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Using finite-temperature determinantal quantum Monte Carlo simulations, we examine the thermodynamic
properties of the extended Hubbard model on the half-filled square lattice in the Slater regime at intermediate
coupling. We consider both the case of nearest-neighbor interactions and long-range Coulomb interactions,
for coupling strengths in which the presence of nonlocal interactions still allows us to perform sign-problem
free quantum Monte Carlo simulations. In particular, we assess a recently proposed scenario from variational
calculations in terms of a first-order metal-insulator transition in this interaction regime.
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I. INTRODUCTION

The Hubbard model [1], describing itinerant electrons in
the presence of a local (on-site) repulsion, provides a most ba-
sic model to study the competition between kinetic energy and
interaction effects in fermionic quantum many-body systems.
A wide range of theoretical and computational approaches
have been employed in order to explore its physical properties
and its relevance to a wide breath of fundamental phenomena
in condensed matter physics has been demonstrated, including
the Mott-insulator transition, and the emergence of symmetry
broken states, such as antiferromagnetism (AFM) or super-
conductivity (see, e.g., Ref. [2] for a recent review). This effort
has contributed substantially to our current understanding of
strongly correlated electron systems. Moreover, cold atom
experiments provide us with a unique platform to study the
physics of the Hubbard model over a wide range of control-
lable parameters [3].

However, in view of the fact that in solid-state materials
the long-range Coulomb (LRC) interaction is only partially
screened, it is important to also account for the effects of more
extended interactions in addition to the local Hubbard U on
the physical properties. Indeed, nonlocal interactions affect
various quantities such as the electronic bandwidth [4,5], and
they can induce charge density wave states [6–10], to name
but a few consequences.

Recently, the effects of nonlocal interactions on the metal-
insulator transition on the half-filled square lattice have been
explored, based on a variational approach [11,12]. More
specifically, by means of the Peierls-Feynmann-Bogoliubov
variational principle, the extended Hubbard model was ap-
proximated in Ref. [12] by an effective (local) Hubbard model
in terms of an effective hopping parameter and local interac-
tion strength Ũ . For this purpose, the variational free energy
was calculated based on the integration of thermodynamic
data for the effective (local) Hubbard model, obtained using
determinantal quantum Monte Carlo (DQMC) simulations on
a dense parameter grid, applying a two-dimensional Savitzky-

Golay filter and spline interpolation to the grid data [12].
Based on this variational approach, several conclusions re-
garding the effects of nonlocal interactions were drawn. In
particular, two distinct mechanisms are described in Ref. [12],
how nonlocal interactions suppress correlation effects: Within
the Fermi-liquid regime they reduce Ũ , while they increase the
effective hopping strength within the insulating regime. More-
over, the competition between both mechanisms was found
to drive a first-order metal-insulator transition in the presence
of nonlocal interactions. From a comparison of the associated
entropy jump across the transition with available experimental
data on materials with purely electronic metal-insulator tran-
sitions, the authors conclude that nonlocal interactions are at
least in part responsible for the discontinuous metal-insulator
transitions observed in correlated electron materials. In view
of the above, it is mandatory to compare the results from
the variational approach to unbiased calculations that take
the nonlocal interactions fully into account. In fact, as noted
in Ref. [12], the parameter region in which the discontinu-
ous thermodynamic behavior was observed is accessible to
sign-problem free DQMC simulations, i.e., including a full
treatment of the nonlocal interaction terms [13,14].

Here we report results from unbiased DQMC simula-
tions of the extended Hubbard model in order to assess the
qualitative and quantitative appropriateness of the variational
approach [12]. In particular, we probe for unbiased evidence
for the emergence of the discontinuous thermodynamic be-
havior reported in Ref. [12] as a result of nonlocal interactions.
The remainder of this paper is organized as follows: In Sec. II
we define the extended Hubbard models that we consider
here, and also specify our computational approach. The results
obtained from our DQMC calculations are then reported in
Sec. III, and final conclusions are given in Sec. IV.

