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We derive Ward identities for fermionic systems exhibiting a gauge symmetry that gets globally broken.
In particular, we focus on the relation that connects the gauge field response functions to the transverse
susceptibilities of the order parameter. We find that the long-wavelength and zero-energy limit of the former
are related to the coefficients of a low-energy expansion of the latter. We examine three physical cases: the
superconductor, the Néel antiferromagnet, and the spiral magnet. In the case of a metallic spiral magnet that
completely breaks the SU(2) spin symmetry, we explicitly show that the Ward identities are fulfilled within
the random phase approximation. We subsequently derive microscopic expressions for the spin stiffnesses and
spin-wave velocities, which can be plugged into low-energy models to study the effect of long-wavelength
bosonic fluctuations on top of mean-field solutions.
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I. INTRODUCTION

Symmetries play a prominent role in several branches of
physics. In condensed-matter systems, they often allow for
making rigorous statements about the nature of a phase tran-
sition or provide insightful information about entire phases.
A renowned example is the Goldstone theorem [1], which
predicts the number of gapless modes when a global contin-
uous symmetry is spontaneously broken, irrespective of the
microscopic details of the system. In some systems, a global
invariance is promoted to a local one with the introduction of
a gauge field.

In this case, constraints for the correlation functions can
be derived, corresponding to fundamental conservation laws.
These exact relations, going under the name of Ward (or
Ward-Takahashi) identities [2,3], play a key role in the devel-
opment of approximations to tackle the many-body problem
[4–7], as it is desirable for a method to satisfy them. Many
works have been produced with this aim, focusing, among
others, on the consistency of many-body approximations
[8–12] or on the gauge invariance of response functions
[13–15]. Ward identities have also been analyzed in systems
with broken symmetries, such as ferromagnets [9,16] or su-
perconductors [17–20]. Some of the most considered Ward
identities are those which impose constraints relating single-
particle properties (as the self-energy) to the two-particle
correlators (the vertex functions), providing a benchmark on
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the consistency of the approximations employed to compute
these quantities.

In this paper, we derive Ward identities descending from
a local symmetry that gets globally broken in a fermionic
system. We consider the gauge field as an external perturba-
tion and probe the linear response of the system to it, thus
preserving the massless character of the Goldstone modes.
We derive a functional identity from which a hierarchy of
exact constraints for correlation functions can be extracted.
We focus on the Ward identity connecting the linear response
to the external gauge field and the transverse susceptibilities
of the order parameter, containing information on the Gold-
stone gapless excitations. In particular, we show that the low
frequency and momentum expansion of the inverse of the
susceptibilities is related to precise limits of the gauge field
response kernel. We discuss three examples: a superconductor
breaking the U(1) charge symmetry, a Néel antiferromagnet
breaking the SU(2) spin symmetry leaving a residual U(1),
and a spiral magnet, completely breaking SU(2). Similar re-
lations can be found in the literature for special cases (see,
for example, Ref. [21]). Here we provide a formal derivation
within a formalism that allows us to extend them to any system
and any possible kind of long-range order that breaks a contin-
uous symmetry. These identities are of fundamental relevance,
as from the sole knowledge of the local symmetry group, one
can infer the form of the transverse susceptibilities for small
energies and long wavelengths. This is reminiscent of and
intimately connected to hydrodynamic theories for systems
exhibiting spontaneous symmetry breaking, such as superfluid
helium [22] or magnets [23,24]. Moreover, when the gauge
field is of pure gauge, that is, it can be removed by means of a
local transformation, the Ward identities are useful to derive a
low-energy theory for the slow directional fluctuations of the
order parameter in the fashion of nonlinear sigma models [25].

We focus particularly on the case of doped antiferromag-
nets that host low-lying fermionic excitations, forming small
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Fermi surfaces. We show that from the Ward identities, one
can compute a dynamical transverse susceptibility χ⊥

dyn ≡
limω→0 χ⊥(q = 0, ω) and a spin stiffness J and extract the

spin-wave velocity as cs =
√

J/χ⊥
dyn. This is in contrast with

the hydrodynamic approach of Refs. [23,24], which predicts
cs =

√
J/χ⊥, with χ⊥ ≡ limq→0 χ⊥(q, ω = 0) the uniform

transverse susceptibility. As noted in Ref. [26], the equality
χ⊥ = χ⊥

dyn holds only for insulating antiferromagnets at low
temperatures, as the spin systems considered in Refs. [23,24].
Furthermore, as a consequence of the doping, Néel antifer-
romagnetism is often destroyed, making way to a coplanar
spiral magnet. In this state, the spins are no longer anti-
ferromagnetically ordered but the magnetization rotates in a
plane, completely breaking the SU(2) rotational symmetry
and giving rise to three rather than two Goldstone modes
[27–30]. Spiral states have been found to emerge in the two-
dimensional Hubbard model and in the t-J model at moderate
hole doping away from half filling, and they are possible
candidates for the incommensurate magnetic correlations ob-
served in the cuprate superconductors [31–40]. They have also
been proposed in the context of frustrated antiferromagnets
[41–47]. We present a direct evaluation of the Ward identities
for a metallic spiral magnet via the random phase approxi-
mation (RPA), and derive expressions for the spin stiffness
and dynamical susceptibility of each gapless mode. These
formulas generalize to finite temperature and doping and to
spiral magnetic states, the previously derived expressions for
spin stiffnesses in the ground state at half filling [21,48]. This
formalism represents a convenient starting point to study long-
wavelength fluctuation effects on top of mean-field solutions.

The paper is organized as follows. In Sec. II, we derive
the anomalous Ward identities descending from a gauge sym-
metry that gets globally broken in a fermionic system. We
consider three different systems: the superconductor, the an-
tiferromagnet, and the spiral magnet. In Sec. III, we present
an explicit and detailed evaluation of the Ward identities for
a spiral magnet and derive approximate expressions for the
spin stiffnesses and dynamical susceptibilities. A conclusion
in Sec. IV closes the presentation.

II. WARD IDENTITIES

In this section, we derive and discuss the Ward identi-
ties connected with a specific gauge symmetry which gets
globally broken due to the onset of long-range order in the
fermionic system. We focus on two specific symmetry groups:
the (Abelian) U(1) charge symmetry and the (non-Abelian)
SU(2) spin symmetry. All over the paper we employ Einstein’s
notation, that is, a sum over repeated indices is implicit.

A. U(1) symmetry

We now analyze the Ward identities in a superconductor.
According to Elitzur’s theorem [49], the breaking of the U(1)
gauge symmetry is not possible, leading to the interpretation
of the superconductor as a topologically ordered state [50]
due to a subtle interplay of the dynamical gauge field and the
order parameter [51]. In this paper, we treat the gauge field
as a classical external perturbation and measure the system’s

response to it, so a discussion on the topological nature of the
order is not required.

We consider the generating functional of susceptibilities
of the superconducting order parameter and gauge kernels,
defined as

G[Aμ, J, J∗]

= − ln
∫
DψDψe−S[ψ,ψ,Aμ]+(J∗,ψ↓ψ↑ )+(J,ψ↑ψ↓ ), (1)

where ψ = (ψ↑, ψ↓) [ψ = (ψ↑, ψ↓)] are Grassmann spinor
fields corresponding to the annihilation (creation) of a
fermion, Aμ is the electromagnetic field, J (J∗) is a source
field that couples to the superconducting order parameter
ψ↑ψ↓ (ψ↓ψ↑), and S[ψ,ψ, Aμ] is the action of the system.
The index μ = 0, 1, . . . , d , with d the system dimensional-
ity, runs over temporal (μ = 0) and spatial (μ = 1, . . . , d)
components. In the above equation and from now on, the
expression (A, B) has to be intended as

∫
x A(x)B(x), where

x is a collective variable consisting of a spatial coordinate x
(possibly discrete, for lattice systems), and an imaginary time
coordinate τ , and

∫
x is shorthand for

∫
dd x

∫ β

0 dτ , with β the
inverse temperature. Even in the case of a lattice system, we
define the gauge field over a continuous space time, so that
expressions involving its gradients are well-defined.

We let the global U(1) charge symmetry be broken by
an order parameter that, to make the treatment simpler, we
assume to be local (s wave),

〈ψ↓(x)ψ↑(x)〉 = 〈ψ↑(x)ψ↓(x)〉 = ϕ0, (2)

where the average is computed at zero source and gauge fields,
and, without loss of generality, we choose ϕ0 ∈ R. A gener-
alization to systems with nonlocal order parameters, such as
d-wave superconductors, is straightforward.

The functional in Eq. (1) has been defined such that its
second derivative with respect to J and J∗ at zero J , J∗, and
Aμ gives (minus) the susceptibility of the order parameter
χ (x, x′), while (minus) the gauge kernel Kμν (x, x′) can be
extracted by differentiating twice with respect to the gauge
field. In formulas:

χ (x, x′) = − δ2G
δJ (x)δJ∗(x′)

∣∣∣∣
J=J∗=Aμ=0

, (3a)

Kμν (x, x′) = − δ2G
δAμ(x)δAν (x′)

∣∣∣∣
J=J∗=Aμ=0

. (3b)

Let us now consider the constraints that the U(1) gauge invari-
ance imposes on the functional G. Its action on the fermionic
fields is

ψ (x) → eiθ (x)ψ (x), (4a)

ψ (x) → e−iθ (x)ψ (x), (4b)

with θ (x) a generic function. Similarly, the external fields
transform as

J (x) → J ′(x) = e2iθ (x)J (x), (5a)

J∗(x) → [J ′(x)]∗ = e−2iθ (x)J∗(x), (5b)

Aμ(x) → A′
μ(x) = Aμ(x) − ∂μθ (x), (5c)
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where ∂μ = (i∂τ ,∇). In Eqs. (4) and (5), the spatial coordi-
nate x of the spinors ψ and ψ , as well as the sources J and
J∗ may be a lattice one, while the gauge field Aμ and the
parameter θ are always defined over a continuous space. To
keep the notation lighter, we always indicate the space-time
coordinate as x, keeping in mind that its spatial component
could have a different meaning, depending on the field it refers
to.

