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We provide a negative sign free formulation of the auxiliary field quantum Monte Carlo algorithm for general-
ized Kitaev models with higher symmetries. Our formulation is based on the Abrikosov fermion representation
of the spin-1/2 degree of freedom and the phase pinning approach [T. Sato and F. F. Assaad, Phys. Rev. B 104,
L081106 (2021)]. Enhancing the number of fermion flavors or orbitals from 1 to N allows one to generalize
the inherent Z2 global symmetry to Z2 × SU(N )o. Using this general approach, we study the Z2 × SU(2)o

Kitaev-Heisenberg model reflecting the competition between the isotropic Heisenberg exchange and Kitaev-type
bond-directional exchange interactions. We show that the symmetry enhancement provides a path to escape
frustration and that the spin liquid phases in the original Z2-symmetric model are not present in this model.
Nevertheless, the ground-state phase diagram is extremely rich and has points with higher global and local
continuous symmetries as well as deconfined quantum critical points.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods play an important
role in the discovery of many fascinating states of corre-
lated quantum matter. With this approach one can numerically
solve target models for a given lattice size and temperature
without any further approximations. In particular, it excels at
computing thermodynamic properties. However, many spin
and fermion models suffer from the infamous negative sign
problem that renders the computational cost exponential in the
volume of the system V and in the inverse temperature β [1].
The severity of the negative sign problem depends on model
parameters and on the specific formulation. In some cases,
one can use symmetry arguments to avoid it altogether [2–4].
It most cases, the sign problem remains and optimization
strategies to alleviate it can be put forward [5–8].

In the past years, there has been sustained progress in
defining classes of models that are free of the negative sign
problem in the realm of the auxiliary field QMC (AFQMC)
algorithm. The AFQMC methods for fermions [9–11] that we
will consider here are based on a Trotter decomposition and
Hubbard-Stratonovich transformation of the interaction. The
partition function can then generically be represented as

Z = Tr[e−βĤ ] =
∫

d�(i, τ )e−S(�(i,τ )), (1)

where � corresponds to a space (i) and time (τ ) dependent
Hubbard-Stratonovich field. S is the action of a single-particle
Hamiltonian subject to the field � and is generically given by

S(�) = S0(�) − log Tr
[
T e− ∫ β

0 dτ
∑

i, j ĉ†
i hi, j (τ )ĉi

]
(2)

with a real bosonic action S0 and a single-body Hamiltonian
with � and time τ dependent matrix hi, j (τ ). The fermion
operator ĉ†

i creates a particle in the single-particle state la-

beled by i. The trace over the fermion degrees of freedom is
generically complex, thus leading to Im S ∈ [0, 2π ]. Since the
MC importance sampling of the field � is implemented by
a weight function |e−S(�)|, the average sign is given as the
reweighting factor 〈sign〉 = ∫

d�e−S(�)/
∫

d�|e−S(�)|. It has
been shown that using symmetry-based strategies [2–4], Im S
can be pinned to zero thereby defining sign free, 〈sign〉 = 1,
models. For instance, in Ref. [4], the negative sign problem
is absent if one can find two antiunitary operators that mutu-
ally anticommute and that commute with the aforementioned
hi, j matrix for each field configuration. This symmetry-based
strategy has led to an ever growing class of negative sign free
model Hamiltonians [12–19] that can be simulated with the
AFQMC approach.

It is natural to ask how to optimize the negative sign prob-
lem in the absence of negative sign free formulations. The
idea that we will follow is that reducing the fluctuations of
Im S will reduce the severity of the negative sign problem. In
particular if one can design a formulation of the path integral
such that there exits one antiunitary operator that commutes
with hi, j , then the phase is pinned to Im S = 0, π . In a recent
publication [20], we have achieved this for a large class of
frustrated spin models. This includes the generalized Kitaev
model for which this phase pinning strategy to mitigate the
severity of the negative sign problem opens a window of
temperatures relevant to experiments where QMC simulations
can be carried out. A further important consequence of this
phase quantization, ImS = 0, π , is that it allows us to define
a set of models with higher symmetries that are free of the
negative sign problem. In particular, and as we will see be-
low, attaching an additional orbital index, n, to the fermion
operator with n = 1, . . . , N , and N even, allows us to avoid
the negative sign problem. In this paper, we will use the phase
pinning strategy to provide negative sign free formulations of
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Z2 × SU(N )o generalized Kitaev models. Our motivation is
to investigate whether this line of negative sign free model
building provides interesting phase diagrams. We note that
such ideas have already been put forward in the context of
the doped Hubbard model [21].

This paper is organized as follows. We start in Sec. II by
providing a demonstration of the phase pinning approach,
and then show how to implement this idea for Z2 × SU(N )o

generalized Kitaev models. In Sec. III, we use this approach
to explore the ground-state properties of the Z2 × SU(2)o

Kitaev-Heisenberg model. Section IV concludes this paper
with a summary and a discussion of the pros and cons of such
an approach.

