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The asymptotic dynamical correlation functions in one-dimensional spin chains are described by power laws.
The corresponding exponents characterize different bulk and boundary critical behavior. We present results for
the logarithmic contribution to the boundary correlations of an isotropic Heisenberg chain. The exponent of
the logarithm, λ = 1, is derived using a renormalization group technique. We confirm our analytical results by
comparing with numerical quantum Monte Carlo data.
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I. INTRODUCTION

The isotropic spin- 1
2 chain is one of the most prominent

examples of a quantum many-body system. It is fair to say
that the one-dimensional Heisenberg model has been an inspi-
ration for fruitful theoretical developments for exact methods,
bosonization, and numerical algorithms, ever since the in-
vention of the Bethe ansatz in the early days of quantum
mechanics [1]. Critical exponents for spin-spin power-law
correlations were first predicted by Luther and Peschel [2]
in 1975, which agreed with the pioneering numerical results
of Bonner and Fisher [3] from 1964. In 1989, it was realized
that the marginally irrelevant “spin-Umklapp” operator leads
to multiplicative corrections, with logarithmically increasing
behavior in the asymptotic long-distance limit, and is of the
form [4–7]

Gzz(x, y, t ) = 〈Sz(x, t )Sz(y, 0)〉

= const. (−1)x−y

√
ln r/r0

r
, (1.1)

where r =
√

(x − y)2 − v2t2 is the space-time distance. This
was also confirmed numerically in real space [8,9]. In a
similar calculation, the logarithmic corrections to the dimer
correlations, due to the marginally irrelevant operator, were
studied, and the asymptotic form of the correlation function
was obtained [10,11].

The focus of this paper is the corresponding logarithmic
correction of the boundary critical behavior. Boundaries play
an important role in one-dimensional systems. This is due
to the fact that for an antiferromagnetic spin chain impuri-
ties will effectively cut the chain at low temperatures [12],
resulting in zero electric [13] and magnetic conductance [14].
Antiferromagnetic exchange anisotropies correspond to repul-
sive interactions in fermionic models. Reflecting boundaries
induce Friedel oscillations [15–19] and characteristic bound-
ary correlations [20] which have a large impact on the local

density of states in fermionic systems [21–25] as well as
the dynamical structure factor in doped spin chains [26].
Boundary thermodynamics for spin chains and the local sus-
ceptibility have been investigated earlier using field theory
techniques [27–32] and the quantum transfer matrix methods
[33–35]. Here, we focus on the spin-spin correlation function
for an isotropic chain, which has a different power-law behav-
ior at the boundary [14,36,37], viz.

Gzz(x = y = d, t ) = const.
(ln t/t0)λ

t2
, (1.2)

for spins close to a boundary (i.e., where x = y are of the order
of the lattice spacing d). The exponent λ of the logarithm was
first predicted to be λ = 4 in a preprint [38], but in subsequent
works, λ = 2 has been reported [36,37]. Ref. [36] uses non-
Abelian bosonization, while the result of Ref. [37] has been
derived implementing Abelian bosonization. In our paper, we
argue that the exponent is λ = 1 using Abelian bosonization,
and we also present numerical data based on quantum Monte
Carlo simulations to support our analytical results.

II. MODEL AND ALGEBRAIC DECAY

Before discussing the multiplicative logarithmic correc-
tions, we first briefly summarize the form of the correlations
described by the algebraically decaying power laws, both in
the bulk and near the boundaries.

The Hamiltonian of the anisotropic Heisenberg chain in
terms of spin-1/2 operators Si = (Sx

i , Sy
i , Sz

i ) at site i reads

H = J
L−1∑
i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

)
, (2.1)

where � is the anisotropy parameter, and L is the size of the
system. Here, we consider “open” boundary conditions, i.e.,
the edge spins at i = 1 and i = L are not coupled with each
other. For � = 1, the Hamiltonian is invariant under SU(2)
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transformations, which is the parameter regime that we will
consider in the subsequent discussions. For a more general
description, we will use Abelian bosonization [39–41], as the
mode expansion is known in this language, thus allowing
an explicit calculation of the algebraically decaying bound-
ary correlation functions [22]. The SU(2) symmetry will be
strictly maintained by enforcing the equality of the correlation
functions for the transverse and longitudinal directions.

The low-energy effective bosonic description of the
anisotropic Heisenberg chain is the Luttinger liquid Hamil-
tonian [39–41]

H = υ

2

∫ L

0
dx

[
K (∂x θ̃ )2 + 1

K
(∂xφ̃)2

]
, (2.2)

where φ̃ is the bosonic field, and ∂x θ̃ is its conjugate mo-
mentum, such that [φ̃(x), ∂x θ̃ (y)] = i δ(x − y). The spin-wave
velocity v = J π sin ϑ/2ϑ , and the Luttinger parameter K =
π/2(π − ϑ ) are known analytically as functions of cos ϑ =
�, from the exact solution of the model [41]. In our notation,
K = 1/2 corresponds to the SU(2)-invariant point � = 1. The
Luttinger parameter K controls the decay of the correlation
functions. It can be gauged away by the canonical transforma-
tion

φ = φ̃/
√

K, θ =
√

K θ̃ , (2.3)

which maps the above Hamiltonian onto a free boson Hamil-
tonian

H0 = v

2

∫ L

0
dx[(∂xθ )2 + (∂xφ)2]. (2.4)

So far we have omitted the spin-Umklapp operator, which will
be discussed in the following section.

Algebraic correlation functions can be determined using
the mode expansion (see also Appendix A) [41,42]. The over-
all prefactor of the correlation functions depends on the choice
of cutoff in the field theory, but for the spin model it can be
fixed using exact methods [43]. For the field theory, it is useful
to set the normalization such that in the thermodynamic limit
L → ∞, the two-point function of the vertex operator ei γφ

(far from the boundary) has the form

〈eiγφ(x,τ ) e−iγφ(y,0)〉 = 1

[ r(x − y, τ ) ]2ds
, (2.5)

for imaginary time τ = i t . Here, ds = γ 2

4π
is the scaling di-

mension of the operator, and we introduced

r(x, τ ) =
√

x2 + v2 τ 2, (2.6)

which denotes the space-time distance.
In the following, we are interested in the dominant antifer-

romagnetic correlations, which arise from the alternating parts
of the spin operators in the bosonized form, given by

Sz(x, t ) = A (−1)x sin(
√

4 π K φ(x, t )), (2.7)

S+(x, t ) = Ã (−1)x e−i
√

π
K θ (x,t ), (2.8)

where A and Ã are related to the amplitudes of the asymp-
totic correlation functions [43]. We are now in a position to
calculate the longitudinal correlation function Gzz(x, y, τ ) [cf.