For G to be invariant under a U(1) gauge transformation, it
must not depend on θ (x):

δ

δθ (x)
G[A′

μ, J ′, (J ′)∗] = 0. (6)

Considering an infinitesimal transformation, that is, |θ (x)| �
1, from Eqs. (5) and (6), we obtain

∂μ

(
δG

δAμ(x)

)
+ 2i

[
δG

J (x)
J (x) − δG

J∗(x)
J∗(x)

]
= 0. (7)

We now consider the change of variables

J (x) → J1(x) + iJ2(x), (8a)

J∗(x) → J1(x) − iJ2(x), (8b)

such that J1(x) [J2(x)] is a source field coupling to longitu-
dinal (transverse) fluctuations of the order parameter, and the
functional �, defined as the Legendre transform of G,

�[Aμ, φ1, φ2] =
∑

a=1,2

∫
x
φa(x)Ja(x) + G[Aμ, J1, J2], (9)

where φa(x) = δG[Aμ,J1,J2]
δJa(x) . The gauge kernel can be computed

from � as well,

Kμν (x, x′) = − δ2�

δAμ(x)δAν (x′)

∣∣∣ 
φ=Aμ=0
, (10)

because, thanks to the Legendre transform properties,
δ�/δAμ(x) = δG/δAμ(x). Differently, differentiating � twice
with respect to the fields φa returns the inverse correlator

Cab(x, x′) = − δ2�

δφa(x)δφb(x′)

∣∣∣∣ 
φ=Aμ=0

, (11)

which obeys a reciprocity relation [52]∫
x′′

Cac(x, x′′)χ cb(x′′, x′) = δabδ(x − x′), (12)

with the generalized susceptibility χab(x, x′), defined as

χab(x, x′) = − δ2G
δJa(x)δJb(x′)

∣∣∣∣
Ja=Aμ=0

. (13)

Equation (7) can be expressed in terms of � as

∂μ

(
δ�

δAμ(x)

)
− 2

[
δ�

δφ1(x)
φ2(x) − δ�

δφ2(x)
φ1(x)

]
= 0. (14)

Equation (14) is an identity for the generating functional �

stemming from U(1) gauge invariance of the theory. Taking
derivatives with respect to the fields, one can derive an infinite
set of Ward identities.

We are interested in the relation between the gauge kernel
and the transverse inverse susceptibility C22(x, x′). For this

purpose, we differentiate Eq. (14) once with respect to φ2(x′)
and once with respect to Aν (x′), and then set the fields to zero.
We obtain the set of equations

−∂μC2
μ(x, x′) = 2ϕ0 C22(x, x′), (15a)

−∂μKμν (x, x′) = 2ϕ0 C2
ν (x, x′), (15b)

where ϕ0 = 〈φ(x)〉 = 〈φ1(x)〉 = 〈ψ↓(x)ψ↑(x)〉, and we have
defined the quantity

Ca
μ(x, x′) = − δ2�

δAμ(x)δφa(x′)

∣∣∣∣ 
φ=Aμ=0

. (16)

Combining Eqs. (15a) and (15b), we obtain

∂μ∂νKμν (x, x′) = 4ϕ2
0 C22(x, x′). (17)

Fourier transforming Eq. (17) and rotating to real frequencies,
we have

−qμqνKμν (q) = 4ϕ2
0C22(q), (18)

with q = (q, ω) a collective variable combining momentum
and real frequency.

We now define the superfluid stiffness Jαβ and the uniform
density-density susceptibility χn [53] as

Jαβ ≡ − lim
q→0

Kαβ (q, ω = 0), (19a)

χn ≡ lim
ω→0

K00(q = 0, ω), (19b)

where the minus sign in Eq. (19a) has been introduced so that
Jαβ is positive definite. Notice that, even though the limits
q → 0 and ω → 0 in Eq. (19b) have been taken in the op-
posite order compared to what is conventionally done, they
commute in an s-wave superconductor because of the absence
of gapless fermionic excitations. In the above equation and
from now on, we employ the convention that the indices
labeled as μ, ν include temporal and spatial components,
whereas α and β only the latter. Taking the second derivative
with respect to q on both sides of Eq. (18), we obtain

Jαβ = 2ϕ2
0∂

2
qαqβ

C22(q, ω = 0)
∣∣
q→0, (20a)

χn = −2ϕ2
0∂

2
ωC22(q = 0, ω)

∣∣
ω→0, (20b)

where ∂2
qαqβ

and ∂2
ω are shorthand for ∂2

∂qαqβ
and ∂2

∂ω2 , respec-
tively. Moreover, we have made use of the Goldstone theorem,
reading C22(0, 0) = 0. To derive Eq. (20) from Eq. (18), we
have exploited the finiteness of the gauge kernel Kμν (q) in
the q → 0 and ω → 0 limits. Equations (20) state that the su-
perfluid stiffness and the uniform density-density correlation
function are not only the zero momentum and frequency limit
of the gauge kernel but also the coefficients of the inverse
transverse susceptibility when expanded for small q and ω,
respectively. Inverting Eq. (12), C22(q) can be expressed in
terms of χab(q) as

C22(q) = 1

χ22(q) − χ21(q) 1
χ11(q)χ

12(q)
. (21)

In the limit q → 0 = (0, 0), χ22(q) diverges for the Goldstone
theorem, while the second term in the denominator vanishes
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like some power of q. This implies that, for small q,

C22(q) � 1

χ22(q)
. (22)

From this consideration, together with Eqs. (20), we can de-
duce that the transverse susceptibility can be written as

χ22(q, ω) � 4ϕ2
0

−χnω2 + Jαβqαqβ

, (23)

for small q and ω.
The above form of the χ22(q) can be also deduced from a

low-energy theory for the phase fluctuations of the supercon-
ducting order parameter. Setting J and J∗ to zero in Eq. (1),
and integrating out the Grassmann fields, one obtains an ef-
fective action for the gauge fields. The quadratic contribution
in Aμ is

S (2)
eff [Aμ] = −1

2

∫
q

Kμν (q)Aμ(−q)Aν (q), (24)

where
∫

q is shorthand for
∫

dω
2π

∫ dd q
(2π )d . Since we are focusing

only on slow and long-wavelength fluctuations of Aμ, we
replace Kμν (q) with Kμν (0). Considering a pure gauge field,
Aμ(x) = −∂μθ (x), where θ (x) is (half) the phase of the su-
perconducting order parameter (φ(x) = ϕ0e−2iθ (x)), we obtain

Seff [θ ] = 1

2

∫
x
{−χn[∂tθ (x)]2 + Jαβ∂αθ (x)∂βθ (x)}, (25)

with θ (x) ∈ [0, 2π ] a periodic field. The above action is well-
known to display a Berezinskii-Kosterlitz-Thouless transition
[54,55] for d = 1 (at T = 0) and d = 2 (at T > 0), while for
d = 3 (T � 0) or d = 2 (T = 0), it describes a gapless phase
mode known as Anderson-Bogoliubov phonon [19].

From Eq. (25), we can extract the propagator of the field
θ (x),

〈θ (−q)θ (q)〉 = 1

−χnω2 + Jαβqαqβ

, (26)

where we have neglected the fact that θ (x) is de-
fined modulo 2π . Writing φ2(x) = (φ(x) − φ∗(x))/(2i) =
−ϕ0 sin(2θ (x)) � −2ϕ0θ (x), χ22(q) can be expressed as

χ22(q) =〈φ2(−q)φ2(q)〉 � 4ϕ2
0〈θ (−q)θ (q)〉

= 4ϕ2
0

−χnω2 + Jαβqαqβ

, (27)

which is in agreement with Eq. (23).

B. SU(2) symmetry

In this section, we repeat the same procedure we have
applied in the previous one to derive the Ward identities con-
nected to a SU(2) gauge invariant system. We consider the
functional

G[Aμ, 
J] = − ln
∫
DψDψe−S[ψ,ψ,Aμ]+( 
J, 1

2 ψ 
σψ ), (28)

where Aμ(x) = Aa
μ(x) σ a

2 is a SU(2) gauge field, 
σ are the Pauli

matrices, and 
J (x) is a source field coupled to the fermion
spin operator 1

2ψ (x)
σψ (x). Similarly to the previous section,

derivatives of G with respect to Aμ and 
J at zero external
fields give minus the gauge kernels and spin susceptibilities,
respectively. In formulas:

χab(x, x′) = − δ2G
δJa(x)δJb(x′)

∣∣∣∣ 
J=Aμ=0

, (29a)

Kab
μν (x, x′) = − δ2G

δAa
μ(x)δAb

ν (x′)

∣∣∣∣ 
J=Aμ=0

. (29b)

We let the SU(2) symmetry be broken by a (local) order
parameter of the form〈

1
2ψ (x)
σψ (x)

〉 = ϕ0v̂(x), (30)

with v̂(x) a position-dependent unit vector pointing along the
local direction of the magnetization [56].

