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Aharonov-Bohm caging is a localization mechanism stemming from the competition between the geometry
and the magnetic field. Originally described for a tight-binding model in the dice lattice, this destructive inter-
ference phenomenon prevents any wavepacket spreading away from a strictly confined region. Accordingly, for
the peculiar values of the field responsible for this effect, the energy spectrum consists of a discrete set of highly
degenerate flat bands. In the present work, we show that Aharonov-Bohm cages are also found in an infinite set of
hyperbolic dice tilings defined on a negatively curved hyperbolic plane. We detail the construction of these tilings
and compute their Hofstadter butterflies by considering periodic boundary conditions on high-genus surfaces.
As recently observed for some regular hyperbolic tilings, these butterflies do not manifest the self-similar
structure of their Euclidean counterparts but still contain some gaps. We also consider the energy spectrum
of hyperbolic kagome tilings (which are the dual of hyperbolic dice tilings), which displays interesting features,
such as highly degenerate states arising for some particular values of the magnetic field. For these two families
of hyperbolic tilings, we compute the Chern number in the main gaps of the Hofstadter butterfly and propose
a gap labeling inspired by the Euclidean case. Finally, we also study the triangular Husimi cactus, which is a
limiting case in the family of hyperbolic kagome tilings, and we derive an exact expression for its spectrum
versus magnetic flux.
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I. INTRODUCTION

Two-dimensional electron systems in a perpendicular mag-
netic field have been intensively studied in condensed-matter
physics, in particular in the context of integer [1] and frac-
tional [2] quantum Hall states or the self-similar Hofstadter
butterfly [3] describing the structure of energy levels for tight-
binding electrons versus the magnetic flux. This subject is
not limited to condensed-matter experiments, as proved more
recently in the field of atomic physics with the possibility
of generating “artificial” magnetic fields acting on cold-atom
assemblies, which opens the way to different types of experi-
ments in that direction [4].

In 1998, an extreme localization effect induced by the mag-
netic field was discovered, for tight-binding models in certain
periodic tilings, such as the dice tiling [5] or the diamond
chain [6], at a critical value fc = 1/2 of the magnetic flux
per plaquette (measured in units of the quantum flux φ0).
Aharonov-Bohm (AB) cages are shown to exist due to a com-
plete destructive interference affecting a particle’s motion.
These cages have a spectral signature: the dice tiling butterfly
displays a density of states that pinches while approaching fc,
leading at fc to an energy spectrum consisting of three highly
degenerate energy levels.

Among these three energy levels, the one at zero energy
is present at any flux, and the other two are the result of de-
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structive interferences tuned by the magnetic field. A particle,
initially located on a site of the tiling, displays a quantum
diffusion limited to a small cluster of sites (the so-called AB
cage), and eventually bounces back and forth to its original
position. This effect disappears if the flux is tuned away
from fc [5] or if interactions between particles [6] or disorder
[7] are introduced. Notice that AB cages are not limited to
tight-binding systems, and were recently shown to occur for
quantum walks [8,9].

These AB cages have triggered much interest and have
been observed in different experimental setups such as su-
perconducting wire networks [10], Josephson junction arrays
[11], cold atomic gases [12], photonic lattices [13], ion micro-
traps [14], and more. For a recent review concerning artificial
systems, see Ref. [15].

So far, Hofstadter butterflies have been mainly investigated
for Euclidean tilings, either periodic [3,16] or quasiperiodic
[17,18]. The case of regular tilings of the hyperbolic plane H2

has also been recently addressed [19]. In this case, Hofstadter
butterflies display no self-similarity and only a few gaps.
Regular two-dimensional hyperbolic tilings are well known
and classified in standard mathematical texts [20]. Their un-
derlying negatively curved geometry was considered in the
context of geometric frustration [21–23], and the fact that
limiting cases of these tilings correspond to embeddings of
the Bethe lattice and the Husimi cactus was noticed [24].
Recently, there has been a renewed interest in these tilings in
the context of quantum information [25], of circuit quantum
electrodynamics [26,27], and of electrical circuits [28].

Here, we study two infinite families of semiregular hy-
perbolic tilings. For the first one (which generalizes the
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dice-tiling Euclidean case), we show the occurrence of
AB cages. The second family, dual to the first one, is a
generalization to H2 of the standard (Euclidean) kagome
tiling. This case also displays interesting features, like a spec-
tral pinching phenomenon on a simple flux-dependent curve,
and the existence of many gaps.

The article is organized as follows. In Sec. II, we introduce
the set of hyperbolic dice and kagome tilings. We then study
in Sec. III their associated Hofstadter butterflies, and analyze
the triangular Husimi cactus case. Section IV is devoted to
the analysis of the gap-labeling problem. Several Appendices
provide additional information.

II. HYPERBOLIC DICE AND KAGOME TILINGS

A. Regular two-dimensional tilings

The Schläfli symbol {p, q} is a standard notation for regular
tilings made of a regular polygon with p sides (a p-gon), such
that each site is shared by q p-gons [29]. To a given {p, q}, one
can associate a dual tiling {q, p}, sharing the same symmetry
group, whose vertices are located at the center of the p-gons
of the {p, q} tiling. These tilings are compatible with one of
the three two-dimensional geometries with constant Gaussian
curvature:

(1) (p − 2)(q − 2) < 4 denotes the five Platonic
polyhedra—the self-dual tetrahedron {3, 3}, the dual {3, 4}
octahedron and {4, 3} cube, and the dual {3, 5} icosahedron
and {5, 3} dodecahedron—which can be embedded in the
positively curved sphere S2.

(2) (p − 2)(q − 2) = 4 denotes the self-dual {4, 4} square
tiling, and the dual {3, 6} triangular and {6, 3} hexagonal
tilings which live on the Euclidean (flat) plane.

(3) (p − 2)(q − 2) > 4 denotes an infinite set of tilings of
the negatively curved hyperbolic plane H2.

The symmetry group of a {p, q} tiling, denoted [p, q], is
generated by reflections in the sides of a characteristic (also
called “orthoscheme”) triangle with angles π/p, π/q, and
π/2 (see Fig. 1 for the {7, 3} hyperbolic case).