Eq. (1.1)], and the transverse correlation function

G+−(x, y, τ ) = 〈S+(x, τ ) S−(y, 0)〉/2. (2.9)

At the SU(2)-invariant point, the two correlation functions
coincide, viz. Gzz = G+−.

Since we are interested in correlations near boundaries, we
evaluate the expectation values using a finite-size bosoniza-
tion approach, where the mode expansions of the bosonic
fields are chosen such that the open boundary conditions
of the system are fulfilled. More details are provided in
Appendices B and C. Once the finite-size results are known,
these can be generalized to a semi-infinite system with size
L → ∞, and with a boundary as x → 0. We find [14,26] that

Gzz(x, y, τ )

= A2(−1)x+y

2(4 x y)K

[{
r(x + y, τ )

r(x − y, τ )

}2K

−
{

r(x − y, τ )

r(x + y, τ )

}2K]
(2.10)

� A2

2
(−1)x+y ×

{
r−2K bulk
(4 x y)1−K

v2τ 2 boundary
, (2.11)

for the Luttinger liquid Hamiltonian in Eq. (2.2). The bulk
limit refers to x y � (x − y)2 + v2 τ 2, while the boundary
limit implies x, y 	 v t . We have used r ≡ r(x − y, τ ) with-
out arguments to simplify notation.

An analogous calculation for the transverse correlation
function yields

G+−(x, y, τ )

= Ã2

2
(−1)x+y

(
4 x y

r2(x + y, τ ) r2(x − y, τ )

) 1
4K

(2.12)

� Ã2

2
(−1)x+y

{
r− 1

2K bulk( 4 x y
v4 τ 4

) 1
4K boundary

. (2.13)

At the SU(2)-invariant point, the normalization factors A
and Ã diverge [43], which is the first indication that the pref-
actors also become dependent on the distance. Nonetheless,
for later convenience, we ignore the overall normalization
and introduce the short notation G0(x, y, τ ) for the power-law
correlation functions at the isotropic point with K = 1/2. The
corresponding asymptotic power-law decays in the two limits
follow directly from Eqs. (2.11) and (2.13) as

G0(x, y, τ ) ∝ (−1)x+y ×
{

r−1 bulk
2
√

x y
v2 τ 2 boundary

. (2.14)

III. RENORMALIZATION GROUP FLOW

Multiplicative logarithmic corrections from the spin-
Umklapp operator were first derived using non-Abelian
bosonization [4] and also using Abelian bosonization [5,6], as
two independent approaches. The second approach is the one
we will use here for the boundary case. The spin-Umklapp
operator is of the form cos (

√
16 π K φ). Its scaling dimen-

sion ds = 4 K changes continuously with K . In particular,
at K = 1/2, the operator is marginal–hence the corrections
from a renormalization group (RG) approach are only loga-
rithmically small at best, and must therefore be treated with
great care. For this purpose, we will expand the Hamiltonian
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in Eq. (2.2) around the SU(2)-invariant point with K = 1/2.
Using the notation K = 1/2 + δK , and subsequently rescaling
the fields according to Eq. (2.3), we get

H = H0 +
∫ L

0
dx[ g1 O1(x) + g2 O2(x) ] (3.1)

with

O1 = v

4
[(∂xθ )2 − (∂xφ)2], O2 = v

2 π
cos(

√
8 π φ), (3.2)

and g1 = 4 δK , while g2 is the coupling constant of the
spin-Umklapp operator. The value of g2 relies on the cho-
sen normalization of the bosonic vertex operators, which in
our case is the field theory normalization in Eq. (2.5). This
Hamiltonian defines the starting point of our analysis. The
aim of this section is to explain the RG technique to treat the
perturbing cos(

√
8 π φ) operator in abelian bosonization. We

will first revisit the mechanism how the logarithmic correc-
tions to the correlation functions at the SU(2)-invariant point
are derived in the bulk limit. We will then employ this analysis
to a system with open boundary conditions.

The behavior of the bulk theory under renormalization is
well known. The RG flow equations, which describe how
the couplings g1 and g2 evolve under a change of the length
scale 
, are of the Kosterlitz-Thouless type [5,44,45]. The
dependence of the coupling constants on the relevant length
scale is encoded in their derivatives with respect to the loga-
rithm of the scale, which, for historical reasons are called beta
functions. In our notation, these read

dg2

dl
= −g1 g2,

dg1

dl
= −g2

2, (3.3)

where l = ln(
/α0). The parameter 
 denotes the physical
length scale at which the system is studied, i.e., the cor-
responding energy scale serves as the infrared cutoff. The
ultraviolet energy cutoff corresponds to the length scale α0,
which has been estimated to be slightly smaller than the lattice
spacing d , i.e., α0 ≈ 0.85 d [9]. The SU(2)-invariant point
corresponds to

g1 = g2 = g, (3.4)

where the two beta functions coincide. Eq. (3.3) can be exactly
solved, and for the isotropic point, the solution is given by

g(l ) = g0

1 + b g0 ln (
/α0)
. (3.5)

Here, b = 1 and g0 is the bare coupling, when 
 is of the order
of α0.

In order to derive the logarithmic corrections to the corre-
lation functions, we will follow the approach of Refs. [5,6].
The multiplicative corrections to the unperturbed correlation
function are captured by a function Fμν (x, y, τ ), which is
defined by the equation

Gμν (x, y, τ ) = G0(x, y, τ ) Fμν (x, y, τ ), (3.6)

where the subscript μν is the label for the “zz” or the
“+−” components of the correlations. Along the entire line
g1 = g2 = g isotropy must hold [thus implying Fzz(x, y, τ ) =
F+−(x, y, τ )], and for vanishing g1 = g2 = 0 the multiplica-
tive function must be equivalent to the identity [thus implying
Fμν (x, y, τ ) = 1]. The factor Fμν can be derived from the
leading-order corrections of the perturbation theory. Here we

use the interaction representation [46] and the imaginary time
τ = i t . The first-order perturbative correction in g1 and g2

then reads [46]

Gμν (x, y, τ ) = G0(x, y, τ ) +
2∑

i=1

T μν

Oi
(x, y, τ ), (3.7)

where

T μν

Oi
(x, y, τ )

= −gi fμν

∫ ∞

0
dx̃

∫ ∞

−∞
d τ̃ 〈T Sμ(x, τ )Sν (y, 0)Oi(x̃, τ̃ )〉

+ gi G0(x, y, τ )
∫ ∞

0
dx̃

∫ ∞

−∞
d τ̃ 〈Oi(x̃, τ̃ )〉 (3.8)

with fzz = 1 and f+− = 1
2 . The symbol T in the expectation

value denotes the time-ordering operator. In the above expres-
sion, the time integral is part of the interaction representation,
while the interaction Hamiltonian itself is an integral over
the space variable (where we have set the upper boundary
L → ∞, valid for a semi-infinite system). The second term
in Eq. (3.8) represents the disconnected diagrams, which we
subtract off in order to cancel the unphysical singular contri-
butions. In the next section, we will discuss the expectation
values of T μν

O1
and T μν

O2
for open boundary conditions, and

evaluate the integrals under a change of cutoff. Combined
with the knowledge of the relation between the bare and
renormalized couplings, this will determine the factor Fμν .

