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Critical light-matter entanglement at cavity mediated phase transitions
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We consider a model of a light-matter system, in which a system of fermions (or bosons) is coupled to a
photonic mode that drives phase transitions in the matter degrees of freedom. Starting from a simplified analytical
model, we show that the entanglement between light and matter vanishes at small and large coupling strength
and shows a peak in the proximity of the transition. We perform numerical simulations for a specific model
(relevant to both solid state and cold atom platforms) and show that the entanglement displays critical behavior
at the transition and features maximum susceptibility, as demonstrated by a maximal entanglement capacity.
Remarkably, light-matter entanglement provides direct access to critical exponents, suggesting another approach
to measure universal properties without direct matter probes.
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I. INTRODUCTION

A many-body “matter” system coupled to a photonic mode
experiences a variety of effects depending on the coupling
strength. In both solid state and cold atom communities [1–9],
a lot of attention has been given to the (ultra) strong coupling
regime [10], where the interaction strength is comparable with
the relevant energy scales of a cavity and matter system. In
such a regime, the strong hybridization between light and mat-
ter induces shared hybrid properties absent in the decoupled
components of the system, such as entangled polaritonic states
and coherence in the photon properties [11–14].

Several experiments on solid state platforms, such as
molecules [15–24] and semiconductors [25–28], have shown
that the cavity mediated long-range interactions dramati-
cally change the properties of the system, for example
by enhancing its transport properties [12,29–32]. Succes-
sive theoretical studies investigated the appearance of new
phases of matter in quantum materials embedded in cavi-
ties [33–36], including superconductivity [37–39], topological
phases [40–48], many-body localized phases [49,50], and
quantum spin liquids [51]. Other works predicted a super-
radiant phase transition [52–57]: above a critical value of
the coupling strength the system is ordered and the cavity
photons spontaneously condense into a state with a nonzero
electric field. These works sparked a debate over the cor-
rect way of modeling the light-matter coupling and whether
no-go theorems forbid spontaneous photon condensation
[58–62].

The aforementioned phenomena clearly signal that hybrid
systems are governed by strong quantum effects. An earlier
work [63] found critical quantum correlations in the Dicke
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model (where the matter degrees of freedom are decoupled),
while others studied the intramatter entanglement in hybrid
systems [43,64]. However, the extent to which the most basic
form of quantum correlation—entanglement—between light
and matter plays a role in genuine many-body hybrid systems
is presently unresolved. The exotic structure of the coupling
(global between matter and light and local within the for-
mer) represents a completely different scenario with respect
to the traditional—and long-studied—entanglement structure
of locally interacting many-body systems [65]. Understand-
ing the role of entanglement in hybrid many-body systems
can provide a new window to understand their functioning
and particularly pave new avenues for their manipulation and
probing.

In this work we aim to fill this gap and investigate the
entanglement between light and matter in hybrid systems.
We consider a model in which the cavity photons drive a
phase transition in a suitable order parameter of the mat-
ter and analyze the behavior of the entanglement across the
phase transition [66–68]. We first study a simplified, yet very
general, analytical model to get a qualitative physical insight
and then perform numerical calculations to characterize the
critical behavior of the entanglement and of the matter order
parameter.

We find that matter and light are unentangled in the dis-
ordered phase and deep in the ordered phase, while they
become highly entangled near the phase transition. There,
a large amount of quantum correlations is shared between
matter and the photons and is accompanied by a maximal en-
tanglement capacity—analogous to specific heat for quantum
correlations. Surprisingly, we find that the photon entangle-
ment with the matter component displays a critical behavior at
the transition and that its critical exponents are in remarkable
agreement with those of the order parameter. This opens up
the possibility to extract information about the matter compo-
nent by observing the photon state and to probe the transition
through a quantity that is experimentally more convenient.
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FIG. 1. Schematic depiction of the system. The matter degrees of
freedom (green spheres) are confined inside a cavity and governed by
a Hamiltonian Hm. The cavity hosts a single photon mode (circle) of
frequency ω that couples to the entire matter system (dashed lines)
with strength g. We characterize light-matter entanglement via the
density matrix of the photon (ρP) and of a hybrid partition including
photon and half of the matter sites (ρP+L/2)

The paper is organized as follows. In Sec. II we present
a simple yet general analytical model to estimate the light-
matter entanglement. In Sec. III we focus on a specific model
and perform numerical calculations to extract the critical be-
havior at the transition. In Sec. IV we briefly discuss possible
experimental implications of our work, while in Sec. V we
present our conclusions.