This apparent hyperbolic space richness (with an infinite
set of regular tilings as compared to the finite sets found in
spherical and Euclidean spaces) is a peculiar two-dimensional
property. Indeed, the number of regular tessellations in higher-
dimensional hyperbolic spaces is finite and small.

B. Hyperbolic tilings

In this work, we focus on semiregular hyperbolic tilings re-
lated to the infinite set of triangular tilings {p, 3}. To represent
them, we use the Poincaré disk conformal representation, such
that H2 points are located inside a unit disk (whose boundary
is the locus of points at infinity). In this representation, H2

geodesic lines are circular arcs orthogonal to the unit circle.
Reflections about these geodesics are inversions with respect
to these circles [20,30].

Figure 1 shows the orthoscheme triangle associated to the
hyperbolic tiling {7, 3}. The latter is the image of site B under
reflections in the sides of the orthoscheme triangle, while
{3, 7} is the image of site A. Equivalent constructions can be
made for larger and larger polygons, up to polygons of infinite
size, called apeirogons or {∞}. The latter lead to regular

FIG. 1. A piece of the {7, 3} hyperbolic tiling together with the
orthoscheme triangle (A, B,C), with red edges. The symmetry group
[3,7] is generated by (hyperbolic) reflections with respect to the sides
of this triangle. The resulting images of vertices A, B, and C lead
respectively to the {3, 7}, {7, 3}, and the kagome K7 tilings.

{∞, q} tilings which are explicit realizations of infinite regular
treelike structures, called Bethe lattices [24]. It is well known
that a regular tree cannot be isometrically embedded in a
Euclidean plane without self-crossing. This becomes possible
in H2 owing to the fact that for an H2 disk, the boundary grows
exponentially with the radius.

C. From regular {p, 3} to hyperbolic dice and kagome tilings

We first describe an infinite set of semiregular rhombus
tilings derived from {p, 3} tilings. They have threefold and
p-fold coordinated sites as vertices, generalizing the Eu-
clidean dice tiling, and we denote them by Dp. The vertex
set of Dp is simply the union of all the sites of {3, p} with all
the sites of {p, 3}. The edge graph is bipartite, with each edge
connecting a {p, 3} site to a {3, p} site. The rhombic faces are
all congruent, with area equal to 2/3 of the {3, p} triangle area.
An example is illustrated in Fig. 2 for p = 7.

We also consider the tilings dual to Dp. These are general-
ized kagome tilings, which we denote here by Kp instead of
the more conventional symbol { p

q } [29]. The faces of Kp are
of two types, triangles and p-gons. Its sites are all alike, and
located at the midpoints of the {p, 3} edges (see point C in
Fig. 1), which are also midpoints of the {3, p} edges. In graph
theory, the edge graph of Kp is called the line graph of the
{p, 3} edge graph [31] (see again Fig. 2 for p = 7).

D. Boundary conditions

Our main results will concern tight-binding spectra un-
der a perpendicular magnetic field (see Sec. III). Regular
Euclidean tilings are periodic, which allows one, in zero
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FIG. 2. A piece of the hyperbolic dice D7 tiling (with black
edges forming rhombi) and its dual kagome K7 tiling (with blue
edges forming triangles and heptagons). The associated {7, 3} tiling
edges are shown as dashed lines.

field, to use Bloch’s theorem. Switching on the magnetic
field already adds difficulties in the Euclidean case, since the
gauge that enters the Hamiltonian generically breaks tiling
symmetries [3].

The situation is highly more complex in the hyperbolic
case, since the tiling symmetry group [p, q] is non-Abelian,
which in principle prohibits the application of Bloch the-
ory, even at zero magnetic flux. Note, however, a recent
proposition [32] to build some (Bloch-like) eigenvectors for
hyperbolic tilings, using one-dimensional irreducible repre-
sentations (irreps) of a (still non-Abelian) Fuchsian subgroup
of [p, q] generated by translations on H2. These symmetry
group elements, as for standard Euclidean translations, are
fixed-point free, and can generate the whole tiling by repeated
action on an associated unit cell. It is not yet known which part
of the spectrum can be captured by these Bloch-like states.

To compute spectral properties associated with the above-
described hyperbolic tilings, we need to specify the boundary
conditions. Two main such conditions could be applied, which
are now discussed.

1. Open boundary conditions

Let us first discuss open boundary conditions (OBCs). A
finite patch of the tiling has cut edges at its boundary, and this
irregularity modifies the spectrum. In the Euclidean case the
ratio of boundary sites to bulk sites vanishes at the thermo-
dynamic limit, and one expects that this limit is numerically
reached by increasing the size of the tiling patches, and even-
tually proceeding to finite-size scaling analysis when needed.
As said above, in the hyperbolic case, the ratio of boundary
to bulk sites remains finite with increasing patch size, which
makes OBCs quite unsuitable to use. Dealing with regular

tilings, we could concentrate on the local eigenspectrum near
the center of the patch, which should be closer to that expected
for the infinite tiling. As is well known, the moments of the
tight-binding local density of states (LDOS) are proportional
to the number of closed paths starting at the considered site.
Density-of-states moments are therefore correct up to the
graph diameter of the OBC patch.

2. Periodic boundary conditions

We now consider periodic boundary conditions (PBCs),
and the way to approach the thermodynamic limit upon
increasing the patch size. There are two main differences
between the Euclidean and hyperbolic cases, in terms of topol-
ogy and finite-size effects.

For Euclidean two-dimensional tilings, implementing
PBCs amounts to mapping the tiling onto a (genus-1) torus, by
identifying sites on opposite edges of a parallelogram patch.
The main advantage is to suppress dangling edges on the
boundary. But this, however, changes the LDOS whenever
moments involve noncontractible closed paths on the torus.
All parallelograms, no matter how large, can be mapped to
a genus-1 torus as long as the opposite sides are separated
by (possibly large) translation symmetries of the full tiling.
At vanishing magnetic flux, we can again apply Bloch theory
and get the compact patch spectrum by selecting a discrete
set of k-vectors in the Brillouin zone. The thermodynamic
limit is smoothly approached by taking finer k-vector meshes,
corresponding therefore to larger (compactified) patches of
the tiling. The smallest paths that are counted on a torus and do
not exist in the infinite structure are the noncontractible paths
whose typical length is the diameter of the patch that is closed
onto the torus, which goes as

√
V for a patch with V vertices.