We will illustrate the renormalization of the correlation
functions, and how a multiplicative factor Fμν emerges con-
sidering the bulk case. Here, Fμν = Fμν (r/α0) [cf. Eq. (3.6)]
is a function of the ratio r/α0 only. The explicit calculations
of T μν

O1
and T μν

O2
(demonstrated in the next section) will show

that the integrals, which determine the perturbed correlation
function in Eq. (3.8), exhibit diverging parts around singular
points. The latter need to be regularized by the cutoff α0. The
integrands take the general form

f (x̃, τ̃ , x, y, τ )

/[∏
s

r2(r̃ − rs)

]
, (3.9)

where r̃ = (x̃, τ̃ ) is the variable of integration, rs = (xs, τs)
denotes a singular point, and f (x̃, τ̃ , x, y, τ ) is a polynomial
function [cf. Eq. (4.4), shown in the later part of the paper].
In the bulk limit, the integral structure further simplifies to
involve only two singularities at r1 = (x, τ ) and r2 = (y, 0).
The elementary integral that needs to be solved is given by [6]

I =
∫∫ ′

dx̃ d τ̃
1

r2(r̃ − r1) r2(r̃ − r2)
. (3.10)

We regularize the two-dimensional integral by excluding cir-
cles of radii α0 around r1 and r2 while performing the
integrations, which is indicated by the symbol

∫∫ ′. While
carrying out the integrations, we choose the spatial coordinate
axis to be along r1 − r2. In the polar coordinates, the integral
can then be evaluated

I =
∫ ′

dr̃
∫ 2π

0
dθ

1

r̃(r̃2 − 2 r̃ r cos θ + r2)

= 4 π

r2
ln

(



α0

)
, (3.11)
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where we have subtracted the singularities within radii α0 	 r
around r1 and r2, after doing the angular integration exactly.
Here, 
 ≈ r/

√
2 is given in terms of the distance r = r(x −

y, τ ) between the two singular points. Note that the distance
r serves as the infrared cutoff 
 of the integral, because the
integrand decays as 1/r̃3 for r̃ � r. In the following, the upper
cutoff of the RG procedure is therefore always limited by
r, which determines the endpoint of the logarithmic RG be-
havior. Hence, each singularity contributes a term 2 π ln( 


α0
)

times the remaining integrand. This logarithm gives a small
correction to the correlation function, as long as 
/α0 ∼ 1. In
this case, the perturbed correlation function can be generally
written as

Gμν = G0

[
1 + (a1 g1 + a2 g2) ln

(



α0

)]
, (3.12)

where g1 = g2 = g(l ), and a1 and a2 are constants resulting
from the perturbative contributions of O1 and O2, respec-
tively. With increasing 
 ∼ r, the “corrections” become
arbitrarily large, and consequently, the perturbative approach
seems to be doomed. On the other hand, Eq. (3.12) remains
correct if we only want to consider a small change in the cutoff

 → 
′. Since the underlying field theory is scale invariant,
Eq. (3.12) can always be used to calculate the perturbative
correction corresponding to a small change dl = ln( 
′



) in

the values of the cutoff. Of course, the coupling constant
g(l ) is not scale-invariant, as it depends on the overall value
l = ln( 


α0
) in Eq. (3.5), which must be taken into account

at each RG step. We, therefore, take the cutoff 
 as a tun-
able variable, which can be increased step-by-step from an
initially small value 
 = α0, until the physical cutoff 
 ∼ r
is reached. At each step, we use Eq. (3.12) to calculate the
correction of Gμν , assuming that l = ln( 


α0
) only changes by

an infinitesimal amount dl = ln( 
′



), and g1 = g2 = g(l ) is
given by the running coupling constants in Eq. (3.5). To make
it more concrete, let us look at the renormalization of Fμν as
we slightly increase the cutoff 
 → 
′. This is captured by

Fμν (
′/α0) = Fμν (
/α0)

[
1 + a g(l ) ln

(

′




)]
, (3.13)

where a = a1 + a2. Iterating and multiplying all RG steps
from 
 = α0 to 
 = r, we find that

Fμν (r/α0) =
ln(r/α0 )∏

l=0

[1 + a g(l )dl]

= exp

[∫ ln(r/α0 )

0
γμν (l ) dl

]
, (3.14)

where we have introduced

γμν (l ) = a g(l ), (3.15)

which is twice the commonly defined anomalous dimension
of the corresponding spin field [47]. Notice that the anoma-
lous dimension is defined as the logarithmic derivative of the
prefactor, which renormalizes the correlation function multi-
plicatively under a change of scale [47]. Therefore, it depends
on the coupling of the theory at any scale. Finally, making
use of Eq. (3.5), and performing the integral in Eq. (3.14), we

obtain the form of multiplicative logarithmic correction as

Fμν (r/α0) = exp
{a

b
ln [1 + b g0 ln(r/α0)]

}
= [1 + b g0 ln(r/α0)]

a
b . (3.16)

Equation (3.16) thus provides a general recipe for the loga-
rithmic correction to any correlation function. It involves two
characteristic quantities: (1) the beta function of the theory
which determines the parameter b; and (2) the anomalous
dimension γμν of the corresponding spin-field in Eq. (3.15),
which determines the parameter a.

Indeed, the concept of the anomalous dimension is well
known from the Callan-Symanzik equation, describing the
evolution of any n-point correlation function under variation
of the energy scale [48], which of course gives an identical
result [4–6]. In the case of open boundary conditions, how-
ever, the above step-by-step RG treatment appears to be more
transparent, because there are two length scales in the bound-
ary theory, viz. r(x − y, τ ) and r(x + y, τ ). We will show that
in the bulk and boundary limits, the two length scales reduce
again to a single one, viz. 
 = r and 
 = v t , respectively.
In these cases, the RG treatment is fully analogous to the one
described above, with the corresponding length scales taken
into account. We will now proceed to explicitly determine the
parameters a and b entering Eq. (3.16), for both the bulk and
the boundary limits.