A SU(2) gauge transformation on the fermionic fields reads

ψ (x) → R(x)ψ (x), (31a)

ψ (x) → ψ (x)R†(x), (31b)

where R(x) ∈ SU(2) is a matrix acting on the spin indices of
ψ and ψ . The external fields transform as

Ja(x) → J ′
a(x) = Rab(x)Jb(x), (32a)

Aμ(x) → A′
μ(x) = R†(x)Aμ(x)R(x)

+ iR†(x)∂μR(x), (32b)

where R(x) is the adjoint representation of R(x):

Rab(x)σ b = R(x)σ aR†(x). (33)

The SU(2) gauge invariance of G can be expressed as

δ

δR(x)
G[A′

μ, 
J ′] = 0. (34)

Writing R(x) = eiθa (x) σa

2 , R†(x) = e−iθa (x) σa

2 , and considering
an infinitesimal transformation |θa(x)| � 1, we obtain the
functional identity

∂μ

(
δ�

δAa
μ(x)

)
− εa�m

[
δ�

δφ�(x)
φm(x) − δ�

δA�
μ(x)

Am
μ (x)

]
= 0,

(35)

where εabc is the Levi-Civita tensor. �[Aμ, 
φ] is the Legendre
transform of G, defined as

�[Aμ, 
φ] =
∫

x


φ(x) · 
J (x) + G[Aμ, 
J], (36)

with φa(x) = δG[Aμ, 
J]
δJa(x) . The inverse susceptibilities Cab(x, x′),

defined as

Cab(x, x′) = − δ2�

δφa(x)δφb(x′)

∣∣∣∣ 
φ=Aμ=0

, (37)

obey a reciprocity relation with the spin susceptibilities
χab(x, x′) similar to Eq. (12).
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Defining the quantities

Cab
μ (x, x′) = − δ2�

δAa
μ(x)δφb(x′)

∣∣∣∣ 
φ=Aμ=0

, (38a)

Ba
μ(x) = − δ�

δAa
μ(x)

∣∣∣∣ 
φ=Aμ=0

, (38b)

we obtain from Eq. (35) the set of equations

−∂μCab
μ (x, x′) = ϕ0ε

a�mC�b(x, x′)vm(x), (39a)

−∂μKab
μν (x, x′) = ϕ0ε

a�mCb�
ν (x, x′)vm(x)

− εa�bB�
ν (x)δ(x − x′), (39b)

∂μBa
μ(x) = 0, (39c)

where Eqs. (39a) and (39b) have been obtained differentiating
Eq. (35) with respect to φb(x′) and Aν (x′), respectively, and
setting the fields to zero. Equation (39c) simply comes from
Eq. (35) computed at zero Aμ, φa. According to Eq. (30),
the expectation value of 
φ(x) takes the form 〈 
φ(x)〉 = ϕ0v̂(x).
Combining Eqs. (39a)–(39c), we obtain the Ward identity

∂μ∂νKab
μν (x, x′) = ϕ2

0ε
a�mεbnpv�(x)vn(x′)Cmp(x, x′), (40)

which connects the gauge kernels with the inverse susceptibil-
ities.

In the following, we analyze two concrete examples where
the above identity applies, namely, the Néel antiferromagnet
and the spiral magnet. We do not consider ferromagnets or,
in general, systems with a net average magnetization, as in
this case the divergence of the transverse components of the
kernel Kab

00 (q) for q → 0 leads to changes in the form of the
Ward identities. In this case, one can talk of type-II Goldstone
bosons [57], characterized by a nonlinear dispersion.

1. Néel order

We now consider the particular case of antiferromagnetic
(or Néel) ordering for a system on a d-dimensional bipartite
lattice. In this case, v̂(x) takes the form (−1)xv̂, with (−1)x

being 1 (−1) on the sites of sublattice A (B), and v̂ a constant
unit vector. In the following, without loss of generality, we
consider v̂ = (1, 0, 0). Considering only the diagonal (a = b)
components of Eq. (40), we have

∂μ∂νK11
μν (x, x′) = 0, (41a)

∂μ∂νK22
μν (x, x′) = ϕ2

0 (−1)x−x′
C33(x, x′), (41b)

∂μ∂νK33
μν (x, x′) = ϕ2

0 (−1)x−x′
C22(x, x′). (41c)

Despite Néel antiferromagnetism breaking the lattice trans-
lational symmetry, the components of the gauge kernel
considered above depend only on the difference of their
arguments x − x′, and thus have a well-defined Fourier
transform. Equation (41a) implies qμqνKμν

11 (q, ω) = 0, as
expected due to the residual U(1) gauge invariance in the
Néel state. In particular, one obtains limq→0 K11

αβ (q, 0) = 0,
and limω→0 K11

00 (0, ω) = 0. Equations (41b) and (41c) are the
same equation as we have K22(x, x′) = K33(x, x′), again be-

cause of the residual symmetry. If we rotate them onto the
real-time axis and perform the Fourier transform, we get

Jαβ ≡ − lim
q→0

K22
αβ (q, 0) = 1

2ϕ2
0∂

2
qαqβ

C33(q, 0)
∣∣
q→Q, (42a)

χ⊥
dyn ≡ lim

ω→0
K22

00 (0, ω) = − 1
2ϕ2

0∂
2
ωC33(Q, ω)

∣∣
ω→0, (42b)

where Jαβ is the spin stiffness, Q = (π/a0, . . . , π/a0), with
a0 the lattice spacing, and we name χ⊥

dyn as transverse dynam-
ical susceptibility [53]. In the above equations, we have made
use of the Goldstone theorem, which in the present case reads

C22(Q, 0) = C33(Q, 0) = 0. (43)

Furthermore, to derive Eqs. (42) from Eq. (41b), we have used
the finiteness of the q → 0 and ω → 0 limits of the gauge
kernels. Following the argument given in the previous section,
for q = (q, ω) close to Q = (Q, 0), we can replace C33(q) by
1/χ33(q) in Eqs. (42), implying

χ22(q � Q) = χ33(q � Q)

� ϕ2
0

−χ⊥
dynω

2 + Jαβ (q − Q)α (q − Q)β
. (44)

Notice that in Eq. (44) we have neglected the imaginary parts
of the susceptibilities that, for doped antiferromagnets, can
lead to Landau damping of the Goldstone modes [58].

Also for Néel ordering, form Eq. (44) of the transverse
susceptibilities can be deduced from a low-energy theory for
the gauge field Aμ(x), that is,

Seff [Aμ] = − 1

2

∫
q

[
Kab

00 (0, ω → 0)Aa
0(−q)Ab

0(q)

+ Kab
αβ (q → 0, 0)Aa

α (−q)Ab
β (q)

]
. (45)

Considering a pure gauge field

Aμ(x) = iR†(x)∂μR(x), (46)

with R(x) a SU(2) matrix, we obtain the action

Seff [n̂] = 1

2

∫
x
{−χ⊥

dyn|∂t n̂(x)|2 + Jαβ∂α n̂(x) · ∂β n̂(x)}, (47)

where n̂(x) = (−1)xR(x)v̂(x), with R(x) defined as in
Eq. (33), and |n̂(x)|2 = 1. Equation (47) is the well-known
O(3)/O(2) nonlinear sigma model (NLσM) action, de-
scribing low-energy properties of quantum antiferromagnets
[25,59].

Writing R(x) = eiθa (x) σa

2 , and expanding to first order in
θa(x), n̂(x) becomes n̂(x) � (1, θ2(x),−θ3(x)). Considering
the expression 
φ(x) = (−1)xϕ0n̂(x) for the order parameter
field, we see that small fluctuations in n̂(x) only affect the
second and third components of 
φ(x). The transverse suscep-
tibilities can be therefore written as

χ22(q) = χ33(q) = 〈φ2(q)φ2(−q)〉
� ϕ2

0〈n2(q + Q)n2(−q − Q)〉

= ϕ2
0

−χ⊥
dynω

2 + Jαβ (q − Q)α (q − Q)β
, (48)

which is the result of Eq. (44). In Eq. (48), we have made
use of the propagator of the n̂ field dictated by the action of
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Eq. (47), that is,

〈na(q)na(−q)〉 = 1

−χ⊥
dynω

2 + Jαβqαqβ

. (49)

Equation (48) predicts two degenerate magnon branches with
linear dispersion for small q − Q. In the case of an isotropic
antiferromagnet (Jαβ = Jδαβ ), we have ωq = cs|q|, with the

spin-wave velocity given by cs =
√

J/χ⊥
dyn.

2. Spiral magnetic order

We now turn our attention to the case of spin spiral order-
ing, described by the magnetization direction

v̂(x) = (cos(Q · x), sin(Q · x), 0), (50)

where at least one component of Q is neither 0 nor π/a0. In
this case, it is convenient to rotate the field 
φ(x) to a basis in
which v̂(x) is uniform. This is achieved by the transformation
[30]


φ′(x) = M(x) 
φ(x), (51)

with

M(x) =
⎛
⎝ cos(Q · x) sin(Q · x) 0

− sin(Q · x) cos(Q · x) 0
0 0 1

⎞
⎠. (52)

In this way, the inverse susceptibilities are transformed into

C̃ab(x, x′) = − δ2�

δφ′
a(x)δφ′

b(x′)

∣∣∣∣ 
φ′=Aμ=0

=[M−1(x)]ac[M−1(x′)]bdCcd (x, x′). (53)

If we now apply the Ward identity Eq. (40), we obtain

∂μ∂νK11
μν (x, x′) = ϕ2

0 sin(Q · x) sin(Q · x′)

× C̃33(x, x′), (54a)

∂μ∂νK22
μν (x, x′) = ϕ2

0 cos(Q · x) cos(Q · x′)

× C̃33(x, x′), (54b)

∂μ∂νK33
μν (x, x′) = ϕ2

0C̃22(x, x′), (54c)

with

C̃33(x, x′) = C33(x, x′), (55a)

C̃22(x, x′) = sin(Q · x) sin(Q · x′)C11(x, x′)

+ cos(Q · x) cos(Q · x′)C22(x, x′)

− sin(Q · x) cos(Q · x′)C12(x, x′)

− cos(Q · x) sin(Q · x′)C21(x, x′). (55b)

