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We describe a density functional method which aims at computing the ground state electron density and
the spectral function at the same time. One basic ingredient of our method is the construction of the spectral
function from the first four spectral moment matrices. The second basic ingredient is the construction of the
spectral moment matrices from density functionals. We call our method moment functional based spectral density
functional theory (MFbSDFT), because it is based on density functionals for the spectral moments and because it
allows us to compute the spectral function. If it is implemented in second variation our method consumes only a
fraction more computer time than a standard DFT calculation with the PBE functional. We show that MFbSDFT
captures correlation effects such as the valence-band satellite in Ni and the formation of lower and upper Hubbard
bands in SrVO3. For the purpose of constructing the spectral function from the first four N×N spectral moment
matrices we describe an efficient algorithm based on the diagonalization of one Hermitian 2N×2N matrix.
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I. INTRODUCTION

In density functional theory (DFT) the ground state elec-
tron density is determined by minimizing the total energy
functional [1]. While most contributions to the total en-
ergy functional, such as the Hartree energy, the exchange
energy, and the correlation energy, can be expressed as func-
tionals of the electron density, it is difficult to express the
kinetic energy directly in this way. This is why within the most
popular kind of DFT—the Kohn-Sham (KS) DFT—the KS-
Hamiltonian [2] is set up and solved with the main purpose to
provide the kinetic energy.

However, the KS energy bands agree very often fairly well
with photoemission data [3] and the KS spectrum is therefore
even used to compute response properties such as the anoma-
lous Hall effect [4], the Gilbert damping [5], the direct and
inverse spin-orbit torque [6], and the inverse Faraday effect
[7] in metallic systems. These KS response functions are often
in good agreement with the corresponding material property
tensors measured experimentally.

Well-known deficiencies of this approach are the underes-
timation of the band gap, which may require the application
of band shifts when computing optical responses such as
photocurrents [8] in semiconductors such as GaAs. Instead
of shifting the bands to match the band gap known from
experiments, one may use the GW approximation [9], which is
a parameter-free technique based on many-body perturbation
theory and which often predicts gaps that are closer to exper-
iment than KS-DFT. However, since one deals then directly
with a many-body Hamiltonian, one forsakes the DFT idea of
obtaining all properties as directly as possible from the ground
state density in order to avoid the complexity and factorial
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growth of the many-body Hilbert space. Another short coming
of KS spectra is the overestimation of the magnetic moment
and the resulting overestimation of the exchange splitting
of some weak itinerant ferromagnets such as MnSi, which
requires us to reduce the exchange field by a scaling factor
in order to compute the topological Hall effect in MnSi [10].

Moreover, a well-known deficiency of the KS spectrum is
the absence of the splitting of bands into lower and upper
Hubbard bands due to strong electron correlations [11]. Such
a splitting of the single-particle bands leads, for example, to
the appearance of a satellite peak roughly 6 eV below the
Fermi energy in Ni [12–14]. In order to compute the spectrum
in such cases of strongly interacting electrons one often uses
DFT only to obtain the KS wave functions of a small manifold
corresponding to a small energy window around the Fermi
energy and constructs an interacting Hamiltonian for this
manifold, which one solves by dynamical mean-field theory
(DMFT) [15,16] in order to obtain the spectral function. In
other words, one remains within the DFT-framework in order
to determine the ground state density, but similarly to GW
one leaves this framework and directly solves an interacting
many-electron Hamiltonian in order to obtain the spectrum
of the correlated system instead of evaluating a density func-
tional. However, one may also take a different viewpoint:
The local spectral function of DMFT minimizes the effective
action. In this sense, DMFT is a spectral density functional
approach [16].

Nevertheless, the question still poses itself if it is possible
to obtain both ground state density and correlated spectral
function within a density functional approach which avoids
the direct use of many-body techniques such as GW and
DMFT. A Hermitian N×N matrix has N real-valued eigen-
values. This well-known fact from linear algebra is exploited
in many electronic structure programs based on density func-
tional theory, where the KS equations are solved numerically
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by diagonalizing a Hermitian matrix. The direct construction
of 2N state vectors, 2N state energies, and 2N spectral weight
factors from four Hermitian N×N spectral moment matrices
[17] may be considered as a generalization of the diagonal-
ization of Hermitian matrices. It may also be interpreted as a
generalization of the two-pole approximation [18,19] used in
the self-consistent spectral moment method of the single-band
Hubbard model to the case of many bands [17]. Since the
self-consistent moment method based on the first four spectral
moments captures the Ni satellite peak [13], such a gener-
alization may be useful when the description of the spectral
properties obtained from standard DFT needs to be improved
because of strong correlation effects, which split the electronic
bands into lower and upper Hubbard bands.

The Ith spectral moment matrix is defined by [13,17,18,20]

M (I )
σ = 1

h̄

∫ ∞

−∞
Sσ (E )EI dE , (1)

where Sσ (E ) is the spectral density matrix at energy E . In
this paper, we discuss only the magnetically collinear case
without spin-orbit coupling. Therefore there are only spectral
density matrices S↑(E ) with spin σ =↑ and spectral density
matrices S↓(E ) with spin σ =↓. So far, the direct construction
of the spectral function of interacting fermionic many-particle
systems from the first four spectral moments has not yet been
investigated intensively. Well-explored are only the single-
band case with the first four spectral moments [18,19], the
many-band case with the first two spectral moments [21],
which has been shown to provide a Hartree-Fock type approx-
imation, and the option to use the spectral moments as sum
rules in order to guide the construction of the spectral function
by other means [22]—a concept which one may extend even
to nonequilibrium conditions [23].

Recently, we have demonstrated how to solve the Hubbard-
Rashba model within the many-band generalization of the
two-pole approximation of the spectral density and of the
self-consistent moment method [17]. For this purpose, we
did not make use of the DFT concept, but instead we com-
puted the higher-order correlation functions 〈c†

iαc†
jβclγ cmδ〉

self-consistently based on the spectral theorem [24]. Such
higher-order correlation functions are needed to compute
the spectral moment M (3)

σ , for example. While the spectral
moment matrices M (I )

σ all have two orbital indices, the higher-
order correlation functions such as 〈c†

iαc†
jβclγ cmδ〉 have at

least four orbital indices. The computational effort of stan-
dard KS DFT scales with the third power of the number of
basis functions NB. Obviously, the many-band self-consistent
moment method scales worse, namely at least ∝ N4

B. In order
to keep the computational effort low, we therefore proposed
in Ref. [17] to map the KS electronic structure of the va-
lence bands and the first few conduction bands first onto
Wannier functions. The resulting Wannier Hamiltonian may
then be supplemented by Hubbard-type interactions and this
interacting Hamiltonian may be treated with the many-band
generalization of the self-consistent moment method. How-
ever, similarly to the GW and LDA+DMFT approaches
discussed above, one thereby leaves the DFT framework,
because one computes the spectrum using a many-body
Hamiltonian technique instead of a density functional.

In this paper, we combine basic ideas of DFT with
the many-band generalization of the self-consistent moment
method in order to develop an approach which aims at com-
puting both the ground state density and the spectral function
at the same time without forsaking the DFT framework. The
first Hohenberg-Kohn theorem states that the ground state
electron density determines the Hamiltonian up to a con-
stant. Since the spectral moments can be computed from the
Hamiltonian, the Hohenberg-Kohn theorem implies therefore
that also the spectral moments may be expressed as density
functionals. To explore how this can be done in practice is the
central goal of this paper. Combining this with our recipe [17]
to construct the spectral function from the first four spectral
moments we obtain a moment functional based spectral den-
sity functional theory (MFbSDFT).

The rest of this paper is structured as follows. In Sec. II, we
explain the theory of MFbSDFT. In Sec. III, we describe an
efficient algorithm for computing the spectral function from
the first four spectral moments. In Sec. IV, we explain how we
construct the moment functionals. In Sec. V, we explain how
the MFbSDFT method may be implemented within the full-
potential linearized augmented plane wave method (FLAPW)
within a second variation approach. In Sec. VI, we present
applications of our method to fcc Ni and SrVO3. In Sec. VII,
we discuss some open questions of MFbSDFT and strategies
of how to develop it further. This paper ends with a summary
in Sec. VIII.

II. THEORY

A. The concept of moment functionals

The ground state charge density defines the Hamiltonian
uniquely (up to a constant) [1]. Consequently, it determines
also the spectral function uniquely. In order to write the
spectral function in matrix form we need a suitable set
of orthonormal basis functions φn(r). Denoting the creation
and annihilation operators corresponding to state φn(r)|σ 〉—
where |σ 〉 is a spinor—by c†

σn and cσn, respectively, the matrix
elements of the spectral function matrix are

Sσnm(E ) = 1

2π

∫
d te

i
h̄ Et 〈[cσn(t ), c†

σm]+〉. (2)

When periodic boundary conditions are used, the spectral
function and the spectral moments aquire an additional k-
index for the k point k, which we often suppress in this
manuscript for notational convenience.

The spectral moments may be obtained by plugging Eq. (2)
into Eq. (1). Since the spectral function is uniquely determined
by the ground state density, also the spectral moments are
uniquely defined by it. The spectral moments may also be
expressed in terms of real-space coordinates:

M (I )
σ (r, r′) = 1

�

∫
d EEI

∑
nm

Sσnm(E )φn(r)φ∗
m(r′). (3)

We may consider M (I )
σ (r, r′) as a nonlocal potential, from

which we may obtain the spectral moment matrices by com-
puting the matrix elements:

M (I )
σnm =

∫
d3rd3r′M (I )

σ (r, r′)φ∗
n (r)φm(r′). (4)
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According to our arguments above, the nonlocal potentials
M (I )

σ (r, r′) are unique functionals of the electron density.
In KS-DFT, the total energy functional is split into the ki-

netic energy, the Hartree energy, and the exchange-correlation
energy [2]. The kinetic energy is computed from the KS wave
functions, the Hartree energy is computed from the charge
density, and for the exchange-correlation energy one often
uses analytical expressions in terms of the charge density,
which have been derived for the uniform electron gas [25].
Similarly, the potentials M (I )

σ (r, r′) (I = 1, 2, 3 if we use the
first four moments) contain contributions from the kinetic
energy and from the Hartree term. In the following section, we
show that these contributions may be identified and separated
from a remainder, which thus plays a similar role in MFbS-
DFT like the exchange-correlation potential does in KS-DFT.
We expect that useful expressions for this remainder can be
found by evaluating it for the uniform electron gas.