II. MODEL AND METHOD

In the following we consider the extended Hubbard model
with nonlocal density-density interactions, described by the
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Hamiltonian

H = −t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.) + U
∑

i

ni↑n j↓ + 1

2

∑
i �= j

Vi jnin j

(1)
on the square lattice. Here c†

iσ (ciσ ) denotes the creation (an-
nihilation) operator for electrons on site i with spin projection
σ , niσ = c†

iσ ciσ the local spin-resolved occupation operators,
and ni = ni↑ + ni↓ the total local occupation. Furthermore, t
denotes the nearest-neighbor hopping amplitude, U the local
(Hubbard) repulsion, and Vi j the nonlocal interaction between
electrons on site i and j. In the following we will focus on
two different cases: (i) the so-called U -V model with nearest-
neighbor interactions of strength V , and (ii) LRC interactions
with Vi j = VC/di j , where di j denotes the distance between
sites i and j (the lattice constant a = 1). In all our investi-
gations, we consider the case of half-filling.

In order to examine the thermodynamic properties of the
above model, we use DQMC simulations [15], performed
using the ALF code [16]. This allows us to simulate the
above model sign-problem free using appropriate Hubbard-
Stratanovich decoupling schemes [13,14] for both the on-site
and nonlocal interactions within the regimes (i) V � U/4 for
the U -V model, and (ii) VC � 0.62U , such that Uδi j + Vi j is
a positive-definite matrix, for the LRC-Hubbard model case.
Note that an earlier DQMC work on the U -V extended Hub-
bard model used a decoupling scheme that leads to a sign
problem for any finite V > 0 [7] (this fact is not mentioned
explicitly in that reference). For the DQMC simulations, we
consider finite square lattices with N = L×L lattice sites with
periodic boundary conditions in both lattice directions and
the standard minimum image convention for the case of LRC
interactions. We denote the (inverse) temperature by T (β =
1/T ) in the following (kB = 1).

In our analysis, we mainly concentrate on DQMC results
for the double occupancy,

D = 1

N

N∑
i=1

〈ni↑ni↓〉, (2)

for which we perform a spatial averaging in order to enhance
the statistical accuracy. We also draw attention to a recent
proposal on how to improve the DQMC sampling proce-
dure in order to further reduce statistical fluctuations on such
local quantities [17]. For the DQMC simulations a Trotter
decomposition of H is used with a small imaginary-time step
�τ . For the reported DQMC results for D, we preformed a
�τ → 0 extrapolation, as detailed in Appendix A, and the
data shown below has always been obtained from this analy-
sis. Furthermore, we report results for the entropy S (per site),
which we obtain from the DQMC values of the internal energy
E (per site) at �τ = 0.1/t via thermodynamic integration,

S(β ) = βE (β ) + ln(4) −
∫ β

0
E (β ′) dβ ′. (3)

The integral is evaluated numerically using the trapezoidal
rule on a dense β mesh. In addition to these thermodynamic
quantities, we also measured in the QMC simulations the
structure factors for AFM, stabilized, e.g., in the ground state

FIG. 1. Temperature dependence of the double occupancy D for
the Hubbard model at U/t = 1.9. The inset focuses on the low-
temperature regime containing the local maximum.

of the Hubbard model at half-filling,

SAF = 1

N

N∑
i, j=1

εiε j〈Si · S j〉, (4)

as well as for the commensurate charge density wave (CDW)
state that is expected to be stabilized for sufficiently strong V
in the U -V model [7],

SCDW = 1

N

N∑
i, j=1

εiε j〈nin j〉. (5)

Here εi = ±1, depending on which sublattice the site i be-
longs to on the bipartite square lattice.

III. RESULTS

In this section we report results from DQMC simulations
and compare them with previously reported findings. Before
we consider the case of nonlocal interactions, we first present
DQMC results for the Hubbard model (i.e., V = VC = 0).