II. ANALYTICAL MODEL

We consider a generic hybrid system, consisting of a matter
part (electrons, fermions, spins, etc.) described by the Hamil-
tonian Ĥm coupled to a light part, i.e., one bosonic degree of
freedom (such as photons or phonons) characterized by the
creation operator â†. The photon [69] couples with all the mat-
ter degrees of freedom through the electric field Ê ≡ â + â†.
The coupling drives a phase transition in a suitable order
parameter of the matter system, which we assume to be the
expectation value of the operator �̂. The Hamiltonian of the
system is

Ĥ = Ĥm + ωâ†â − gÊ�̂. (1)

We calculate the entanglement of the system using the
reduced density matrix ρP+A, where P indicates the photon,
A is a partition of the matter system (with Ā its complement),
and ρP+A = TrĀ |ψ〉 〈ψ |, where |ψ〉 is the ground state of the
system. We focus on A = ∅ (i.e., trace out the matter) and
A = L/2 (i.e., take a bipartition of the matter); see Fig. 1. We
employ as entanglement witness the second Renyi entropy

SP+A = − ln Trρ2
P+A, (2)

the von Neumann entropy

Sv
P+A = −Tr(ρP+A ln ρP+A), (3)

or the entanglement capacity [70–73]

CE = Tr[ρP+A(ln ρP+A)2] − [Tr(ρP+A ln ρP+A)]2. (4)

See Appendix A for a brief discussion about the entanglement
capacity.

In order to carry out the analytical calculations and gain an
intuitive insight about the entanglement physics, we make a

very simplistic assumption: all matter degrees of freedom can
be collapsed into two states—a disordered state �̂ |0〉m = 0
and an ordered state �̂ |1〉m = |1〉m [74]. This approximation
is true far away from the transition, but quite crude close to the
critical point. Nonetheless, it can capture the essential features
of the entanglement even at the critical point, as we show later
for a specific system. We then introduce a variational ansatz
for the quantum state:

|ψ〉 = √
1 − � |0〉m |�0〉 +

√
� |1〉m |�1〉 , (5)

such that 0 � 〈ψ | �̂ |ψ〉 = � � 1. For simplicity we neglect
for now any degeneracy in the ordered state. We substitute into
Eq. (1) to minimize the energy

〈Ĥ〉 = F (�) + (1 − �)ω 〈â†â〉0 + � 〈ωâ†â − gÊ〉1 , (6)

where F (�) ≡ 〈ψ | Ĥm |ψ〉 and 〈〉0/1 is the expectation value
on |�0/1〉. The second term is minimized by choosing a state
with no photons in it: |�0〉 = |0〉; the third term is minimized
by choosing |�1〉 to be the ground state of the Hamiltonian

Ĥph = ωâ†â − g(â + â†) = ω ˆ̃a† ˆ̃a − g2

ω
, ˆ̃a ≡ â − g

ω
, (7)

meaning ˆ̃a |�1〉 = 0 or |�1〉 is a coherent state with parameter
g/ω [75]:

|�1〉 = e−g2/2ω2
∑

n

(g/ω)n |n〉 /
√

n!. (8)

Upon tracing out the matter degrees of freedom, we obtain the
photon reduced density matrix

ρP = (1 − �) |0〉 〈0| + �e− g2

ω2
∑
n,m

( g

ω

)n+m |n〉 〈m|√
n!m!

. (9)

We calculate analytically Renyi entropy SP = − ln Trρ2
P,

using 〈α|β〉 = e−|α|2/2−|β|2/2+α∗β for coherent states α and β,
as

Trρ2
P = (1 − �)2 + �2 + 2�(1 − �)e−g2/ω2

. (10)

The entropy vanishes deep into the disordered (� → 0) and
ordered (� → 1) phases, while it is maximized for � ∼
1/2. In other words, the light-matter entanglement is peaked
around the phase transition in � and can be in principle
considered to be an indicator of the transition.