II. AFQMC FORMULATIONS OF GENERALIZED KITAEV
MODELS WITH HIGHER SYMMETRIES

In this section we detail the formulation of the auxiliary
field quantum Monte Carlo (AFQMC) algorithm for gener-
alized Kitaev models with higher symmetries. The original
model Hamiltonian with inherent Z2 global symmetry reads

Ĥ =
∑

i, j,α,β

�
α,β

i, j Ŝα
i Ŝβ

j +
∑
i, j

Ji, j Ŝi · Ŝ j . (3)

Here the spin-1/2 degree of freedom Ŝα
i with α = (x, y, z)

resides on a graph with sites labeled by i, j of the honey-
comb lattice. While �

α,β

i, j defines the potentially frustrated spin
model, Ji, j accounts for nonfrustrating exchange couplings. To
formulate the algorithm we represent the spin-1/2 degree of
freedom in terms of Abrikosov fermions,

Ŝi = 1
2 f̂

†
i σ̂ f̂ i , (4)

where f̂
†
i ≡ ( f̂ †

i,↑, f̂ †
i,↓) is a two-component fermion on site i

with constraint f̂
†
i f̂ i = 1 and σ corresponds to the vector of

Pauli spin-1/2 matrices. We work in an unconstrained Hilbert

space and enforce the constraint f̂
†
i f̂ i = 1 by including a

Hubbard-U term on each site. Similar ideas were used in the
framework of Kondo lattice models [15,22,23]. In a recent
publication, Ref. [20], we introduced the phase pinning idea
in the realm of the AFQMC for the original Z2-symmetric
model of Eq. (3). The key technical insight is that if one can
design a formulation of the path integral such that there exits
one antiunitary operator that commutes with the one-body
Hamiltonian coupled to the auxiliary field, then the imaginary
part of the action S is pinned to

Im S = 0, π. (5)

In the fermion representation and so-called phase pinning
approach, the model of Eq. (3) can be simulated using

ĤQMC =
∑

i, j,α,β

∣∣�α,β

i, j

∣∣
2

(
Ŝα

i + �
α,β

i, j∣∣�α,β

i, j

∣∣ Ŝβ

j

)2

−
∑
i, j

Ji, j

8
[(D̂†

i, j + D̂i, j )
2 + (iD̂†

i, j − iD̂i, j )
2]

+ U
∑

i

( f̂
†
i f̂ i − 1)2 (6)

with D̂†
i, j = f̂

†
i f̂ j . Here, ( f̂

†
i f̂ i − 1)2 commutes with ĤQMC

such that the f̂ -fermion parity (−1) f̂
†
i f̂ i is a local conserved

quantity. Owing to this symmetry property, the additional
Hubbard-U term with U > 0 will project very efficiently on

the odd-parity sector (−1) f̂
†
i f̂ i = −1, thus imposing the con-

straint f̂
†
i f̂ i = 1. In this sector, ĤQMC|

(−1) f̂ †
i f̂ i =−1

= Ĥ + C,

where C is a constant. In Eq. (6) the interaction is a sum of
perfect squares and can hence be directly implemented in the
ALF (Algorithms for Lattice Fermions) [11,24] formulation
of the AFQMC algorithm [9,10,25]. Since we assume the
Ji, j exchange couplings to be nonfrustrating, one can find
a set of Ising spins si = ±1 such that for each bond with
Ji, j �= 0, Ji, j = |Ji, j |(−sis j ). After a Trotter decomposition
and Hubbard-Stratonovich transformation the partition func-
tion can be written as

Z = Tr[e−βĤQMC ]

∝
∫

D
{
χ

α,β

i, j (τ ), ReZi, j (τ ), ImZi, j (τ ), λi(τ )
}

× e−S
({

χ
α,β

i, j (τ ),Zi, j (τ ),λi (τ )
})

(7)

with an inverse temperature β and an imaginary time τ . The
action in a given field configuration χ

α,β

i, j (τ ), λi(τ ) ∈ R and
Zi, j (τ ) ∈ C, corresponds to

S({χ, Z, λ}) =
∫ β

0
dτ

⎡
⎣ ∑

i, j,α,β

(
χ

α,β

i, j (τ )
)2

∣∣�α,β

i, j

∣∣
+

∑
i, j

|Zi, j (τ )|2
4|Ji, j | +

∑
i

λi(τ )2

2U

]

− ln TrT e− ∫ β

0 dτ ĥ({χ,Z,λ}) (8)

with

ĥ({χ, Z, λ}) =
∑

i, j,α,β

iχα,β

i, j (τ )

