leakage of Majorana mode shows up at zero energy
of the spin-down spectral function A1↓(ω). For ε1 = ε2 and
arbitrary couplings VM �= 0, we obtain the universal values

FIG. 3. Spectral functions π�N Aiσ (ω) obtained for finite detuning of the energy levels ε1 = 0 and ε2 = 0.005, using the same model
parameters as in Fig. 2.
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A1↓(0) = 1/2π�N and A1↑(0) = 0, see Fig. 2, in analogy to
the previously reported behavior of single dot configurations
[26].

The coupling VM is responsible for additional features,
appearing at ε±

MD1 and ε±
MD2, whereas the quasiparticle states

ε±
AD1 and ε±

AD2 practically do not change their energies (see
green and red dashed lines), except for their spectral weights.
For the weak coupling VM , the quasiparticle states ε±

MD1 co-
incide with ε±

AD1, while the other states ε±
MD2 are pushed to

higher energies. On the other hand, for stronger couplings
VM , we observe the development of a molecular structure, in
which ε±

MD2 are mixed with ε±
AD1. Figures 2 and 3 show that

the quasiparticles ε±
MD1 have the dominant spectral weights in

the spin-↓ sector, whereas the states ε±
MD2 gain their spectral

weights mainly in the spin-↑ sector.
Let us now inspect the role of QD2 detuning from the

particle-hole symmetry point (ε2 �= 0). Under such condi-
tions, the Majorana peak is observable in both spin compo-
nents of the spectral function A1σ (ω), see Fig. 3. The width
of the zero-energy peak depends on the coupling VM , while
the height ratio A1↓(0)/A1↑(0) is controlled by the energy
level ε2, keeping the total spectral function A1↑(0) + A1↓(0) ≈
1/2π�N . For the case of strong coupling VM , we obtain
A1↑(0) > A1↓(0), and additionally there emerges a Fano-type
dip in A1↑(ω) at ω = ε2. Such an interferometric feature is ab-
sent in A1↓(ω) because of the hybridization of spin-↓ electrons
of the second quantum dot with the Majorana nanowire.

The second quantum dot (QD2) is indirectly affected by
the superconducting reservoir, absorbing the electron pairing
[73–77]. Figure 4 shows the variation of the pairing corre-
lations 〈di↓di↑〉 induced on the first (i = 1) and the second
(i = 2) quantum dot with respect to the coupling VM for
several values of the energy level of QD2. For ε2 = 0 and
VM = 0 we reproduce the standard result 〈d1↓d1↑〉 = 〈d2↓d2↑〉
reported in Ref. [74]. Upon detuning the quantum dot energy
levels, we observe that pairing correlations of QD2 are grad-
ually suppressed, at an expense of enhancing the effective
pairing on the central quantum dot (QD1). The coupling of
QD2 to Majorana nanowire has a rather minor influence on
all pairing sectors, it merely weakens the pairing correlations
〈d2↓d2↑〉 on the second quantum dot.

In Appendix B we provide more specific evidence for
the Majorana-type features transmitted from the topological
nanowire to each spin sector of the quantum dots, using the
procedure introduced in Refs. [10,18]. In particular, for identi-
cal energy levels (ε1 = ε2 = 0), we observe the leakage of the
Majorana zero-energy mode solely to the spin-↑ of the inner
QD2 and spin-↓ of the outer QD1. The opposite spin sectors
do not absorb the Majorana zero-energy mode, because of the
interferometric effects. Such a situation is no longer present
for the detuned energy levels ε1 �= ε2.

C. Linear Andreev conductance

The Majorana mode features leaking into the quantum
dots could be detected by the charge transport measurements
[17,78–81]. In our setup, the central quantum dot (QD1) is em-
bedded between the normal and superconducting electrodes,
so its subgap states should be observable in the Andreev
current measurements [82–85]. From the theoretical side, the

FIG. 4. The proximity induced pairing on (a) the first (QD1) and
(b) the second (QD2) quantum dot as a function of the coupling VM

to the Majorana wire obtained for ε1 = 0 and several values of ε2, as
indicated. The other parameters are the same as in Fig. 2.