B. Explicit expressions for the moments

We consider the Hamiltonian

H =
∑
σnm

Tnmc†
σncσm

+ 1

2

∑
σσ ′nmn′m′

Vnmn′m′c†
σnc†

σ ′mcσ ′m′cσn′ , (5)

where

Tnm =
∫

d3rφ∗
n (r)

[
−1

2
	 + V (r)

]
φm(r) (6)

and

Vnmn′m′ =
∫

d3r1d3r2
φ∗

n (r1)φ∗
m(r2)φm′ (r2)φn′ (r1)

|r1 − r2| , (7)

and V (r) is the lattice potential. Note that in the entire
Sec. II B, we use the Hartree atomic units for notational con-
venience.

Many-body approaches such as LDA+DMFT often take
into account the Coulomb matrix element Vnmn′m′ only when
all orbitals, i.e., n, m, n′, and m′, describe the same crystal
lattice site. In the simplest approximation, Vnmn′m′ is described
by a single parameter, the so-called Hubbard U . Components
of Vnmn′m′ that are neglected hereby are of course partly treated
in LDA+DMFT, because the lattice potential V (r) is replaced
by the KS potential in this case. Therefore the Hubbard U only
describes the Coulomb interaction from strong localization
of electrons. These effects are underestimated by KS-DFT
and become important when U approaches or exceeds the
bandwidth. In contrast, we do not restrict Vnmn′m′ at this point,
i.e., both local and nonlocal contributions are described by it
in MFbSDFT and V (r) is the pure lattice potential without
exchange-correlation terms.

The zeroth moment is given by

M (0)
σnm = 〈[cσn, c†

σm]+〉 = δnm, (8)

where [. . . ]+ denotes the anticommutator, and the first mo-
ment evaluates to

M (1)
σnm = 〈[[cσn, H]−, c†

σm]+〉 = Tnm

+
∑

n′m′σ ′
Vnn′mm′ 〈c†

σ ′n′cσ ′m′ 〉

−
∑
n′m′

Vnn′m′m〈c†
σn′cσm′ 〉. (9)

Defining the Hartree potential by

V H(r) =
∑

σ ′n′m′

∫
d3r2

φ∗
n′ (r2)φm′ (r2)

|r − r2| 〈c†
σ ′n′cσ ′m′ 〉 (10)

and the nonlocal exchange potential by

V X
σ (r1, r2) = −

∑
n′m′

φ∗
n′ (r2)φm′ (r1)

|r1 − r2| 〈c†
σn′cσm′ 〉, (11)

we may write the first moment as

M (1)
σnm = Tnm + V H

nm + V X
σnm = MHF

σnm, (12)

where V H
nm and V X

σnm are the matrix elements of the Hartree
potential and of the nonlocal exchange potential, respectively.
Thus one obtains a method of Hartree-Fock (HF) type if
one considers only the first two moments. It differs from the
exact Hartree-Fock method by the self-interaction error (SIE)
[26] (see also Sec. VII for a brief discussion of SIE from
the perspective of MFbSDFT). Therefore we introduced the
alternative label MHF

σnm for the first moment, which expresses
concisely what this first moment contains. Instead of using the
nonlocal exchange potential Eq. (11), one may use the local
exchange potential [2]

V locX
σ (r) = ∂

∂n(r)
[n(r)εX(n(r))], (13)

where

n(r) =
∑
σnm

φ∗
n (r)φm(r)〈c†

σncσm〉 (14)

is the electron density at position r and εX(n(r)) is the ex-
change energy density for electron density n(r). The local
potential Eq. (13) has the advantage that it is computationally
very cheap to evaluate in contrast to the nonlocal version
Eq. (11). However, hybrid density functionals, which admix
exact exchange, are often more precise than density function-
als that use only the local approximation Eq. (13). Fortunately,
one may reduce the computational burden of exact exchange
by screening the Coulomb potential [27]. In the numerical
calculations in this work we will use only the local expression
Eq. (13), but similar to KS-DFT, we expect that the precision
of the MFbSDFT approach can be increased by avoiding
the approximation of nonlocal potentials by local potentials.
We leave it for future work to explore how the MFbSDFT
approach may be combined with nonlocal potentials.

In Ref. [17], we explain that for independent electrons the
spectral moment matrices commute, i.e.,[

M (I )
σ , M (J )

σ

]
− = 0 (15)

for all I and J , and that the eigenvalues of the spectral moment
matrix M (I )

σ are simply the eigenvalues of the single-particle
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Hamiltonian raised to the Ith power, i.e., (Eσn)I . For corre-
lated electrons this is not the case [17]. However, we may
expect that the moment M (I )

σ contains a term [MHF
σ ]I , because

there may be cases where Hartree-Fock provides an excellent
description because correlation effects are small, and these
special cases have to be accommodated by the general theory.
We may therefore expect that the second moment should
contain a term

MHF
σ MHF

σ = TT + TV H + TV X
σ + V HT + V HV H

+V HV X
σ + V X

σ T + V X
σ V H + V X

σ V X
σ , (16)

which is indeed what we find. We may use this observation to
split the second moment into the anticipated part MHF

σ MHF
σ

plus additional new terms, which we denote by M (2+)
σ , i.e.,

M (2)
σ = MHF

σ MHF
σ + M (2+)

σ . (17)

In contrast to the single-band Hubbard model with on-site
Coulomb interaction, where higher-order correlation func-
tions appear in the third moment and in the higher moments,
already the second moment M (2)

σ of the many-band case with
the full Coulomb interaction contains the higher-order correla-
tion function 〈c†

σnc†
σ ′mcσn′cσ ′m′ 〉. In order to identify the terms

V HV H, V HV X
σ , V X

σ V H, and V X
σ V X

σ predicted by Eq. (16), we
need to evaluate 〈c†

σnc†
σ ′mcσn′cσ ′m′ 〉 in perturbation theory. In

contrast, the terms TV H, TV X
σ , V HT , and V X

σ T can be iden-
tified without using perturbation theory, because they appear
with the correlation function 〈c†

σ ′mcσ ′m′ 〉. The term TT appears
even without any correlation function. Therefore we define

〈〈c†
σnc†

σ ′mcσn′cσ ′m′ 〉〉 = 〈c†
σnc†

σ ′mcσn′cσ ′m′ 〉
− 〈c†

σncσ ′m′ 〉〈c†
σ ′mcσn′ 〉

+ 〈c†
σncσn′ 〉〈c†

σ ′mcσ ′m′ 〉. (18)

The idea behind Eq. (18) is that the diagrammatic expression
of 〈c†

σnc†
σ ′mcσn′cσ ′m′ 〉 as obtained within perturbation theory

contains terms that may be written as 〈c†
σncσ ′m′ 〉〈c†

σ ′mcσn′ 〉
and −〈c†

σncσn′ 〉〈c†
σ ′mcσ ′m′ 〉. Since these latter two terms oc-

cur sometimes in MHF
σ MHF

σ we introduce the notation of
Eq. (18) in order to split M (2)

σ into MHF
σ MHF

σ and M (2+)
σ .

Using this notation we may write M (2+)
σ as a sum of 17 terms:

M (2+,1)
nm =

∑
n′m′tt ′σ ′

Vnn′tt ′Vt ′tm′m〈c†
σ ′n′cσ ′m′ 〉, (19)

which is spin-independent,

M (2+,2)
σnm = −

∑
n′m′tt ′

Vnn′tt ′Vtt ′m′m〈c†
σn′cσm′ 〉, (20)

M (2+,3)
nm = −

∑
n′m′tt ′zσ ′

Vnn′zt ′Vtzm′m〈〈c†
σ ′n′c

†
σ ′t cσ ′t ′cσ ′m′ 〉〉, (21)

which does not depend on the spin,

M (2+,4)
σnm = −

∑
n′m′tt ′z

Vnn′t ′tVtm′zm〈〈c†
σn′c

†
σm′cσ t ′cσ z〉〉, (22)

M (2+,5)
σnm =

∑
n′m′tt ′z

Vnn′tt ′Vtm′zm〈〈c†
σn′c

†
σm′cσ t ′cσ z〉〉, (23)

M (2+,6)
σnm =

∑
n′m′tt ′z

Vnn′tt ′Vzm′n′m〈c†
σ zc

†
σm′cσ t cσ t ′ 〉, (24)

M (2+,7)
σnm =

∑
n′m′tt ′z

Vnn′tzVm′zt ′m〈〈c†
σn′c

†
σm′cσ t cσ t ′ 〉〉, (25)

M (2+,8)
σnm = −

∑
n′m′tt ′z

Vnn′tt ′Vzm′n′m〈c†
σm′c

†
−σ zcσ t c−σ t ′ 〉, (26)

M (2+,9)
σnm = −

∑
n′m′tt ′z

Vnn′tt ′Vm′tzm〈〈c†
σn′c

†
−σm′cσ t ′c−σ z〉〉, (27)

M (2+,10)
σnm = −

∑
n′m′tt ′z

Vnn′tt ′Vm′tzm〈〈c†
σm′c

†
−σn′cσ zc−σ t ′ 〉〉, (28)

M (2+,11)
σnm =

∑
n′m′tt ′z

Vnn′tt ′Vtm′zm〈〈c†
σm′c

†
−σn′cσ zc−σ t ′ 〉〉, (29)

M (2+,12)
σnm =

∑
n′m′tt ′z

Vnn′tt ′Vt ′m′zm〈c†
σm′c

†
−σn′cσ t c−σ z〉, (30)