Spontaneous symmetry breaking

In the presence of spontaneous symmetry breaking, the
ordered state is degenerate. For Z2 symmetry (Ising transi-
tion), the ordered state is a quantum superposition even for
|�| → 1, since the matter can be in a third state: �̂ |−1〉m =
− |−1〉m, so that we need to replace |1〉m |�1〉 in Eq. (5) by
c1 |1〉m |�1〉 + c−1 |−1〉m |�−1〉 with |c1|2 + |c−1|2 = 1.

The expectation value of the matter Hamiltonian is sym-
metric in |�|, so we find

〈Ĥ〉 = F (�) + (1 − |�|)ω 〈â†â〉0 + |�||c1|2 〈ωâ†â − gÊ〉1

+ |�||c−1|2 〈ωâ†â + gÊ〉−1 . (11)

Minimizing separately we find again that |�0〉 is the vac-
uum state, |�1〉 is the coherent state with parameter g/ω,
and |�−1〉 is the coherent state with parameter −g/ω. The
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FIG. 2. Phase transition analysis at ω/t = 1. (a) The photon entanglement entropy SP and the order parameter OD as functions of the
effective coupling geff. (b) Collapse of the curves using scaling hypothesis near the transition point. We consider system sizes in the range
L ∈ [48, 100] for the scaling analysis and plot only for L = 48, 64, 80, 96 for clarity. The values of the critical coupling and of the critical
exponents for the two transitions are reported in the box. (c) Rescaled expectation value of the electric field E/

√
L and photon number nph/L

as functions of geff. (d) Entanglement capacity CE (ρP ) (solid lines) and photon entropy SP (dashed). (e) Scaling of the locations gmax
eff (L) of

the peak values with respect to the system size L for both SP and CE (ρP ). For both quantities, gmax
eff coincides with the critical point gc

eff in the
thermodynamic limit as gmax

eff (L)/t − gc
eff/t ∝ L−α . The data for (a)–(e) have been obtained with DMRG simulations. (f) Plot of SP obtained

with ED (L = 16) for the degenerate (g2 = 0) and nondegenerate case (g2 = 0.001). The degenerate entropy saturates to ln 2 (black dotted
line).

coefficients c1 and c−1 may be determined by introducing
a phenomenological tunneling term between the degenerate
states, which in the {|1〉m , |−1〉m} basis is written very gener-
ally as −t⊥(0 1

1 0) (with t⊥ → 0+). Such mixing selects the

symmetric combination c1 = c2 = 1/
√

2, such that even in
the limit |�| → 1 the photon density matrix is a mixed state
of two coherent states with opposite electric fields:

ρP = e−g2/ω2

2

∑
n,m

( g

ω

)n+m
[1 + (−1)n+m]

|n〉 〈m|√
n!m!

, (12)

corresponding to a finite Renyi entropy SP = ln 2 − ln(1 +
e−2g2/ω2

), which saturates to ln 2, i.e., the entanglement of a
superposition of the two degenerate states [Fig. 2(f)].

For an ordered phase with Zq degeneracy, the density ma-
trix elements are of the type (ρP )mn ∼ ∑

k zm+n
k , where zq

k = 1,
which vanish unless m + n ≡ 0 (mod q)—the density matrix
shows the same symmetry as the underlying phase transition,
as expected. Introducing a symmetry breaking term we select
only one ordered state, ending up with the result of Eq. (10).

We remark that the model (1) and its consequences are very
general and apply to any system where a many-body matter
component couples to a bosonic mode, including scenarios
where the transition is already present even in the absence of
coupling to the photon [43].

III. NUMERICAL RESULTS

We now consider a specific model, describing spinless free
fermions coupled to the photon through staggered density
[76]:

Ĥm = −t
∑
〈i j〉

ĉ†
i ĉ j + H.c., �̂ =

∑
j

(−1) j ĉ†
j ĉ j . (13)

We add a small degeneracy-lifting term [g2(ĉ†
1ĉ1 − ĉ†

LĉL ) with
g2 = 10−3 and L the system size; see Appendix C] and study
the system at half filling, where it presents an instability to a
gapped phase with a nonzero density wave for strong enough
coupling g.