As a result, the spectrum will show higher LDOS moments,
of order

√
V and larger, as compared to the spectrum of the

infinite-size tiling.
The situation is very different in the hyperbolic case, since

tiling patches of increasing size will map onto tori of increas-
ing genus, and therefore different topologies. This is due to
the following well-known facts. For any tiling of a closed
surface M of genus g, the Euler-Poincaré formula relates the
number of vertices V , edges E , and faces F of the tiling
to the Euler characteristic χ = 2 − 2g of M. In addition,
the Gauss-Bonnet formula relates χ to the integral of the
Gaussian curvature κ over M:

V − E + F = χ = 1

2π

∫∫
M

κ dσ. (1)

For a hyperbolic tiling of type {p, q}, each p-gonal face
carries the same total negative curvature, and the right-hand
side of the above relation grows linearly (in absolute value)
with F , implying that the genus increases with the size of the
patch. We can go further and write, for several tiling families,
simple relations between the genus and the number of sites:

{p, 3}: V = 4p(g − 1)/(p − 6), (2)

{3, p}: V = 12(g − 1)/(p − 6), (3)

Dp: V = (4p + 12)(g − 1)/(p − 6), (4)

Kp: V = 6p(g − 1)/(p − 6). (5)
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This does not mean that any regular patch satisfying these
relations can be mapped coherently onto a closed surface. A
nice family of highly symmetrical compact solutions, used
in the present work, is provided by the set of {7, 3} Hurwitz
tilings, described in Appendix A. Other examples, which in-
clude other values of p, are obtained from the complete list of
vertex-transitive threefold coordinated graphs with up to 2048
vertices [33]. This list contains, among others, many inter-
esting {p, 3} tilings defined on g-holed tori, whose associated
quantum properties under a perpendicular magnetic field have
recently been studied [19].

Notice that the hyperbolic case is different from the Eu-
clidean one in terms of finite-size analysis. Indeed, on a
high-genus surface there will be short, noncontractible graph
loops with lengths growing no better than linearly with the
diameter of the patch, while V grows exponentially with
this diameter. As a consequence the finite-size difference in
the computed spectrum is shifted towards LDOS moments
of order logV for a patch of V vertices, meaning that the
thermodynamic regime is quite slowly approached.

III. HOFSTADTER BUTTERFLIES FOR HYPERBOLIC
TILINGS

A. Hofstadter model

We consider the following tight-binding Hamiltonian:

H = −
∑
〈i, j〉

ti, j |i〉〈 j|, (6)

where 〈i, j〉 stands for nearest-neighbor sites and ti, j is the
hopping amplitude. Without loss of generality, we set ti, j = 1
in the following. The effect of an external uniform magnetic
field B, perpendicular to the tiling, is taken into account by
a modification of the hopping amplitude by a Peierls phase
term [34]:

ti, j → ti, j e− 2iπ
φ0

∫ j
i A·dl

, (7)

where φ0 is the flux quantum and A is a vector potential
associated to the magnetic field, B = ∇ × A. For a given pla-
quette, we also introduce the magnetic flux φ in this plaquette
and the reduced flux f = φ/φ0.

With the compactified regular {p, q} graphs, it is simpler
to consider dimensionless quantities. We must first ensure
that faces are coherently oriented, and then associate to each
oriented edge a Peierls phase such that their product around
each face is a constant e2iπ f . For the {p, q} graphs, with
F identical faces, the reduced flux f takes discrete allowed
values j/F with j ∈ Z. In the Kp case, with two types of
faces, the allowed values of f are slightly different, and given
in Appendix B, which also describes in more detail the gauge
construction. Plotting the eigenvalues versus f leads to the
Hofstadter butterflies presented below.

B. Hyperbolic dice tilings and AB cages

The spectral properties of the Euclidean dice tiling D6 are
well known (see Refs. [35,36]) in the absence of magnetic
field, and when magnetic field is switched on (Refs. [5,7]).
Since the Dp rhombic faces have equal area, the spectrum of H
is periodic with f , and we can restrict the study to f ∈ [0, 1].

As for the above {p, q} cases, the allowed values of f j are still
of the form j/F , with F the number of Dp faces. Furthermore,
these tilings being bipartite, the energy spectrum is symmetric
with respect to zero.

Figure 3 shows the Hofstadter butterfly of several hyper-
bolic dice Dp tilings, with p = 7, . . . , 11, along with the p =
6 Euclidean case for comparison. The Dp sites’ average co-
ordination number (and therefore the overall butterfly width)
is p dependent. To compare the different butterflies, we have
rescaled them by a factor of

√
3p in energy (−√

3p being the
Perron-Frobenius eigenvalue for f = 0), leading to spectra in
the range [−1,+1].

As already discussed for other hyperbolic tilings [19],
namely, the {p, 3} and {3, p} dual tilings, the hyperbolic but-
terflies are much less structured than the Euclidean ones.
Nevertheless, they display some interesting features that we
now describe.

At vanishing flux we already notice a characteristic fea-
ture of hyperbolic tilings: the fact that the (Perron-Frobenius)
lowest-energy state is separated by a gap from the rest of the
spectrum. The Dp tilings being bipartite, the same behavior
occurs in the upper part of the spectrum. This gap remains
finite at small fluxes but eventually vanishes.

But the main characteristic feature is clearly what occurs
for f = 1/2, where the spectrum reduces to three highly de-
generate levels, at energy ε = 0,±√

p. This is analogous to
what has already been described in the original dice tiling
(p = 6) [5].

This peculiar situation is again described in terms of an
Aharonov-Bohm cage: a particle initially located at any Dp

site will remain trapped inside a small-size cage, whose size
depends on whether the initial site is p-fold or threefold co-
ordinated: for p-fold sites the cage consists of the initial site
and the first shell with p sites; for threefold sites, the cage
consists of the initial site and the two neighboring shells.
As recalled in the Introduction, this trapping is due to an
interference effect tuned by the magnetic field, that becomes
completely destructive for f = 1/2. Examples of cages are
shown in Fig. 4, for the p = 7 case.