M (2+,13)
σnm =

∑
n′m′tt ′z

Vnn′tt ′Vm′t ′zm〈〈c†
σn′c

†
−σm′cσ t c−σ z〉〉, (31)

M (2+,14)
nm = −

∑
σ ′n′m′tt ′z

Vnn′tt ′Vm′tzm〈c†
σ ′m′cσ ′t ′ 〉〈c†

σ ′n′cσ ′z〉, (32)

which is spin-independent,

M (2+,15)
σnm = −

∑
n′m′tt ′z

Vnn′tt ′Vt ′m′zm〈c†
σm′cσ t 〉〈c†

σn′cσ z〉, (33)

M (2+,16)
σnm =

∑
n′m′tt ′z

Vnn′tt ′Vtm′zm〈c†
σm′cσ t ′ 〉〈c†

σn′cσ z〉, (34)

and

M (2+,17)
σnm =

∑
n′m′tt ′z

Vnn′tt ′Vm′t ′zm〈c†
σm′cσ t 〉〈c†

σn′cσ z〉. (35)

In order to evaluate the contributions to M (2+) in a way
similar to Eq. (13), we suggest to consider the contractions

C (2+, j)
σ =

∑
nm

M (2+, j)
σnm 〈c†

σncσm〉 (36)

and to compute them for the uniform electron gas as a function
of electron density. Similarly to Eq. (13), we assume that we
may derive local potentials

V (2+, j)
σ (r) = ∂

∂n(r)

[
C (2+, j)

σ

]
(37)

from these contractions and compute the moments from these
local potentials:

M (2+, j)
σnm =

∫
d3rV (2+, j)

σ (r)φ∗
n (r)φm(r). (38)

Many popular exchange-correlation potentials are constructed
with the help of Green’s function Monte Carlo simulations
of the energy of the uniform electron gas [25,28], because
the universality of the exchange correlation potential implies
that it may be constructed from a uniform system. However,
Green’s function Monte Carlo data are not yet available for
our expressions Eq. (19) through Eq. (35). On the other hand,
diagrammatic perturbation theory has been used to derive
expressions for the energy of the uniform electron gas in the
limit of low and high density and these results are considered
in the construction of exchange correlation potentials as well
[25,29]. For the purpose of demonstrating the feasibility of
the MFbSDFT approach, it is sufficient to find simple approx-
imate expressions for the contractions Eq. (36). Therefore we
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evaluate these contractions for the uniform electron gas using
perturbation theory in Appendix B. We leave it for future work
to find accurate analytic representations of the contractions
of Eq. (19) through Eq. (35) based on techniques such as
Green’s function Monte Carlo simulations and diagrammatic
expansions for the high-density limit.

Similar to Eq. (17), one may anticipate that the third mo-
ment may be decomposed as

M (3)
σ = MHF

σ MHF
σ MHF

σ + M (3+)
σ , (39)

where

MHF
σ MHF

σ MHF
σ

= TTT + TTV H + TTV X
σ

+ TV HT + TV HV H + TV HV X
σ

+ TV X
σ T + V HTV X

σ V H + V HTV X
σ V X

σ

+V HTT + V HTV H + V HTV X
σ

+V HV HT + V HV HV H + V HV HV X
σ

+V HV X
σ T + V HV X

σ V H + V HV X
σ V X

σ

+V X
σ TT + V X

σ TV H + V X
σ TV X

σ

+V X
σ V HT + V X

σ V HV H + V X
σ V HV X

σ

+V X
σ V X

σ T + V X
σ V X

σ V H + V X
σ V X

σ V X
σ , (40)

which is indeed what we find: To identify TTT in M (3)
σ

one needs to check the terms without correlation functions.
To find the terms that contain two factors of the matrix
T , i.e., the terms TTV H, TV HT , V HTT , TTV X, TV XT ,
and V XTT , one needs to look out for the contributions to
M (3)

σ that contain the correlation function 〈c†
σ ′mcσ ′m′ 〉. To track

down the terms that contain a single factor of the matrix T ,
i.e., the terms TV HV H, V HTV H, V HV HT , TV HV X, V HTV X,
V HV XT , TV XV H, V XTV H, V XV HT , TV XV X, V XTV X, and
V XV XT , one needs to find the contributions to M (3)

σ that
contain the correlation function 〈c†

σmc†
σ ′m′cσncσ ′n′ 〉 and one has

to evaluate this correlation function in perturbation theory. In
order to identify all those terms in Eq. (40) that do not contain
the matrix T , i.e., the terms V HV HV H, V XV HV H, V HV XV H,
V HV HV X, V HV XV X, V XV HV X, V XV XV H, and V XV XV X,
one needs to check the expressions that contain the correlation
function 〈c†

σmc†
σ ′m′c

†
σ ′′t cσncσ ′n′cσ ′′t ′ 〉 and one has to evaluate

this correlation function in perturbation theory.
When one evaluates the correlator 〈c†

σnc†
σ ′mcσn′cσ ′m′ 〉 in

perturbation theory in order to extract the terms discussed
above, e.g., V HV HT , one may use Eq. (18) like for the second
moment. This procedure generates a group of terms in M (3+)

σ

that contain 〈〈c†
σnc†

σ ′mcσn′cσ ′m′ 〉〉. Similarly, it is convenient to
define

〈〈c†
σmc†

σ ′m′c
†
σ ′′t cσncσ ′n′cσ ′′t ′ 〉〉

= 〈c†
σmc†

σ ′m′c
†
σ ′′t cσncσ ′n′cσ ′′t ′ 〉

− 〈c†
σmcσn〉〈c†

σ ′m′c
†
σ ′′t cσ ′n′cσ ′′t ′ 〉

+ 〈c†
σmcσ ′n′ 〉〈c†

σ ′m′c
†
σ ′′t cσncσ ′′t ′ 〉

− 〈c†
σmcσ ′′t ′ 〉〈c†

σ ′m′c
†
σ ′′t cσncσ ′n′ 〉 (41)

and to use Eq. (18) in order to replace the corre-
lators of the type 〈c†

σ ′m′c
†
σ ′′t cσ ′n′cσ ′′t ′ 〉 on the right-hand

side of Eq. (41) by 〈〈c†
σ ′m′c

†
σ ′′t cσ ′n′cσ ′′t ′ 〉〉 and the sim-

pler correlators 〈c†
σ ′m′cσ ′n′ 〉. When we use this procedure

to express 〈c†
σmc†

σ ′m′c
†
σ ′′t cσncσ ′n′cσ ′′t ′ 〉 in terms of the corre-

lators 〈c†
σ ′m′cσ ′n′ 〉 and thereby extract the terms discussed

above, e.g., V HV HV H, we generate additional groups of
terms in M (3+)

σ , which contain 〈〈c†
σ ′m′c

†
σ ′′t cσ ′n′cσ ′′t ′ 〉〉 or

〈〈c†
σmc†

σ ′m′c
†
σ ′′t cσncσ ′n′cσ ′′t ′ 〉〉.

The remaining contributions to M (3+)
σ may be split into

groups of formally similar expressions. The first group of two
terms in M (3+)

σ contains two matrices T and the correlation
function 〈c†

σ ′mcσ ′m′ 〉:
M (3+,1)

nm =
∑

n′tt ′σ ′
Vnn′tt ′TtmSσ ′t ′n′ , (42)

which is spin-independent, and

M (3+,2)
σnm = −

∑
n′tt ′

Vnn′t ′t TtmSσ t ′n′ , (43)

where

Sσ ′t ′n′ =
∑

m′
[Tt ′m′ 〈c†

σ ′n′cσ ′m′ 〉 − 〈c†
σ ′m′cσ ′t ′ 〉Tm′n′ ] (44)

is the commutator between the matrix T and the density
matrix.

It is desirable to rewrite Eq. (42) in a form that permits
a numerically efficient evaluation of this term, because the
direct computation of Eq. (42) will often be numerically
demanding due to the four indices of the Coulomb matrix
element. We may exploit that the indices t ′ and n′ couple to
the Coulomb matrix element in a way that allows us to identify
the density matrix. Therefore we may define

N (r) =
∑
n′t ′σ ′

φ∗
n′ (r)φt ′ (r)Sσ ′t ′n′ , (45)

from which we compute the Hartree-type integral

F (r) =
∫

d3r2
N (r2)

|r − r2| . (46)

Equation (42) may now be written as

M (3+,1)
nm =

∑
t

Fnt Ttm, (47)

where Fnt are the matrix elements of the Hartree-type poten-
tial F (r).

Similarly, in order to evaluate Eq. (43), we may exploit that
the indices t ′ and n′ couple to the Coulomb matrix element in
a way that allows us to identify a nonlocal potential. Therefore
we may define

Lσ (r1, r2) =
∑
n′t ′

φ∗
n′ (r1)φt ′ (r2)

|r1 − r2| Sσ ′t ′n′ . (48)

Equation (43) may now be written as

M (3+,2)
σnm = −

∑
t

Lσnt Ttm, (49)

where Lσnt are the matrix elements of the nonlocal Fock-type
potential Lσ (r1, r2).
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The next group of two terms in M (3+)
σ does not contain the

matrix T , but it contains the correlation function 〈c†
σ ′mcσ ′m′ 〉:

M (3+,3)
nm =

∑
σ ′n′tt ′

∑
zz′m′

Vnn′tt ′Vtt ′zz′Vz′zm′m〈c†
σ ′n′cσ ′m′ 〉, (50)

which does not depend on the spin, and

M (3+,4)
σnm = −

∑
n′tt ′

∑
zz′m′

Vnn′tt ′Vtt ′z′zVz′zm′m〈c†
σn′cσm′ 〉. (51)

In Appendix A, we show that the sum of Eqs. (50) and
(51) turns into the very simple result U 3〈n−σ 〉 in the case
of the single-band Hubbard model. However, for realistic
many-band systems, the direct evaluation of these expressions
may be numerically demanding due to the four indices of
the Coulomb matrix element. Therefore we may try to use
concepts from DFT to simplify the calculations. In order to
approximate these contributions by local functionals, we may
use the recipe described above in Eqs. (36), (37), and (38). In
Appendix C, we evaluate the corresponding contractions for
the uniform electron gas.