(
Ŝα

i + �
α,β

i, j∣∣�α,β

i, j

∣∣ Ŝβ

j

)

+
∑
i, j,δ

√−sis j (Zi, j (τ )D̂†
i, j + Zi, j (τ )D̂i, j )

+
∑

i

iλi(τ ). (9)

In the above, the first sum runs over bonds and spin indices
with �

α,β

i, j �= 0 and the second sum over bonds with Ji, j �= 0.
Now consider the antiunitary transformation

T̂ α f̂ †
i,σ T̂ −1 = αsi f̂i,σ , α ∈ C, (10)

such that one will show that

T̂ ĥ({χ, Z, λ})T̂ −1 = ĥ({χ, Z, λ}). (11)

Hence, one can find the antiunitary symmetry under which ĥ
is invariant, thus satisfying

ImS({χ, Z, λ}) = 0, π. (12)

The important consequence of the aforementioned phase
pinning approach is that it allows us to define a set of models
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with higher symmetries that are free of the negative sign
problem. Now consider the following partition function,

ZN =
∫

D
{
χ

α,β

i, j (τ ), ReZi, j (τ ), ImZi, j (τ ), λi(τ )
}

× e−NS({χα,β

i, j (τ ),Zi, j (τ ),λi (τ )}), (13)

which owing to Eq. (12) is free of the negative sign problem
at even values of N . ZN corresponds to the partition function
of the Hamiltonian in Eq. (6) where the fermion operator, f̂ ,
acquires an additional orbital index n running from 1, . . . , N
reflecting the SU(N )o global symmetry. Enhancing the num-
ber of fermion orbitals from 1 to N allows one to generalize
the inherent Z2 global symmetry in the generalized Kitaev
model in Eq. (3) to a set of Z2 × SU(N )o. The Hamiltonian
that we will simulate reads

ĤQMC =
∑

i, j,α,β

∣∣�α,β

i, j

∣∣
2

(
Ŝα

i + �
α,β

i, j∣∣�α,β

i, j

∣∣ Ŝβ
j

)2

−
∑
i, j

Ji, j

8
[(D̂†

i, j + D̂i, j )
2 + (iD̂†

i, j − iD̂i, j )
2]

+ U
∑

i

[∑
s,n

( f̂ †
i,s,n f̂i,s,n − 1/2)

]2

. (14)

In the above,

D̂†
i, j =

∑
s,n

f̂ †
i,s,n f̂ j,s,n (15)

and

Ŝα
i = 1

2

∑
n,s,s′

f̂ †
i,s,nσ

α
s,s′ f̂i,s′,n (16)

with the local constraint
∑

s,n f̂ †
i,s,n f̂i,s,n = N . Ŝα

i satisfy the
commutation relations[

Ŝα
i , Ŝβ

i

] = iεα,β,γ Ŝγ

i (17)

such that the SU(2)s spin algebra is still valid. While s corre-
sponds to a spin index, we will refer to n in terms of an orbital
index. The generators of SU(N )o are

T̂ α
i =

∑
s,n,n′

f̂ †
i,s,nT α

n,n′ f̂i,s,n′ (18)

that we choose to satisfy with the normalization condition

Tr[T̂ α, T̂ β] = 1
2δα,β . (19)

Thereby at N = 2, T̂ β = 1
2 τ̂ β with the Pauli spin matrices

τ̂ =
[(0 1

1 0

)
,
(0 −i

i 0

)
,
(1 0

0 −1

)]
. Since we use a fermionic represen-

tation and will impose the constraint of N particles on the
2N orbitals of each unit cell, the representation of SU(N )o we
consider corresponds to the totally antisymmetry self-adjoint
one. By construction, rotations in spin and in orbital space

Stripy
KSL

FM

Zig-zag

N=1 N=2

KSL

SU(4) KVBS

AFM

FM

AFM

SU(4)

AFM+KVBS

 local SU(2)

local SU(2)

FIG. 1. The ground-state phase diagram of the Z2 × SU(N )o

Kitaev-Heisenberg model as a function of the angle ϕ.

commute, [
T̂ α

i , Ŝβ

j

] = 0. (20)

III. RESULTS

For concreteness, we consider on a link i, j defining a
nearest-neighbor δ bond of the honeycomb lattice, �

α,β

δ =
2Kδα,βδδ,α and Jδ = J in Eq. (14), to simulate the Kitaev-
Heisenberg model at N = 2. When K is set to zero, the
global symmetry inherent in this Heisenberg model is SU(4).
At any finite values of K , this symmetry is reduced to a
Z2 × SU(2)o one in which Z2 corresponds to the invariance
under the inversion Si → −Si. We adopt the parametrization
K = A sin(ϕ), J = A cos(ϕ), with A = √