We remark that an order parameter of the type Eq. (50) com-
pletely breaks the SU(2) spin symmetry, which is why none of
the right-hand sides of the equations above vanishes. We have
considered a coplanar spiral magnetic order, that is, we have
assumed all the spins to lie in the same plane, so out of the
three Goldstone modes, two are degenerate and correspond
to out-of-plane fluctuations, and one to in-plane fluctuations
of the spins. Furthermore, translational invariance is broken,
so the Fourier transforms of the gauge kernels Kab

μν (q, q′, ω)

and inverse susceptibilities Cab(q, q′, ω) are nonzero not only
for q − q′ = 0 but also for q − q′ = ±Q or ±2Q. Time
translation invariance is preserved, and the gauge kernels and
the inverse susceptibilities depend on one single frequency.
However, in the basis obtained with transformation Eq. (52),
translational invariance is restored, so the Fourier transform of
C̃ab(x, x′) only depends on one spatial momentum. With this
in mind, we can extract expressions for the spin stiffnesses and
dynamical susceptibilities from Eq. (54). After rotating to real
frequencies, and using the property that for a spiral magnet the
gauge kernels are finite in the limits q = q′ → 0 and ω → 0,
we obtain [53]

J⊥,1
αβ ≡ − lim

q→0
K11

αβ (q, 0)

= 1

8
ϕ2

0∂
2
qαqβ

∑
η=±

C̃33(q + ηQ, 0)

∣∣∣∣
q→0

, (56a)

J⊥,2
αβ ≡ − lim

q→0
K22

αβ (q, 0)

= 1

8
ϕ2

0∂
2
qαqβ

∑
η=±

C̃33(q + ηQ, 0)

∣∣∣∣
q→0

, (56b)

J�
αβ ≡ − lim

q→0
K33

αβ (q, 0)

= 1

2
ϕ2

0∂
2
qαqβ

C̃22(q, 0)

∣∣∣∣
q→0

, (56c)

and

χ⊥,1
dyn ≡ lim

ω→0
K11

00 (0, ω)

= −1

8
ϕ2

0∂
2
ω

∑
η=±

C̃33(ηQ, ω)

∣∣∣∣
ω→0

, (57a)

χ⊥,2
dyn ≡ lim

ω→0
K22

00 (0, ω)

= −1

8
ϕ2

0∂
2
ω

∑
η=±

C̃33(ηQ, ω)

∣∣∣∣
ω→0

, (57b)

χ�
dyn ≡ lim

ω→0
K33

00 (0, ω)

= −1

2
ϕ2

0∂
2
ωC̃22(0, ω)

∣∣∣∣
ω→0

, (57c)

where the labels ⊥ and � denote out-of-plane and in-plane
quantities, respectively. In the equations above, we have
defined Kab

μν (q, ω) as the prefactors of the components of
the gauge kernels Kab

μν (q, q′, ω) which are proportional to
(2π )dδ(q − q′). From Eqs. (56) and (57), it immediately
follows that J⊥,1

αβ = J⊥,2
αβ ≡ J⊥

αβ and χ⊥,1
dyn = χ⊥,2

dyn ≡ χ⊥
dyn, as

expected in the case of coplanar order [41]. To derive the
equations above, we have made use of the Goldstone the-
orem, which for spiral ordering reads (see, for example,
Refs. [30,34])

C̃33(±Q, 0) = 0, (58a)

C̃22(0, 0) = 0. (58b)

Notice that the above relations can be also derived from a
functional identity similar to Eq. (35) but descending from
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the global SU(2) symmetry. Moreover, close to their re-
spective Goldstone points [(0, 0) for C̃22, and (±Q, 0) for
C̃33], C̃22(q) can be replaced with 1/χ̃22(q), and C̃33(q) with
1/χ̃33(q), with the rotated susceptibilities defined analogously
to Eq. (53). If the spin spiral state occurs on a lattice that pre-
serves parity, we have C̃aa(q, ω) = C̃aa(−q, ω), from which
we obtain

J⊥
αβ = 1

4
ϕ2

0∂
2
qαqβ

(
1

χ̃33(q, 0)

)∣∣∣∣
q→±Q

, (59a)

J�
αβ = 1

2
ϕ2

0∂
2
qαqβ

(
1

χ̃22(q, 0)

)∣∣∣∣
q→0

, (59b)

χ⊥
dyn = −1

4
ϕ2

0∂
2
ω

(
1

χ̃33(±Q, ω)

)∣∣∣∣
ω→0

, (59c)

χ�
dyn = −1

2
ϕ2

0∂
2
ω

(
1

χ̃22(0, ω)

)∣∣∣∣
ω→0

. (59d)

Neglecting the imaginary parts of the susceptibilities, giving
rise to dampings of the Goldstone modes [58], from Eqs. (59)
we can obtain expressions for the susceptibilities near their
Goldstone points:

χ̃22(q � (0, 0)) � ϕ2
0

−χ�
dynω

2 + J�
αβqαqβ

, (60a)

χ̃33(q � (±Q, 0)) � ϕ2
0/2

−χ⊥
dynω

2 + J⊥
αβ (q ∓ Q)α (q ∓ Q)β

.

(60b)

Expressions Eqs. (60) can be deduced from a low-energy
model also in the case of spin spiral ordering. Similarly to
what we have done for the Néel case, we consider a pure gauge
field, giving the nonlinear sigma model action

Seff [R] = 1

2

∫
x

tr[Pμν∂μR(x)∂νRT (x)], (61)

where R(x) ∈ SO(3) is defined as in Eq. (33), and now ∂μ

denotes (−∂t , 
∇ ). The matrix Pμν is given by

Pμν =
⎛
⎝ 1

2 J�
μν 0 0

0 1
2 J�

μν 0
0 0 J⊥

μν − 1
2 J�

μν

⎞
⎠, (62)

with

Ja
μν =

( −χa
dyn 0

0 Ja
αβ

)
, (63)

for a ∈ {�,⊥}. The action in Eq. (61) is a NLσM describ-
ing low-energy fluctuations around a spiral magnetic ordered
state. It has been introduced and studied in the context of
frustrated antiferromagnets [41–44].

We now write the field 
φ′(x) as 
φ′(x) = ϕ0M(x)R(x)v̂(x),
and consider an R(x) stemming from a SU(2) matrix R(x) =
eiθa (x) σa

2 with θa(x) infinitesimal, that is,

Rab(x) � δab − εabcθc(x), (64)

we get


φ′(x) � ϕ0M(x)[v̂(x) − v̂(x) × 
θ (x)]

= ϕ0[ê1 − ê1 × 
θ ′(x)], (65)

with ê1 = (1, 0, 0), and 
θ ′(x) = M(x)
θ (x). Inserting Eq. (64)
into Eq. (61), we obtain

Seff [
θ] = 1

2

∫
x

{
J⊥
μν

∑
a=1,2

[∂μθa(x)∂νθa(x)]

+ J�
μν∂μθ3(x)∂νθ3(x)

}
. (66)

We are finally in a position to extract the form of the suscep-
tibilities for small fluctuations,

χ̃22(q) = 〈φ′
2(q)φ′

2(−q)〉 � ϕ2
0〈θ ′

3(q)θ ′
3(−q)〉

= ϕ2
0

−χ�
dynω

2 + J�
αβqαqβ

,

(67a)

χ̃33(q) = 〈φ′
3(q)φ′

3(−q)〉 � ϕ2
0〈θ ′

2(q)θ ′
2(−q)〉

=
∑
η=±

ϕ2
0/2

−χ⊥
dynω

2 + J⊥
αβ (q − ηQ)α (q − ηQ)β

, (67b)

which is the result of Eqs. (60). In the above equations, we
have used the correlators of the θ field descending from action
Eq. (66). Form Eqs. (60) of the susceptibilities predicts three
linearly dispersing Goldstone modes, two of which (the out-
of-plane ones) are degenerate and propagate with velocities

c(n)
⊥ =

√
λ

(n)
⊥ /χ⊥

dyn, where λ
(n)
⊥ are the eigenvalues of J⊥

αβ and
n = 1, . . . , d . Similarly, the in-plane mode velocity is given

by c(n)
� =

√
λ

(n)
� /χ

dyn
� , with λ

(n)
� the eigenvalues of J�

αβ .

III. EXPLICIT CALCULATION FOR A SPIRAL MAGNET

In this section, we present an explicit calculation for a spi-
ral magnet, emerging from a Hubbard model, of the left- and
right-hand sides of Eqs. (56) and (57), and show that the Ward
identities are fulfilled. We compute the spin susceptibilities
and the gauge kernels within the RPA, which is a conserving
approximation in the sense of Baym and Kadanoff [4], and it
is therefore expected to fulfill the Ward identities.