M (3+) contains several additional groups of terms that we
have not discussed yet. One group of terms contains three
factors of the Coulomb matrix element and the correlator
〈c†

σmc†
σ ′m′c

†
σ ′′t cσncσ ′n′cσ ′′t ′ 〉, but the indices are not connected

in a way that terms such as HHH or HXH arise, which we
have already discussed above. An example from this group of
terms is

M (3+,5)
σnm = −

∑
n′tt ′

∑
uu′

∑
zz′m′

Vnn′tt ′Vt ′m′uu′Vzz′m′m

×〈c†
σn′c†

σ zc
†
σ z′cσ t cσucσu′ 〉. (52)

The first index t ′ of Vt ′m′uu′ is shared with Vnn′tt ′ , while the
second index m′ of Vt ′m′uu′ is shared with Vzz′m′m. The last two
indices, u and u′ are contracted with the correlation function
〈c†

σn′c†
σ zc

†
σ z′cσ t cσucσu′ 〉. In this term, it is therefore not possible

to express Vt ′m′uu′ through the matrices H or X when pertur-
bation theory is used. Other terms in this group differ from
Eq. (52), for example, due to different spin quantum numbers
in the correlation function, e.g., 〈c†

−σn′c†
σ zc

†
σ z′cσ t c−σucσu′ 〉, or

they differ due to different indices of the Coulomb matrix
elements, e.g., Vnt ′uu′Vm′n′tt ′Vzz′m′m.

There is a second group of terms that contains three factors
of the Coulomb matrix element as well. However, it contains
the correlator 〈c†

σmc†
σ ′m′cσncσ ′n′ 〉 instead. An example from this

group of terms is

M (3+,6)
σnm = −

∑
n′tt ′

∑
zz′

∑
uu′

Vnn′tt ′Vtt ′zz′Vz′uu′m

×〈c†
σn′c†

σucσ zcσu′ 〉. (53)

Since Vtt ′zz′ couples to the correlation function only through
the index z, it cannot be expressed through the matrices H or
X when perturbation theory is used. Similar to the previous
group, the other members in this group differ from this exam-
ple due to different spin quantum numbers in the correlation
function, or due to different indices of the Coulomb matrix
elements.

Another group of terms contains the matrix T once, the
Coulomb matrix elements twice, and the correlation function

〈c†
σm′cσn′ 〉. An example from this group of terms is

M (3+,7)
σnm = −

∑
tt ′

∑
n′m′z

Vnn′tt ′Vtt ′zm′Tm′m〈c†
σn′cσ z〉. (54)

Similar to the previous two groups, the other members in this
group differ from the example of Eq. (54) due to different spin
quantum numbers in the correlator, i.e., 〈c†

−σn′c−σ z〉, and due
to different indices in the Coulomb matrix elements.

A similar group of terms contains the correlator
〈c†

σ ′z′c†
σucσ ′zcσ t ′ 〉 instead of 〈c†

σn′cσ z〉. An example is given by

M (3+,8)
σnm =

∑
tt ′

∑
n′m′z

Vntm′t ′Vz′uzt Tm′m〈c†
−σ z′c†

σuc−σ zcσ t ′ 〉. (55)

III. CONSTRUCTION OF THE SPECTRAL FUNCTION
FROM THE SPECTRAL MOMENTS

In Ref. [17], we have shown that the spectral function of
four spectral moment matrices of size N×N may be obtained
by solving 4N2 coupled nonlinear equations. While this ap-
proach is efficient for small N , it may become inefficient for
large N . The reason may be understood from the amount of
computer memory needed to store the Jacobian of the system
of nonlinear equations. The size of the Jacobian scales like
16N4. In contrast, the size of the KS Hamiltonian matrix used
in DFT codes scales like N2 with the number N of basis
functions. Therefore we describe an alternative algorithm in
this section, which is more efficient than solving systems of
coupled nonlinear equations when N is large. Since we discuss
in Ref. [17] that finding the spectral function from noncom-
muting spectral matrices can be interpreted as a generalization
of matrix diagonalization, it is perhaps not surprising that
the new algorithm that we describe in this section uses such
concepts.

In the following, we describe the algorithm to construct
the spectral function from the spectral moment matrices M (1),
M (2), and M (3), where we assume that the zeroth spectral
moment matrix is simply the unit matrix. Only the final re-
sult is described here, while the detailed proof is given in
Appendix D. First, construct the Hermitian N×N matrix

M (2+) = M (2) − M (1)M (1). (56)

Next, diagonalize M (2+):

M (2+) = UDU†, (57)

where U is a unitary matrix and D is a diagonal matrix. Using
D and U construct the matrix

B1 = U
√

D. (58)

Employ the inverse of its Hermitian adjoint together with the
moment matrices to compute the matrix

B2 = [M (3) − M (2)M (1)][B†
1]−1. (59)

Use it to obtain the matrix

D1 = B−1
1 [B2 − M (1)B1]. (60)

Finally, take B1, D1 and the first moment matrix to construct
the 2N×2N matrix

B(1) =
(

M (1) B1

B†
1 D1

)
(61)

155114-6



MOMENT FUNCTIONAL BASED SPECTRAL DENSITY … PHYSICAL REVIEW B 106, 155114 (2022)

and diagonalize it:

B(1) = UDU†. (62)

The unitary matrix U contains the normalized eigenvectors
of B(1) as its columns. Compute the spectral weight of state j
from

a j =
N∑

i=1

Ui j[Ui j]
∗. (63)

Note that a j may be smaller than one, because the summation
over the index i goes only from 1 to N and not from 1 to 2N .
Therefore spectral weights smaller than 1 may occur when
bands split into lower and upper Hubbard bands.

Construct the N×2N matrix V according to

Vi j = Ui j√
a j

. (64)

Note that i = 1, . . . , N , i.e., only the first N entries of the jth
column of U are used, while every column of U has of course
2N entries in total.

The spectral function is given by

Si j (E )

h̄
=

2N∑
l=1

alVilV∗
jlδ(E − El ), (65)

where El is the lth diagonal element of D, i.e., El = Dll .
Here, 1 � i, j � N , because in Eq. (64) we utilize only the
first N×2N block of the 2N×2N matrix U to construct the
matrix V .

Note that in this paper, we do not use the grand canonical
Hamiltonian H = H − μN̂ , where μ is the chemical poten-
tial, but instead we use H , because most DFT codes do not
work with H = H − μN̂ , as the chemical potential μ is typi-
cally redetermined only before the end of every iteration in the
self-consistency loop to achieve matching between electronic
and nuclear charge, i.e., charge neutrality. When comparing
our result Eq. (65) to the literature, one therefore needs to be
aware of this difference by μ in the expressions for the spectral
function.

IV. CHOICE OF THE MOMENT FUNCTIONALS

In Appendix B, we have shown that

V (2+)
σ (r) = c(2+)

σ

[rs(r)]2
+ · · · (66)

and in Appendix C, we have found

V (3+)
σ (r) = c(3+)

σ

[rs(r)]3
+ · · · , (67)

where

rs(r) = 1

aB

(
9π

4[kF(r)]3

) 1
3

=
(

3

4πn(r)

) 1
3

(68)

is the dimensionless density parameter. The corresponding
matrix elements of the moments are obtained from these po-
tentials according to

M (2+)
σnm =

∫
d3rV (2+)

σ (r)φ∗
n (r)φm(r) (69)

20 40 60 80 100rs
0

0.2

0.4

0.6

0.8

1

[r
sV
c

(r
s)

]2
 [

R
y

2
]

FIG. 1. Plot of the square of Vcrs vs rs. rs is the dimensionless
density parameter defined in Eq. (68).

and

M (3+)
σnm =

∫
d3rV (3+)

σ (r)φ∗
n (r)φm(r). (70)

While it might be tempting to use these expansions, Eqs. (66)
and (67), to compute the moment functionals it is instructive
to recall first the parametrization of the correlation energy of
the uniform electron gas.

In order to construct an accurate analytic representation
of the correlation energy of the uniform electron gas, one
considers the high-density expansion, the low-density expan-
sion, and Green’s function Monte Carlo data [25]. In the
low-density expansion, the leading order is r−1

s for the exact
correlation energy. In the high-density limit, one considers
instead the parametrization c0(ζ )lnrs − c1(ζ ) + c2(ζ )rslnrs.
Since these two functional forms for the low- and high-density
limits differ considerably, we cannot expect good results, if
we construct moment functionals only based on the param-
eterizations Eqs. (66) and (67), which describe the case of
low density. To give an impression of the deviation of the
correlation energy density εc from the low-density behavior
∝ r−1

s , we plot in Fig. 1 the quantity [Vcrs]2, where

Vc = d (εcn)

dn
. (71)

In order to take into account Monte Carlo simulations in the
construction of the moment functionals, we would need such
calculations for correlation functions such as Eq. (19) through
Eq. (35) for the uniform electron gas. Since these data are
currently not available in the literature, we nevertheless use
the parametrization Eq. (66) in our applications below. As in
this paper we present our first tests of the MFbSDFT-method,
this slightly crude approach is justified, because the devel-
opment of accurate moment functionals will probably take
similarly long as the development of the modern functionals
used in KS-DFT calculations. Therefore it is important to
demonstrate the feasibility of the method before developing
accurate moment functionals.