K2 + J2. We sim-
ulated lattices with L × L unit cells (each containing two
orbitals, i.e., Ns = 2L2 sites on the honeycomb lattice) and
periodic boundary conditions. Henceforth, we use A = 1 as
the energy unit. As for the Trotter discretization we have used
�τ = 0.1 and values of βU = 10 were found to be sufficient
to guarantee projection to the odd-parity sector. We have used
a range of temperature T ∈ [1/200, 1/80] depending upon the
considered parameter and this choice of temperature yields
results representative of the ground state. Figure 1 shows
the ground-state phase diagram as a function of the angle
ϕ as obtained from a finite-size scaling analysis. To map
out the phase diagram, we measure correlation functions of
the spin operators Ŝi, SU(N )o generators T̂ i, and dimer op-
erators D̂T

i,α = T̂ i · T̂ i+δα
for each-δα bond. The ground-state

phase diagram at N = 1 has been studied to date [26,27] (see
Fig. 1), and leads to antiferromagnetic (AFM), ferromagnetic
(FM), zigzag, and stripy ordered states, and Kitaev spin liquid
(KSL) states. We find that the N = 2 deformations of the
N = 1 Kitaev-Heisenberg model show different ground-state
properties. Aside from the AFM and FM ordered states with
spontaneous broken SU(2)o symmetry and the Kekulé valence
bond solid (KVBS) ordered state with a spontaneously broken
translation symmetry, we observe that the KSL states are
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absent and that states with higher global SU(4) and local
SU(2)o continuous symmetries arise.

A. Kitaev limits

We first examine the Kitaev limits (AFM case, ϕ/π = 0.5,
and FM case, ϕ/π = 1.5), the Z2 × SU(N )o Kitaev model at
N = 2. In this case the Hamiltonian is given by

Ĥ = |K|
∑

b

Ô†
bÔb + U

∑
i

(n̂i − N )2 (21)

with Ôb = Ŝα
i + K

|K| Ŝ
α
i+δα

and n̂i = ∑
s,n f̂ †

i,s,n f̂i,s,n. In the
large-U limit, charge fluctuations are suppressed such that
n̂i|�0〉 = N |�0〉 and

E0 = |K|
∑

b

||Ôb|�0〉||2 � 0. (22)

As a consequence, any wave function that satisfies
〈�0|Ĥ |�0〉 = 0 is degenerate with the ground state. We now
show that the ground-state degeneracy is at least 3Ns , where
Ns is the number of sites on the honeycomb lattice. At N = 2
each site hosts six states that we can conveniently classify as
spin singlets and orbital triplets,

|1, 1〉o,i = f̂ †
i,↑,1 f̂ †

i,↓,1|0〉,
|1,−1〉o,i = f̂ †

i,↑,2 f̂ †
i,↓,2|0〉,

|1, 0〉o,i = 1√
2

( f̂ †
i,↑,1 f̂ †

i,↓,2 + f̂ †
i,↑,2 f̂ †

i,↓,1)|0〉, (23)

for which

Ŝα
i |1, m〉o,i = 0,

T̂ z
i |1, m〉o,i = m|1, m〉o,i,

(T̂ i )
2|1, m〉o,i = 1(1 + 1)|1, m〉o,i, (24)

as well as orbital singlets and spin triplets,

|1, 1〉s,i = f̂ †
i,↑,1 f̂ †

i,↑,2|0〉,
|1,−1〉s,i = f̂ †

i,↓,1 f̂ †
i,↓,2|0〉,

|1, 0〉s,i = 1√
2

( f̂ †
i,↑,1 f̂ †

i,↓,2 + f̂ †
i,↓,1 f̂ †

i,↑,2)|0〉, (25)

for which

T̂ α
i |1, m〉s,i = 0,

Ŝz
i |1, m〉s,i = m|1, m〉s,i,

(Ŝi )
2|1, m〉s,i = 1(1 + 1)|1, m〉s,i. (26)

As a consequence and for an arbitrary set of mi ∈ {−1, 0, 1},
|�0〉 = ⊗i|1, mi〉o,i (27)

is a ground state. Hence the ground-state manifold is at least
3Ns degenerate.

We will now show that the QMC data are consistent, with
the ground state being in the aforementioned manifold of
states. In fact, for any |�0〉 given by Eq. (27) we have

CS (i) = 〈
Ŝ1

i · Ŝ1
0

〉 = 0. (28)

4

-4
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X
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0

1

�

102

10-1

FIG. 2. Real-space correlations of Ŝ1 [(a), (b)] and T̂ [(c), (d)]
and dynamical structure factor of T̂ generators, CT (q, ω) [(e), (f)]
in the Kitaev limits at N = 2. (a), (c), (e) ϕ/π = 0.5 (AFM Kitaev
limit) and (b), (d), (f) ϕ/π = 1.5 (FM Kitaev limit). (g) First (solid)
and second (dashed line) Brillouin zones. Results in (e), (f) corre-
spond to scans along the red line. Here, L = 9 and T = 1/200.