IV. FIRST-ORDER PERTURBATION

In this section, we discuss the first-order corrections to the
free correlation function, due to the presence of the operators
O1 and O2. We identify the logarithmically divergent pieces
of the resulting integrals, in order to obtain the general form
of Eq. (3.12), and to determine the prefactors a1 and a2.
The knowledge of these prefactors is crucial as they enter
the final exponent of the multiplicative logarithmic exponent
in Eq. (3.16) where a = a1 + a2. Our focus will be on the
boundary behavior of a semi-infinite chain. For a better un-
derstanding, we will also include results for the bulk limit,
where we recover the known results for the infinite case.

Let us start by discussing the contribution of the operator
O1. In this case, we do not need to evaluate the expectation
value in a first-order perturbative expression at all, as there is
a much simpler way to determine the constant a1. The operator
O1 can be included in the quadratic part of the Hamiltonian,
allowing it to be treated exactly. This just affects the value
of the Luttinger parameter, which increases as K → K + δK
with δK = g1/4. Equation (2.11) for the correlation function
Gzz(x, y, τ ) is still valid, using K = 1

2 + δK in the vicinity
of the isotropic point. The first-order correction T zz

O1
can

now be obtained by expanding the power-law expression for
Gzz(x, y, τ ) in δK , leading to

T zz
O1

= −g1 A2 (−1)x+y

2

{ 1
2 r ln

(


α0

)
bulk

0 boundary
. (4.1)

Here, we have used the fact that the infrared cutoff is given by
the distance 
 ∼ r, relative to the ultraviolet cutoff α0. Note
that in the boundary case, the power (x y)1−K appearing in
the correlation function in Eq. (2.11), contributes a logarithm
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∼ ln(x y /α2
0 ), which vanishes near the boundary x, y ∼ α0–

hence it has been neglected here.
For the contribution of the operator O2, we need to eval-

uate the integral corresponding to the first-order perturbation
explicitly, which is a straightforward but cumbersome calcula-
tion. We can express the perturbative change of the correlation
function from O2 as a sum of the two integrals I1 and I2, such
that

T zz
O2

(x, y, τ )

= −g2 v A2(−1)x+y

8 π
√

x y

[
r(x + y, τ )

r(x − y, τ )
I1 − r(x − y, τ )

r(x + y, τ )
I2

]
.

(4.2)

Here,

Ii =
∫∫ ′

dx̃ d τ̃ ti(x, y, x̃, τ, τ̃ ), (4.3)

for i = 1, 2, and the integral therefore denotes the correction
due to a small change of the cutoff around each singularity.
Each integrand ti is determined from evaluating the time-
ordered correlation function in Eq. (3.8), using the mode
expansion shown in Appendix A. This gives us (for details
see Appendix D)

t1/2 =
[

(τ̃ 2 + x̃2 + y2)x ∓ ((τ − τ̃ )2 + x̃2+x2)y

r(x̃−x, τ̃ −τ ) r(x̃+x, τ̃ −τ ) r(x̃−y, τ̃ ) r(x̃+y, τ̃ )

]2

.

(4.4)

Since the correlations are symmetric under x̃ → −x̃, we do
not need to restrict the integration to positive values only. In
the above expression, the contributions from the disconnected
diagrams have already been subtracted. The final integrals are
dominated by the behavior of the integrands in the vicinity of
the singular points, which determine the leading order loga-
rithmic contributions. For both the terms t1 and t2, there are
four singular points, which are located at (x̃ → ±x, τ̃ → τ ),
and (x̃ → ±y, τ̃ → 0).

We now determine the leading logarithmic contributions to
the integrals, by choosing an appropriate parametrization in
the vicinity of each singular point. For instance, we choose
(x̃ = x + δx̃, τ̃ = τ + δτ̃ ) for the point (x̃ → x, τ̃ → τ ), and
then expand for small δx̃ and δτ̃ . Analogous to Eq. (3.11),
each singularity contributes 2 π ln(
/α0) times the corre-
sponding value of the remaining integrand, leading to

I1 � 2 π

[
r(x − y, τ )

r(x + y, τ )

]2

ln

(



α0

)
, (4.5)

I2 � 2 π

[
r(x + y, τ )

r(x − y, τ )

]2

ln

(



α0

)
. (4.6)

Inserting these results in Eq. (4.2), we obtain

T zz
O2

= g2 A2 (−1)x+y

4
√

x y

[
r(x + y, τ )

r(x − y, τ )
− r(x − y, τ )

r(x + y, τ )

]
ln

(



α0

)
,

(4.7)

which reduces to

T zz
O2

= g2 A2 (−1)x+y

2

{
1
r ln

(


α0

)
bulk

2
√

x y
v2 τ 2 ln

(


α0

)
boundary

, (4.8)

in the two limits. Finally, we add T zz
O1

in Eq. (4.1), and T zz
O2

in
Eq. (4.8), to the unperturbed correlation function in Eq. (2.14).
This leads to

Gzz(x, y, τ )

= A2 (−1)x+y

2

{
1
r

[
1 + (

g2 − g1

2

)
ln

(


α0

)]
bulk

2
√

x y
v2 τ 2

[
1 + g2 ln

(


α0

)]
boundary

.

(4.9)

We thus obtain an expression which agrees with the gen-
eral form shown in Eq. (3.12), with the coefficients (a1 =
− 1

2 , a2 = 1, a = 1
2 ) in the bulk limit, and (a1 = 0, a2 = 1,

a = 1) in the boundary limit.
We are now in the position to state the final result for

the exponent λ = a
b of the logarithmic correction, both in the

bulk and boundary limits. Using Eq. (4.9) and Eq. (3.16), we
find that a = 1

2 and b = 1 in the bulk limit. This gives us the
logarithmically corrected correlation function [4–6]

G(r) = A2(−1)x+y

2 r

√
ln (r/α0), (4.10)

with a bulk logarithmic exponent λ = 1/2. In the boundary
limit, we find that a = 1 and b = 1, which results in the
logarithmically corrected correlation function

Gb(t ) = −A2(−1)x+y √
x y

v2 t2
ln

( t

t0

)
(4.11)

with a boundary logarithmic exponent λ = 1. This is the
main result of this paper, which, however, does not agree
with what was obtained earlier [36,37]. Hence, it war-
rants a critical discussion about the possible origin of this
discrepancy.