A nice way to characterize cages, as was originally done
in Ref. [5], is by a Lanczos tridiagonalization of local clus-
ters, using the recursion algorithm method [37]. The reduced
Hamiltonian is that of a half chain (starting at the chosen
initial site) with off-diagonal terms b j and diagonal terms
a j , the latter vanishing in the dice case due to the graph
bipartiteness. The vanishing of one recursion coefficient bj

implies that a particle initially localized at a given site will
never escape from the neighboring shell associated with this
vanishing coefficient, and will bounce back and forth within
the cage. The b j coefficients are as follows:

(i) For a cluster centered on a p-fold coordinated site [see
Fig. 4 (left)], the first two coefficients are

b1 = −√
p, (8)

b2 = −2 cos(π f ), (9)

with b2 vanishing at f = 1/2, which leads to the AB cage
phenomenon. This is directly related to the fact that the
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FIG. 3. Hofstadter butterflies for several dice Dp tilings, displaying the spectral support versus magnetic flux. More precisely the different
structures are characterized by the triplet (p, symmetry; g, surface genus; V , number of Dp vertices) which reads here (6, 1, 3024), (7, 118,
4680), (8, 129, 2816), (9, 169, 2688), (10, 169, 2184), (11, 231, 2576). For p = 7, the tiling is a member of the Hurwitz tiling series. All
butterflies display the characteristic spectral shrinking near f = 1/2, and a degenerate vanishing energy level for any flux. For the sake of
comparison, energy spectra have been rescaled by a factor

√
3p.

FIG. 4. Examples of Aharonov-Bohm cages for the D7 tiling, which occur at f = 1/2. Red (blue) disks are the sevenfold (threefold)
coordinated sites inside the cage. Black disks correspond to the external boundary of the AB cages, namely, those sites where the destructive
interference occurs at the critical flux; these sites are therefore not visited by a particle initially located at the central site, which remains
trapped and bounces back and forth among the red and blue sites. Left (right): AB cages associated with an initial sevenfold (threefold)
coordinated site.
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AB cage boundary is at the second-neighbor shell from the
central site.

(ii) For a cluster centered on a threefold coordinated site
[see Fig. 4 (right)], the first three coefficients are

b1 = −
√

3, (10)

b2 = −
√

4 cos2(π f ) + p − 3, (11)

b3 = −2 cos(π f )

√
p − 4 sin2(2π f )

4 cos2(π f ) + p − 3
. (12)

Note that it is now the third coefficient b3 that vanishes at
f = 1/2, which is consistent with the fact that the cage has
one additional layer in that case.

A last interesting feature concerns the highly degenerate
energy level at vanishing energy, which is present for any
magnetic flux, with spectral weight (p − 3)/(p + 3). In the
case of hyperbolic dice tilings Dp, in contrast with the Eu-
clidean D6, these vanishing energy levels are separated by
a gap from the rest of the spectrum, for any f . We notice
also that in some cases (such as p = 8) some states leave the
vanishing energy level when f increases, a point that certainly
deserves further study. From the above values b1 and b2,
one understands that highly degenerate levels also occur for
f = 1/2 at ε = ±√

p, with spectral weight equal to 3/(p + 3)
in both cases.

As a final remark, let us stress that, as already
noted in the Euclidean case [7], the butterfly of Dp

tilings is related to the butterfly of the {3, p} tiling.
More precisely, to each eigenvalue ε′( f ) of the {3, p}
butterfly, there correspond two Dp butterfly eigenvalues:
ε±(2 f /3) = ±√

p − 2 cos(2π f /3)ε′( f ). Note that the highly
degenerate zero-energy flat band of the Dp tilings is not cap-
tured by this mapping.

C. Hyperbolic kagome tilings

Let us now study the case of hyperbolic kagome tilings Kp.
As detailed in Appendix B, in order to get the Hamiltonian
Peierls terms associated to a constant perpendicular magnetic
flux (together with the characterization of allowed flux val-
ues), we must compute the ratio rp of the p-gon area to the
triangle area. In the Euclidean kagome case, the area ratio r6

is exactly 6. In the hyperbolic case, the ratio rp reads

rp =
π (p − 2) − 2p arcsin

(
2 cos ( π

p )√
2 cos ( 2π

p )+3

)

π − 6 arcsin

(
1√

2 cos ( 2π
p )+3

) , (13)

which seems likely to be generically irrational. This would
lead to nonperiodic butterflies except for the Euclidean
case p = 6.

Figure 5 shows butterflies for several hyperbolic kagome
Kp tilings, with p running from 7 to 11, along with the
Euclidean case p = 6 for comparison.

At vanishing flux, all hyperbolic kagome tiling butterflies
display a highly degenerate higher energy level at ε = 2,
which has been analyzed as a flat band in reciprocal space
for the Euclidean K6 [38], but can as well (and maybe more

simply) be associated to generic properties of line-graph ad-
jacency spectra [31]. Notice that these approaches have a sign
difference since an adjacency matrix has +1 entries while
H has −1 hopping terms.

The degeneracy found at ε = 2 depends on the bipartite-
ness of the graph. In the nonbipartite case, it is equal to
E − V , where E and V are the number of edges and vertices
of the original {p, 3} for which Kp is the line graph. In the
bipartite case, there is an additional state, which has been
recently attributed to a band-touching phenomenon [39]. We
give here a simple argument for this additional state, which
holds for any line graph of a threefold coordinated graph G
(finite or infinite, ordered or disordered). G has a (nondegen-
erate) Perron-Frobenius eigenvalue ε = −3; in the bipartite
case, it has an additional (nondegenerate) opposite eigenvalue
at ε = +3. For nonbipartite graphs, this state is absent and
the upper part of the spectrum does not reach this value.
Now, a general result for line-graph spectra [31], adapted to
the negative hopping term case, states that to any eigenvalue
ε in the G spectrum there corresponds an eigenvalue ε − 1
in its line-graph spectrum. As a consequence, limited to the
bipartite case, an additional state is found at energy +2.

The Perron-Frobenius state at vanishing flux and energy
ε = −4 can be seen at the lower edge of the spectrum, sepa-
rated from the rest of the spectrum by a gap that eventually
closes as the flux increases. Looking at the extremal part
of the spectrum, one sees oscillations with flux, and even a
periodic reentrance of this gap. For a suitable gauge choice,
one can show (see Appendix D) that the associated eigenstate
for vanishing flux (namely, a state with identical amplitudes
on each site) is also an eigenstate at fluxes f j = j/(p/3 + rp)
with energies ε j = −4 cos(2π f j/3). This peculiar behavior is
already present for the original kagome tiling (p = 6) butterfly
but, as far as we know, was not yet noticed.