The model (13) can describe either cold atoms coupled
to an optical cavity mode with periodicity twice that of the
optical lattice [4,77–80] or solid state electrons exhibiting a
Fermi surface nesting and coupled to a lattice distortion (mod-
eled by a dominant phonon mode) that drives a charge density
wave (CDW) transition [81–85]. Indeed, the connection be-
tween metal to CDW transition and the superradiant transition
in cavity systems has been recently investigated [86–89]. In
addition, the (hard-core) bosonic version of the model can
be realized in circuit QED settings [90,91], considering 3D
cavities that are quasiresonant with the superconducting qubit
frequencies.

We study the dependence of the order parameter OD ≡
〈�̂〉 /L and of the light-matter entanglement (characterized
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through SP) on g and on ω. We perform numerical simula-
tions using exact diagonalization (ED) [92] and density matrix
renormalization group (DMRG) [93–101] calculations (see
Appendix B for details). The maximal bond dimension for
the matrix-product state (MPS) representation in the DMRG
calculations is set to χ = 600, enough to ensure convergence
for simulations with system sizes up to L = 100.

Our main results are reported in Fig. 2 for ω/t = 1 (see
Appendix D for other values of ω/t). We plot SP and OD

in terms of the effective coupling strength geff = g
√

L. The
rescaling ensures that all energy contributions are extensive
in size [4,33,77–80]: the internal fermion energy scales as
∼L, while the photon contribution is ∼g2L2/ω (because the
photon mode couples to each fermion, mediating an all-to-all
interaction). An effective coupling g2

eff = g2L guarantees that
the scaling properties with L are not dominated by the electric
field and also means that the resulting critical exponents differ
from those obtained within a mean field analysis.

The entropy SP goes to zero for small and large geff and
exhibits a peak in correspondence to the transition as signaled
by OD [Fig. 2(a)]. This agrees with our analytical prediction,
see Eq. (10), and confirms that the photon entanglement is
an indicator of phase transitions in hybrid light-matter sys-
tems. Moreover, it implies that integrating out the photon is
fundamentally nontrivial near the transition, given its large
entanglement with the matter.

The precise values of the critical coupling gc
eff and the

critical exponent ν of the transition can be determined by
performing a finite size scaling analysis, based on the critical
scaling hypothesis O(L) = L−ζ/ν f [L1/ν (geff − gc

eff )] with O
any observable. The values of gc

eff and ν for the transitions in
SP and in OD are equal within error bars [Fig. 2(b)], signaling
a common origin of the critical behavior and suggesting that
it is possible to study the transition in the order parameter by
looking at the criticality of the photon entanglement SP. This
is a striking feature, since it allows one to probe the transi-
tion of a many-body system by simply looking at the single
degree of freedom of the photon—likely due to the inherently
nonlocal coupling between light and matter.

The quality of the scaling analysis is proven by the collapse
of the curves in the vicinity of the transition [Fig. 2(b)], which
fall onto each other almost perfectly. We note that there is
no fundamental reason for the exponent ζ to coincide for the
two different quantities. Indeed, it differs for SP and OD and
changes with ω (see Appendix D).

We observe that deep in the ordered phase, the electric
field E = | 〈â + â†〉 | (which can be directly measured by the
cavity output [5,102,103]) and the average number of pho-
tons nph = 〈â†â〉 are nonzero, similar to what happens in a
superradiant condensed phase; despite the small amount of
entanglement shared between the photon and the fermions,
this occurs because the photon is in a coherent state; see
Eq. (9). In particular, we note that nph is proportional to L,
so that the rescaled nph/L is scale-invariant even near the
transition [Fig. 2(c)]. On the other hand, E scales as

√
L as

expected in the CDW phase, but the rescaled E/
√

L shows
a critical finite-size dependence similar to that of the order
parameter OD [Fig. 2(c)]; see Appendix D.