V. CRITICAL DISCUSSION

In this section, we will explain the reasons why we believe
that we do not recover the boundary logarithm exponent λ = 2
of previous works [36,37]. While we have obtained the same
beta functions, and the coefficient b = 1, we obtain a different
anomalous dimension with the coefficient a = 1 (as opposed
to a = 2, found in earlier works). The discrepancy stems from
taking a different order of the calculational steps; in our case,
we first evaluate the full integral in Eq. (4.7), and then take the
boundary limit in Eq. (4.8). In contrast, in the earlier papers
[36,37], where an operator product expansion was employed,
the order of calculations amounts to first taking the bound-
ary limit in the correlation function, for small x, y. However,
when taking the boundary limit, the singularities (appearing
at x̃ = −x and x̃ = x) get partially reduced due to factors in
the numerator, leaving only one singularity instead of two
(albeit with a prefactor which is four times larger). Note that
this procedure assumes that x, y � α0, and therefore does not
capture the diverging dependence on the lower length scale
cutoff α0 correctly. On the other hand, in our approach, the
arguments (x, y) are always larger than the cutoff α0, as they
must be, judging from physical intuition and the estimate
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α0 ≈ 0.85 d [9]. In the bulk limit, in contrast, the order of
the computational steps does not make any difference. In
fact, the bulk limit can be safely taken before integrating,
as all singularities are always sufficiently removed from each
other.

Let us show explicitly that the expansion for small (x, y)
as the first step, starting from the same correlation function
in Eq. (4.4), leads to a different result. First expanding T zz

O2
in

Eq. (4.2) for small (x, y), before performing the integral, we
find that

T zz
O2

(x, y, τ )

= g2 v A2(−1)x+y

2 π

∫∫ ′
dx̃ d τ̃

√
x y

r2(x̃, τ̃ ) r2(x̃, τ̃ − τ )
.

(5.1)

Here, we have dropped all terms which are odd under parity
[viz., x̃ → −x̃], and which therefore do not contribute to the
integral. The integrand is singular for (x̃ → 0, τ̃ → 0) and
(x̃ → 0, τ̃ → τ ). Integration in the same manner as before
yields

T zz
O2

(x, y, τ ) = g2 A2(−1)x+y 2
√

x y

v2 τ 2
ln

(



α0

)
. (5.2)

Note the additional factor 2 as compared to Eq. (4.8). This
factor leads to an anomalous dimension a = 2 and as a re-
sult the logarithmic exponent λ is twice as large as our
exponent λ = 1 for the boundary case. Since the analytic
structure is changed by taking the limit of small (x, y)
first, we do not believe that the previous result of a = 2 is
correct.

A further check of our result comes from the trans-
verse correlation function, which has an identical logarithmic
correction. A calculation analogous to the one before for
the contribution of the O1 operator, expanding K = 1

2 +
δK for small δK in the transverse correlation function,
gives us

T +−
O1

= g1 Ã2

2
(−1)x+y ×

{
1
2r ln

(


α0

)
bulk

2
√

x y
v2 τ 2 ln

(


α0

)
boundary

. (5.3)

For this case, the operator O2 does not generate a loga-
rithmically divergent term in first order in g2 as shown in
Appendix E. In other words,

T +−
O2

= 0. (5.4)

This calculation confirms once again that a = 1 in the bound-
ary case, as also required by the rotational invariance. Even
though the separate contributions of a1 and a2 are differ-
ent for the transverse and longitudinal correlations functions,
the sum a = a1 + a2 is the same. Indeed, we find that
along the isotropic line g1 = g2 = g, the logarithmic cor-
rections to the decay of the spin-spin correlation functions
follow as

G+−(x, y, τ ) = Ã2

2
(−1)x+y

×
{

1
r

[
1 + g1

2 ln
(



α0

)]
bulk

2
√

x y
v2 τ 2

[
1 + g1 ln

(


α0

)]
boundary

,

(5.5)

TABLE I. Fitting parameters.

βJ A1 z1 A2 z2

15 0.583235 0.935679 0.104749 3.65832
25 0.584947 0.908307 0.0864403 4.72989
50 0.594767 0.86585 0.070273 6.78464
all 0.58763 0.898285 0.0674096 7.60085

and thus

T zz
O1

+ T zz
O2

= T +−
O1

+ T +−
O2

. (5.6)

VI. NUMERICAL DATA AND FITS

In order to test the predictions form our analytical calcu-
lations, we have performed numerical quantum Monte Carlo
simulations, using the stochastic series expansion algorithm
[49,50] with directed loop updates [51] and a Mersenne
Twister random number generator [52]. With this method,
it is straightforward to calculate correlation functions in the
imaginary time τ at finite temperatures [49].

Using the mode expansion of the fields, the method to
calculate the power-law correlations for any finite size L
and finite temperature T is well known [22,28,42]. In par-
ticular, for finite temperatures, the imaginary space-time
coordinate i x + v τ in the correlation functions is replaced
by [27]

i x + v τ → z = v β

π
sin

(π (i x + v τ )

v β

)
. (6.1)

Here, it is assumed that the inverse temperature is β = 1/T 	
L/v, such that the effects from the finite system size L can be
ignored [22,28,42]. It has been argued in Ref. [53] that the
RG treatment can also be performed in the variable z, up to
second order in the beta function, but that higher-order RG
may not give a perfect data collapse as a function of z. We,
therefore, analyze the imaginary-time correlation function of
the last spin of an open chain, using the ansatz

Gzz(x = y = d, τ ) = Aλ

[ ln (z/zλ) ]λ

z2
, (6.2)

with z = v β

π
sin( π τ

β
), exponent λ = 1, 2, and fitting constants

A1,2 and z1,2. The corresponding Monte Carlo data for an
isotropic chain of length L = 500, at three different temper-
atures βJ = 15, 25, 50 are shown in Fig. 1, where we have
multiplied the correlation function with the leading power law
z2. The results for different temperatures have approximately
the same functional dependence on z, and hence the higher-
order RG corrections, which are not functions of z, can indeed
be neglected.