Additionally, we test the following strategy to find more
elaborated moment functionals: Eq. (66) suggests that the
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leading order at low density is r−2
s . Since the leading order

of the correlation energy is r−1
s in this limit, we try to replace

r−2
s in Eq. (66) by the square of the correlation potential Vc,

i.e.,

V (2+)
σ (r) = d (2+)

σ [Vc(rs)]2 (72)

and similarly

V (3+)
σ (r) = d (3+)

σ [Vc(rs)]3. (73)

This strategy should yield better results, because the r−2
s and

r−3
s of the low-density expansion are hereby replaced by a

more realistic functional form at high density.
In Appendix B, we have estimated Eq. (19) through

Eq. (35) based on zeroth-order perturbation theory. Accord-
ing to this estimate, the prefactor of r−2

s is of the order of
10[Ry]2. The prefactor of r−1

s in the low-density expansion
of the correlation potential is of the order of 1.2[Ry]. When
we use the square of the correlation energy we have to choose
the prefactor d (2+)

σ of the square of the correlation energy so
that d (2+)

σ (1.2r−1
s )2 becomes comparable to 10r−2

s . We there-
fore expect d (2+)

σ to be of the order of 10. At this order of
magnitude of d (2+)

σ we indeed find a strong satellite peak in
Ni (see Sec. VI).

V. SECOND VARIATION APPROACH

In this section, we describe the implementation of our
MFbSDFT method within a second variation approach. By
second variation we mean that first a standard KS Hamiltonian
is diagonalized at a given k point and only part of its eigenvec-
tors are used to compute the matrix elements of the moment
functionals. The computation of the state vector matrix V and
of the energies El = Dll may therefore be considered as a
second variation step.

The size of the KS Hamiltonian matrix depends on the
number of basis functions NB. We do not compute all eigen-
vectors, but only as many eigenvectors as we need to describe
the occupied bands and a fraction of the unoccupied bands.
We call this number N < NB. At a given k point, we addi-
tionally compute the NB×NB matrices M (2+) and M (3+) and
project them onto the N eigenstates. By M̄ (2+) and M̄ (3+) we
denote these projections:

M̄ (2+) = Ū†M (2+)Ū (74)

and

M̄ (3+) = Ū†M (3+)Ū , (75)

where Ū is a NB×N matrix, which holds the N eigenvectors
in its N columns.

The implementation of the moments M (2+) and M (3+)

is easy to do. In the subroutines computing the standard
KS-Hamiltonian one needs to switch off the kinetic energy
contribution such that only the computation of the matrix
elements of the potential remains. If one additionally replaces
the exchange-correlation potential by the moment functional
potential for M (2+) or M (3+), the subroutine computes the
corresponding moment matrix.

The first and zeroth moments in the basis of the N eigen-
states are diagonal matrices:

M̄ (1)
nm = EHF

n δnm (76)

and

M̄ (0)
nm = δnm. (77)

Note that in contrast to a standard KS-DFT calculation, the
KS-Hamiltonian used in the first variation step does not use
the full exchange-correlation potential, but only the local or
nonlocal first-order exchange, i.e., either Eq. (11) or Eq. (13).
Therefore we denote the band energies from the first variation
step by EHF

n in Eq. (76). Moments and band energies depend
additionally on the k point if periodic boundary conditions are
used, but we suppress again the k index in the moments and
also in the band energy, i.e., instead of EHF

kn we write EHF
n .

The second and third moments are given by

M̄ (2) = M̄ (1)M̄ (1) + M̄ (2+) (78)

and

M̄ (3) = M̄ (1)M̄ (1)M̄ (1) + M̄ (3+)
, (79)

respectively.
The size of the matrices M̄ (0), M̄ (1), M̄ (2), and M̄ (3) is

N×N and typically N � NB. Therefore the second variation
approach is fast.

Close to the end of the self-consistency cycle the Fermi
energy is determined such that the total electronic charge
compensates the nuclear charge. Typically, the subroutine
computing the Fermi energy makes use of the eigenvalues and
of weights, which are determined by the multiplicities of the
k points, when symmetries are used. In order to include the
spectral weights Eq. (63) into the calculation of the Fermi
energy, one only needs to multiply the k-point weights with
these spectral weights. Similarly, the spectral weights need to
be considered when computing the charge density from the
matrix V of state vectors, Eq. (64), according to

n(r) =
∑
σnm j

φ∗
n (r)φm(r)a jσV∗

n jσVm jσ f (Ejσ ), (80)

which may be derived from Eq. (14) by using the spectral
theorem [17] to express the correlator 〈c†

σncσm〉 in terms of
the spectral function.

We illustrate the self-consistency loop by the flowchart in
Fig. 2. All results presented in Sec. VI have been obtained
according to the flowchart in Fig. 2.

KS-DFT is so constructed that it may be used to obtain
the total energy and the charge density in principle exactly.
However, in practice the exact exchange correlation potential
is not known and therefore the charge density computed in
KS-DFT is an approximation. Since considerable progress
has been made in the construction of exchange correlation
potentials, the KS charge density is a very good approximation
in many cases. Whenever the KS charge density is sufficiently
correct, one may run MFbSDFT in a simplified mode: The
converged KS charge density is used as starting density in
Fig. 2 and only one iteration is performed, i.e., the output
charge density is not computed but instead the results are
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FIG. 2. Flowchart of the MFbSDFT self-consistency cycle.

calculated immediately from the state vector matrix V , from
the spectral poles, and from the spectral weights.

VI. APPLICATIONS

In this section, we apply the MFbSDFT method to several
well-studied materials that show genuine many-body effects
such as satellite peaks. According to the literature, the details
of the spectral function of these materials depend strongly on
the theoretical model used to study them. According to our
discussion in Sec. IV, the parametrizations that we use for
the moment functionals should be considered only as a first
step towards the development of accurate moment functionals.
Consequently, if the results shown below are more similar to
one theoretical model than they are to another one this does
not imply at all that MFbSDFT confirms one particular the-
oretical model, because accurate moment functionals remain
to be developed. The main purpose of this section is therefore
to show that MFbSDFT is able to reproduce spectral features
qualitatively that have been identified as genuine correlation
effects before.

However, beyond validating the concept of MFbSDFT, the
results shown also hint at a practical perspective for MFbS-
DFT already at this early stage of its development. Since the
MFbSDFT reproduces spectral features of correlated materi-
als, it may be used to compute response properties [17] such
as the anomalous Hall effect, which is likely to require con-
siderably less computer time than LDA+DMFT. For such an
application one would fine-tune the parameters in the param-
eterizations of the moment functionals to match the spectral
function known from LDA+DMFT or photoemission. While
this approach is not parameter-free, it is similar to many ap-
plications of LDA+U , where the U parameter is chosen to
reproduce a material property.

A. Fcc Ni

The DOS obtained in KS-DFT with the PBE functional
is shown in Fig. 3. The valence DOS starts to become sig-
nificant starting from 5 eV below the Fermi energy and the
exchange splitting is around 0.75 eV. In contrast, the width of
the main bands found experimentally is significantly smaller
than 5 eV, namely, only 3 eV. Additionally, a much smaller
exchange splitting of around 0.3 eV is found in photoemission
experiments [30,31]. Moreover, the satellite peak observed in
experiments at around 6 eV below the Fermi energy is absent
in the KS-DFT spectrum.

Next, we discuss the MFbSDFT-spectrum obtained with
V (2+)

σ (r) = 15ζ (5/3)
σ [Vc(rs)]2 and V (3+)

σ (r) = 0. Here ζσ =
(1 − σ (n↑ − n↓)/n). We use N = 36. With this choice of
parameters the magnetic moment computed self-consistently
in MFbSDFT is 0.58 μB. The resulting DOS is presented in
Fig. 4. The exchange splitting of around 0.3 eV is strongly
reduced compared to the KS-DFT calculation and close to the
experiments [30,31]. Additionally, the main bands are much
narrower than in KS-DFT and therefore in much better agree-
ment with experiments. Moreover, satellite peaks are found
close to 6 eV. However, the spectral weight of these satellite
peaks is smaller than what is found in experiments and in
LDA+DMFT calculations (see, e.g., Fig. 9 in Ref. [32], Fig. 2
in Ref. [14], and Fig. 2 in Ref. [33]).

Finally, we discuss the MFbSDFT-spectrum obtained
with V (2+)

σ (r) = 0.015ζ (7/3)
σ r−2

s [Ry]2 and V (3+)
σ (r) =

−0.00472ζ
(1/3)
−σ r−3

s [Ry]3. We use N = 36. With this choice
of parameters the magnetic moment is 0.63 μB. Figure 5
shows the density of states (DOS) of Ni in the ferromagnetic
state as computed selfconsistently in MFbSDFT. While the
exchange splitting is similar to KS-DFT, the width of the main
bands is reduced, leading to a slightly better agreement with
experiment. Around 6 eV below the Fermi energy satellite
peaks appear with a spectral weight of a similar order of
magnitude like in experiment and LDA+DMFT. However,

-10 -8 -6 -4 -2 0 2
E-E

F
 [eV]

0

1

2

3

4

D
O

S
 [

S
ta

te
s/

(u
.c

. 
eV

)]

Majority
Minority

FIG. 3. DOS of Ni vs energy E in the ferromagnetic state as
obtained in KS-DFT. EF is the Fermi energy.
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FIG. 4. DOS of Ni vs energy E in the ferromagnetic state as
obtained in MFbSDFT when the moment functional is constructed
according to Eq. (72). EF is the Fermi energy.

the spin polarization of the satellite peak structure differs
from both experiment and LDA+DMFT, which both predict
the minority satellite to be strongly suppressed (see e.g. Fig. 9
in Ref. [32], Fig. 2 in Ref. [14], and Fig. 2 in Ref. [33]). In
contrast, in Fig. 5, the satellites of the majority and minority
band are comparable in magnitude and only shifted in energy.