Note that the above holds for any α and our numerical data
confirm this point of view. Our Hamiltonian has a local orbital
rotational symmetry,

[Ĥ , T̂ i] = 0, (29)

such that

CT (i) = 〈T̂ i · T̂ 0〉 = δi,01(1 + 1). (30)

In Figs. 2(a)–2(d) we plot the correlators of the generators of
spin and orbital rotations. As apparent, the QMC data show
CS (i) = 0 as well as CT (i) = 2δi,0, in accord with the above.

Finally, we consider the dynamical structure factor of
the T̂ generators. This quantity is defined as CT (q, ω) =
Imχ (q, ω)/(1 − e−βω ) with

χ (q, ω) = i

3

∑
γ

∫ ∞

0
dt eiωt

〈[
T̂ γ

q , T̂ γ
−q(−t )

]〉
, (31)

where T̂ α
q = 1√

V

∑
i eiq·i(T̂ α

i,A + T̂ α
i,BeiqR). Here i runs over the

A sublattice (or unit cell) on the honeycomb lattice, and
R = 2/3(a2 − a1/2) with a1 and a2 the lattice vectors. We
compute this quantity using the stochastic analytical continu-
ation [28] as implemented in the ALF [24] library. Our QMC
results at ϕ/π = 0.5 and ϕ/π = 1.5 are shown in Figs. 2(e)
and 2(f). One observes that the spectrum has no momentum
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FIG. 3. Real-space correlations of Ŝ1 (top panel), T̂ (middle panel), and D̂T (bottom panel) at different values of the angle ϕ. (a), (b), (d),
(e) T = 1/80 and (c), (f) T = 1/200. Here, L = 9 and N = 2.

dependence and is apparently gapless at any wave vector q.
The absence of momentum dependence stems from the local
SU(2) invariance in orbital space [see Eq. (29)]. We also
observe that the spectral function does not pick up excited
states. This stems from the fact that the matrix element

s,i〈1, m|T̂ α
i |1, m′〉o,i (32)

vanishes identically.

B. From Kitaev to Heisenberg

As argued above, in the Kitaev limits, a local SU(2) sym-
metry renders the ground state macroscopically degenerate:
each site as a threefold degeneracy akin to a spin-1 orbital
degree of freedom [see Eq. (24)]. As soon as the local SU(2)
symmetry is lifted, an S = 1 orbital antiferromagnetic (φ/π =
0.49), Fig. 3(c), and S = 1 orbital ferromagnetic (φ/π =
1.49), Fig. 3(f), become apparent. This state is picked up by
the vanishing of the spin correlation function, CS (i), and ferro-
magnetic or antiferromagnetic ordering in the orbital degrees
of freedom, CT (i). Alongside the spin and orbital correlation
functions we consider dimer-dimer ones that are defined as
CDT

(b) = 〈(D̂T
b − 〈D̂T

b 〉)(D̂T
0 − 〈D̂T

0 〉)〉. For a given bond b =
(i, j), D̂T

b = T̂ i · T̂ j . We note that the dimer-dimer correlation
function is an SU(2)o singlet as it remains invariant under
SU(2)o rotations. At the Kitaev points this quantity vanishes
due to the local SU(2)o symmetry. Away from this point it is
interesting to see that it shows substantial ferromagnetic cor-
relations. This correlation pattern does not break any further
symmetries and merely reflects the ferromagnetic long-ranged
correlations, Figs. 3(d)–3(f).

We note that in a large region around the Kitaev points, the
spin-spin correlations CS (i) remain very small in comparison
to the orbital ones, Figs. 3(b) and 3(e). This reflects one
of the key points of our model: by enhancing the symme-
try from Z2 to Z2 × SU(2)o one provides a means to avoid

frustration via a spin-flop type transition. The spin-flop tran-
sition is particularly visible in the vicinity of the SU(4)
ferromagnetic point, Fig. 3(d). Here, global SU(4) rotations
leave the Hamiltonian invariant, and one can find one that
rotates T̂ i to Ŝi. As a consequence, both CS (i) and CT (i) are,
as apparent in Fig. 3(d), identical, and show substantial fer-
romagnetic correlations. Away from this point, at ϕ/π = 1.2
in Fig. 3(d), ferromagnetism is apparent only in the orbital
degrees of freedom. To quantify this spin-flop transition, we
consider the correlation ratio. For a general observable O with
correlations

CO
γ δ (q) = 1

L2

∑
RR′

CO
Rγ ,R′δeiq·(R−R′ ), (33)

where R, R′ labels the unit cell and γ , δ the orbitals, it is given
by

RO = 1 − λO
1 (q0 + δq)