The constants A1,2 and z1,2 have been determined by the
best fits to Eq. (6.2) for z > 2 and are shown in Table I. At
the first sight, both λ = 1 and λ = 2 appear to fit well with
the data. But upon closer inspection, the fit for λ = 2 has
clear systematic deviations, as seen in Fig. 1 and Table I. In
particular, the fitting parameters in Table I drift as a function
of β by 30% or more, while the parameters for λ = 1 remain
constant for different β within a few percent. Notice that it is
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FIG. 1. The curves show the data points obtained from the quan-
tum Monte Carlo simulations for the boundary correlation function
z2 Gzz(z) of the last spin in an isotropic chain in imaginary-time
as a function of z = v β

π
sin( πτ

β
). The three curves correspond to

βJ = 15, 25, 50. The fits according to Eq. (6.2) with the parameter
values taken from the last line of the Table I are shown for λ = 1
(top) and λ = 2 (bottom).

important to analyze the quality of the fit over the entire range
of data for different temperatures. We, therefore, conclude
that the data shows clear evidence that λ = 1 is the correct
exponent for the boundary logarithmic corrections.

VII. CONCLUSION

We have considered the boundary logarithmic correction to
the dynamical spin-spin correlation function, for the isotropic
Heisenberg chain. The logarithmic corrections are caused by
the marginal spin-Umklapp operator, which we have treated
by RG techniques. When both spins are located close to the
open boundary, the correlations are captured by a single scale
υt , which allows using scaling arguments analogous to the
bulk theory. We have found an anomalous dimension which
results in an exponent λ = 1 for the logarithmic correction.
This result is confirmed by the state-of-the-art numerical data
from quantum Monte Carlo simulations.

The time-dependent spin-spin correlation functions can be
probed by the nuclear magnetic resonance (NMR) relaxation
rates of spin-1/2 antiferromagnetic chain compounds. For the
bulk materials, experimental data on Sr2CuO3 [54] have been
found to be in good agreement with theoretical predictions in-
corporating multiplicative logarithmic corrections [55,56]. In
addition, impurity effects on the NMR spectra have also been
studied [57]. Recently, the magnetic properties of doped spin
chains have attracted renewed experimental interest [58,59].
As the current experimental resolution for NMR data is much
better than the numerical capabilities to simulate the behavior
at long times, we believe that a comparison of our results to the
boundary NMR relaxation rates [37] will potentially resolve
the issue. An alternative (and extremely promising) route is
given by experiments on ultracold gases realizing the spin-1/2
Heisenberg chain [60,61], where measurements of time and
space-resolved correlations have been proposed [26,62,63].
As these systems always have finite system sizes, precise
knowledge of the boundary effects, that we have investigated
in our paper, is of great importance.
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APPENDIX A: MODE EXPANSIONS FOR THE SEMI-INFINITE CHAIN

To account for the open boundary condition on the left end of the semi-infinite chain, we impose the Dirichlet boundary
condition on the spin field at the boundary x = 0 [14,37], which implies that 〈Sz(x = 0)〉 = 0. By using the expression for the
bosonized spin operators [cf. Eq. (2.7)], where the bosonization field φ(x, t ) = φL(x, t ) + φR(x, t ), we obtain φ0 ≡ φ(x = 0) =
k
√

π/(4K ) (with k ∈ Z). Since the chiral bosonic fields φR and φL are functions of (x − v t ) and (x + v t ), respectively, the
Dirichlet boundary condition allows us to relate them as φR(x, t ) = −φL(−x, t ) + φ0. Hence, the mode expansions for these
fields take the form [14,42]:

φL(x, t ) = φ0 + φ̃0

2
+ x + v t

2 L
Q +

∑
�>0

[
i e− i π �

L (x+v t )

√
4 π �

b� + H.c.

]
,
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φR(x, t ) = φ0 − φ̃0

2
+ x − v t

2 L
Q +

∑
�>0

[
− i e

i π �
L (x−v t )

√
4 π �

b� + H.c.

]
,

φ(x, t ) = φ0 + x

L
Q +

∑
�>0

sin
(

π � x
L

)
√

π �

[
e− i π � v t

L b� + H.c.
]
,

[b�, b†
�′] = δ�,�′ , [φ̃0, Q] = i. (A1)

For the conjugate field θ (x, t ) = φL(x, t ) − φR(x, t ) we have

θ (x, t ) = φ̃0 + v t

L
Q +

∑
�>0

cos
(

π � x
L

)
√

π �

[
i e− i π � v t

L b� + H.c.
]
. (A2)

APPENDIX B: UNPERTURBED CORRELATION FUNCTION Gzz(x, y, t )

In this section, we will explain how to calculate expectation values in general, using the mode expansion of the previous
section. An example of this procedure is given by the evaluation of the unperturbed correlation function Gzz(x, y, t ).

We start from the bosonized spin operator

Sz(x, t ) = A (−1)x sin(
√

4πK φ(x, t )), (B1)

as shown in Eq. (2.7). The expectation values in the ground state can be evaluated in the simplest way by normal ordering all the
expressions, with respect to the annihilation and creation operators b� and b†

�, respectively. Using the Baker-Campbell-Hausdorff

formula eA+B = eA eB e− 1
2 [A,B] for [A, [A, B]] = 0 and [B, [B, A]] = 0, we find that, for a general vertex operator [26],

ei α
√

4π φ(x,t ) =
[

π

2 L sin (π x/L)

]α2

exp

(
i α

∑
�

ei ω� t A†
�(x)√

�

)
exp

(
i α

∑
�

e−i ω� t A�(x)√
�

)
(B2)

=
[

π

2 L sin (π x/L)

]α2

: ei α
√

4π φ(x,t ) :, (B3)

where ω� = πv �
L and

A�(x) = 2 sin

(
� π x

L

)
b�. (B4)

Here, we have used the expansion of the logarithm
∑∞

�=1
e−iω�t

�
= − ln(1 − e− iπvt

L ) where we assume that t comes with a small
negative imaginary part to ensure convergence. We also have set the normalization of the single vertex operator such that for the
two-point function far away from the boundary Eq. (2.5) is fulfilled. For a product of two vertex operators, we further need to
normal order the inner products of the exponentials, in order to obtain a fully normal ordered expression. This yields

ei α
√

4πφ(x,t ) ei β
√

4πφ(y,0) =
(

π
2 L

)α2+β2

e−α β C1(x,y,t )

sinα2 (
π x
L

)
sinβ2 (

π y
L

) : ei α
√

4πφ(x,t ) ei β
√

4πφ(y,0) :, (B5)

with the commutator

C1(x, y, t ) =
∑
�,�′

e−i ω� t

√
� �′ [A�(x), A†

�′ (y)] = 4
∑

�

e−i ω� t

�
sin

(
� πx

L

)
sin

(
� πy

L

)
(B6)

=
[

− ln
(
1 − e− iπ

L (x−y+v t )
) + ln

(
1 − e− iπ

L (x+y+v t )
)

+ ln
(
1 − e

iπ
L (x+y−v t )