In Fig. 2(d) we plot the entanglement capacity CE (ρP ) that
interestingly shows a local dip followed by a global maxi-

FIG. 3. (a) von Neumann entropy Sv
P+L/2 of the photon and half

of the fermionic chain as function of geff, obtained with DMRG for
ω/t = 1. (b) The variation of the peak value of Sv

P+L/2 with respect to
L. We can observe a logarithmic divergence akin to the critical theory
in homogeneous systems.

mum. The locations of the local minima roughly coincide with
those of the peaks in SP. Moreover, the locations of the global
peak in CE (ρP ) and in SP both converge to the same value
in the thermodynamics limit, which also corresponds to the
critical coupling gc

eff, i.e., gmax
eff (L) − gc

eff ∼ L−α; see Fig. 2(e).
Therefore, at the critical point light-matter entanglement is not
only maximal, but is also easy to extract, as shown by maximal
entanglement capacity.

We also show the results of ED calculations [Fig. 2(f)]
in the absence (degenerate) and presence (nondegenerate) of
the g2 symmetry breaking term. The entropy coincides before
the transition and goes to zero in the nondegenerate case,
but saturates to ln 2 in the degenerate case, as predicted by
Eq. (12). The presence of a small g2 term is helpful computa-
tionally: while ED can always access the superposed quantum
state (it being the true ground state), DMRG calculations may
get stuck in one of the two degenerate states when geff/t or
L become too large. In fact, DMRG favors the minimally
entangled state between states exponentially close in energy,
even if it is not the true ground state, leading to sudden jumps
in SP and unphysical results.

In Fig. 3 we show the behavior of the von Neumann en-
tanglement entropy of the photon plus half of the fermionic
chain. This quantity does not vanish for geff = 0 since it also
accounts for correlations between the fermions, but still ex-
hibits a peak at the transition [Fig. 3(a)]. The peak value of the
entropy scales logarithmically with L [Fig. 3(b)] with a slope
∼1.23/6. This behavior is very similar to the critical scaling
of entanglement entropy [68,104–106], but an exact parallel
is hard to make given the inhomogeneity of the partition due
to the presence of the photon.

IV. EXPERIMENTAL RELEVANCE

Coupling itinerant fermions (or hard-core bosons) to
cavities can be realized experimentally on many different
platforms [107,108], such as microcavities [109,110], split-
ring resonators [111–113], semiconductor heterostructures
[114,115], THz Fabry-Pérot cavities [116], and other solid
state settings [117–119]. The models we investigate host a
light-matter coupling inspired by these experiments. Indeed,
our model can be concretely applied to a recent experiment
measuring the properties of the superradiant transition [120].
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FIG. 4. (a) Average photon occupancy nph and the electric field
E = | 〈â + â†〉 | as functions of the maximum photon cutoff nmax

ph in
the symmetry broken CDW phase (geff/t = 1.5) for ω/t = 1 and
system size L = 100. Both nph and E saturate to converged values for
nmax

ph � 70. (b) The ground state energy difference E0(χ ) − E0(χ =
600) with respect to the ground state energy obtained with MPS
bond dimension χ = 600 and the total DMRG truncation error with
varying MPS bond dimension χ . Here, we set ω/t = 1 and L = 100,
and consider geff/t = 0.962, where the photon entanglement SP is
highest.

Demonstrating critical properties forming entanglement is
very challenging, even for the most remarkable and experi-
mentally demonstrated measurement schemes [121–125]. The
key advantage of our proposal is that the fundamental col-
lective properties can actually be determined by measuring
entanglement between matter and light. Measuring the cor-

FIG. 5. Phase transition analysis at ω/t = 3 for the data obtained
from DMRG simulations. (a) The photon entanglement entropy SP

and the order parameter OD as functions of the effective coupling
geff. (b) Collapse of the curves using the scaling hypothesis near the
transition point. As in the main text, we consider system sizes in the
range L ∈ [48, 100] for the scaling analysis and plot the data only
for L = 48, 64, 80, 96 for clarity. The values of the critical coupling
and of the critical exponents for the two transitions are reported in
the box; we observe that the values of gc

eff and ν agree within error.
(c) Entanglement capacity CE (ρP ) (solid lines) and photon entropy
SP (dashed). (d) Scaling of the locations gmax

eff (L) of the peak values
with respect to the system size L for both SP and CE (ρP ). For both
quantities, gmax

eff approaches the critical point gc
eff in the thermody-

namic limit with a power law behavior.

responding entropy is scalable and the corresponding toolbox
has already been experimentally demonstrated in several ar-
chitectures [126–129].