A. Mean-field approximation

In a fermionic lattice system, the amplitude ϕ0 of spin
spiral order parameter,

〈 
φ(x)〉 = ϕ0(cos(Q · x), sin(Q · x), 0), (68)

can be expressed as

ϕ0 =
∫

k
〈ψk,↑ψk+Q,↓〉, (69)

where
∫

k is shorthand for an integral over the full d-

dimensional Brillouin zone, that is,
∫

k∈BZ
dd k

(2π )d . From
Eq. (69), we deduce that spiral ordering couples only the elec-
tron states (k,↑) and (k + Q,↓), and the mean-field fermion
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Green’s function can be expressed as a 2 × 2 matrix:

G̃k(iνn) =
(

iνn − ξk −�

−� iν − ξk+Q

)−1

, (70)

where νn = (2n + 1)πT (n ∈ Z) is a fermionic Matsubara
frequency, ξk = εk − μ, with εk the single-particle dispersion
and μ the chemical potential, and � is the spiral order pa-
rameter. Diagonalizing Eq. (70), one obtains the quasiparticle
dispersions

E±
k = gk ±

√
h2

k + �2, (71)

with gk = (ξk + ξk+Q)/2 and hk = (ξk − ξk+Q)/2.
The Green’s function can be conveniently written as a

linear combination of quasiparticle poles,

G̃k(iνn) =
∑
�=±

1

2
u�

k
1

iνn − E �
k

, (72)

where the coefficients u�
k are given by

u�
k = σ 0 + �

hk

ek
σ 3 + �

�

ek
σ 1, (73)

with σ 0 = 1, and ek =
√

h2
k + �2. We assume the spiral states

to emerge from a lattice model with on-site repulsive interac-
tions (Hubbard model), with imaginary time action

S[ψ,ψ] =
∫ β

0
dτ

{ ∑
j, j′,σ

ψ j,σ [(∂τ − μ)δ j j′ + t j j′ ]ψ j′,σ

+ U
∑

j

ψ j,↑ψ j,↓ψ j,↓ψ j,↑

}
, (74)

where t j j′ describes the hopping amplitude between the lattice
sites labeled by j and j′ and U is the Hubbard interaction. The
Hartree-Fock or mean-field (MF) gap equation at temperature
T reads

� = −U
∫

k
T

∑
νn

G̃↑↓
k (iνn) = U

∫
k

�

2ek
[ f (E−

k ) − f (E+
k )],

(75)
where

∑
νn

denotes a sum over the fermionic Matsubara fre-
quencies and f (x) = 1/(ex/T + 1) is the Fermi function. The
bosonic order parameter ϕ0 is related to � as � = Uϕ0.
Finally, the optimal Q-vector is obtained minimizing the
mean-field free energy

FMF(Q) = − T
∑
νn

∫
k

Tr ln G̃k(iνn) + �2

U
+ μn

= − T
∫

k

∑
�=±

ln
(
1 + e−E �

k/T
) + �2

U
+ μn, (76)

where n is the fermion density.

B. Random phase approximation

In this section, we summarize the RPA for a spiral magnet,
closely following Ref. [58]. Further details can be also found
in Ref. [30].

The charge and spin susceptibilities are coupled in a spin
spiral state. It is therefore convenient to consider the retarded
real-time correlators [58]

χab
j j′ (t ) = −i�(t )

〈[
Sa

j (t ), Sb
j′ (0)

]〉
, (77)

where j and j′ label two lattice sites, t is the time, [•, •]
denotes the commutator, �(t ) is the Heaviside function, and
a and b run from 0 to 3. The generalized spin operators are
defined in terms of the fermionic fields as

Sa
j = 1

2

∑
s,s′=↑,↓

ψ j,sσ
a
ss′ψ j,s′ . (78)

The a = 1, 2, 3 components correspond to the usual spin
operator, while a = 0 gives half the fermion density nj =
ψ j,↑ψ j,↑ + ψ j,↓ψ j,↓.

It is convenient to work in the rotated basis [30] introduced
in Eqs. (51) and (52) the susceptibilities transform as

χ̃ j j′ (t ) = M jχ j j′ (t )MT
j′ , (79)

with

M j =

⎛
⎜⎝

1 0 0 0
0 cos(Q · r j ) sin(Q · r j ) 0
0 − sin(Q · r j ) cos(Q · r j ) 0
0 0 0 1

⎞
⎟⎠, (80)

where r j represents the coordinates of the lattice site j. As
previously mentioned, the χ̃ j j′ (t ) are translationally invariant,
so their Fourier transform depends only on a single spatial
momentum q.

Within RPA, the susceptibilities are given by

χ̃ (q) = χ̃0(q)[1 − �0χ̃0(q)]−1, (81)

where χ̃0(q) is a matrix in the a, b = 0, 1, 2, 3 indices, 1 is
the 4 × 4 identity matrix, and �0 = 2Udiag(−1, 1, 1, 1). The
bare susceptibilities on the real frequency axis are given by

χ̃ab
0 (q, ω)

= −1

4

∫
k

T
∑
νn

tr[σ a G̃k(iνn) σ b G̃k+q(iνn + i�m)],

(82)

where �m = 2mπT (m ∈ Z) denotes a bosonic Matsubara
frequency and the substitution i�m → ω + i0+ has been per-
formed. Using Eq. (72), one can perform the frequency sum,
obtaining

χ̃ab
0 (q, ω) = −1

8

∑
�,�′=±

∫
k
Aab

��′ (k, q)F��′ (k, q, ω), (83)

where we have defined

F��′ (k, q, ω) = P
f
(
E �

k

) − f
(
E �′

k+q

)
ω + E �

k − E �′
k+q

, (84)

with P the principal value, and the coherence factors

Aab
��′ (k, q) = 1

2 Tr
[
σ au�

kσ
bu�′

k+q

]
. (85)

Notice that in Eq. (84) we have neglected the imaginary part
of 1/(ω + i0+ + E �

k − E �′
k+q), which is proportional to a δ

function and is responsible for the Landau damping of the
collective spin fluctuations [58].
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TABLE I. Symmetries of the bare susceptibilities. The first two
signs in each cell represent the sign change of χ̃ab

0 (q) by flipping the
signs of q and ω, respectively. The third sign corresponds to the sign
change of χ̃ ab

0 (q) when a and b are interchanged.

a, b 0 1 2 3

0 +,+, + +, +, + −, +, − −, −, +
1 +,+, + +, +, + −, +, − −, −, +
2 −,+, − −, +, − +, +, + +, −, −
3 −,−, + −, −, + +, −, − +, +, +

The bare susceptibilities have a well-defined sign under
inversion of q and ω, and under the exchange of the indices a
and b. These symmetries can be derived from Eqs. (83)–(85)
(see, for example, Ref. [58]) and are listed in Table I. Since
neglecting the imaginary part of F��′ (k, q, ω) makes the ma-
trix χ̃ab

0 (q) Hermitian, we deduce that those elements which
are even (odd) under the exchange a ↔ b are purely real
(imaginary). At least within the RPA, the symmetry properties
derived for the bare χ̃0(q) hold also for the full susceptibilities
χ̃ (q).

Goldstone modes associated with spontaneous symmetry
breaking of the SU(2) spin symmetry appear in the suscep-
tibilities. In particular, considering the limit q → 0, all the
off-diagonal elements of the type χ̃2a

0 (q) and χ̃a2
0 (q) vanish

as they are odd in q or ω, while χ̃22
0 (q) takes the simple form

χ̃22
0 (0) =

∫
k

f (E−
k ) − f (E+

k )

4ek
. (86)

The full susceptibility at q = 0 therefore reads

χ̃22(0) = χ̃22
0 (0)

1 − 2U χ̃22
0 (0)

. (87)

We immediately see that when the gap Eq. (75) is fulfilled,
the denominator of Eq. (87) vanishes, signaling a gapless
mode. This Goldstone mode represents fluctuations of the
spins within the plane in which the magnetization lies. We
therefore refer to it as in-plane mode in the following. With a
similar reasoning, one proves that in the limit q → ±Q (with
Q = (Q, 0)), all the off-diagonal elements of types χ̃3a

0 (q) and
χ̃a3

0 (q) vanish, leaving

χ̃33(±Q) = χ̃33
0 (±Q)

1 − 2U χ̃33
0 (±Q)

. (88)

Noticing that χ̃33
0 (±Q) = χ̃22

0 (0) [58], one sees that the de-
nominator of Eq. (88) is vanishing. The susceptibility χ̃33(q)
therefore hosts two poles at q = ±Q, which are due to gap-
less excitations of the spins outside the plane in which the
magnetization lies. We refer to these modes as out-of-plane
modes. As already stated, in the spiral state three Goldstone
modes appear, as all three generators of the symmetry group
SU(2) are broken. However, the two out-of-plane modes have
degenerate dispersions, as expected for coplanar order.

C. Small q and ω expansion of the susceptibilities

We are now in a position to compute the right-hand sides
of Eqs. (56) and (57). The small q and ω expansion of the

susceptibilities in the spiral state has already been carried
out in Ref. [58], but for completeness we revisit it here in a
slightly different form.

1. In-plane mode

Using Eq. (81), the in-plane susceptibility can be conve-
niently written as

χ̃22(q) = χ22
0 (q)

1 − 2Uχ22
0 (q)

, (89)

with

χ22
0 (q) = χ̃22

0 (q) +
∑

a,b∈{0,1,3}
χ̃2a

0 (q)�̃ab
2 (q)χ̃b2

0 (q). (90)

�̃2(q) is given by

�̃2(q) = [13 − �0,2χ̃0,2(q)]−1�0,2, (91)

where �ab
0,2 and χ̃ab

0,2(q) are matrices obtained from �ab
0 and

χ̃ab
0 (q) removing the components where a = 2 and/or b = 2,

and 13 denotes the 3 × 3 identity matrix. For later conve-
nience, we note that for q = 0, all the off-diagonal elements
χ̃2a

0 (q) and χ̃a2
0 (q) vanish, so �̃2(0) can be obtained from the

full expression

�̃(q) = [1 − �0χ̃0(q)]−1�0, (92)

selecting only the components in which the indices take the
values 0, 1, or 3.

Setting ω = 0, the bare susceptibilities χ̃23
0 (q) and χ̃32

0 (q)
vanish as they are odd in ω. Moreover, in the limit q → 0,
χ̃2a

0 (q, 0) and χ̃a2
0 (q, 0), with a = 0, 1, are linear in q as they

are odd under q → −q. The in-plane spin stiffness can be
therefore written as

J�
αβ = − 2�2∂2

qαqβ
χ22

0 (0)

= − 2�2

[
∂2

qαqβ
χ̃22

0 (0)

+ 2
∑

a,b∈{0,1}
∂qα

χ̃2a
0 (0) �̃ab(q → 0, 0) ∂qα

χ̃b2
0 (0)

]
,

(93)

where we have used χ22
0 (0) = χ̃22

0 (0) = 1/(2U ), descend-
ing from the gap equation, and ∂qα

f (0) is shorthand for
∂ f (q, 0)/∂qα|q→0, and similarly for ∂2

qαqβ
f (0).