λO
1 (q0)

. (34)

Here, λ1(q) is the largest eigenvalue of the CO
γ δ (q) matrix, q0 is

the ordering wave vector, and q0 + δq the largest wavelength
fluctuation of the ordered state on a given lattice size. RO is
a renormalization group invariant quantity [29,30]. RO → 1
for L → ∞ in the ordered state, whereas RO → 0 in the
disordered state. At the critical point, RO is scale-invariant
for sufficiently large L so that results for different system
sizes cross. Figure 4(b) shows this quantity around the SU(4)
ferromagnetic point. As apparent there is a singularity at the
SU(4) point, that reflects the spin-flop transition. For the con-
sidered totally antisymmetric self-conjugate representation of
SU(4), the ferromagnetic state has a U(2)×U(2) symmetry
whereas the Hamiltonian a U(4) one. This gives rise to a
total of dim U (N )

U (N/2)×U (N/2) = N2

2 ≡ nBG of flat directions of

155110-5



TOSHIHIRO SATO AND FAKHER F. ASSAAD PHYSICAL REVIEW B 106, 155110 (2022)

0.4

0.6

0.8

1

L=6
L=9
L=12

RT
(a)

0

0.05

0.1

0.15

-0.02 0 0.02

L=6
L=9
L=12

�

RD
T

0.94

0.96

0.98

1

0.98 1 1.02

L=6
L=9
L=12

RT

�

(b)

FIG. 4. (a) Correlation ratios for AFM (upper panel) and KVBS
(lower panel) states at different values of ϕ/π close to the SU(4)-
symmetric AFM Heisenberg point at ϕ/π = 0. (b) Correlation ratio
for a FM state at different values of ϕ/π close to the SU(4)-
symmetric FM Heisenberg point at ϕ/π = 1.0. Here, T = 1/80.

the fluctuations of the order parameter or equivalently the
number of broken generators. As summarized in Ref. [31],
for nonrelativistic systems nBG does not match the number
of Goldstone modes, nNGM . In fact nNGM = nBG − 1

2 rank(ρ),
where ρα,β = − i

Ns
〈�0|[T̂ α, T̂ β]|�0〉 and |�0〉 is the broken-

symmetry ground state and T̂ α = ∑
i T̂ α

i the generators of the
global SU(N) symmetry. Hence, over the spin-flop transition,
the number of Goldstone modes changes abruptly from 4
(N = 4) to 1 (N = 2). Thereby fluctuations around the or-
dered state are abruptly suppressed and the ordering is more
robust. Magnetically ordered states for the same representa-
tion of SU(N) were studied in Ref. [32]. Finally we note that
away from the SU(4)-symmetric point, the correlation ratio
is next to angle independent. This behavior is a direct conse-
quence of the fact that the largest eigenvalue λ1(q = 0) merely
corresponds to the total spin, a quantity that is determined by
symmetry and not by Hamiltonian dynamics.

We now consider the SU(4)-symmetric isotropic AFM
Heisenberg realized at ϕ/π = 0. The ground state of this
model has been reported earlier and corresponds to the
KVBS ordered state [33,34]. Our data, Fig. 3(a), support
this point of view since the dimer-dimer correlation ratio
grows as a function of system size whereas the AFM one
decreases. The KVBS state is a gapped state with discrete

C3 broken symmetry such that we expect this phase to be
robust to perturbations. As apparent there is a small win-
dow around the SU(4)-symmetric point, where the data are
consistent with the stability of the KVBS phase. Beyond
the SU(4) point, where the model has a Z2 × SU(2)o sym-
metry, the data support a continuous transition between the
KVBS and AFM phases. Within the theory of deconfined
quantum criticality [35], such an order to order transition
requires the emergence of a U(1) spin liquid state at crit-
icality. We will see that the dynamical orbital structure
factor supports the interpretation of a two-spinon continuum
akin to such a phase [36]. Note that the phase boundaries
in Fig. 1 are based on the crossing points of results for
L = 9, 12.

As mentioned above, we now turn our attention to the evo-
lution of the dynamical structure factor of the T̂ generators,
CT (q, ω). Figure 5 shows typical results at different values of
the angle ϕ. At ϕ/π = 0, Fig. 5(a), we are in the KVBS phase
in the proximity of the deconfined quantum critical point. The
data show a small gap, and a continuum of excitations akin to
the two-spinon continuum of a gapless U(1) spin liquid. As
the angle grows spinons bind to form a spin-wave excitation,
Figs. 5(b)–5(d), the velocity of which decreases continuously
and vanishes at the Kitaev point ϕ/π = 0.5.

At ϕ/π = 1.0, Fig. 5(e), the result for CT (q, ω) produces
a well-known quadratic low-lying dispersion around the �

point. Moving toward the Kitaev limits [Figs. 5(f)–5(h)] the
data again show the reduction of the spin-wave velocity in the
vicinity of the � or �′ points.