Andreev current can be calculated from

IA(V ) = e

h

∫
dω TA(ω)[ f (ω−eV )− f (ω+eV )], (12)

where f (x) = [1 + exp(x/kBT )]−1 denotes the Fermi-Dirac
distribution function and the energy-dependent Andreev trans-
mittance is given by

TA(ω) = �2
N

∑
σ

|〈〈d1σ ; d1σ̄ 〉〉ω+i0+ |2. (13)

For t = 0, the optimal value of the low-temperature Andreev
conductance GA(V ) = dIA(V )/dV is 4e2/h [82,86–88]. Finite
hopping between the dots, however, lowers this maximum
value. Moreover, the side-attached Majorana nanowire can
result in a further reduction of the Andreev conductance down
to e2/h [26,89,90].

In what follows, we briefly investigate the influence of
the Majorana mode on the Andreev conductance measured in
the N-QD1-S circuit. Figure 5 presents the linear (zero-bias)
Andreev conductance GA as a function of ε2 calculated for
a fixed value of the first dot level position ε1 = 0. It can be
seen that in the absence of coupling to the Majorana mode,
the Andreev conductance is relatively low, see the solid curve
in Fig. 5(a). However, once VM is finite, we observe an en-
hancement of the Andreev conductance to GA = Gmax

A /4 at
some nonzero value of ε2, with Gmax

A = 4e2/h the maximum
Andreev conductance. Such value of GA reflects the fractional
nature of the Majorana mode leaking to the DQD. In fact,
the enhancement of Andreev conductance from 0 to e2/h with
detuning the second dot level may serve as a signature of the

155123-5



PIOTR MAJEK et al. PHYSICAL REVIEW B 106, 155123 (2022)

FIG. 5. The linear (zero-bias) Andreev conductance GA =
dIA (V )

dV |V =0 in units of e2/h as a function of the energy level ε2 obtained
for (a) several values of the coupling VM , assuming t = 0.01, and
(b) for different interdot couplings t , assuming VM = 0.005. The
other parameters are the same as in Fig. 2.

MZM in the system. We also note that the Andreev conduc-
tance exhibits a perfect vanishing that occurs for ε1 = ε2 = 0,
caused by destructive Fano-type interference, which is robust
against any other phenomena. For a given interdot coupling
t , the linear Andreev conductance rather weakly depends on
the coupling VM [see Fig. 5(a)]. However, for a fixed value of
coupling VM , GA is very sensitive to interdot hybridization t
[see Fig. 5(b)]. In the weak interdot hopping limit, the con-
ductance GA achieves its optimal value at small values of the
second quantum dot energy level ε2. On the other hand, when
the interdot coupling becomes stronger, the position of the
energy level ε2, at which the Andreev conductance is optimal,
substantially increases.

The linear Andreev conductance is also dependent on the
first quantum dot energy level. This situation is shown in
Fig. 6, which displays the Andreev conductance as a function
of both quantum dot energy levels for three selected values of
t and VM . As can be seen, no matter what the value of ε1 is,
GA always vanishes for ε2 = 0. This characteristic feature is
caused by the destructive quantum interference. Figure 6 dis-
plays the typical Fano line shape of such entirely suppressed
linear conductance of the considered setup.

IV. THE CASE OF THE KONDO REGIME

We now address the situation when the Coulomb cor-
relations in the quantum dots are relevant, U �= 0. In this
case new effects emerge that are exclusively due to electron

FIG. 6. The linear Andreev conductance GA as a function of the
first and second quantum dot energy levels calculated for (a) VM =
0, t = 0.005, (b) VM = 0.005, t = 0.005, and (c) VM = 0.005,
t = 0.01.

correlations. One of these effects is the Kondo phenomenon
[91], in which a correlated state is formed between the quan-
tum dots and the conduction band electrons of the normal lead
[92]. The main goal of this section is to examine the system’s
transport properties in the Kondo regime, and to shed light
on the interplay of Kondo correlations, electron pairing, and
Majorana modes.

In the large pairing gap limit of the superconductor, the
Kondo effect can be induced by the spin-exchange coupling
between QD1 and the metallic lead [93]. Efficiency of such
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interaction is sensitive to the competition between the on-
dot pairing and the Coulomb repulsion. The Kondo state
would arise if QD1 is in the singly occupied configuration
|σ 〉, which takes place when the Coulomb repulsion domi-
nates over the superconducting proximity effect �S < U/2.
Furthermore, the magnitude of the exchange interaction is
substantially enhanced near a transition between the spinful
|σ 〉 and the spinless (BCS type) u|0〉 − v|↑↓〉 configurations
[94,95]. Since this parity change of QD1 is manifested by a
crossing of the in-gap bound states, therefore the influence
of the zero-energy Majorana mode on this crossing would be
very important.