As discussed in Sec. IV the parameters employed in
V (2+)

σ (r) = 15ζ (5/3)
σ [Vc(rs)]2 (used to generate the DOS shown

in Fig. 4) are of the order of magnitude expected from the
estimate given in Sec. IV. In contrast, we determined the pa-
rameters employed in V (2+)

σ (r) = 0.015ζ (7/3)
σ r−2

s [Ry]2 (used
to generate the DOS shown in Fig. 5) only based on try-out,
because it is unclear how to renormalize the parameters of
the low-density expansion so that it effectively describes the
regimes of intermediate and high densities as well. However,
Fig. 5 is useful nevertheless, because it shows that satellite
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FIG. 5. DOS of Ni vs energy E in the ferromagnetic state as
obtained in MFbSDFT when the moment functional is constructed
according to Eqs. (66) and (67). EF is the Fermi energy.
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FIG. 6. Contributions of the V-3d eg and t2g states to the DOS in
SrVO3. Results from KS-DFT using the PBE functional.

peaks with the correct order of magnitude of spectral weight
can be produced by MFbSDFT. Taken together with the result
of Fig. 4, which shows that band widths, exchange splittings
and location of the satellite peaks are predicted very well
if the correlation potential is used to construct the moment
functionals, the overall conclusion from this finding is that
it is likely that assessing Eq. (19) through Eq. (35) in the
low-density and the high-density regimes and using Monte
Carlo results to interpolate between these limits will allow us
to formulate a moment functional that predicts the spectral
features in Ni quite well.

B. SrVO3

In Fig. 6, we show the contributions of the V-3d eg and t2g

states to the DOS of SrVO3, as obtained with KS-DFT using
the PBE functional. The KS spectrum is not in good agree-
ment with experiment. It has been shown that the agreement
with experiment is improved significantly [11], when DMFT
is used to supplement these bands with correlation effects.
The detailed rearrangement of the spectral features obtained
from LDA+DMFT depends on the details of the modeling
of the correlation effects by the Hubbard model. Ref. [11]
includes only the t2g states into the Hubbard model. In this
case the DOS of the t2g states obtained from LDA+DMFT is
distributed into three pronounced spectral peaks: A dominant
central peak roughly 0.5 eV above the Fermi energy, a lower
Hubbard band around 2 eV below the Fermi energy and an
additional upper Hubbard band around 3 eV above the Fermi
energy. The position of these peaks is in good agreement
with experiments, which find peaks roughly at −1.7, 0.5, and
2.4 eV [34,35]. These spectral features are also observed in
Ref. [36], which includes the eg states, however they strongly
depend on the parameters, and the intensities of the lower and
upper Hubbard bands are much smaller for some parameters.
Additionally, the intensities of the lower and upper Hubbard
bands depend strongly on the double counting correction.

In Fig. 7, we present the contributions of the V-3d eg

and t2g states to the DOS, as obtained with MFbSDFT when

155114-10



MOMENT FUNCTIONAL BASED SPECTRAL DENSITY … PHYSICAL REVIEW B 106, 155114 (2022)

-3 -2 -1 0 1 2 3 4
E-E

F
 [eV]

0

1

2

3

4

D
O

S
 [

S
ta

te
s/

(u
.c

. 
eV

)]

V-3d (total)
V-3d (t

2g
)

V-3d (e
g
)

FIG. 7. Contributions of the V-3d eg and t2g states to the DOS
in SrVO3. Results obtained within MFbSDFT when the moment
functionals are constructed according to Eqs. (72) and (73).

we use Eqs. (72) and (73), where we set d (2+)
σ = 100 and

d (3+)
σ = −200. We use N = 200. The total V-d DOS is in

good agreement with both the experimental spectrum and the
LDA+DMFT spectrum (see, e.g., Fig. 7 in Ref. [11] for com-
parison. Reference [11] uses a broadening of 0.36 eV in order
to reproduce the experimental resolution. We use 0.36 eV in
our Fig. 7 as well.). However, in our case the peak between
2 eV and 2.5 eV stems mainly from the eg states, which are not
included into the Hubbard model in Ref. [11]. Reference [36]
includes the eg states, but still finds a small peak from the
upper Hubbard band for the t2g states at around 3 eV above the
Fermi energy. Such a small peak is consistent with our Fig. 7,
where a shoulder in the V-3d(t2g) is clearly visible between
2 eV and 2.5 eV. Moreover, Ref. [36] finds a large contribution
from the eg states to the DOS at this energy as well. In this
regard, our Fig. 7 resembles closely Fig. 8 in Ref. [36] when
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FIG. 8. Contributions of the V-3d eg and t2g states to the DOS
in SrVO3. Results obtained within MFbSDFT when the moment
functionals are constructed according to Eqs. (66) and (67).
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FIG. 9. Contributions of the V-3d eg and t2g states to the DOS in
SrVO3. Results obtained within MFbSDFT when the moment func-
tionals are constructed according to Eqs. (66) and (67). In contrast to
Fig. 8 the parameters c(2+)

σ and c(3+)
σ are reduced by 18% and 33%,

respectively.

the energy is above the Fermi energy. However, Fig. 8 in
Ref. [36] does not find a strong V-d DOS at around 2 eV
below the Fermi energy. In contrast, we find a strong V-d
DOS at around 2 eV below the Fermi energy with a dominant
part from the eg states and a small contribution from the t2g

states.
In Fig. 8, we show the contributions of the V-3d eg and

t2g states to the DOS, as obtained with MFbSDFT when
we take N = 200 and use Eqs. (66) and (67), where we set
c(2+)
σ = 1.1 [Ry]2, and c(3+)

σ = −1.5 [Ry]3. The peak between
2 and 2.5 eV is very pronounced and both eg and t2g bands
contribute to it. In contrast, the peak around −2 eV in Fig. 7
is significantly smaller in Fig. 8 and shifted to lower energy
between −2.5 eV and -3 eV. Several main features of the t2g

band in Fig. 8 resemble those obtained from a LDA+DMFT
calculation with a Hubbard U of 6 eV (see Fig. 8 in Ref. [36]).
Notably, the t2g band, which ends around 2 eV in Fig. 6, is
expanded to higher energies like in LDA+DMFT. Overall,
the total V-d DOS in Fig. 8 is qualitatively similar to the
one in Fig. 8 of Ref. [36], which displays pronounced peaks
close to 1 eV and close to 2.5 eV, while the V-d DOS close
to -2 eV is small, in agreement with our result in Fig. 8.
However, the peak close to 2.5 eV is much larger in our
Fig. 8.

We may reduce the intensity of this peak at 2.5 eV by
reducing the parameters c(2+)

σ and c(3+)
σ . In Fig. 9, we show

the DOS obtained with the parameters c(2+)
σ = 0.9[Ry]2 and

c(3+)
σ = −1[Ry]3. Indeed, the peak intensity is reduced and it

is now significantly smaller than the intensity of the main peak
at around 1 eV, but relative to the main peak it is still more
pronounced than in Fig. 8 of Ref. [36]. Moreover, the peak is
shifted from 2.5 eV in our Fig. 8 to higher energies and lies
now between 3 eV and 3.5 eV. However, overall the total V-d
DOS, the V-3d (t2g) DOS, and the V-3d (eg) DOS in Fig. 8 of
Ref. [36] is in better agreement with our Fig. 9 than with our
Fig. 8.
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VII. DISCUSSION AND OUTLOOK

In the previous section, we have shown that MFbSDFT
reproduces features such as satellite peaks and spectral weight
shifts which are usually obtained by solving the correlated
electron problem directly, e.g., by means of LDA+DMFT.
While these first MFbSDFT results look therefore very
promising there is a large number of open questions and
obvious possibilities to improve this method further.

First, accurate moment functionals are required. The con-
struction of accurate moment functionals should be possible
based on Monte Carlo data of correlation functions such as
those given in Eq. (19) through Eq. (35).

Second, it is desirable to derive gradient approximations
for the moment functionals. Using local functionals that
depend only on the spin densities for MFbSDFT misses ef-
fects related to their spatial inhomogeneity. Like GGA is
an improvement over LDA, we expect that MFbSDFT will
become more accurate by adding gradient corrections to the
functionals.

Third, in this work, we do not explore the calculation
of total energies and atomic forces for structural relaxation.
However, since force calculations in correlated materials
are possible within LDA+DMFT we expect that total ener-
gies and forces may also be obtained within our MFbSDFT
approach.

Fourth, one may use more than the first four moments.
While the first four moments are sufficient to reproduce the
quasi-particle band structure qualitatively correctly in the
strong-correlation regime [37], the precision of MFbSDFT
is expected to increase with the number of moments used.
The moments become increasingly more complicated with
increasing order. However, one may use computer algebra
systems in order to derive the higher-order moments and to
assess them for the uniform electron gas. This seems feasible
since the complexity is probably comparable to higher-order
perturbation theory in QED, where high-order contributions
have to be tackled by computer algebra. Assuming that com-
puter algebra systems can manage the complexity of the
higher-order moments the question remains if the spectral
function can be found for more than 2 or 4 moments. In
Ref. [17], we give an argument that the spectral function
may be found from the first four moments, which is based
on counting the number of available equations and the num-
ber of parameters that determine the spectral function and
showing that these numbers match. In the present paper, we
have explicitly constructed the spectral function from the first
four moments in Sec. III. We may generalize the argument
given in Ref. [17] and show that from the first 2P moments
(P = 1, 2, . . . ) one may construct the spectral function. This
generalization is discussed in Appendix E. If one uses only
Delta functions in the expression for the spectral function
[as in Eq. (65)] one misses lifetime effects, which may be
accommodated by employing Gaussians instead [38]. When
four moments are required to put the spectral peaks, such as
satellite peaks, at the right energies, it is clear that more than
four moments are generally required to correct the spectral
widths of these spectral features by lifetime effects.

Fifth, perhaps the method of spectral moments may con-
tribute to the understanding of SIE, because it is remarkable

that setting μc(r) = 0 in Eq. (2.22) of Ref. [2] leads to a HF-
type method that suffers from the same SIE and is equivalent
to the method of spectral moments derived from the first two
moments (see Sec. II). We suspect that increasing the number
of moments used will ultimately eliminate the SIE. However,
it is an open question, how the self-interaction correction
(SIC) takes place exactly within the method of spectral mo-
ments. Within the KS-DFT framework the explanation of SIC
is that μc(r) in Eq. (2.22) of Ref. [2] has to eliminate SIE when
the exact exchange correlation functional is used. However,
within the spectral moment method a valid explanation of SIE
seems to be that using only the first two moments produces
an error, which may be eliminated by using more moments.
Of course, the precise moment functionals are expected to be
necessary in order to remove SIE. However, Eq. (19) through
Eq. (35) provide explicit expressions, which may be used for
the construction of the moment functionals.