A. The Hubbard model

While highly accurate and detailed DQMC results of var-
ious thermodynamic quantities for the Hubbard model has
been reported in Ref. [18], these do not include the thermal
behavior of both D and S, which we report below. In order
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FIG. 2. Temperature dependence of the entropy S for the Hub-
bard model at U/t = 1.9. The inset focuses on the low-temperature
regime.

to allow for a direct comparison to the numerical results re-
ported from the variational approach in Ref. [12], we focus
in the following on the specific parameter ratio U/t = 1.9,
which locates the electronic system within the Slater regime.
A characteristic feature of D in this regime is the appearance
of a maximum at low temperatures. In Fig. 1 we show the
DQMC results for D as a function of temperature as obtained
for various system sizes L. Also included is the result from an
extrapolation to the thermodynamic limit (TDL), performed
as detailed in Appendix B.

A prominent feature in the Slater regime is the non-
monotonous behavior of D in Fig. 1, displaying both a local
minimum and maximum. We quickly review, how this be-
havior comes about. A minimum in D is observed also in
cases where the long-range AFM order in the ground state
is quenched (e.g., by geometric frustration [19] or within the
nonmagnetic dynamical-mean-field-theory approximation of
the Hubbard model [20]). It results from the initial decrease
of D with increasing T via an entropic effect, in analog of
the Pomeranchuk effect in helium 3 or ultracold atoms [21].
Namely, the formation of nonordered local magnetic moments
leads to an entropy gain with respect to a state of itinerant
electrons. Upon further increasing T however, D eventually
needs to increase again towards the noninteracting value of
1/4 at infinite temperature. Taken together, this results in the
local minimum of D that is visible in Fig. 1, with Tmin = 0.83t
obtained from the DQMC simulations.

FIG. 3. Temperature dependence of the double occupancy D for
the U -V model at U/t = 1.9, V/t = 0.3. The inset focuses on the
low-temperature regime containing the local maximum.

The formation of a local maximum in D in Fig. 1 at
Tmax = 0.085t results from the proliferation of AFM fluctu-
ations for the Hubbard model on the bipartite square lattice
via an energetic effect: In the Slater regime, the onset of AFM
fluctuations lead to a decrease of the local Hubbard interaction
energy UD when decreasing D upon further lowering the
temperature [18]. Two mechanisms are thus responsible for
the low-temperature maximum appearing in D: Moving away
from the maximum towards lower temperature, D is lowered
to decrease the interaction energy (Slater effect), while D is
suppressed towards higher temperature to increase the spin
entropy (Pomeranchuk effect). We note that the DQMC data
in Fig. 1 exhibits a more rapid drop of D upon decreasing
T from the position of the local maximum at Tmax than upon
increasing T .

We can directly compare the DQMC data to the results
reported from the variational approach [12], where we focus
in particular on the local maximum in the low-temperature
region. With respect to the position of the maximum, both
approaches agree rather well. However, both the finite-size
DQMC data and the TDL values of D at the local maximum
fall below 0.2, whereas within the variational approach the
local maximum extends beyond 0.207. While this difference
might be considered small, it is are actually relevant in view
of the fact that the jumps in D reported in Ref. [12] for
finite V,VC > 0 are of even smaller magnitude, as detailed
below.
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FIG. 4. Temperature dependence of the entropy S for the U -V
model at U/t = 1.9, V/t = 0.3. The inset focuses on the low-
temperature regime.

Before we turn to nonzero values of V , we briefly report
the DQMC results for the entropy S for the same value of
U/t = 1.9, cf. Fig. 2. In the intermediate temperature regime
below about T ≈ t , we observe an essentially linear decrease
of S for large systems, down to a temperature of T ≈ 0.08t . At
lower temperatures, the entropy decreases more rapidly with
decreasing temperature. Overall, this behavior matches the
aforementioned similar asymmetric drop in D near its local
maximum at Tmax. The enhanced reduction of both D and S
below Tmax reflects the Stoner effect mentioned above upon
entering the regime where AFM fluctuations proliferate. In the
finite-size data of the entropy we furthermore identify a small
temperature window below Tmax, in which S exhibits a (mild)
increase with system size L, in contrast to its decrease with
increasing L outside of this regime. A possible explanation for
the anomalous behavior is the growth of the AFM correlation
length on scales comparable to the simulated system sizes
in this regime. By contrast, for lower (higher) temperatures,
the correlation length instead resides well beyond (below) the
finite size of the simulation cell.