The relationship between the subgap Kondo effect and the
Majorana physics has been previously investigated in het-
erostructures with a single correlated quantum dot [26,90].
Here we extend these studies to the double quantum dot sys-
tem (Fig. 1), where the Majorana mode can affect QD1 only
indirectly, via the second quantum dot. For efficiency of this
two-stage Majorana leakage, one should also take into account
the Kondo effect developed in QD2 [15,96,97]. With lowering
the energy scale below the Kondo temperature TK , the Kondo
effect first develops in the first quantum dot, giving rise to en-
hanced conductance [98]. However, for even lower energies,
the spin on the second quantum dot becomes screened and,
because this dot is not directly coupled to the superconductor-
normal lead circuit, cf. Fig. 1, the conductance becomes in
turn suppressed. This is known as the two-stage Kondo effect,
which is characterized by a dip in the spectral function of
width proportional to the second-stage Kondo temperature T ∗
[99–102]. In what follows, we analyze a subtle interplay of
these effects and discuss their signatures observable in the
charge transport properties of the N-QD1-S circuit.

To reliably treat the low and high energy features origi-
nating from the correlation effects and the proximity-induced
pairing, we perform the density-matrix numerical renormal-
ization group calculations [63–67]. We impose the band
discretization parameter � = 2–2.2, keeping at least 2000
states during the iterative diagonalization. The microscopic
model (1) satisfies the Z (2) parity, which we implement to
facilitate the numerical calculations. We perform the compu-
tations for the particle-hole symmetric case ε1 = ε2 = −U/2,
assuming U/D = 0.1, �N/D = 0.01.

A. Superconducting pairing correlations

Before analyzing the spectral and transport properties of
the system, let us examine the superconducting pairing corre-
lations induced in both quantum dots. These correlations are
presented in Fig. 7 versus the coupling to superconductor �S

for selected values of the coupling to Majorana wire VM . First
of all, we note that the correlations (U > 0) strongly modify
〈di↓di↑〉 in comparison to the uncorrelated case, cf. Figs. 4
and 7. The induced pairing 〈d1↓d1↑〉 resembles properties
typical for the single correlated quantum dot proximitized to
the superconductor [93,95]; it is suppressed in the doublet
state, for �S < U/2, and 〈d1↓d1↑〉 ≈ 1/2 on the BCS singlet
side, for �S > U/2. Moreover, we find that in the strongly
correlated case 〈d1↓d1↑〉 rather weakly depends on VM , see
Fig. 7(a). This is in contrast to the behavior of 〈d2↓d2↑〉, which
is substantially enhanced by the Majorana wire, see Fig. 7(b).

FIG. 7. Superconducting pairing correlations of (a) the first and
(b) the second quantum dot calculated as a function of the coupling
to superconductor �S for different values of VM , as indicated. The
other parameters are: t/U = 0.025, �N/U = 0.1, ε1 = ε2 = −U/2,
and U = 0.1 in units of bandwidth.

Variation of 〈d2↓d2↑〉 with respect to �S and VM is much more
subtle. For �S < U/2, it is negative, whereas for �S > U/2, it
becomes positive and increases in absolute value.

We assign the qualitative and quantitative changes of the
electron pairing 〈di↓di↑〉 observed around �S = U/2 to the
parity crossings. To clarify it, let us recall the well studied case
of the Anderson impurity coupled to superconductor (t = 0 =
VM). It has been firmly established [93] that for �S < U/2 the
ground state of QD1 is characterized by the singly occupied
configuration |σ 〉 (which is doubly degenerate in the absence
of magnetic field), whereas for �S > U/2 it takes the BCS
form |BCS〉 = u|0〉 + v ↑↓〉 with appropriate coefficients u
and v [93]. This fact explains an abrupt increase of 〈d1↓d1↑〉
displayed in Fig. 7(a) upon traversing the critical coupling
�S = U/2. We furthermore notice that neither the second
quantum dot nor the topological nanowire have meaningful
influence on this doublet-singlet transition of QD1.