IV. SUMMARY

Using a phase pinning approach, we have introduced a
set of Z2 × SU(N )o generalized Kitaev models that are free
of the negative sign problem for even N within auxiliary
field quantum Monte Carlo simulations. Our formulation is
based on the Abrikosov fermion representation of the spin-
1/2 algebra. The demonstration of the absence of the sign
problem stems from the consequence that the imaginary part
of the action is quantized to 2π by enhancing the number of
fermion orbitals from 1 to 2N . This idea allows us to provide
a generic guideline for defining a set of sign free models with
higher symmetries. In fact, such a strategy was followed for
the Hubbard model in Ref. [21] to stabilize stripes in doped
quantum antiferromagnets.

We have used this formulation to investigate the ground-
state properties of the Z2 × SU(2)o Kitaev-Heisenberg model.
Generically, it is hard to predict the effect of this symmetry
enhancement on the ground-state phase diagram. In the spe-
cific case of the Kitaev model, it turns out that the symmetry
enhancement provides a route to avoid frustration. That is,
at generic angles where the symmetry is not enhanced, the
spin-spin correlations vanish and ordering occurs in the orbital
degrees of freedom. Although the Kitaev spin liquid phases
inherent in the original Z2-symmetric model are not present
the ground-state phase diagram of the symmetry-enhanced
model is extremely rich. Aside from the antiferromagnetic
and ferromagnetic ordered states with a spontaneously broken
SU(2)o symmetry and the Kekulé valence bond solid ordered
state with a spontaneously broken translation symmetry, we
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FIG. 5. Dynamical structure factor of T̂ generators, CT (q, ω), at different values of the angle ϕ. (a), (b), (c), (e), (f), (g) T = 1/80 and (d),
(h) = 1/200. Results correspond to scans along the red line of first and second Brillouin zones in Fig. 2(g). Here, L = 9 and N = 2.

observe states with higher global SU(4) and local SU(2)o con-
tinuous symmetries. The model equally supports a deconfined
quantum critical point between the KVBS and AFM with
emergent U(1) spin liquid state.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Gauss Cen-
tre for Supercomputing e.V. [37] for funding this project

by providing computing time on the GCS supercomputer
SUPERMUC-NG at the Leibniz Supercomputing Centre [38].
T.S. is grateful for funding from the Deutsche Forschungsge-
meinschaft under Grant No. SA 3986/1-1. F.F.A. is grateful
for financial support from the Deutsche Forschungsgemein-
schaft, Project C01 of the SFB 1170, as well as the
Würzburg-Dresden Cluster of Excellence on Complexity and
Topology in Quantum Matter ct.qmat (EXC 2147, Project ID
390858490).

[1] M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 170201 (2005).
[2] C. Wu and S.-C. Zhang, Phys. Rev. B 71, 155115 (2005).
[3] Z. C. Wei, C. Wu, Y. Li, S. Zhang, and T. Xiang, Phys. Rev.

Lett. 116, 250601 (2016).
[4] Z.-X. Li, Y.-F. Jiang, and H. Yao, Phys. Rev. Lett. 117, 267002

(2016).
[5] M. Ulybyshev, C. Winterowd, and S. Zafeiropoulos,

arXiv:1906.02726.
[6] M. Ulybyshev, C. Winterowd, and S. Zafeiropoulos, Phys. Rev.

D 101, 014508 (2020).
[7] Z.-Q. Wan, S.-X. Zhang, and H. Yao, arXiv:2010.01141.
[8] D. Hangleiter, I. Roth, D. Nagaj, and J. Eisert, Sci. Adv. 6,

eabb8341 (2020).
[9] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev.

D 24, 2278 (1981).
[10] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E.

Gubernatis, and R. T. Scalettar, Phys. Rev. B 40, 506 (1989).
[11] M. Bercx, F. Goth, J. S. Hofmann, and F. F. Assaad, SciPost

Phys. 3, 013 (2017).
[12] E. F. Huffman and S. Chandrasekharan, Phys. Rev. B 89,

111101(R) (2014).
[13] Y. Schattner, S. Lederer, S. A. Kivelson, and E. Berg, Phys. Rev.

X 6, 031028 (2016).
[14] T. Sato, M. Hohenadler, and F. F. Assaad, Phys. Rev. Lett. 119,

197203 (2017).
[15] T. Sato, F. F. Assaad, and T. Grover, Phys. Rev. Lett. 120,

107201 (2018).
[16] Y. Liu, Z. Wang, T. Sato, M. Hohenadler, C. Wang, W. Guo, and

F. F. Assaad, Nat. Commun. 10, 2658 (2019).

[17] M. Ippoliti, R. S. K. Mong, F. F. Assaad, and M. P. Zaletel, Phys.
Rev. B 98, 235108 (2018).