B. The U -V model

We next turn to the U -V model, and consider in particular
a value of V/t = 0.3, again for U/t = 1.9. Namely, for this
value of V a noticeable jump in D was observed within the
variational approach at a temperature of T ≈ 0.085t , and was
taken as indication of a first-order metal-insulator transition

FIG. 5. Temperature dependence of the TDL-extrapolated dou-
ble occupancy D (top panel) and the entropy S for the L = 20
systems (middle panel) for the considered models with U/t = 1.9,
for V/t = 0.3 and VC/t = 1.9, respectively. The bottom panel shows
the difference S − S0 of the entropy for the models with extended in-
teractions with respect to the entropy of the Hubbard model (denoted
S0 here).

[12]. Performing the data analysis as in the previous section,
we obtain the DQMC results shown in Figs. 3 and 4 for D and
S, respectively. For the purpose of a direct comparison, the
QMC data for both D and S for the different models are also
collected in Fig. 5. In agreement with general expectations
and the results from the variational approach, we observe an
increase of D for the case of finite V as compared to the V = 0
case, corresponding to an overall decrease of the local correla-
tions. Correspondingly, we also observe a mild enhancement
of the entropy in the low-temperature region for finite V > 0,
while otherwise S also shows a behavior similar to the one
at V = 0. Besides the overall increase in the values of D, we
observe no significant change in, e.g., the temperature of the
maximum in D.

In contrast to the variational approach, the finite-size
DQMC data does not exhibit any indication for the onset of
a discontinuity in D near the local maximum. We do observe
in the TDL extrapolation a somewhat steeper drop of D on
the low-temperature side of the maximum than for V = 0, but
no indication for a jump is obtained. It was already noted in
Ref. [12] that the discontinuity obtained within the variational
approach is of order 3×10−4 for V/t = 0.3 and thus actually
rather small. On the other hand, we noted already for the case
V = 0, discussed in the previous section, that the values for D
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FIG. 6. Temperature dependence of the TDL-extrapolated dou-
ble occupancy D for the U -V model (left panel) and the LRC-
Hubbard model (right panel) at U/t = 1.9 for various values of V
and VC , respectively.

obtained in Ref. [12] deviate from the DQMC results by much
larger differences (of order 7×10−3). Moreover, the finite-size
systems studied in Ref. [12] for V = 0 extend up to L = 12,
i.e., well below the value of L up to 20 used here. Together,
these observations suggest that the deviations seen between
the DQMC data and the variational approach are due to the
interpolation and approximation schemes that were employed
in Ref. [12]. While we cannot exclude from our analysis that
an extremely weak discontinuity may eventually emerge (e.g.,
for values of V > U/4, i.e., outside the regime accessible to
DQMC), the above direct comparison of the magnitude of the
deviations obtained from the variational approach with the
DQMC data for the case of V = 0 indicates that the weak
values of the reported discontinuity actually fall well within
the error margins of the variational approach.

Thus far we concentrated on the specific value of
V/t = 0.3. In addition, we performed DQMC simulations at
several other values of V , up to and including the limit-
ing case of V = U/4 = 0.475t for sign-problem free DQMC
simulations at U/t = 1.9. The TDL-extrapolated values of D
obtained from these extended simulations of the U -V model
are shown in the left panel of Fig. 6, while the left panel of
Fig. 7 summarizes the results for the entropy S obtained on the
largest considered system size (L = 20) for the U -V model.