Sixth, it is an important open question how to extend the
MFbSDFT approach to finite temperatures. In Ref. [17], we
have shown how to generalize the spectral moment method
so that it can be applied to many-band Hamiltonians. Since
the method of Ref. [17] computes the correlation functions
from the spectral theorem, which involves the Fermi function
and the actual excitation energies, it naturally includes finite
temperature effects. As the spectral theorem is not used for
the higher-order correlation functions in MFbSDFT, which
are obtained from moment functionals, it is currently un-
known how to accomodate finite temperatures accurately in
this method.

While accurate moment functionals are currently not avail-
able yet, the MFbSDFT method may also be used in practice
in a way similar to LDA+U . In LDA+U , the U and J pa-
rameters are usually chosen for a given material in order to
add correlation effects that are not described by LDA. Simi-
larly, one may use parametrizations of the moment functionals
similar to the ones that we discussed in Sec. IV and choose
the coefficients in the functional in order to optimize spectral
features.

VIII. SUMMARY

We describe the concept of moment functionals, which al-
low us to obtain the spectral moments from functionals of the
charge density. These functionals play a similar role in MFbS-
DFT as the exchange correlation functional does in KS-DFT.
We derive explicit expressions for the moment functionals and
use perturbation theory to investigate their scaling with the
charge density. We describe an efficient algorithm to obtain
the spectral function from the first four spectral moments. We
demonstrate that MFbSDFT allows us to reproduce spectral
features such as satellite peaks in Ni and lower and upper
Hubbard bands in SrVO3. At this stage of its development,
MFbSDFT may be used in a way similar to LDA+U : The
parameters in the moment functionals are chosen such that
spectral features found in experiments are reproduced.
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APPENDIX A: COMPARISON OF THE SPECTRAL
MOMENTS OF THE MANY-BAND CASE TO THE
SPECTRAL MOMENTS OF THE SINGLE-BAND

HUBBARD MODEL

The spectral moments of the many-band case contain many
new contributions that do not have counterparts in the single-
band Hubbard model. In this Appendix, we discuss which of
the many-band terms have a correspondence in the single-
band Hubbard model. In the single band Hubbard model, the
Coulomb matrix element is simply

Vnn′tt ′ = Uδnn′δtt ′δnt , (A1)

where U is the Hubbard U . For the single band Hubbard
model the first four moments are

M̃ (0)
kσ

= 1

N
∑

l j

eik·(Rl −R j )〈[cσ l , c†
σ j]+〉 = 1, (A2)

M̃ (1)
kσ

= 1

N
∑

l j

eik·(Rl −R j )〈[[cσ l , H]−, c†
σ j]+〉

= ε(k) + U 〈n−σ 〉, (A3)

M̃ (2)
kσ

= 1

N
∑

l j

eik·(Rl −R j )〈[[cσ l , H]−, [H, c†
σ j]−]+〉

= (ε(k))2 + 2U 〈n−σ 〉ε(k) + U 2〈n−σ 〉, (A4)

and

M̃ (3)
kσ

= 1

N
∑

l j

eik·(Rl −R j )〈[[[cls, H]−, H]−, [H, c†
js]−]+〉

= [ε(k)]3 + 3U 〈n−σ 〉[ε(k)]2

+ 2U 2ε(k)n−σ + 2U 2t00n−σ + U 3n−σ

−U 2 1

N
∑

l j

eik·(Rl −R j )tl j〈c†
−σ l c

†
−σ jc−σ l c−σ j〉

+U 2 1

N
∑

l j

tl j〈(2nσ l − 1)c†
−σ l c−σ j〉

+U 2 1

N
∑

l j

eik·(Rl −R j )tl j〈c†
σ jc

†
−σ l cσ l c−σ j〉

+U 2 1

N
∑

l j

eik·(Rl −R j )tl j〈c†
σ jc

†
−σ jcσ l c−σ l〉. (A5)

Here, N is the number of k points.

Clearly, Eqs. (8) and (9) turn into Eqs. (A2) and (A3),
respectively, when one evaluates them for the single-band
Hubbard model and performs a Fourier transformation.

The following contributions to M (2+) are zero for
the single-band Hubbard model: M (2+,3), M (2+,4), M (2+,5),
M (2+,6), and M (2+,7). The sum M (2+,1) + M (2+,2) turns into
U 2〈n−σ 〉 in the single-band case, which is the last term in
Eq. (A4). The sum TV H + TV X

σ + V HT + V X
σ T , which con-

tributes to Eq. (16), evaluates to 2U 〈n−σ 〉ε(k) in the case of
the single-band Hubbard model. This is the middle term in
Eq. (A4).

For the single-band Hubbard model the sum of M (3+,3)
nm

[Eq. (50)] and M (3+,4)
σnm [Eq. (51)] is U 3〈n−σ 〉, which is the last

term in the third line of Eq. (A5).

APPENDIX B: EVALUATION OF M (2+, j)
σnm

In order to keep the notation simple, we discuss the con-
tractions C (2+, j)

σ , Eq. (36), for the uniform electron gas without
spin polarization.

We evaluate the contraction of Eq. (20) by transforming it
into the momentum representation, where we obtain at zero
temperature

C (2+,2)
σ = −

∫
d3qd3k4d3k5

(2π )9nV −2
v(q)v(k4 − k5 + q)nk5−qnk4+q

= −A2

∫
d3qd3k4d3k5

× (kF − |k5 − q|)(kF − |k4 + q|)
q2|k4 − k5 + q|2 . (B1)

Here,

kF = (3π2n)1/3 (B2)

is the Fermi wave number, (k) is the Heaviside step
function,

v(q) = 8π

V
[Ry][aB]

1

q2
(B3)

is the Coulomb potential expressed in terms of the Bohr radius
aB, Ry = 13.6 eV, and

A2 = (8π )2

(2π )9
[Ry]2[aB]2 1

n
. (B4)

Scaling all momenta in Eq. (B1) by the factor ξ , we observe
that this integral is proportional to ξ 2, i.e., it is proportional to
k2

F. In this scaling analysis we took into account that n depends
on kF as well: n = k3

F/(3π2). It is convenient to express C (2+,2)
σ

in terms of the dimensionless density parameter

rs = 1

aB

(
9π

4k3
F

) 1
3

. (B5)

According to the scaling analysis above, it is sufficient to eval-
uate the integral for a single density parameter, e.g., r′

s = 1,
because

C (2+,2)
σ (rs) = C (2+,2)

σ (r′
s = 1)

r2
s

. (B6)
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The integral can be performed numerically using the VEGAS

[39,40] package for the Monte Carlo integration of high-
dimensional integrals. We obtain

C (2+,2)(rs) = −2.57

r2
s

[Ry]2. (B7)

Next, we consider C (2+,16). This integral is given by

C (2+,16)
σ =

∫
d3qd3k4d3k5

(2π )9nV −2
v(q)

× v(k4 − k5 + q)nk5−qnk4+qnk5

= A2

∫
d3qd3k4d3k5(kF − |k5|)

× (kF − |k5 − q|)(kF − |k4 + q|)
q2|k4 − k5 + q|2 , (B8)

which also scales like r−2
s , which is easy to see with a scal-

ing analysis. Evaluating this integral with the VEGAS [39,40]
package gives

C (2+,16)(rs) = 1.73

r2
s

[Ry]2. (B9)

For the contraction C (2+,17), we need to compute the
integral

C (2+,17)
σ =

∫
d3qd3k4d3k5

(2π )9nV −2
v(q)

× v(k4 − k5 + q)nk5−qnk4+qnk4

= A2

∫
d3qd3k4d3k5(kF − |k4|)

× (kF − |k5 − q|)(kF − |k4 + q|)
q2|k4 − k5 + q|2 . (B10)

Using a scaling analysis, we find that this integral also scales
like r−2

s . Employing the VEGAS [39,40] package yields

C (2+,17)(rs) = 1.73

r2
s

[Ry]2. (B11)

While the contractions C (2+,2), C (2+,16), and C (2+,17) above
are straightforward to evaluate with VEGAS [39,40], the
contributions C (2+,1), C (2+,6), C (2+,8), C (2+,12), C (2+,14), and
C (2+,15) require more care, because their integrands contain
factors (v(q))2, which lead to a strong divergence of the in-
tegrands in the limit q → 0. In contrast, the integrals of the
contractions C (2+,2), C (2+,16), and C (2+,17) contain only a single
factor v(q), which does not produce a divergence, because it
is compensated by the q2 of d3q = q2 sin(θ )dθdφ. However,
these contributions may be grouped into pairs of two, where
the two partners in a pair differ in sign. When we replace the
Coulomb potential by

vη(q) = 8π

V
[Ry][aB]

1

q2 + η2
, (B12)

we observe that the limit η → 0 is finite for the pair, while
both partners in a pair diverge in this limit.

Consider for example the pair composed of C (2+,1) and
C (2+,14). Evaluating the integrals

C (2+,1)
η = 2

∫
d3qd3k4d3k5

(2π )9nV −2
vη(q)vη(q)nk5−qnk4+q

= 2A2

∫
d3qd3k4d3k5(kF − |k4 + q|)

× (kF − |k5 − q|)
[q2 + η2]2

(B13)

and

C (2+,14)
η = −2

∫
d3qd3k4d3k5

(2π )9nV −2
vη(q)vη(q)nk5−qnk4+qnk5

= 2A2

∫
d3qd3k4d3k5(kF − |k5|)

× (kF − |k5 − q|)(kF − |k4 + q|)
[q2 + η2]2

(B14)

with the VEGAS [39,40] package we obtain

lim
η→0

[
C (2+,1)

η (rs) + C (2+,14)
η (rs)

] = 2
10.51

r2
s

[Ry]2. (B15)

We explicitly left the spin degeneracy factor 2 in this equation.