As regards the electron pairing of QD2 the situation is
different because it is not directly coupled to the supercon-
ducting lead. Residual value of 〈d2↓d2↑〉 presented in Fig. 7(b)
by the blue line (corresponding to VM = 0) indicates that a
major contribution to the electron pairing of QD2 comes from
the topological superconductor. In fact, upon increasing the
coupling VM the absolute value |〈d2↓d2↑〉| is amplified for all
couplings �S . At the critical coupling �S = U/2 we notice
the sign reversal of 〈d2↓d2↑〉. This π shift is associated with
the parity change of QD1, or strictly speaking its feedback on
QD2.
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FIG. 8. Spin-spin correlation function 〈S1 · S2〉 as a function of
�S/U obtained for several values of VM , using the same set of model
parameters as in Fig. 7.

Since we are considering the regime of strongly coupled
quantum dots, there could be expected a tendency toward a
local singlet formation. Whether this mechanism does really
occur or not, would strongly depend on �S/U . In particu-
lar, for �S/U > 0.5, the outer quantum dot (QD1) is in the
spinless BCS-type configuration therefore any spin locking is
impossible. In the opposite limit (�S/U < 0.5), however, the
quantum dots indeed lock their spins, see Fig. 8. This resem-
bles the behavior of two correlated quantum dots confined in
the Josephson junction reported in Ref. [50].

In our setup (Fig. 1) we notice a detrimental influence of
the Majorana mode on such spin locking for �S/U < 0.5.
We assign this effect to partial depletion of the low-energy
spectral functions of QD1 indirectly caused by the Majorana
mode. This issue is analyzed in Sec. IV B.

B. Majorana features in spectral functions

To elucidate the role of the Majorana mode on the spectral
density, we first analyze the dependence of the spectral func-
tion of the half-filled quantum dots on the strength of coupling
to the superconductor in the absence of coupling to Majorana
wire. The normalized spectral function for spin σ (note that
for VM = 0 the spin degeneracy is restored) is presented in
Fig. 9. Let us recall that in the absence of the interdot coupling
(t = 0) the parity change of QD1 from |σ 〉 to u|0〉 − v|↑↓〉
configuration occurs at �S = U/2. The subgap Kondo effect
can thus be realized for �S < U/2. On the other hand, for
finite t but �S = 0, one observes the behavior typical for the
two-stage Kondo effect [100–102], with suppressed spectral
density for ω < T ∗. In the case of finite t and �S , the interplay
of the on-dot pairing and Kondo correlations gives rise to an
interesting behavior of the spectral function. The proximity
induced pairing affects A1σ (ω) by lifting the second stage of
screening and giving rise to a finite value of A1σ (0), which is
the largest around the transition between the doublet and BCS
singlet state, �S ≈ U/2, see Fig. 9.

Let us now examine the behavior of the spectral functions
in the case of finite coupling to topological nanowire, focusing
on values of �S around the singlet-doublet transition, cf. the
dashed lines in Fig. 9. The corresponding spin-resolved spec-
tral functions A1σ (ω) obtained for various couplings VM to the

FIG. 9. The normalized spectral function π�N A1σ (ω) of the
half-filled central quantum dot obtained for various couplings to
superconductor �S , as indicated, while VM = 0. The other parameters
are the same as in Fig. 7. The spectral function is symmetric with
respect to the Fermi energy, therefore only positive energies are
shown. Note also the logarithmic energy scale. The dashed curves
correspond to the values of �S analyzed in Figs. 10 and 11.

topological nanowire are presented in Figs. 10 and 11. First
of all, we note that the numerical results reveal qualitative
differences between the spectra of the spin-up and spin-down
electrons, which should be attributed to the presence of Ma-
jorana mode. Such influence is predominantly manifested in
the low-energy sector, therefore our plots are presented in a
logarithmic scale. The upper panels of the figures correspond
to the situation when �S < U/2 and the subgap Kondo effect
can be realized, therefore Aσ (ω) has a relatively large weight
at the Fermi energy for VM = 0. On the other hand, the lower
panels display the case of �S > U/2, where the weight is
much reduced. However, once VM is finite, these features may
be completely changed.