As can be seen in Fig. 5, Kp butterflies display quite inter-
esting additional features:

(i) As p increases, the number of gaps and bands in-
creases, and the bands shrink, for specific flux values f j , onto
a curve with equation ε( f ) = 2 cos(2π f ). As explained in
Appendix E, the f j values vary with p in a way that depends
on the parity of p. For even p, f j = j/(p + rp), while for odd
p, f j = ( j + 1/2)/(p + rp). Here again, this behavior is al-
ready present for the Euclidean K6. Notice that these specific
flux values are expected for the infinite tiling in H2, but are
generically not compatible with the flux quantization condi-
tion associated to PBCs (discussed in Appendix B). However,
the latter values form a mesh that gets finer upon increasing
the system size, and therefore gets very close to the above f j’s.

(ii) Finally, the overall butterfly envelope seems to con-
verge to an asymptotic shape as p increases. In order to study
this shape, we consider in Sec. III D the asymptotic K∞ tiling,
which is nothing but the well-known triangular Husimi cactus,
embedded in the hyperbolic plane [24].

D. Hofstadter butterfly of the triangular Husimi cactus tiling

In this section, we compute the tight-binding spectrum
under magnetic field for the triangular cactus tiling, which
is the line graph of the trivalent Bethe lattice. At vanishing
flux, the spectrum is well known and easily obtained [40]. We
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FIG. 5. Hofstadter butterflies for several hyperbolic kagome Kp tilings, displaying the spectral support versus magnetic flux. The different
structures are characterized by the triplet (p, symmetry; g, surface genus; V , number of Kp vertices) which reads here (6, 1, 3024), (7, 118,
4914), (8, 129, 3072), (9, 169, 3024), (10, 169, 2520), (11, 231, 3036). All butterflies display an interesting sequence (increasing with p) of
gaps and bands, the latter shrinking onto a curve with equation ε( f ) = 2 cos(2π f ), drawn in orange.

provide here the extension for finite flux, which requires some
changes in the original approach.

Let us first recall the computation in the vanishing flux
case, whose main ingredients are shown in Fig. 6. One
considers an isolated triangular face of the cactus tiling: one
site (noted i) is cut from the rest of the tiling on one side,
and a (diagonal) self-energy h (to be further determined in
a self-consistent manner) is assigned to the two other sites of
the triangle, noted j and k, aiming to represent the effect of the
rest of the tiling connected to these two sites. The Hamiltonian
hopping term between j and k is t f = t0 e2iπ f , while the other
two hopping terms are set to t0. This choice ensures a reduced
flux f per triangle. Notice that here, in contrast with Eq. (6),
we include the overall negative sign of the hopping term in the
definition of t0. The secular equations for an eigenstate with
amplitudes ai, a j , and ak and eigenvalue ε read

εai = t0(a j + ak ) + R, (14)

(ε − h)a j = t0ai + t f ak, (15)

(ε − h)ak = t0ai + t f a j, (16)

where t denotes the complex conjugate of t and R is the
contribution that comes from the part that has been cut off
at site i. By setting f = 0, we can repeat the analysis already
given in Ref. [40]. In this case, a j and ak can be eliminated in

FIG. 6. Schematic of parameters used for the triangular Husimi
cactus spectrum calculation. We focus on a cactus triangle (with sites
i, j, and k) for which site i is disconnected on the left from the rest
of the tiling, and sites j and k are assigned a diagonal self-energy h
aiming to represent the effect of the rest of the tiling connected to
these sites. A Peierls term t f is assigned to the edge connecting sites
j and k.
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FIG. 7. Left: Hofstadter butterfly of the triangular Husimi cactus (corresponding to the hyperbolic K∞ tiling); its overall shape is the
limiting shape for the hyperbolic Kp butterflies (see Fig. 5). At vanishing flux, the spectrum is made (for t0 = −1) of a band in the range
[−1 − 2

√
2, −1 + 2

√
2] with spectral weight 2/3, a flat band at ε = 2 with spectral weight 1/3, and an isolated nondegenerate Perron-

Frobenius state at ε = −4 (not shown here). Small gaps are visible near the flux values 0 and 1/2. Right: Density of states versus magnetic
flux, showing divergences close to the gaps and a local maximum along the ε( f ) = 2 cos(2π f ) line.

the above equations, leading to

ai

(
ε − 2t2

0

ε − h − t0

)
= R. (17)

The self-energy h therefore satisfies a quadratic equation de-
rived from the self-consistent condition:

h = 2t2
0

ε − h − t0
. (18)

From the local Green’s function of the full cactus tiling at site
i, Gii = 1/(ε − 2h), we obtain, for the density of states,

n(ε) = −Im (Gii/π ) = 1

π

√
8t2

0 − (ε − t0)2

9t2
0 − (ε − t0)2

. (19)

This expression only captures 2/3 of the cactus spectrum.
Indeed, one must add the highly degenerate level, already
discussed above, at energy ε = −2t0, characteristic of the
line graph of a trivalent graph. Also missing is the (isolated)
nondegenerate Perron-Frobenius state at ε = 4t0.

We now consider the case of a nonvanishing flux. The
Peierls phase differentiates sites j and k, which requires ad-
ditional manipulations to get the flux-dependent self-energy
h f . The latter now satisfies a cubic equation derived from the
self-consistent condition

h f = 2t2
0 [ε − h f + t0 cos(2π f )]

(ε − h f )2 − t2
0

. (20)

Looking for solutions to this cubic equation with nonvan-
ishing imaginary part leads to the triangular Husimi cactus
Hofstadter butterfly shown in Fig. 7 (left). We can furthermore
derive, as above, the density of states n(ε, f ), which is plotted
in Fig. 7 (right).

The sequence of fluxes where the spectrum pinches, which
was already increasingly tight as p increases, is no longer
visible, nor are the associated gaps. However, regarding the
density of states, we see that this set of highly degenerate
levels leads to a maximum of the continuous density of states
along the ε( f ) = 2 cos(2π f ) curve, recalling what happens
when discrete levels enter a continuous band and are turned
into resonating levels.