Both quantities exhibit similar behavior and trends for the
various values of V as for the case V/t = 0.3 considered in de-

FIG. 7. Temperature dependence of the entropy S for the U -V
model (left panel) and the LRC-Hubbard model (right panel) at
U/t = 1.9 for various values of V and VC , respectively, on the L = 20
system.

tail above—the most noticeable difference being the presence
of a (weak) peak in D at the largest accessible values of V/t �
0.4. We can understand the corresponding enhancement in
the local density fluctuations from considering the ordering
tendencies of the U -V model: Namely, for sufficiently strong
V , the U -V model is expected to stabilize a CDW ground
state [7]. Recent zero-temperature DQMC simulations [22]
have shown that for V � U/4 the system has an AFM ground
state, i.e., CDW order sets in for V sufficiently larger than U/4
only. In Fig. 8 (left panel) and Fig. 9 (left panel) we provide
DQMC data for the structure factors SAF and SCDW of the U -V
model, respectively. Both quantities are shown as functions
of temperature on the largest considered system size, L = 20,
and for various values of V . We find that within the DQMC-
accessible region, the AFM structure factor increases steadily
with decreasing T , in accord with the AFM ground state in
this regime (by the Mermin-Wagner theorem, AFM order is
destroyed by thermal fluctuations at any finite temperatures
in the TDL). On the other hand, the CDW structure factor,
while initially increasing upon lowering the temperature, is
eventually suppressed again at low T , in accord with the
findings in Ref. [22], i.e., for V � U/4 the ground state has
AFM but no CDW order.

In contrast to AFM, the CDW order that emerges for large
V is stable with respect to (weak) thermal fluctuations, i.e.,
the CDW order stabilized at sufficiently large V melts at a

155121-5



ALEXANDER SUSHCHYEV AND STEFAN WESSEL PHYSICAL REVIEW B 106, 155121 (2022)

FIG. 8. Temperature dependence of the AFM structure factor SAF

for the U -V model (left panel) and the LRC-Hubbard model (right
panel) at U/t = 1.9 for various values of V and VC , respectively, on
the L = 20 system.

finite critical temperature across a thermal phase transition
(from symmetry considerations, this transition is continuous
and belongs to the two-dimensional Ising universality class).
For values of V below but near U/4, the critical local den-
sity fluctuations associated with this nearby thermal critical
region will enhance the double occupancy D, an effect that
apparently is captured by the data in Fig. 6. From these con-
siderations one may identify the peak position in D at about
T/t ≈ 0.06 as a rough estimate for the critical temperature of
the CDW melting transition in the interaction regime where
the CDW ground state emerges. It would certainly be inter-
esting to explore this regime in more detail by simulating
the system for even larger values of V > U/4 and to exam-
ine the thermal phase diagram in this regime. However, due
to the sign problem, this is not feasible within the DQMC
approach.

C. The LRC-Hubbard model

For completeness, we also consider the case of LRC in-
teractions. More specifically, we fix again U/t = 1.9 and set
VC/t = 0.3, corresponding to the case where the variational
approach yields a discontinuity in D of a similar magnitude
than for the U -V model case. In Figs. 10 and 11 we present
our DQMC data for this case. See also Fig. 5 for a comparison
to the Hubbard and U -V model. For the LRC case, we again

FIG. 9. Temperature dependence of the CDW structure factor
SCDW for the U -V model (left panel) and the LRC-Hubbard model
(right panel) at U/t = 1.9 for various values of V and VC , respec-
tively, on the L = 20 system.

observe an overall enhancement of D and S with respect to the
Hubbard model. More specifically, the presence of the addi-
tional interactions beyond the nearest-neighbor terms leads to
a weaker enhancement of D than for the U -V model, while the
low-temperature enhancement of S over the Hubbard model
case is larger for the LRC-Hubbard model than for the U -V
model. On the other hand, also for the LRC-Hubbard case
we do not obtain any indication for the presence or for the
onset of a discontinuity in the DQMC data for D, in contrast to
the variational approach [12]. Also for the LRC-Hubbard we
performed additional DQMC simulations for varying values
of VC within the sign-problem free regime for U/t = 1.9. The
DQMC data for the various considered quantities D, S, SAFM,
and SCDW are shown in the right panels of Figs. 6–9, respec-
tively. While for the considered values of VC/t larger than 0.6
we were not able to reach sufficiently down to the asymptotic
low-temperature regime to see, e.g., the asymptotic low-T
suppression of the entropy (cf. Fig. 7), the additional DQMC
data exhibits very similar behavior and trends as for VC/t =
0.3 within the relevant temperature range around T/t ≈ 0.06,
throughout the accessible interaction regime.