Consider first the case of the spin-up spectrum of QD1
shown in Fig. 10. Each panel of the figure clearly displays
a substantial depletion of the low-energy states driven by the
Majorana mode. In the weak coupling limit, VM 
 U , such
destructive influence appears in the form of an interferometric
dip formed on top of either the subgap Kondo peak [in the
strongly correlated limit �S/U = 0.4, see Fig. 10(a)], or on
a flat background between the Andreev peaks [corresponding
to the BCS-type configuration �S/U = 0.6, see Fig. 10(c)].
Upon increasing the coupling VM , we observe the develop-
ment of a molecular structure, where the Kondo effect gets
suppressed. In other words, in the subgap Kondo regime, one
can see a supporting influence of the coupling to the Majorana
mode on the second-stage Kondo effect, i.e., there occurs a
restoration of this effect for finite VM . Moreover, the stronger
the coupling VM is, the higher the second-stage Kondo tem-
perature T ∗ becomes. This picture resembles itself through
the singlet-doublet transition, lowering the maximum of the
Kondo peak, and finally suppressing the spectral function in
the BCS regime, where the Kondo effect does not develop.
Thus, the coupling to the topological nanowire has a rather
destructive influence on the low-energy behavior of the spin-
up spectral function.
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FIG. 10. The normalized spin-up spectral function π�N A1↑(ω)
calculated for different couplings VM to the topological wire, as
indicated. The top, middle, and bottom panels refer to �S/U = 0.4,
0.5, and 0.6, respectively. The other parameters are the same as in
Fig. 7.

In contrast to this tendency, the Majorana mode has a
more complex impact on the spin-down spectral function
shown in Fig. 11. In the subgap Kondo regime, finite coupling
to the topological superconductor suppresses the low-energy
spectral density by around 1/3 to the universal value of
A1↓(0) = 1/2π�N . However, the picture changes when the
BCS configuration is formed and the influence of VM be-
comes constructive. For weak couplings, VM 
 U , we notice
a buildup of the narrow peak at zero energy due to the leak-
ing Majorana mode. Upon increasing VM , the value of the
spectral function A1↓(0) saturates, while the zero-energy peak
gradually broadens. For larger values of VM , this zero-energy
quasiparticle state dominates over all other subgap fea-
tures. The corresponding spectral function develops then its

FIG. 11. The normalized spectral function for the spin-down
electrons π�N A1↓(ω) calculated for the same model parameters as
in Fig. 10.

universal shape with the characteristic value A1↓(0) =
1/2π�N , regardless of the Coulomb potential U . Summa-
rizing, the attachment of the topological superconductor to
the spin-↓ electrons of QD2 induces the zero-energy state
in the spin-↓ sector of QD1 with the fractional value of the
low-energy spectral function.

C. Subgap charge transport

Empirical detection of the quasiparticle spectra of QD1 can
be done with the use of the charge tunneling spectroscopy. In
the subgap region the only transport channel is contributed by
the particle-to-hole (Andreev) scattering mechanism, which
combines both spin components. The subgap tunneling spec-
troscopy would hence provide important information about
the convoluted spin-up and spin-down spectra.
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FIG. 12. The Andreev transmittance TA(ω) as a function of �S/U and energy ω calculated for several values of the coupling to Majorana
wire VM and interdot hopping t (as indicated) obtained by NRG. The other parameters are the same as in Fig. 7.

At low temperatures the Andreev differential conductance
GA(V ) = dIA(V )/dV can be approximated by the An-
dreev transmittance TA(ω) taken at ω = eV , limT →0GA(V ) =
2e2

h TA(ω = eV ). We display TA(ω) in Fig. 12 for several
values of the interdot hopping t (panels from left to right)
and different couplings VM (panels from top to bottom). In
general, we notice that the Andreev conductance achieves
its optimal value 4e2/h near �S ≈ U/2 [88]. This situation
corresponds to the ground state changeover of QD1, whose
in-gap bound states tend to cross each other and simultane-
ously the subgap Kondo peak is enhanced (on the doublet
side).

As regards the Majorana mode, its influence shows up by
suppression of the zero-bias conductance (see the middle and
bottom panels in Fig. 12). This effect comes merely from the
destructive quantum interference of the Majorana mode on the
spin-↑ sector of QD1 spectrum. Additionally, upon increasing
the interdot hopping t , we observe the signatures of emerging
molecular bound states. In particular, this is visible by a dark
region splitting the optimal conductance. We note that for a
more precise and direct observability of all the spin-resolved
spectra of QD1 one could use the spin-polarized Andreev
spectroscopy of bound states [103].