In conclusion, we have shown that the triangular cactus
butterfly can be computed exactly, showing (i) an asymptotic
envelope close to what could be expected from Fig. 5, (ii) a
vanishing of the gap sequence, and (iii) in place of the discrete
pinched spectrum with highly degenerate levels, a maximum
of the density of states along the 2 cos(2π f ) curve.

IV. GAP LABELING

For Euclidean lattices, gaps of the Hofstadter butterfly can
be labeled by two integers, the Chern number and another
integer which is reminiscent of the band structure [41]. The
goal of this section is to propose a similar labeling for hy-
perbolic dice and kagome lattices. To this aim, we first recall
the essential steps of the Euclidean case and then compute the
Wannier diagrams for hyperbolic tilings.

The Hall conductivity σH at energy ε inside a gap is given
by the Widom-Středa formula [42,43]:

σH = e

Atot

∂N (ε, B)

∂B
= −e2

h
ν, (21)

where ν is a topologically invariant integer called the Chern
number, Atot is the total area of the system, and N (ε, B) is
the integrated density of states. This indicates that the total
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number of states below the gap is given by

N (ε, B) = νBAtot + λ, (22)

where we set the flux quantum φ0 = h/|e| = 1. In the pres-
ence of periodic boundary conditions, the total flux through
the surface BAtot must be an integer (in units of φ0) as
well as λ.

For any Euclidean lattice with Nu unit cells [41,42,44], the
integrated density of states per unit cell can be decomposed as

N (ε, B) = N (ε, B)

Nu
= ν f + μ, (23)

where μ is an integer, and f = BAtot/Nu is the reduced flux
per unit cell. Thus, any gap can be labeled by (ν, μ) ∈ Z2.

As discussed in Sec. II D 2, the description of structures
of increasing sizes is very different in the Euclidean and the
hyperbolic cases. In the former case, all structures are defined
on a g = 1 torus, and the total number of sites is proportional
to Nu, which leads to the above normalization procedure.

The hyperbolic case is quite different. Larger and larger hy-
perbolic tiling patches are folded onto tori of increasing genus.
All interesting parameters scale with the quantity (g − 1): this
is true for the number of sites, as shown in Sec. II D 2; this also
applies to g-holed tori, whose area, from the Gauss-Bonnet
relation, reads 4π (g − 1). So, clearly, one expects that (g − 1)
plays the role of Nu in order to normalize the density of states
in the hyperbolic case.

To clearly identify and label these gaps, the simplest
method is to compute the Wannier diagrams (see Ref. [18] for
a similar approach). These diagrams are obtained by plotting
N = N/(g − 1) as a function of f for each gap greater than
a given threshold δ that we select appropriately. Ideally, one
should consider the limit where δ vanishes but since we deal
with finite-size systems with a few thousands sites, we choose
δ to be much larger than the typical level spacing. After
checking that each gap identified is stable while increasing the
system size, it is straightforward to extract (ν, μ). To illustrate
this methodology, we present in Fig. 8 the Wannier diagram
associated with the Hofstadter butterfly of the K7 tiling. Note
that an alternative approach has been recently used to compute
Chern numbers in hyperbolic tilings [45].

In the Euclidean case (p = 6), all possible Chern num-
bers are found in the Hofstadter butterflies of D6 and K6

as is always the case for periodic lattices [16,41] (see also
Refs. [46–48]). As can be seen in Figs. 3 and 5, the gap struc-
ture of Dp becomes simpler and simpler when p increases. In
the large-p limit, the Hofstadter butterfly of the Dp tiling only
contains the two large central gaps below and above ε = 0
for which ν = 0. By contrast, for Kp, one gets an increas-
ing number of gaps with ν = ±1 together with a few gaps
with ν = 0.

V. CONCLUSION

As compared to the case of Euclidean two-dimensional
tight-binding systems under transverse magnetic field, hy-
perbolic tilings display much less structured Hofstadter
butterflies with, for instance, no evidence of self-similarity
as displayed in the former case [19]. Nevertheless, we have

FIG. 8. Wannier diagram of the K7 tiling with Nv = 4914 ver-
tices (g = 118). For a given value of the reduced flux f , each blue
dot indicates the integrated density of states, N , in a given gap, both
quantities being normalized by g − 1. A gap is identified as a dif-
ference between two consecutive energy levels larger than δ = 0.01.
Each gap (blue line) can be indexed by two integers (ν, μ) according
to Eq. (23), with the above-prescribed normalization. Here, we label
four gaps indexed by (0,28) (red), (0,14) (green), (1,11) (magenta),
and (2,6) (cyan). With this value of δ, we only observe gaps with
ν = 0, ±1, ±2 but we cannot exclude the existence of smaller gaps
below this threshold.

shown that several interesting features could be found in the
tilings considered in this work. In summary:

(i) We considered an infinite sequence of hyperbolic dice
tilings Dp, with alternating threefold and p-fold coordinated
sites and identical rhombus tiles. All these tilings show the
AB caging effect for a critical flux (while very few cases
are known for Euclidean tilings). The spectrum pinches onto
three highly degenerate energy levels at ε = 0, ±√

p. The
vanishing energy eigenvalue is present for any flux value, and
is separated by gaps from the rest of the spectrum.

(ii) We have also considered an infinite sequence of hy-
perbolic kagome tilings Kp, dual to the previous Dp, with
fourfold coordinated sites and triangular and regular p-gonal
faces. Their butterflies display gaps whose number grows (and
width decreases) with p. We have also shown that these gaps
close at discrete highly degenerate energies where the spec-
trum pinches along a simple cosine curve. Also interesting is
a second discrete set of nondegenerate levels organized along
another cosine curve whose period is three times larger. Notice
that these two features are already present in the Euclidean
kagome tiling and were not, to our best knowledge, already
described. Interestingly, the hyperbolic Kp tilings generically
present an apparently irrational value for the ratio of their
regular p-gon to triangle areas, breaking the periodicity of the
butterfly with respect to the magnetic field.
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(iii) We have analyzed the limiting case of K∞ which
is nothing but the known triangular Husimi cactus structure
(the line graph of the threefold coordinated Bethe lattice).
We extend to nonvanishing flux, the standard method to com-
pute analytically the spectrum at zero flux. This amounts to
computing a flux-dependent self-energy from the roots of a
cubic polynomial (which is quadratic for vanishing flux). The
corresponding butterfly envelope compares well to that of
the large-p cases. In particular, gaps, whose width decreases
with p, disappear, and the discrete set of highly degenerate
states along a cosine curve (discussed above) is transformed
into a local maximum along the same curve in the K∞ flux-
dependent density of states.