) − ln
(
1 − e

iπ
L (x−y−v t )

)]

� ln

[
(x + y)2 − (v t )2

(x − y)2 − (v t )2

]
. (B7)

In the last line, we have taken the limit L → ∞. Thus, we get

ei α
√

4π φ(x,t ) ei β
√

4π φ(y,0) �
[

(x+y)2−v2 t2

(x−y)2−v2 t2

]−α β

(2 x)α2 (2 y)β2 : ei α
√

4π φ(x,t ) ei β
√

4π φ(y,0) : . (B8)

For the correlation function

Gzz(x, y, t ) = A2 (−1)x+y〈sin(
√

4πK φ(x, t )) sin(
√

4πK φ(y, 0))〉, (B9)
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we need to combine four different products of the vertex operators. Using the above expressions, to leading order, we find that

Gzz(x, y, t ) = A2 (−1)x+y

2(4 x y)K

[{
(x + y)2 − v2 t2

(x − y)2 − v2 t2

}K

−
{

(x − y)2 − v2 t2

(x + y)2 − v2 t2

}K]
, (B10)

which agrees with Eq. (2.10) after switching to imaginary time (i.e., t → −i τ ). In the bulk limit of x y � r2 [where r2 =
(x − y)2 − v2 t2], we obtain

Gzz(x, y, t )
∣∣
bulk = A2 (−1)x+y

2(4 x y)K

[{
r2 + 4 x y

r2

}K

−
{

r2

r2 + 4 x y

}K]
� A2(−1)x+y

2(4 x y)K

[(
4 x y

r2

)K

− 0

]

= A2 (−1)x+y 1

2 r2K
. (B11)

Finally, the boundary limit implies x, y 	 v t , which gives

Gzz(x, y, t )
∣∣
boundary = −A2 (−1)x+y (4 x y)1−K

2 v2 t2
. (B12)

APPENDIX C: UNPERTURBED CORRELATION FUNCTION G+−(x, y, t )

In this section, we consider the spin operator

S+(x, t ) = Ã (−1)x e−i
√

π
K θ (x,t ), (C1)

as shown in Eq. (2.8), and calculate the unperturbed correlation function

G+−(x, y, t ) = Ã2 (−1)x+y

2

〈
e−i

√
π
K θ (x,t ) ei

√
π
K θ (y,0)〉. (C2)

In this case, the relevant vertex operator in normal ordered form reads

ei α
√

4π θ (x,t ) =
[

2π sin (π x/L)

L

]α2

exp

(
i α

∑
�

ei ω� t B†
� (x)√

�

)
exp

(
i α

∑
�

e−i ω� t B�(x)√
�

)
, (C3)

where

B�(x) = 2 i cos

(
� π x

L

)
b� . (C4)

For a product of two such operators, we obtain

ei α
√

4π θ (x,t ) e−i α
√

4π θ (y,0) =
(

2π

L

)2 α2

sinα2

(
π x

L

)
sinα2

(
π y

L

)
eα2 C2(x,y,t ) : ei α

√
4π θ (x,t ) e−i α

√
4π θ (y,0) :, (C5)

with the commutator

C2(x, y, t ) =
∑
�,�′

e−i ω� t

√
� �′ [B�(x), B†

�′ (y)] = 4
∑

�

e−i ω� t

�
cos

(
� πx

L

)
cos

(
� πy

L

)
(C6)

= −[
ln

(
1 − e− iπ

L (x−y+v t )
) + ln

(
1 − e− iπ

L (x+y+v t )
)

+ ln
(
1 − e

iπ
L (x+y−v t )) + ln

(
1 − e

iπ
L (x−y−v t ))]

� − ln

[
π4{(x + y)2 − (v t )2}{(x − y)2 − (v t )2}

L4

]
. (C7)

Note that the mode expansion of the θ field in Eq. (A2) includes the operator-valued zero mode φ̃0. For a nonzero expectation
value, such zero modes must cancel, which will restrict the possible combinations of the vertex operators. A further phase shift,
resulting from the commutator of φ̃0 and Q, vanishes in the thermodynamic limit, and will be neglected here. Hence, for L → ∞,
we get

ei α
√

4π θ (x,t ) e−i α
√

4π θ (y,0) = (4 x y)α
2
[{(x + y)2 − v2 t2}{(x − y)2 − v2 t2}]−α2

: ei α
√

4π θ (x,t ) e−i α
√

4π θ (y,0) :, (C8)

and setting α = −
√

1
4K , we obtain

G+−(x, y, t ) = Ã2 (−1)x+y

2

[
4 x y

{(x + y)2 − v2 t2}{(x − y)2 − v2 t2}
] 1

4K

(C9)

as stated in the main text [cf. Eq. (2.12)], after employing t → −i τ .
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APPENDIX D: ONE-LOOP CORRECTION FOR Gzz(x, y, τ ) FROM O2

In this section, we consider the one-loop correction for Gzz(x, y, τ ), obtained from O2(x, τ ) = v
2π

cos (
√

8π φ(x, τ )) and T zz
O2

,
as shown in Eqs. (3.7) and (3.8). The connected part of the time-ordered correlation function is

2π

v
〈T Sz(x, τ ) Sz(y, 0)O2(x̃, τ̃ )〉con

= A2 (−1)x+y〈sin(
√

2π φ(x, τ )) sin(
√

2π φ(y, 0)) cos(
√

8π φ(x̃, τ̃ ))〉 − G0(x, y, τ )〈cos(
√

8π φ(x̃, τ̃ ))〉, (D1)

which we will evaluate here in real time.
As a first step, let us simplify the generic operator

ei α
√

4π φ(x,t ) ei β
√

4π φ(y,0) ei γ
√

4π φ(x̃,t̃ ) � 1

(2 x)α2 (2 y)β2 (2 x̃)γ 2

[
(x + y)2 − v2 t2

(x − y)2 − v2 t2

]−αβ[
(x̃ + y)2 − v2 t̃2

(x̃ − y)2 − v2 t̃2

]−β γ

×
[

(x̃ + x)2 − v2 (t̃ − t )2

(x̃ − x)2 − v2 (t̃ − t )2

]−α γ

: ei α
√

4π φ(x,t ) ei β
√

4π φ(y,0) ei γ
√

4π φ(x̃,t̃ ) : . (D2)