V. CONCLUSIONS AND OUTLOOK

We have shown how entanglement plays a key role at quan-
tum critical points in hybrid many-body light-matter systems.
Within a general analytical model, we found that the entan-
glement between light and matter peaks at the transition of
the matter order parameter. We confirmed such results numeri-
cally in a model of spinless free fermions with an instability to
a charge density wave phase driven by the photon. Importantly
the entropy displays the same critical behavior as the order
parameter of the density wave transition. This is a remarkable
result, showing that in a system with a photon-driven transi-
tion a single degree of freedom (that of the photon) can be
used to investigate a many body phase transition and probe its
critical properties.
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APPENDIX A: ENTANGLEMENT CAPACITY

The entanglement capacity CE [70–73] that we define in
Eq. (4) is a measure of how susceptible the entanglement
stored in the system is upon its extraction. It can be in-
terpreted as the quantum information theoretic counterpart
of the thermodynamic heat capacity. It is obtained starting
from the entanglement Hamiltonian KA ≡ − ln ρA, with ρA

being the density matrix after tracing out the rest of the system
in a given bipartition A. The entanglement capacity is defined
as

CE (ρA) = Tr
(
ρAK2

A

) − Tr(ρAKA)2

= Tr[ρA(ln ρA)2] − [Tr(ρA ln ρA)]2. (A1)

In particular the entanglement capacity can be related to the
Renyi entropies S(m)

A = 1
1−m ln Trρm

A by

CE (ρA) = lim
m→1

m2∂2
m

[
(1 − m)S(m)

A

]
. (A2)

APPENDIX B: DETAILS ABOUT NUMERICAL
SIMULATIONS

In order to study the criticality of the light-matter system,
we perform numerical simulations using exact diagonalization
(ED) [92] and density matrix renormalization group (DMRG)
[93–96] calculations.

Within the ED simulations, the Hamiltonian of the system
is written in a sparse matrix form and a Lanczos algorithm is
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used to find the ground state and the first few excited states.
We only consider the system at half filling so that the Hilbert
space dimension for the matter part is L!/(L/2)!2, correspond-
ing to ∼105 for L = 20. In principle, the photon Hilbert space
is infinite dimensional, but in practice it can be truncated up to
a maximum photon number nmax

ph . The total dimension of the
system Hilbert space makes ED calculations viable only for
small system sizes (L � 20) with limited maximum number
of photons nmax

ph ∼ 5.
It is to be noted that the average photon occupancy nph =

〈â†â〉 increases linearly with system size in the symmetry-
broken charge-density wave (CDW) phase [see Fig. 2(c)];
thus, due to the small value of L, the photon population is
not too large and typically saturates to nph � 3. Despite the
large computation cost, ED calculations have the advantage
of giving access to the full quantum state, allowing the study
of any degeneracy of the ground state.

The DMRG calculations are based on a matrix-product
state (MPS) [95,96] ansatz for a finite system size L with
open boundary condition and for truncated photon space.
Compared to ED simulations, DMRG calculations allow us
to access larger system sizes (L ∼ 100) with a higher cutoff
in the photonic Hilbert space (nmax

ph ∼ 100), enough to ensure
convergence with respect to the truncated photon space [see
Fig. 4(a)].

Thus our MPS ansatz consists of L + 1 sites where the
first MPS site corresponds to the photon with local dimen-
sion dph = nmax

ph + 1 = 101, while the other sites are for the
fermions with local dimension of 2. Moreover, to keep the
fermion number fixed, we utilize U (1) symmetry-preserving
tensors [97,98] at the fermionic MPS sites. Such an MPS
setup has been proven to be very successful in similar hybrid
systems [99–101]. The maximal bond dimension for the MPS
representation is set to χ = 600, which is sufficient to keep
the total discarded weight of the singular values below 10−10

(∼10−12 per MPS bond) and ensure convergence for simula-
tions with system sizes up to L = 100 [see Fig. 4(b)].