APPENDIX C: EVALUATION OF M (3+, j)
σnm

In order to keep the notation simple, we discuss the con-
tractions C (3+, j)

σ for the uniform electron gas without spin
polarization.

Transforming Eq. (51) into the momentum representation,
we obtain the following expression for C (3+,4)

σ in terms of an
integral:

C (3+,4)
σ =

∫
d3qd3q′d3k4d3k5

(2π )12nV −3
v(q)v(q′)v(k4 − k5 + q − q′)

× nk5−qnk4+q

= A3

∫
d3qd3q′d3k4d3k5

1

q2

1

[q′]2

× (kF − |k5 − q|)(kF − |k4 + q|)
|k4 − k5 + q − q′|2 , (C1)

where

A3 = (8π )3

(2π )12
[Ry]3[aB]3 1

n
. (C2)

Scaling all momenta in Eq. (C1) by the factor ξ one may easily
find that C (3+,4)

σ ∝ k3
F ∝ r−3

s . Using VEGAS [39,40], we obtain

C (3+,4)
σ (rs) = −9.81

r3
s

[Ry]3. (C3)

APPENDIX D: ALGORITHM TO CONSTRUCT THE
SPECTRAL FUNCTION FROM NONCOMMUTING

SPECTRAL MOMENT MATRICES

In this section, we provide the derivation of the algorithm
described in Sec. III for the construction of the spectral func-
tion from the first four N×N spectral moment matrices, M (0),
M (1), M (2), and M (3), where M (0) is the unit matrix.
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Assume that we manage to find Hermitian 2N×2N matri-
ces

B(1) =
(

M (1) B1

B†
1 D1

)
, (D1)

B(2) =
(

M (2) B2

B†
2 D2

)
, (D2)

and

B(3) =
(

M (3) B3

B†
3 D3

)
, (D3)

which mutually commute, i.e.,

[B(1),B(2)]− = 0,

[B(1),B(3)]− = 0,

[B(2),B(3)]− = 0,

(D4)

and which satisfy

B(2) = B(1)B(1), (D5)

and

B(3) = B(1)B(2) = B(1)B(1)B(1). (D6)

Note that Eq. (D4) is satisfied if Eqs. (D5) and (D6) are
satisfied. We will therefore solve only Eq. (D5) and Eq. (D6)
below. The matrices M (I ), Bi and Di have the size N×N . The
matrices M (I ) are the given Hermitian spectral moment matri-
ces, while Bi and Di are matrices that need to be determined
such that Eqs. (D5) and (D6) are satisfied. While Di is required
to be Hermitian, Bi is not.

If we manage to find these matrices B(1), B(2), and B(3),
we know that they possess a common system of eigenvectors,
i.e., they may be diagonalized by the same unitary transforma-
tion, because they are Hermitian and they commute mutually.
Consequently, we may find a unitary transformation U so that

B(1) = UDU†, (D7)

where D is a diagonal matrix. Using U and D we may write

B(2) = UD2U† (D8)

and

B(3) = UD3U†. (D9)

In Ref. [17] we have shown that the eigenvalue problems
Eqs. (D7), (D8), and (D9) may be rewritten in the form

W̄A(I ) = B̄(I )
, (D10)

where I = 1, 2, 3 (see Eq. (13) in Ref. [17]). When we denote
the representation of the unit matrix as a column vector by
B̄(0)

, we may combine Eqs. (D7), (D8), and (D9) into the
compact expression

W̄A = B̄, (D11)

where

A = [A(0),A(1),A(2),A(3)] (D12)

and

B̄ = [B̄(0)
, B̄(1)

, B̄(2)
, B̄(3)

]. (D13)

Next, we rewrite B̄ as

B̄ =
(

M
B̄Low

)
(D14)

and

W̄ =
(

W
W̄Low

)
, (D15)

where M and W are the matrices defined in Ref. [17] (see
Eqs. (7) and (8) in Ref. [17]). M is a N2×4 matrix, B̄Low

is a 3N2×4 matrix, W is a N2×2N matrix, and W̄Low is
a 3N2×2N matrix. Thus we may rewrite Eq. (D11) as two
equations:

WA = M (D16)

and

W̄LowA = B̄Low. (D17)

Equation (D16) is identical to the Eq. (9) in Ref. [17], which
needs to be solved to obtain the spectral function. Thus we
may solve Eq. (D16) by determining the matrices B1 and D1,
and by diagonalizing the matrix B(1).

Therefore, in order to prove the algorithm in Sec. III, it
remains to show that the matrices B1 and D1 may be found
by solving Eqs. (D5) and (D6). From Eq. (D5), we obtain the
following equation for B1:

B1B†
1 = M (2) − M (1)M (1). (D18)

Since B1B†
1 is a Hermitian matrix, it may be diagonalized:

B1B†
1 = UDU†, (D19)

where U is a unitary matrix and D is a diagonal matrix. If
B1B†

1 is positive definite, we obtain

B1 = U
√

D, (D20)

which is Eq. (58) in the main text. If B1B†
1 is not positive

definite, the algorithm described in this section cannot be
used. However, in all applications discussed in this paper,
B1B†

1 is positive definite. We suspect that the reason for this is
that M (2+) is generally positive definite.

From Eq. (D6), we obtain the following equation for B2:

B2 = [M (3) − M (2)M (1)][B†
1]−1. (D21)

This is Eq. (59) in the main text.
From Eq. (D5), we obtain the following equation for D1:

D1 = B−1
1 [B2 − M (1)B1]. (D22)

This is Eq. (60) in the main text. D1 is required to be Hermi-
tian, which is not directly obvious from Eq. (D22). However,
making use of Eqs. (D21) and (D18) it is straightforward to
show that

D1 − D†
1 = 0. (D23)

At this point we have completely determined the matrix
B(1), from which the spectral function may be constructed
using its eigenvalues, which are contained in the diagonal ma-
trix D, and the unitary transformation U defined in Eq. (D7).
However, it remains to show that all those additional equa-
tions that follow from Eqs. (D5) and (D6) but that we did not
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use to derive the expressions for B1 and D1 can be satisfied as
well. From Eq. (D5), we obtain

D2 = B†
1B1 + D1D1, (D24)

and from Eq. (D6), we obtain

B3 = M (1)B2 + B1D2 (D25)

and

D3 = B†
1B2 + D1D2. (D26)

D2 as given by Eq. (D24) is Hermitian, because D1 is Her-
mitian according to Eq. (D23). Thus it does not violate any of
the equations above. B3 as given by Eq. (D25) does not violate
any of the equations above either. D3 as given by Eq. (D26)
should be Hermitian, which is not directly obvious. However,
using Eqs. (D24), (D22), and (D23), it is straightforward to
show that

D3 − D†
3 = 0. (D27)

Equation (65) in the main text follows from Eq. (D7),
Eq. (D16), and Ref. [17].

APPENDIX E: GENERALIZATION TO MORE MOMENTS

We may generalize the argument given in Ref. [17] and
show that from the first 2P moments (P = 1, 2, . . . ) one may
construct the spectral function: We may map each moment
M̃

(I )
(where M̃

(I )
denotes the moment computed from the

nested commutator expression—as opposed to the moment
obtained from the explicit energy integration) onto an N2-
dimensional real-valued vector M(I ), because N2 real-valued
parameters fully define a Hermitian N×N matrix. We intro-
duce the N2×2P matrix M by

M = [M(0), . . . ,M(2P−1)]. (E1)

We try to approximate the spectral function by

Sαβ (E )

h̄
=

P∑
p=1

N∑
γ=1

aγ pVαγ pV∗
βγ pδ(E − Eγ p), (E2)

because we expect that PN bands can be computed from the
first 2P spectral moment matrices. Inserting this approxima-
tion into Eq. (1) yields

M (I )
αβ =

P∑
p=1

N∑
γ=1

aγ pWαβγ p[Eγ p]I , (E3)

where we defined Wαβγ p = Vαγ pV∗
βγ p. We may consider

Wαβγ p as the row-α column-β element of a Hermitian matrix
Wγ p. Since γ = 1, . . . , N and p = 1, . . . , P, there are PN
such matrices. As the Hermitian N×N matrix Wγ p is equiv-
alent to a N2-dimensional real-valued vector W̃γ p, we define
the N2×PN matrix W = [W̃11 . . .W̃NP]. Additionally, we
construct the PN×2P matrix A by setting the element Aγ pm

in row (γ , p) and column m to aγ p(Eγ p)m−1. The requirements

M (I ) = M̃
(I )

with I = 0, 1, . . . 2P − 1 (where M̃
(I )

are the
moments computed from the nested commutator expressions)
can now be formulated in compact form by

WA = M. (E4)

This is the generalization of Eq. (9) in Ref. [17] for the
first 2P moments. The form of the equation is the same,
only the sizes of the matrices are different. Since the matrix
M contains 2PN2 elements, Eq. (E4) defines 2PN2 non-
linear equations. Each vector Vγ p has N components and
there are PN such vectors. Vγ p is required to be normal-
ized and the gauge-transformation Vγ p → ei�Vγ p does not
affect Wαβγ p = Vαγ pV∗

βγ p. Thus every Vγ p is determined by
2(N − 1) real-valued unknowns, i.e., 2P(N2 − N ) unknown
coefficients need to be found to determine all vectors Vγ p.
Additionally, we need to find the PN energies Eγ p as well
as the PN spectral weights aγ p. Consequently, Eq. (E4) is
a system of 2PN2 nonlinear equations for 2PN2 unknowns.
Thus one may expect that it should be possible to compute
PN bands from the first 2P spectral moment matrices of size
N×N , because the number of unknowns matches the number
of available nonlinear equations.
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