V. SUMMARY

We have studied the influence of the Majorana mode
transmitted to the double quantum dot side attached to a
topological superconducting nanowire. This setup could be
probed by tunneling spectroscopy through a circuit with
the outer quantum dot (QD1) sandwiched between the nor-
mal and superconducting leads. Proximity of DQD to the
superconducting reservoir induces the in-gap bound states,
whose complex structure depends on the interdot coupling,
as recently revealed in Ref. [61]. Here we have inspected
the modification of these conventional bound states by the
topological superconducting nanowire hosting the Majorana
boundary mode. This issue might be important for designing
the braiding protocols of Majorana quasiparticles.

In the absence of correlation effects we have derived an-
alytical expressions for the resulting in-gap bound states,
identifying the trivial Andreev quasiparticle branches and
the additional structures induced by the Majorana mode.
We have shown that these features manifest themselves dif-
ferently in each spin sector. In particular, the zero-energy
quasiparticle state induced at QD1 appears in a form of
destructive/constructive interference pattern imprinted on the
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↑ / ↓ spin sectors. Since the subgap charge transport mixes
both spins through the particle-to-hole scattering, the resulting
tunneling characteristics are predominantly affected by these
destructive signatures. We have discussed them in detail, con-
sidering the linear subgap Andreev conductance.

We have also extended our considerations to the strongly
correlated nanostructure, treating the competition of the su-
perconducting proximity effect with the repulsive Coulomb
interactions by the numerical renormalization group tech-
nique. Focusing on the half-filled quantum dots, we have
studied both the Kondo regime, when the Coulomb repul-
sion dominates over the superconducting proximity effect,
as well as the opposite limit, where the superconducting
proximity-induced pairing surpasses the Kondo correlations.
We have revealed qualitative differences in these two regimes,
evidenced in the spin-resolved spectral functions. We have
predicted that the optimal Andreev conductance would occur
near a crossover between the singly occupied doublet to the
BCS-type configurations of QD1. Moreover, our numerical
results obtained for the subgap spectroscopy indicate that the
Majorona mode strongly suppresses the zero-bias conduc-
tance, owing to its destructive influence on spin-↑ sector of
the outer quantum dot. We recently noticed similar studies of
the Majorana modes leaking to two quantum dotes embedded
at opposite sides of the topological superconducting nanowire
that have revealed noticeable influence of the Coulomb repul-
sion [104].
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APPENDIX A: ROLE OF POLARIZATION

In this Appendix we extend the discussion of the properties
of our hybrid structure in the uncorrelated case by assuming
that both spins of QD2 are coupled to the Majorana nanowire
though with different amplitudes VMσ . Hoffman et al. [68]
have shown that the spin-dependent tunneling amplitudes be-
tween Majorana modes and the quantum dot depend on the
quantum dot distance to the topological section. Moreover,
such finite polarization of the quantum dot attached to the
topological nanowire has been proposed as a suitable tool for
probing the topology of Majorana wave function [25,68–70].
To account for this effect, we use the following parametriza-
tion of the spin-dependent amplitudes

VM↑ = VM sin

(
θ

2

)
, (A1)

VM↓ = VM cos

(
θ

2

)
, (A2)

in terms of the canting angle θ [69], corresponding to the
rotation around the y axis.

Figure 13 presents the variation of the spectral function
A1σ (ω) of each spin sector with respect to the canting an-
gle θ . One can clearly see the influence of θ on spectral

FIG. 13. The normalized spectral function π�N A1σ (ω) for (a) the
spin-up and (b) spin-down components as a function of the canting
angle θ . Results are obtained for the case of uncorrelated quan-
tum dots using the following model parameters: ε1 = ε2 = 0, VM =
0.005, t = 0.01, �S = 0.02, �N = 0.002.

weights of the zero-energy peak, and also on the finite-
energy quasiparticles. In the fully polarized cases, VM↑ = 0
and VM↓ = VM (VM↑ = VM and VM↓ = 0), corresponding to
θ = 0 (θ = π ), we obtain the Majorana peak of spin-↓ (spin-
↑) spectral function A1↓(0) = 1/2π�N [A1↑(0) = 1/2π�N ].
On the other hand, in the unpolarized case, i.e., θ = π

2 , the
zero-energy Majorana peak is identical in both spin sectors,
A1↑(0) = A1↓(0) = 1/4π�N . Additionally, we notice,that the
canting angle neither affects the energies of the Andreev
bound states ε±

ADi [cf. Eq. (9)] nor the quasiparticle states ε±
MDi

[cf. Eq. (10)]. Its influence is visible merely in the spectral
densities A1σ (ε±

AD2) and A1σ (ε±
MDi ).