Writing the sin(
√

2πφ) and cos(
√

2πφ) operators in the Euler forms, and using Eq. (D2) by setting α = ±1/
√

2, β = ±1/
√

2,
we find that the time-ordered correlation function

A2 (−1)x+y〈T sin(
√

2π φ(x, t )) sin(
√

2π φ(y, 0)) cos(
√

8π φ(x̃, t̃ ))〉

= A2 (−1)x+y

32
√

x y x̃2

{√
(x + y)2 − v2 t2

(x − y)2 − v2 t2
· (x̃ + y)2 − v2 t̃2

(x̃ − y)2 − v2 t̃2
· (x̃ − x)2 − v2(t̃ − t )2

(x̃ + x)2 − v2(t̃ − t )2

−
√

(x − y)2 − v2 t2

(x + y)2 − v2 t2
· (x̃ − y)2 − v2 t̃2

(x̃ + y)2 − v2 t̃2
· (x̃ − x)2 − v2(t̃ − t )2

(x̃ + x)2 − v2(t̃ − t )2

}
+ (x̃ → −x̃). (D3)

For the disconnected part, we have

G0(x, y, t )〈cos(
√

8π φ(x̃, t̃ ))〉 = A2(−1)x+y

16
√

x y x̃2

{√
(x + y)2 − v2 t2

(x − y)2 − v2 t2
−

√
(x − y)2 − v2 t2

(x + y)2 − v2 t2

}
. (D4)

Combining the above two terms, we get

2π

v
〈T Sz(x, τ ) Sz(y, 0)O2(x̃, τ̃ )〉con = A2(−1)x+y

32
√

x y x̃2

[√
(x + y)2 − v2 t2

(x − y)2 − v2 t2

{
(x̃ + y)2 − v2 t̃2

(x̃ − y)2 − v2 t̃2
· (x̃ − x)2 − v2(t̃ − t )2

(x̃ + x)2 − v2(t̃ − t )2 − 1

}

−
√

(x − y)2 − v2 t2

(x + y)2 − v2 t2

{
(x̃ − y)2 − v2 t̃2

(x̃ + y)2 − v2 t̃2
· (x̃ − x)2 − v2(t̃ − t )2

(x̃ + x)2 − v2(t̃ − t )2 − 1

}]
+ (x̃ → −x̃).

(D5)

This expression can be rewritten as

2π

v
〈T Sz(x, τ ) Sz(y, 0)O2(x̃, τ̃ )〉con = A2(−1)x+y

2
√

x y

{√
(x + y)2 − v2 t2

(x − y)2 − v2 t2
t1 −

√
(x − y)2 − v2 t2

(x + y)2 − v2 t2
t2

}
, (D6)

with

t1/2 = [(−v2 t̃2 + x̃2 + y2)x ∓ {−v2 (t̃ − t )2 + x̃2 + x2}y]
2

{(x̃ − y)2 − v2 t̃2}{(x̃ + y)2 − v2 t̃2}{(x̃ − x)2 − v2 (t̃ − t )2}{(x̃ + x)2 − v2 (t̃ − t )2} . (D7)

This agrees with Eq. (4.2) in the main text, after implementing t → −i τ . Note that the additional 1/2-factor in Eq. (4.2) results
from extending the area of integration to the full plane.
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APPENDIX E: ONE-LOOP CORRECTION FOR 〈S+(x, t ) S−(y, 0)〉 from O2

The one-loop correction to 1
2 〈S+(x, t ) S−(y, 0)〉 from O2, which determines T +−

O2
in Eq. (3.8), is given by

π

v
〈T S+(x, τ ) S−(y, 0)O2(x̃, τ̃ )〉con = Ã2 (−1)x+y

2

〈
e−i

√
2π θ (x,τ ) ei

√
2π θ (y,0) cos(

√
8 π φ(x̃, τ̃ ))

〉
− G0(x, y, τ )〈cos(

√
8 π φ(x̃, τ̃ ))〉, (E1)

which we will evaluate in real time.
For this calculation, let us first simplify the generic operator

ei α
√

4π θ (x,t ) e−i α
√

4π θ (y,0) ei β
√

4π φ(x̃,t̃ ) �
[

4 x y

{(x + y)2 − v2 t2}{(x − y)2 − v2 t2}
]α2

e−α β C3(x̃,x,t̃−t )eα β C3(x̃,y,t̃ )

(2 x̃)β2

× : ei α
√

4π θ (x,t ) e−i α
√

4π θ (y,0) ei β
√

4π φ(x1,t1 ) :, (E2)

where

C3(x̃, y, t̃ ) =
∑
�,�′

ei ω� t̃

√
� �′ [B�(y), A†

�′ (x̃)] = 4 i
∑

�

ei ω� t̃

�
cos

(
� π y

L

)
sin

(
� π x̃

L

)

� ln

[ {(x̃ + y) − v t̃}{(x̃ − y) − v t̃}
{(x̃ − y) + v t̃}{(x̃ + y) + v t̃}

]
. (E3)

Using the above, we find that

ei α θ (x,t ) e−i α θ (y,0) ei β φ(x̃,t̃ ) � : ei α θ (x,t ) e−i α θ (y,0) ei β φ(x̃,t̃ ) :

[
4 x y

{(x + y)2 − v2 t2}{(x − y)2 − v2 t2}
]α2

1

(2 x̃)β2

×
[ {(x̃ − y) − v t̃}{(x̃ + y) − v t̃}
{(x̃ − y) + v t̃}{(x̃ + y) + v t̃}

{(x̃ + x) + v(t̃ − t )}{(x̃ − x) + v(t̃ − t )}
{(x̃ + x) − v(t̃ − t )}{(x̃ − x) − v(t̃ − t )}

]α β

. (E4)

Finally, setting α = − 1√
2

and β = ±√
2, and continuing to imaginary time t → −i τ , we obtain

π

v
〈T S+(x, τ ) S−(y, 0)O2(x̃, τ̃ )〉con

= Ã2(−1)x+y

16 x̃2

√
4 x y

((x + y)2 + v2 τ 2)((x − y)2 + v2 τ 2)

×
[ {(x̃ − y) − i v τ̃ }{(x̃ + y) − i v τ̃ }
{(x̃ − y) + i v τ̃ }{(x̃ + y) + i v τ̃ }

{(x̃ + x) + i v(τ̃ − τ )}{(x̃ − x) + i v(τ̃ − τ )}
{(x̃ + x) − i v(τ̃ − τ )}{(x̃ − x) − i v(τ̃ − τ )} − 1

]
+ H.c. (E5)

It is important to note that this result does not have a bulk limit, and all contributions come only from the boundary limit terms.
Furthermore, we see that all the complex numbers in the second line can be expressed by pure phase factors. Therefore, there
are no singularities generating logarithmic corrections.
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