APPENDIX C: CHOICE OF THE SYMMETRY BREAKING
TERM

We have chosen a symmetry breaking term of the form
g2(ĉ†

1ĉ1 − ĉ†
LĉL ), which selects only one of the possible charge

density wave states.
There is some degree of arbitrariness in this choice: for

example, one could choose a term that breaks the degeneracy
in the electric field, such as g2(â + â†). Indeed, we have per-
formed calculations employing such symmetry breaking term
and found results qualitatively similar to those presented in
the rest of the work.

However, the main drawback of such a choice is that the
expectation value of the electric field Ê = â + â† does not
depend on the system size L in the disordered phase and scales
like

√
L in the ordered phase. This implies that the symmetry

breaking term scales differently with L depending on the value
of g, making a finite size scaling analysis imprecise. Indeed,
we have compared the collapses obtained from the scaling fit
and observed that the ones obtained from g2(ĉ†

1ĉ1 − ĉ†
LĉL ) are

significantly better.

FIG. 6. Phase transition analysis at ω/t = 10 for the data ob-
tained from DMRG simulations. (a) The photon entanglement
entropy SP and the order parameter OD as functions of the effective
coupling geff. (b) Collapse of the curves using the scaling hypothesis
near the transition point. Again we consider system sizes in the
range L ∈ [48, 100] for the scaling analysis and plot the data only
for L = 48, 64, 80, 96. The values of gc

eff and ν still agree within
uncertainty, but the difference is now larger compared to the ω/t = 1
and ω/t = 3 cases; the uncertainties on the fit parameters are also
larger, signaling a worse quality of the collapses. (c) Entanglement
capacity CE (ρP ) (solid lines) and photon entropy SP (dashed lines).
(d) Scaling of the locations gmax

eff (L) of the peak values with respect
to the system size L for both SP and CE (ρP ). The asymptotic values
of gmax

eff are again compatible with gc
eff.

APPENDIX D: RESULTS FOR ω/t = 3 AND ω/t = 10

In the main text, we have presented our analysis for ω/t =
1 only. To supplement those results and for the purpose of
completeness, in this section, we present the same analysis
for ω/t = 3 (Fig. 5) and ω/t = 10 (Fig. 6).

We find that the results for ω/t = 3 are qualitatively similar
to those obtained for ω/t = 1: in particular, the collapse of the

FIG. 7. Critical behavior of the rescaled electric field |〈â +
â†〉|/√L at ω/t = 1 for data obtained from DMRG simulations.
(a) Plot of the rescaled electric field as functions of the effective
coupling geff for selected system sizes. (b) Collapse of the curves
obtained from a finite size scaling analysis of system sizes in the
range L ∈ [48, 100] for the scaling analysis and plotted only for
L = 48, 64, 80, 96 for clarity. The values of the critical coupling and
of ν coincide with those obtained for the entanglement entropy and
the order parameter.
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finite size scaling analysis is very good and the critical expo-
nents for entanglement and order parameter are in excellent
agreement. On the other hand, the quality of the collapse is
worse for ω/t = 10 as seen by the larger errors and by the
fact that the differences in the critical exponent ν and in the
critical coupling gc

eff/t extracted from entanglement and order
parameter are also larger.

We postulate that this difference is model dependent:
one possible explanation is due to the higher photon en-
ergy which makes it difficult to excite and entangle with
the electrons. We also remark that in the absence of cou-
pling, the spectrum of the electrons has a bandwidth of 4t ,

so that no direct excitations can be mediated by the photon
when ω � 4t . Thus we may expect qualitative differences
when ω/t � 4.

We also report in Fig. 7 the scaling analysis and the col-
lapsed curves for the rescaled electric field E/

√
L for ω/t =

1. The uncertainty on the critical parameters are very small
and the collapses are excellent, signaling the high quality of
the fit. We remark that the electric field exhibits the same
critical effective coupling and the same value of ν as the
entanglement entropy of the photon and the order parameter,
meaning it can also be used to extract the critical exponents
experimentally.
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