IV. CONCLUSIONS

In summary, we have examined the thermodynamic be-
havior of the double occupancy and the entropy of both the
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FIG. 10. Temperature dependence of the double occupancy D for
the LRC-Hubbard model at U/t = 1.9, VC/t = 0.3. The inset focuses
on the low-temperature regime containing the local maximum.

U -V and LRC extended Hubbard model, focusing on the
low-temperature regime, for which a recent variational cal-
culation reported the emergence of a weakly first-order MIT
transition, as compared to the smooth crossover in the local
Hubbard model limit [12]. In agreement with the variational
calculations, we observe an overall enhancement of the double
occupancy for the systems with extended interactions and we
also identify an associated increase of the entropy within the
low-temperature regime. However, both our finite-size data as
well as carefully extrapolated TDL limit values do not provide
us with any evidence for the presence or the onset of noncon-
tinuous behavior as reported from the variational approach.
Furthermore, we observe deviations from the variational cal-
culations already for the local Hubbard model case of an order
of magnitude that is significantly larger than the size of the
weak discontinuities reported in Ref. [12]. This indicates that
the discontinuous behavior reported previously steams from
inherent limitations from the variational calculations in com-
bination with the interpolations employed in Ref. [12]. Upon
approaching the limiting values of V = U/4 for sign-problem
free DQMC simulations for the U -V model, we observe a
(weak) peak emerging in the temperature dependence of the
double occupancy. This could be linked to the enhancement of
local density fluctuations in the vicinity of the thermal critical
point of the CDW order that emerges for sufficiently large
values of V (but beyond the DQMC-accessible interaction
regime).

FIG. 11. Temperature dependence of the entropy S for the LRC-
Hubbard model at U/t = 1.9, VC/t = 0.3. The inset focuses on the
low-temperature regime.

It would certainly be interesting to extend these investiga-
tions on the thermodynamic effects of extended interactions
in systems of correlated electrons with even larger values
of the extended interaction terms, beyond the limits of sign-
problem free DQMC simulations in future works, based on,
e.g., tensor network or minimally entangled thermal typical
state approaches.
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APPENDIX A: TROTTER-DISCRETIZATION
EXTRAPOLATION

Based on to the Hermiticity of the physical observables, the
Trotter error that arises in the discrete-time DQMC calcula-
tions due to the finite Trotter discretization scales proportional
to �τ 2 in the asymptotic region [15]. This property allows us
to systematically extrapolate the DQMC data to the �τ → 0
limit. This process is illustrated for representative data sets in
Fig. 12 (access to all the obtained finite-�τ DQMC data is
provided via an online repository [23]).
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FIG. 12. Trotter-discretization extrapolation of the double occu-
pancy D for the Hubbard model at U/t = 1.9, L = 20, for different
values of the temperature T .

APPENDIX B: FINITE-SIZE EXTRAPOLATION

In order to extrapolate the finite-size DQMC data to the
TDL, we need to account for the leading finite-size correction
at low temperatures in terms of a finite (correlation) length
scale from thermal fluctuations. In particular, for the double
occupancy, the TDL value DTDL is obtained by fitting the
finite-size data D (as obtained from performing the �τ → 0

FIG. 13. Finite-size extrapolation of the double occupancy D for
the Hubbard model at U/t = 1.9 for different values of the tempera-
ture T .

extrapolation, cf. Appendix A) to the finite-size form D(L) −
DTDL ∝ exp(−L/ξ ), where ξ is a T -dependent parameter that
quantifies the corresponding length scale. This procedure is il-
lustrated for several representative data sets in Fig. 13 (access
to all the obtained finite-�τ DQMC data is provided via an
online repository [23]).
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