[18] Z. Wang, M. P. Zaletel, R. S. K. Mong, and F. F. Assaad, Phys.
Rev. Lett. 126, 045701 (2021).

[19] G. Pan, W. Wang, A. Davis, Y. Wang, and Z. Y. Meng, Phys.
Rev. Res. 3, 013250 (2021).

[20] T. Sato and F. F. Assaad, Phys. Rev. B 104, L081106
(2021).

[21] F. F. Assaad, V. Rousseau, F. Hebert, M. Feldbacher, and G. G.
Batrouni, Europhys. Lett. 63, 569 (2003).

[22] S. Capponi and F. F. Assaad, Phys. Rev. B 63, 155114
(2001).

[23] F. F. Assaad, Phys. Rev. Lett. 83, 796 (1999).
[24] ALF Collaboration, F. F. Assaad, M. Bercx, F. Goth, A. Götz,

J. S. Hofmann, E. Huffman, Z. Liu, F. Parisen Toldin, J. S. E.
Portela, and J. Schwab, arXiv:2012.11914.

[25] F. Assaad and H. Evertz, Computational Many-Particle Physics,
Lecture Notes in Physics Vol. 739, edited by H. Fehske, R.
Schneider, and A. Weiße (Springer, Berlin, 2008), pp. 277–356.

[26] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.
110, 097204 (2013).

[27] M. Gohlke, R. Verresen, R. Moessner, and F. Pollmann, Phys.
Rev. Lett. 119, 157203 (2017).

[28] K. S. D. Beach, arXiv:cond-mat/0403055.
[29] K. Binder, Z. Phys. B: Condens. Matter 43, 119 (1981).
[30] S. Pujari, T. C. Lang, G. Murthy, and R. K. Kaul, Phys. Rev.

Lett. 117, 086404 (2016).
[31] H. Watanabe, Annu. Rev. Condens. Matter Phys. 11, 169

(2020).

155110-7

https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1103/PhysRevB.71.155115
https://doi.org/10.1103/PhysRevLett.116.250601
https://doi.org/10.1103/PhysRevLett.117.267002
http://arxiv.org/abs/arXiv:1906.02726
https://doi.org/10.1103/PhysRevD.101.014508
http://arxiv.org/abs/arXiv:2010.01141
https://doi.org/10.1126/sciadv.abb8341
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevB.40.506
https://doi.org/10.21468/SciPostPhys.3.2.013
https://doi.org/10.1103/PhysRevB.89.111101
https://doi.org/10.1103/PhysRevX.6.031028
https://doi.org/10.1103/PhysRevLett.119.197203
https://doi.org/10.1103/PhysRevLett.120.107201
https://doi.org/10.1038/s41467-019-10372-0
https://doi.org/10.1103/PhysRevB.98.235108
https://doi.org/10.1103/PhysRevLett.126.045701
https://doi.org/10.1103/PhysRevResearch.3.013250
https://doi.org/10.1103/PhysRevB.104.L081106
https://doi.org/10.1209/epl/i2003-00553-2
https://doi.org/10.1103/PhysRevB.63.155114
https://doi.org/10.1103/PhysRevLett.83.796
http://arxiv.org/abs/arXiv:2012.11914
https://doi.org/10.1103/PhysRevLett.110.097204
https://doi.org/10.1103/PhysRevLett.119.157203
http://arxiv.org/abs/arXiv:cond-mat/0403055
https://doi.org/10.1007/BF01293604
https://doi.org/10.1103/PhysRevLett.117.086404
https://doi.org/10.1146/annurev-conmatphys-031119-050644


TOSHIHIRO SATO AND FAKHER F. ASSAAD PHYSICAL REVIEW B 106, 155110 (2022)

[32] M. Raczkowski and F. F. Assaad, Phys. Rev. Res. 2, 013276
(2020).

[33] F. F. Assaad, Phys. Rev. B 71, 075103 (2005).
[34] T. C. Lang, Z. Y. Meng, A. Muramatsu, S. Wessel, and F. F.

Assaad, Phys. Rev. Lett. 111, 066401 (2013).

[35] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A.
Fisher, Science 303, 1490 (2004).

[36] F. F. Assaad and T. Grover, Phys. Rev. X 6, 041049 (2016).
[37] See http://www.gauss-centre.eu.
[38] See http://www.lrz.de.

155110-8

https://doi.org/10.1103/PhysRevResearch.2.013276
https://doi.org/10.1103/PhysRevB.71.075103
https://doi.org/10.1103/PhysRevLett.111.066401
https://doi.org/10.1126/science.1091806
https://doi.org/10.1103/PhysRevX.6.041049
http://www.gauss-centre.eu
http://www.lrz.de