We have shown that θ affects the quasiparticle weights
of the diagonal spectral functions, but additionally it also
strongly modifies the off-diagonal spectral functions. Such
influence would be empirically observable in the subgap tun-
neling conductance. Figure 14 presents the linear Andreev
conductance GA as a function of the canting angle. We notice
that θ leads to the variation of GA up to the maximal value
Gmax

A = e2/h. For the full polarization of VMσ (i.e., θ = 0 or
θ = π ), we obtain identical values of the linear conductance,
because then the particle and hole degrees of freedom equally
participate in the Andreev scattering mechanism.
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FIG. 14. The linear Andreev conductance GA as a function of
the spin canting angle θ obtained for ε1 = 0, VM = 0.005, t = 0.01,
�S = 0.02, �N = 0.002, and several values of ε2, as indicated.

APPENDIX B: MAJORANA SPECTRAL FUNCTIONS

For unambiguous identification of the Majorana modes
leaking to each quantum dot in our geometry (Fig. 1), we have
determined their spectral functions, following the procedure
used in Refs. [10,18]. We represent d (†)

iσ operators in the Ma-
jorana representation

γ A
iσ = (d†

iσ + diσ )/
√

2, (B1)

γ B
iσ = i(d†

iσ − diσ )/
√

2. (B2)

These Majorana operators are self-conjugate and satisfy the
anticommutation rule {γ α

iσ , γ
β

jσ ′ } = δα,βδi, jδσ,σ ′ . In analogy to
Eq. (11), we next introduce their spectral functions

Mα
iσ (ω) = − 1

π
Im〈〈γ α

iσ ; γ α
iσ 〉〉ω+i0+ . (B3)

For convenience we normalize them by the factor π�N . Such
dimensionless spectral functions Dα

iσ (ω) = π�NMα
iσ (ω) are

formally related to the following spectral functions of each
quantum dot in the initial representation [10]:

DA
iσ (ω) = −�N

2
Im(〈〈diσ ; diσ 〉〉ω+i0+ + 〈〈d†

iσ ; diσ 〉〉ω+i0+

+ 〈〈diσ ; d†
iσ 〉〉ω+i0+ + 〈〈d†

iσ ; d†
iσ 〉〉ω+i0+ ) (B4)

and

DB
iσ (ω) = −�N

2
Im(〈〈d†

iσ ; diσ 〉〉ω+i0+ + 〈〈diσ ; d†
iσ 〉〉ω+i0+

− 〈〈diσ ; diσ 〉〉ω+i0+ − 〈〈d†
iσ ; d†

iσ 〉〉ω+i0+ ). (B5)

Figures 15 and 16 display these spectral functions (B4) and
(B5) obtained for the uncorrelated quantum dots with identical
energy levels ε1 = ε2 = 0. We clearly notice that the zero-
energy Majorana mode of A-type leaks to the neighboring
QD2 solely for spin-↑, whereas to the outer QD1 only in the
spin-↓ sector. Absence of the zero-energy quasiparticle of the
opposite spin sectors is caused by the destructive interfero-
metric effects, whose consequences observable in the charge
tunneling are discussed in Sec. III C of this paper.

Upon detuning the energy levels ε1 �= ε2, we observe
signatures of the zero-energy Majorana A quasiparticle in

FIG. 15. The normalized Majorana spectral function Dα
i↑ induced at QD1 (top) and QD2 (bottom) for ε2 = 0, using the model parameters

presented in Fig. 2.
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FIG. 16. The same as in Fig. 15 for spin ↓ electrons.

both spin sectors of each quantum dot, though with differ-
ent magnitudes (due to partial interferometric effects). This
behavior is shown in Figs. 17 and 18 for ε2 = 0.005. The

tendency observed by us in this Appendix is reminiscent
of the previous results displayed by Vernek et al. [18] in
Fig. 2.

FIG. 17. The normalized Majorana spectral function Dα
i↑ induced at QD1 (top) and QD2 (bottom) for ε2 = 0.005, using the model

parameters presented in Fig. 2.
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FIG. 18. The same as in Fig. 17 for spin ↓ electrons.
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