In a similar way, if we set q to 0 and consider the limit
of small ω, the terms where a and/or b are 0 or 1 vanish
as χ̃2a

0 (q) and χ̃a2
0 (q) for a=0,1 are odd in q. On the other

hand, χ̃23
0 (q) and χ̃32

0 (q) are linear in ω for small ω. With
these considerations, the in-plane dynamical susceptibility is
given by

χ�
dyn = 2�2∂2

ωχ22
0 (0)

= 2�2
[
∂2
ωχ̃22

0 (0)

+ 2∂ωχ̃23
0 (0) �̃33(0, ω → 0) ∂ωχ̃32

0 (0)
]
, (94)
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where ∂n
ω f (0) is shorthand for ∂n f (0, ω)/∂ωn|ω→0, and

�̃33(0, ω → 0) can be cast in the simple form

�̃33(0, ω → 0) = 2U

1 − 2U χ̃33
0 (0, ω → 0)

. (95)

2. Out-of-plane modes

Similarly to the in-plane mode, one can write the out-of-
plane susceptibility in the form

χ̃33(q) = χ33
0 (q)

1 − 2Uχ33
0 (q)

, (96)

with

χ33
0 (q) = χ̃33

0 (q) +
∑

a,b∈{0,1,2}
χ̃3a

0 (q)�̃ab
3 (q)χ̃b3

0 (q), (97)

where �̃3(q) is defined similarly to �̃2(q), removing the com-
ponents that involve index 3 instead of index 2. We also notice
that

�̃ab
3 (q, 0) = �̃ab(q, 0), (98)

for a, b = 0, 1, 2, because all the off-diagonal compo-
nents χ̃3a

0 (q) and χ̃a3
0 (q) vanish for zero frequency. Using

χ33
0 (±Q) = χ̃33

0 (±Q) = 1/(2U ), we obtain the out-of-plane
spin stiffness

J⊥
αβ = −�2∂2

qαqβ
χ33

0 (±Q) = −�2∂2
qαqβ

χ̃33
0 (±Q), (99)

where ∂2
qαqβ

f (±Q) stands for ∂2 f (q, 0)/∂qα∂qβ |q→±Q.

In the limit ω → 0, all the χ̃3a
0 (q) and χ̃a3

0 (q), with a =
0, 1, 2, are linear in ω, and the dynamical susceptibility is
given by

χ⊥
dyn = �2∂2

ωχ33
0 (±Q)

= �2

[
∂2
ωχ̃33

0 (±Q)

+ 2
∑

a,b∈{0,1,2}
∂ωχ̃3a

0 (±Q)�̃ab(±Q)∂ωχ̃b3
0 (±Q)

]
,

(100)

with ∂n
ω f (±Q) shorthand for ∂n f (±Q, ω)/∂ωn|ω→0. We re-

mark that for �̃ab(q), the limits q → Q and ω → 0 commute
if Q is not a high-symmetry wave vector, that is, if E �

k+Q �= E �
k .

D. Gauge kernels

To calculate the gauge kernels, that is, the left-hand sides
of Eqs. (56) and (57), we couple our system to a SU(2) gauge
field via a Peierls substitution in the quadratic part of action
Eq. (74):

S0[ψ,ψ, Aμ] =
∫ β

0
dτ

∑
j j′

ψ j[(∂τ − A0, j + μ)δ j j′

+ t j j′e
−r j j′ ·(∇−iA j )]ψ j, (101)

where e−r j j′ ·∇ is the translation operator from site j to site
j′, with r j j′ = r j − r j′ . Notice that under the transforma-
tion ψ j → Rjψ j , with Rj ∈ SU(2), the interacting part of
the action Eq. (74) is left unchanged, while the gauge field

transforms according to Eq. (32b). Since the gauge kernels
correspond to correlators of two gauge fields, we expand
Eq. (101) to second order in Aμ. After a Fourier transforma-
tion, one obtains

S0[ψ,ψ, Aμ] = −
∫

k
ψk[iνn + μ − εk]ψk

+ 1

2

∫
k,q

Aa
μ(q)γ μ

k ψk+qσ
aψk

− 1

8

∫
k,q,q′

Aa
α (q − q′)Aa

β (q′)γ αβ

k ψk+qψk,

(102)

where the first-order coupling is given by γ
μ

k = (1,∇kεk ) and
the second order one is γ

αβ

k = ∂2
kαkβ

εk. Analyzing the coupling
of the temporal component of the gauge field to the fermions
in Eqs. (101) and (102), we notice that the temporal compo-
nents of the gauge kernel are nothing but the susceptibilities
in the original (unrotated) spin basis,

Kab
00 (q, q′, ω) = χab(q, q′, ω), (103)

where ω is a real frequency. The spatial components of the
gauge kernel can be expressed in the general form (see Fig. 1)

Kab
αβ (q, q′, ω) = Kab

para,αβ (q, q′, ω) + δab Kdia
αβ

+
∫

q′′,q′′′

∑
c,d

Kac
para,α0(q, q′′, ω)

× �cd (q′′, q′′′, ω)Kdb
para,0β (q′′′, q′, ω), (104)

where �(q′, q′′, ω) is the effective interaction Eq. (92)
expressed in the unrotated basis. Within the RPA, the para-
magnetic terms are given by

Kab
para,μν (q, q′, ω)

= −1

4

∫
k,k′

T
∑
νn

γ
μ

k γ ν
k′+q′ tr[σ aGk,k′ (iνn)σ b

× Gk′+q′,k+q(iνn + i�m)]

∣∣∣∣
i�→ω+i0+

. (105)

The Green’s function in the unrotated basis takes the form

Gk,k′ (iνn) =
(

Gk(iνn)δk,k′ Fk(iνn)δk,k′−Q

Fk−Q(iνn)δk,k′+Q Gk−Q(iνn)δk,k′

)
, (106)

where δk,k′ is shorthand for (2π )dδd (k − k′), and

Gk(iνn) = iνn − ξk+Q

(iνn − ξk )(iνn − ξk+Q) − �2
, (107a)

Gk(iνn) = iνn − ξk

(iνn − ξk )(iνn − ξk+Q) − �2
, (107b)

Fk(iνn) = �

(iνn − ξk )(iνn − ξk+Q) − �2
. (107c)

The diamagnetic term does not depend on q, q′, and ω and
is proportional to the unit matrix in the gauge indices. It
evaluates to

Kdia
αβ = −1

4

∫
k,k′

T
∑
νn

(
∂2

kαkβ
εk

)
tr[Gk,k′ (iνn)]. (108)
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FIG. 1. Diagrams contributing to the spin stiffnesses. The wavy line represents the external SU(2) gauge field, the solid lines the electronic
Green’s functions, the black triangles the paramagnetic vertex γ

μ

k σ a, the black circle the diamagnetic one γ
αβ

k σ 0, and the dashed line the
effective interaction �(q, q′, ω).

We can now compute the spin stiffnesses and dynamical sus-
ceptibilities from the gauge kernels.

1. In-plane mode

The in-plane spin stiffness is defined as

J�
αβ = − lim

q→0
K33

αβ (q, 0), (109)

where, similarly to Sec. II B 2, we define as Kμν (q, ω)
the prefactors of those components of the gauge kernels
Kμν (q, q′, ω) which are proportional to δq,q′ . In addition to
the bare term

J0,�
αβ = − lim

q→0
Kpara,33

αβ (q, 0) − Kdia
αβ , (110)

we find nonvanishing paramagnetic contributions that mix
spatial and temporal components. They involve

lim
q→0

K30
0α (q, q′, 0) = κ30

α (0)δq′,0, (111a)

lim
q→0

K31
0α (q, q′, 0) = κ31

α (0)
δq′,Q + δq′,−Q

2
, (111b)

lim
q→0

K32
0α (q, q′, 0) = κ32

α (0)
δq′,Q − δq′,−Q

2i
, (111c)

where κ32
α (0) = κ31

α (0). Noticing that for a = 0, 1, 2, we have
limq→0 K3a

α0 (q, 0) = limq→0 Ka3
0α (q, 0), and inserting this re-

sult into Eq. (104), we obtain

J�
αβ = J0,�

αβ −
∑

a,b∈{0,1}
κ3a

α (0)�̃ab(q → 0, 0)κ3b
β (0), (112)

where �̃(q → 0, 0) is the effective interaction in the rotated
spin basis, defined in Eq. (92). Notice that the delta functions
in Eq. (111) convert the unrotated � to �̃ and, together with
the equality κ32

α (0) = κ31
α (0), they remove the terms where a

or b equal 2 in the sum.
The dynamical susceptibility is defined as

χ�
dyn = lim

ω→0
K33

00 (0, ω) = lim
ω→0

χ33(0, ω). (113)

From Eq. (80), we deduce that

χ33(q, ω) = χ̃33(q, ω). (114)

Remarking that for ω = 0 all the off-diagonal elements of the
bare susceptibilities with one (and only one) of the two indices
equal to 3 vanish, we obtain the RPA expression for χ�

dyn

χ�
dyn = lim

ω→0

χ̃33
0 (0, ω)

1 − 2U χ̃33
0 (0, ω)

. (115)

2. Out-of-plane modes

To compute the the out-of-plane stiffness, that is,

J⊥
αβ = − lim

q→0
K22

αβ (q, 0), (116)

we find that all the paramagnetic contributions to the gauge
kernel that mix temporal and spatial components vanish in
the ω → 0 and q = q′ → 0 [60] limits. Moreover, the q → 0
limit of the momentum diagonal paramagnetic contribution
can be written as

lim
q→0

K22
para,αβ (q, 0)