(iv) Finally, we also proposed a gap labeling for hyper-
bolic tilings and used a direct procedure to compute the
Chern number via the Wannier diagrams. Interestingly, only
gaps with small Chern numbers (|ν| � 2) have been found,
although we cannot rule out the existence of smaller gaps with
larger ν.

An important step in getting a well-defined spectrum is to
apply PBCs to get rid of edge states. For that purpose, we
proceeded with the present regular Dp and Kp tilings as was
previously done in Ref. [19] for regular {p, q} tilings, mapping
larger and larger tiling patches onto g-holed tori. The approach
to infinite-size tilings is much more complex than in the Eu-
clidean case, dealing with tori having increasing numbers of
holes, and noncontractible loops whose size increases quite
slowly.

As recalled in the Introduction, several experimental im-
plementations have been proposed and/or realized in the
context of the AB caging effect for Euclidean tilings; the case
of finite patches of hyperbolic tilings has also been considered
at vanishing magnetic flux. We can therefore reasonably ex-
pect that some of the properties described here can be realized
in real systems.

Note added. Recently, a related study was posted [39], also
dealing with hyperbolic dice and kagome tiling spectra, but in
the absence of magnetic field.
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APPENDIX A: HURWITZ TILINGS

The dual {7, 3} and {3, 7} tilings play a special role in
the theory of hyperbolic geometry, with connections to other
fields of mathematics. Of particular interest is the set of highly
symmetrical finite {7, 3} patches, defined on g-holed tori,
known as Hurwitz tilings.

Hurwitz’s celebrated theorem states that the orientation-
preserving (automorphism) group acting on a g-holed surface
S has maximal order 84(g − 1). The existence of such a
bound can be understood by looking at the covering space
of these compact surfaces, namely, the hyperbolic plane H2.
The discrete group which acts on the compact surface has
an associated polygonal fundamental region which covers the
surface under the group action. The order of the group is

therefore the number of such regions covering S, which equals
the ratio of the total area of S to that of the fundamental region.

Going to regular {p, q} tilings on H2 (with constant
Gaussian curvature κ = −1), one can show that the smallest
fundamental region is twice that of the {7, 3} group, with area
π/21. From the Gauss-Bonnet theorem, we know that S has
area 4π (g − 1), which gives 4π (g − 1)/(π/21) = 84(g − 1)
as the group order, thus reaching the Hurwitz bound.

The smallest Hurwitz surface is the celebrated genus-3
Klein quartic [49]. The first Hurwitz surfaces (with well-
defined finite groups) are found to exist on tori of genus 3,
7, 14, 17, 118, 129, 146, 385, 411, 474, . . .. They therefore
provide a rich sequence to follow in order to study larger and
larger hyperbolic tiling patches with PBCs.

APPENDIX B: GAUGE CONSTRUCTION

In principle, computing the Peierls phase term in Eq. (7)
requires choosing a vector potential A and performing line
integrals along the edges. This is quite easy for Euclidean
tilings with explicit site coordinates and vector potential. In
the present case, we work with tilings given as graphs (col-
lection of vertices and edges) on genus-g tori, defined by their
adjacency matrix. We must therefore proceed differently.

In a first step, we must define a coherent orientation for the
tiling faces, which reflects the orientability of the underlying
genus-g tori. This amounts to defining, for each face, local
edge orientations to circumnavigate the face, which must be
opposite for the two adjacent faces sharing the given edge.
A way to do this is to use a spanning tree of the dual tiling:
first define an (arbitrary) orientation for the face associated
with the root vertex, and then propagate the face orientation
along the spanning tree. The orientability of the genus-g tori
guarantees that this procedure can be completed.

Once the coherent face orientation is defined, the Peierls
phase derivation can be addressed. We aim to compute the
tight-binding spectrum in the presence of a constant perpen-
dicular magnetic field. Whenever the faces have constant area,
as in the hyperbolic dice tilings, this translates to a simple
condition of equal product of (vector potential dependent)
Peierls terms around each face (see, for instance, Ref. [50]).
A simple way to proceed is to use the tiling spanning tree
and let the vector potential vanish on its edges. The condi-
tion for constant product of the hopping term around a face
translates into a condition of constant sum of discrete vector
potential terms Ai, j , where i, j denotes the edge between site
i and j. This leads to a set of coupled linear equations with
(remaining) variables Ai, j which is carried for all faces except
a last one. The constraint for this last face (up to a 2π modulo
operation in the product of Peierls terms), leads to a discrete
set of allowed flux values.

When all faces have equal area (as in the Dp case), the
Hofstadter butterfly is periodic with the reduced flux f , and
the number of allowed values per period equals the ratio of
the total area over a single face area, i.e., the number of faces.
Now, for Kp tilings, the situation is different since one has
F3 triangles and Fp p-gons, whose area ratio rp is likely to
be irrational. Hence, the butterfly lacks periodicity and the
allowed flux values (counted with respect to the flux in a
triangle) read f j = j/(F3 + rpFp).
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TABLE I. List of the files from Ref. [33] used in this work.

p File name

6 C2016.2
8 C2048.23
9 C2016.6
10 C1680.2
11 C2024.2

Notice that the above procedure lists fewer constraints than
the number of available variables, leading to a set of 2g free
parameters which can be analyzed in terms of additional con-
straints on the noncontractible loops of the genus-g surface.
The authors of Ref. [19] perform averages over these addi-
tional fluxes, while we choose here to set these free parameters
to zero. A discussion about the respective merit of these two
choices is left for further discussions.

APPENDIX C: SOME DETAILS ABOUT THE TILINGS

For our numerical computation, we used two different data
sets of adjacency matrices associated with symmetric finite
patches of {p, 3} tilings defined on g-holed tori. One must then
operate a decoration of these graphs to produce the adjacency
matrices of the associated Dp and Kp graphs. In this work, we
have named the studied structures by a triplet (p, g,V ), with
p the symmetry order, g the surface genus, and V the number
of Dp or Kp sites.

For p = 7, we used a construction of the genus-118 Hur-
witz tiling, generated by one of us (R.V.), and available upon
request.

For the other values of p, we used data given by Conder
[33], who made accessible the adjacency matrices for 3-valent
symmetric graphs up to 2048 vertices. These data names use
two numbers: the number of sites, followed by a “type” num-
ber. Table I indicates which data in this set have been used in
the present study.

APPENDIX D: STATES WITH cos(2π f/3) OSCILLATIONS
IN THE KAGOME BUTTERFLY

In this Appendix, we explain the occurrence of a simple
sequence of eigenvalues at ε j = −4 cos(2π f j/3) which are
found for any p value and for the discrete set of fluxes f j =
j/(p/3 + rp). They are shown in Fig. 9 for p = 6, 7, and 8.
We consider the simple following gauge, which can be defined
on any Kp tiling: as done everywhere here, we only define
the gauge by specifying the Peierls terms on the graph. In
Kp tilings each edge is shared by a (unit area) triangle and a
p-gon, and we can assign the edges an orientation correspond-
ing to the same (say, anticlockwise) orientation for all the
triangles and the opposite orientation on the p-gons. The pro-
posed gauge is now set by attaching a Peierls term e2iπ f /3 to
each oriented edge. As a result, their product around a triangle
corresponds to having a flux f threading the triangles. Now
to achieve a constant flux through the whole tiling, we have
the following constraint due to the p-gons: e−2iπ p f /3 = e2iπ f rp

implying that f j = j/(p/3 + rp) with j ∈ Z. Recalling that
for kagome tilings one has pFp = 3F3, one verifies that these
values of f j are compatible with those given in Appendix B.

With this discrete gauge, each Kp site has two entering and
two outgoing arrows, carrying therefore e±2iπ f j/3. As a result,
a state with equal amplitude (say, +1 in unnormalized form) is
an eigenstate with eigenvalue ε j = −4 cos(2π f j/3). At van-
ishing flux, this corresponds to the standard Perron-Frobenius
state occurring at the spectral lower edge.

Notice finally that the hyperbolic Kp butterflies seem to
display some regular patterns when analyzed at the discrete
set f j . Their analysis is left for future work.

APPENDIX E: SPECTRAL PINCHED PATTERNS IN
KAGOME TILINGS

As discussed above, and visible in Fig. 5, Kp butterflies
display an interesting sequence of gaps and bands, the latter
shrinking, for selected f values, onto a curve with equa-
tion ε( f ) = 2 cos(2π f ). We analyze here this question in
detail.

FIG. 9. Illustration, for K6, K7, and K8 butterflies, of a discrete set of states at energy ε j = −4 cos(2π f j/3) for f j = j/(p/3 + rp). With
the chosen gauge, the eigenstates are equal-amplitude (Perron-Frobenius-like) eigenstates.
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FIG. 10. Local gauge for kagome tilings used to display the highly degenerate states at energy ε = 2 cos(2π f ) for selected flux values. We
use the following arrow color convention for the gauge-hopping terms: (i) hopping term t0 = −1 (no arrow), (ii) term t f = −e2iπ f (red arrow),
(iii) term −t f (blue arrow), and (iv) term t f = eiπ/2 (green arrow). Left, the even-p case; right, the odd-p case. The (unnormalized) eigenstates
have alternating amplitudes +1 (red dots) and −1 (blue dots), and zero elsewhere. Black disks denote those sites with zero amplitude that
immediately bound the localized eigenstate. The eigenvalue ε( f ) = 2 cos(2π f ) for such states can be directly verified.

Let us first recall that at vanishing flux, the kagome spec-
trum shows a nondispersive flat band at energy ε = 2 (see
Ref. [38]). This is in fact related to a general result for so-
called line-graph spectra, as discussed in Ref. [31]. Note that
in the line-graph case, the spectrum is that of the adjacency
matrix (with entries +1), leading to a flat band at the eigen-
value −2, instead of +2 with our tight-binding Hamiltonian
given in Eq. (6).

The occurrence of the highly degenerate state at energy ε =
2 has been discussed in Sec. III C. Under a magnetic field,
we find that this property holds for a discrete set of fluxes,
for other values of energy. This property is already present
for the Euclidean kagome butterfly [38], although apparently
unnoticed.

We show now that a local gauge can be defined for which
simple confined eigenstates are proved to exist.

Kp tilings are made of triangles and p-gons. Consider an
isolated p-gon and its p neighboring triangles, as shown in
Fig. 10. Fluxes are counted with respect to area: a flux f in
a triangle is ensured by a Peierls term t f = −e2iπ f on the
edge shared by the p-gon and its p neighboring triangles. We
separate the cases for even and odd p.

p even. The local proposed gauge is shown in Fig. 10 (left).
The product of hopping terms along the p-gon, in reversed

orientation as compared to the triangle, leads to a quantity
t f

p = e−2iπ p f , which should equal e2iπrp f to correspond to a
uniform transverse magnetic field (recall that rp is the ratio
of the p-gon to the triangle areas). This leads to a discrete set
of f values f j = j/(p + rp) indexed by an integer j. Now,
for those flux values f j , one can exhibit a confined state with
energy ε j = 2 cos(2π f j ), described here in an unnormalized
form: it has alternating amplitudes of +1 (say blue dots) and
−1 values (red dots) at the vertices of the selected p-gon
sites, and, on each of the neighboring triangles, vanishing
amplitude at the remaining, distal site. Such a confined state
is an eigenstate with the expected eigenvalue. Being isolated,
it can be repeated with high degeneracy.

p odd. In this case, the local gauge construction is more
complex (see Fig. 10, right); it involves two p-gons with
some hopping term equal to eiπ/2. The selected fluxes now
read f j = ( j + 1/2)/(p + rp). The eigenstate at energy ε j =
2 cos(2π f j ) would need an alternation of +1 and −1 ampli-
tudes, which is impossible due to the odd value of p; this leads
to one pair of neighboring sites sharing the same sign. This
is compensated for by one Peierls term with opposite sign.
Notice that one gets another eigenstate with the same energy
by flipping the amplitude signs on one polygon, and that this
eigenstate is orthogonal to the first one.
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