= −1

4

∫
k,k′

T
∑

νnζ=±
γ α

k γ
β

k′ tr[σ ζ Gk,k′ (iνn)σ−ζ Gk′,k(iνn)]

= −1

2

∫
k

T
∑
νn

γ α
k γ

β

k Gk(iνn)Gk−Q(iνn), (117)

where we have defined σ± = (σ 1 ± iσ 2)/2. The out-of-plane
spin stiffness is thus given by

J⊥
αβ = − 1

2

∫
k

T
∑
νn

γ α
k γ

β

k Gk(iνn)Gk−Q(iνn)

− 1

4

∫
k,k′

T
∑
νn

(
∂2

kαkβ
εk

)
tr[Gk,k′ (iνn)]. (118)

Finally, we evaluate the dynamical susceptibility of the out-
of-plane modes. This is defined as

χ⊥
dyn = lim

ω→0
K22

00 (0, ω) = lim
ω→0

χ22(0, ω). (119)

Applying transformation Eq. (79), we can express the
momentum-diagonal component of χ22(q, q′, ω) in terms of
the susceptibilities in the rotated basis as

χ22(q, ω) = 1

4

∑
ζ=±

[χ̃11(q + ζQ, ω)

+ χ̃22(q + ζQ, ω)

+ 2iζ χ̃12(q + ζQ, ω)], (120)

where we have used (see Sec. III B) χ̃12(q) = −χ̃21(q). Send-
ing q to 0 in Eq. (120), and using the symmetry properties of
the susceptibilities for q → −q (see Table I), we obtain

χ22(0, ω) = 1
2 [χ̃11(Q, ω) + χ̃22(Q, ω) + 2iχ̃12(Q, ω)]

= 2χ̃−+(Q, ω), (121)
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with χ̃−+(q) = 〈S−(−q)S+(q)〉, and S±(q) = (S1(q) ±
iS2(q))/2. It is convenient to express χ̃−+(Q, ω) as

χ̃−+(Q, ω) = χ̃−+
0 (Q, ω)

+
∑

a,b∈{0,1,2,3}
χ̃−a

0 (Q, ω)�̃ab(Q, ω)χ̃b+
0 (Q, ω),

(122)

where we have defined

χ̃−a
0 (q) = 1

2

[
χ̃1a

0 (q) − iχ̃2a
0 (q)

]
, (123a)

χ̃a+
0 (q) = 1

2

[
χ̃a1

0 (q) + iχ̃a2
0 (q)

]
. (123b)

In the limit ω → 0, χ̃−3
0 (Q, ω) and χ̃3+

0 (Q, ω) vanish as they
are odd in frequency (see Table I). We can now cast the
dynamical susceptibility in the form

χ⊥
dyn = 2χ̃−+

0 (Q)

+ 2
∑

a,b∈{0,1,2}
χ̃−a

0 (Q)�̃ab(Q)χ̃b+
0 (Q) (124)

or, equivalently,

χ⊥
dyn = 2χ̃+−

0 (−Q)

+ 2
∑

a,b∈{0,1,2}
χ̃+a

0 (−Q)�̃ab(−Q)χ̃b−
0 (−Q). (125)

We remark that in the formulas above we have not specified in
which order the limits q → ±Q and ω → 0 have to be taken
as they commute.

E. Equivalence of RPA and gauge theory approaches

In this section, we finally prove that the expressions for
the spin stiffnesses and dynamical susceptibilities obtained
in Sec. III C coincide with those of Sec. III D via a direct
evaluation.

1. In-plane mode

We start by computing the first term in Eq. (93). The second
derivative of the 22-component of the bare susceptibility can
be expressed as

−2�2∂2
qαqβ

χ̃22
0 (0) = − �2

∫
k
γ α

k γ
β

k+Q

[
f (E−

k ) − f (E+
k )

4e3
k

+ f ′(E+
k ) + f ′(E−

k )

4e2
k

]
, (126)

where f ′(x) = df /dx is the derivative of the Fermi function.
On the other hand, the bare contribution to J�

αβ [Eq. (110)]

reads

J0,�
αβ = 1

4

∫
k

T
∑
νn

[
Gk(iνn)2γ α

k γ
β

k + Gk(iνn)2γ α
k+Qγ

β

k+Q

− 2Fk(iνn)2γ α
k γ

β

k+Q

]
+ 1

4

∫
k

T
∑
νn

[
Gk(iνn)γ αβ

k + Gk(iνn)γ αβ

k+Q

]
. (127)

The second (diamagnetic) term can be integrated by parts,
giving

− 1

4

∫
k

T
∑
νn

[
G2

k(iνn)γ α
k γ

β

k + G
2
k(iνn)γ α

k+Qγ
β

k+Q

+ 2F 2
k (iνn)γ α

k γ
β

k+Q

]
, (128)

where we have used the properties

∂kα
Gk(iνn) = G2

k(iνn)γ α
k + F 2

k (iνn)γ α
k+Q, (129a)

∂kα
Gk(iνn) = G

2
k(iνn)γ α

k+Q + F 2
k (iνn)γ α

k . (129b)

Summing up both terms, we obtain

Jαβ

0,� = −
∫

k
T

∑
νn

γ α
k γ

β

k+QF 2
k (iνn). (130)

Performing the Matsubara sum, we arrive at

J0,�
αβ = − �2

∫
k
γ α

k γ
β

k+Q

[
f (E−

k ) − f (E+
k )

4e3
k

+ f ′(E+
k ) + f ′(E−

k )

4e2
k

]
, (131)

which is the same result as in Eq. (126). Furthermore, one can
show that

2i�∂qα
χ̃20

0 (0) = −2i�∂qα
χ̃02

0 (0) = κ30
α (0), (132a)

2i�∂qα
χ̃21

0 (0) = −2i�∂qα
χ̃12

0 (0) = κ31
α (0). (132b)

Inserting results Eqs. (126), (130), and (132) into (93) and
(112), we prove that these two expressions give the same
result for the in-plane stiffness. Explicit expressions for κ30

α (0)
and κ31

α (0) are given in Appendix A.
If we now consider the dynamical susceptibility, it is

straightforward to see that

2�2∂2
ωχ̃22

0 (0) =2i�∂ωχ̃23
0 (0) = lim

ω→0
χ̃33

0 (0, ω)

=�2
∫

k

f (E−
k ) − f (E+

k )

4e3
k

, (133)

which, if inserted into Eqs. (94) and (115), proves that the
calculations of χ�

dyn via gauge kernels and via the low-energy
expansion of the susceptibilities provide the same result.

2. Out-of-plane modes

With the help of some lengthy algebra, one can compute the second momentum derivative of the bare susceptibility χ̃33
0 (q),

obtaining

−�2∂2
qαqβ

χ̃33
0 (Q) = 1

8

∫
k

∑
�,�′=±

(
1 − �

hk

ek

)(
1 + �

hk+Q

ek+Q

)
γ α

k+Qγ
β

k+Q

f
(
E �

k

) − f
(
E �′

k+Q

)
E �

k − E �′
k+Q
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− 1

8

∫
k

∑
�=±

[(
1 − �

hk

ek

)2

γ α
k+Q + �2

e2
k

γ α
k

]
γ

β

k+Q f ′(E �
k

)

− 1

8

∫
k

∑
�=±

[
�2

e2
k

(
γ α

k+Q − γ α
k

)]
γ

β

k+Q

f
(
E �

k

) − f
(
E−�

k

)
E �

k − E−�
k

. (134)

Similarly to what we have done for the in-plane mode, we integrate by parts the diamagnetic contribution to the gauge kernel.
Its sum with the paramagnetic one gives

− lim
q→0

K22
αβ (q, q, 0) = 1

2

∫
k

T
∑
νn

{
γ α

k+Qγ
β

k+QGk(iνn)[Gk+Q(iνn) − Gk(iνn)] − γ α
k γ

β

k+QF 2
k (iνn)

}
. (135)

Performing the Matsubara sums, one can prove the equivalence of the RPA and gauge theory approach for the calculation of J⊥
αβ .

Similarly, we obtain for the second frequency derivative of the bubble χ̃33
0 (q):

�2∂2
ωχ̃33

0 (Q) = −1

8

∫
k

∑
�,�′=±

(
1 − �

hk

ek

)(
1 + �

hk+Q

ek+Q

)
f
(
E �

k

) − f
(
E �′

k+Q

)
E �

k − E �′
k+Q

= 2χ̃−+
0 (Q). (136)

Furthermore, one can prove that

�∂ωχ̃3a
0 (Q) =�

[
∂ωχ̃a3

0 (Q)
]∗ = χ̃−a

0 (Q) = [
χ̃a+

0 (Q)
]∗

(137)

for a = 0, 1, 2. Inserting results (136) and (137) into Eqs. (89) and (124), one sees that the RPA and gauge theory approaches are
equivalent for the calculation of χ⊥

dyn. In Appendix B, we provide explicit expressions for the off-diagonal bare susceptibilities
χ̃−a

0 (Q).

3. Remarks on more general models

We remark that in the more general case of an interaction
of the type

Sint =
∫

k,k′,q
Uk,k′ (q)[ψk+q 
σψk] · [ψk′−q 
σψk′ ], (138)

producing, in general, a k-dependent gap, the identities we
have proven above do not hold anymore within the RPA, as
additional terms in the derivative of the inverse susceptibili-
ties emerge, containing expressions involving first and second
derivatives of the gap with respect to the spatial momentum
and/or frequency. In fact, in the case of nonlocal interac-
tions, gauge invariance requires additional couplings to the
gauge field in Sint , complicating our expressions for the gauge
kernels. Similarly, even for action Eq. (74), approximations
beyond the RPA produce, in general, a k-dependent �, and
vertex corrections in the kernels are required to obtain the
same result as the one obtained expanding the susceptibilities.

F. Néel limit

In this section, we analyze the Néel limit, that is, Q =
(π/a0, . . . , π/a0). In this case, it is easy to see that, within
the RPA, the bare susceptibilities in the rotated basis obey the
identities

χ̃22
0 (q, ω) = χ̃33

0 (q + Q, ω), (139a)

χ̃20
0 (q, ω) = χ̃21

0 (q, ω) = 0, (139b)

χ̃30
0 (q, ω) = χ̃31

0 (q, ω) = 0. (139c)

Furthermore, we obtain for the mixed gauge kernels (see
Appendix A)

Kab
para,α0(q, q′, ω) = Kab

para,0α (q, q′, ω) = 0. (140)

We also notice that K11
αβ (q, q′, 0) and K22

αβ (q, q′, 0) have (dif-
ferent) momentum off-diagonal contributions for which q′ =
q ± 2Q. If Q = (π/a0, . . . , π/a0), these terms become diag-
onal in momentum, as 2Q = 0, such that

lim
q→0

K11
αβ (q, 0) = 0, (141a)

K22
αβ (q, 0) = K33

αβ (q, 0). (141b)

From the above relations, we can see that J⊥
αβ = J�

αβ ≡ Jαβ ,

and χ⊥
dyn = χ�

dyn ≡ χ⊥
dyn, as expected for the Néel state.

From these considerations, we obtain for the spin stiffness

Jαβ = − lim
q→0

K22
αβ (q, 0) = − lim

q→0
K33

αβ (q, 0)

= −2�2∂2
qαqβ

χ̃22
0 (0) = −2�2∂2

qαqβ
χ̃33

0 (Q), (142)

which implies that Jαβ is given by Eq. (131). If the underlying
lattice is C4 symmetric, the spin stiffness is isotropic in the
Néel state, that is, Jαβ = Jδαβ . Similarly, for the dynamical
susceptibility, we have

χ⊥
dyn = lim

ω→0
χ22(0, ω) = lim

ω→0
χ33(0, ω)

=2�2∂2
ωχ̃22

0 (0) = 2�2∂2
ωχ̃33

0 (Q), (143)

which, combined with Eq. (133), implies

χ⊥
dyn = lim

ω→0

χ̃33
0 (0, ω)

1 − 2U χ̃33
0 (0, ω)

, (144)

with χ̃33
0 (0, ω → 0) given by Eq. (133).

We notice that the dynamical susceptibility is obtained
from the susceptibility by letting q → 0 before ω → 0. This
order of the limits removes the intraband terms [that is, the
� = �′ terms in Eq. (83)], which instead would yield a finite
contribution to the uniform transverse susceptibility χ⊥ ≡
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limq→0 χ22(q, 0). In the special case of an insulator at low
temperature T � �, the intraband contributions vanish and
one has the identity χ⊥

dyn = χ⊥, leading to the hydrodynamic

relation for the spin wave velocity [23] cs =
√

J/χ⊥ (in an
isotropic antiferromagnet). As noticed in Ref. [26], in a doped
antiferromagnet, this hydrodynamic expression does not hold
anymore, and one has to replace the uniform transverse sus-
ceptibility with the dynamical susceptibility. Since J = 0 and
χ⊥

dyn = 0 in the symmetric phase due to SU(2) gauge invari-

ance, the expression cs =
√

J/χ⊥
dyn yields a finite value cs at

the critical point � → 0, provided that J and χ⊥
dyn scale to

zero with the same power of �, as happens within mean-field
theory. Note that in the symmetric phase, SU(2) gauge invari-
ance does not pose any constraint on χ⊥, which is generally
finite.

In the simpler case of perfect nesting, that is, when ξk =
−ξk+Q, corresponding to the half-filled particle-hole symmet-
ric Hubbard model, and at zero temperature, expressions for
J and χ⊥ have been derived in Refs. [21,48] for two spatial
dimensions, and it is straightforward to check that our results
reduce to these in this limit. Moreover, Eqs. (31)–(34) in
Ref. [21] are similar to our Ward identities but no derivation
is provided.

IV. CONCLUSION

In conclusion, we have derived Ward identities for
fermionic systems in which a gauge symmetry is globally
broken. In particular, we have shown that the zero-energy
and long-wavelength components of the gauge kernels are
connected to the transverse susceptibilities of the order param-
eter by exact relations. We have analyzed several examples,
namely, a superconductor, a Néel antiferromagnet, and a spiral
magnet. In the latter case, we have performed an explicit
calculation of the transverse susceptibilities and of the gauge
kernels within the RPA and verified that the Ward identities
are indeed fulfilled. Furthermore, we have considered the

Néel limit Q → (π/a0, . . . , π/a0) and found that our RPA
expressions for the spin stiffnesses and susceptibilities reduce
to those previously obtained in Refs. [21,48]. We have also
shown that the hydrodynamic expression for the magnon ve-
locity cs =

√
J/χ⊥ does not hold in the presence of gapless

fermionic excitations and must be replaced by cs =
√

J/χ⊥
dyn.

While χ⊥ is computed by taking the ω → 0 limit before
letting q → 0 in the transverse susceptibility, χ⊥

dyn is obtained
reversing the order of the limits. The equality χ⊥

dyn = χ⊥
holds only for insulating antiferromagnets at low temperatures
T � �, as is the case for the spin systems considered in
Refs. [23,24].

Our findings find immediate application in the study
of large distance properties of interacting fermion systems.
In fact, via a microscopic calculation, one can evaluate
the coefficients of the effective actions listed in Sec. II
and study phenomena which are purely fluctuation driven.
Examples are the Berezinskii-Kosterlitz-Thouless transition
in two-dimensional superconductors (see, for example, the
microscopic calculation of Ref. [61]) or strong magnetic
fluctuations leading to the formation of a pseudogap in low-
dimensional electron systems [48,62]. Special care, however,
must be taken when the fermions form Fermi surfaces, as
the low-energy modes of the order parameter can decay in
particle-hole pairs, producing a Landau damping [58] that can
affect the macroscopic and critical properties of the system
[26,63]. An interesting extension of the present paper would
be to derive Ward identities for the damping of the Goldstone
modes.
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APPENDIX A: EXPRESSIONS FOR κ30
α (0) AND κ31

α (0)

In this Appendix, we report explicit expressions for the off-diagonal paramagnetic contributions to the spin stiffness, namely,
κ30

α (0), and κ31
α (0).

For κ30
α (0), we have, after making the trace in Eq. (105) explicit,

κ30
α (0) = lim

q→0
K31

para,α0(q, q′, 0) = − 1

4

∫
k

T
∑
νn

{[
G2

k(iνn) + F 2
k (iνn)

]
γ α

k − [
G

2
k(iνn) + F 2

k (iνn)
]
γ α

k+Q

}
δq′,0

= − 1

4

∫
k

T
∑
νn

{
∂k[Gk − Gk] + 4F 2

k ∂kα
hk

}
δq′,0, (A1)

where we have made use of properties Eqs. (129) in the last line. The first term vanishes when integrated by parts, while the
Matsubara summation for the second yields

κ30
α (0) = −�2

4

∫
k

[
f (E−

k ) − f (E+
k )

e3
k

+ f ′(E+
k ) + f ′(E−

k )

e2
k

]
(∂kα

hk ). (A2)

For κ31
α (0), we have

lim
q→0

K31
para,α0(q, q′, 0) = − 1

4

∫
k

T
∑
νn

[
Gk(iνn)Fk(iνn)γ α

k − Gk(iνn)Fk(iνn)γ α
k+Q

]
(δq′,Q + δq′,−Q). (A3)
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Defining κ31
α (0) = 2K31

para,α0(0, Q, 0) [see Eq. (111b)] and performing the Matsubara sum, we obtain

κ31
α (0) = − �2

4

∫
k

{[
hk

ek
(∂kα

gk ) + (∂kα
hk )

]
f ′(E+

k )

ek
+

[
hk

ek
(∂kα

gk ) − (∂kα
hk )

]
f ′(E−

k )

ek
+ hk

e2
k

(∂kα
gk )

f (E−
k ) − f (E+

k )

ek

}
. (A4)

Furthermore, it is easy to see that K31
α0 (0,±Q, 0) = ∓iK32

α0 (0,±Q, 0), which, together with Eq. (111c), proves κ31
α (0) = κα

32(0).
We remark that in the Néel limit both κ30

α (0) and κ31
α (0) vanish as their integrands are odd under k → k + Q.

APPENDIX B: EXPRESSIONS FOR χ̃−a
0 (Q)

We report here the RPA expressions for the off-diagonal bare susceptibilities χ̃−a
0 (Q), with a = 0, 1, 2. They can all be

obtained by computing the trace and the Matsubara summation in Eq. (82). We obtain

χ̃−0
0 (Q) = − 1

16

∫
k

∑
�,�′=±

[
�
�

ek
+ �′ �

ek+Q
+ ��′ �(hk+Q − hk )

ekek+Q

]
F��′ (k, Q, 0), (B1a)

χ̃−1
0 (Q) = − 1

16

∫
k

∑
�,�′=±

[
1 + �

hk

ek
− �′ hk+Q

ek+Q
− ��′ hkhk+Q − �2

ekek+Q

]
F��′ (k, Q, 0), (B1b)

χ̃−2
0 (Q) = + i

16

∫
k

∑
�,�′=±

[
1 + �

hk

ek
− �′ hk+Q

ek+Q
− ��′ hkhk+Q + �2

ekek+Q

]
F��′ (k, Q, 0). (B1c)

with F��′ (k, q, ω) defined as in Eq. (84).
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