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Haldane gap in the SU(3) [3 0 0] Heisenberg chain
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We calculate the Haldane gap of the SU(3) spin [3 0 0] Heisenberg model using variational uniform fully
symmetric SU(3) matrix product states, and find that the minimal gap �/J = 0.0263 is obtained in the [2 1 0]
sector at momentum 2π/3. We also discuss the symmetry protected topological order of the ground state, and
determine the full dispersion relation of the elementary excitations and the correlation lengths of the system.
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Introduction. Tensor networks provide variational wave
functions for approximating the ground states of generic quan-
tum many-body systems in a way that is size-extensive: Local
tensors serve as the building blocks for constructing global
wave functions directly in the thermodynamic limit. This ex-
tensivity is also reflected in the symmetry properties, because
a global symmetry is encoded as a symmetry of the local
tensors that make up the state. This particular feature allows
us to classify different phases of matter by characterizing
the symmetry properties of these local tensors and gives rise
to very efficient numerical algorithms by explicitly encoding
the symmetry constraints in the tensors and their numerical
manipulations [1].

In one dimension, matrix product states (MPSs) provide a
framework for simulating the ground-state properties of quan-
tum spin chains and electrons directly in the thermodynamic
limit, and generic (non-Abelian) symmetries can be exploited
in all numerical algorithms [2]. Moreover, this MPS frame-
work can be extended to also capture the low-energy dynamics
around the ground state: Interpreting the class of MPSs as a
variational manifold embedded in the full many-body Hilbert
space, the lowest-lying excitations are parametrized by the
tangent space on this manifold [3,4]. Indeed, the tangent vec-
tors around the MPS ground state have a natural interpretation
as quasiparticles living on top of the strongly correlated back-
ground [5]. These states can then be used as variational ansatz
states for the low-lying quasiparticle excitations [3]; they live
in a specific momentum sector, which, in combination with
the use of symmetries in the MPSs, allows us to target definite
quantum numbers for the excited states above the ground
state [6]. For isolated modes in the spectrum (see Fig. 1 for
a generic example), it was proven that this local description
of the excited-state wave function is essentially correct [7].
In recent years, this quasiparticle ansatz has been used to
simulate the low-energy excitation spectrum of generic 1-D
[8,9] and quasi 1-D [10] systems.

In this paper, we apply this formalism to simulate the
low-energy features of a particular SU(3) Heisenberg chain.
The numerical study of SU(N ) spin chains has gained a new
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impetus in the last years due to both theoretical and experi-
mental progress. Forty years ago, Haldane made a prediction
on the gapped or gapless nature of spin chains depending on
which SU(2) representation is realized on each site in the
lattice [12–14]. Recently, similar predictions have been made
for generic SU(N ) chains [15–17]. In addition, the Affleck-
Kennedy-Lieb-Tasaki construction [18,19], which provided a
strong motivation for Haldane’s prediction, has been extended
to some SU(N ) spin chains [20–24]. On the experimental
side, cold atomic gasses have been used to create SU(N )-
symmetric fermionic systems for values as large as N = 10
[25], realizing Luttinger liquids, Mott-insulating phases, and
symmetry-protected topologically ordered (SPT) phases in the
laboratory [26–28].

Concretely, we study the SU(3)-invariant spin [3 0 0]
chain, as defined by Eq. (1), which is the “simplest” case for
which a gapped spectrum has been predicted. In Ref. [29],
finite-size MPS methods and intricate extrapolation tech-
niques were used to show the presence of a small gap in this
model in the [3 0 0] sector, implying a minimal gap �/J ∈
[0.017, 0.046], confirming the field-theory prediction. Here
we use MPS tangent-space methods [4] to simulate the model
directly in the thermodynamic limit. We determine the SPT
phase of the model, extract reliable estimates for the correla-
tion length and energy gap, and we compute the full dispersion
relation. For the latter we have access to all symmetry sectors,
in contrast to previous studies.

Ground state. In a tensor-network representation, global
symmetries are realized by local symmetric tensors which
obey “pulling-through” types of equations, where the action
of an arbitrary group element g ∈ SU(3) on a single leg is
realized by a representation Ug, and can be pulled through
to the action on the other legs via the representation vg, as
illustrated by Eq. (3). This results in a block structure of the
tensors, labeled by the irreducible representations of SU(3)
that live on their legs.

The Hamiltonian for the Heisenberg model is defined as

(1)
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FIG. 1. Dispersion relation for the 1-, 2-, and 3-magnon excited
states in the SU(2) spin-1 Heisenberg model, respectively in blue,
red, and green, reproduced from Ref. [11]. The excited states are
captured with local operators that have an extent that becomes ex-
ponentially small with increasing minimum separation between the
modes. Around the minimum, this is indicated by the minimum of
(a) and (b) and shows that the quasiparticle ansatz is essentially exact
[7].

where Ti are the generators of SU(3) in the 10-dimensional
representation [3 0 0] acting on site i, and the normalization
is fixed by imposing tr(T aT b) = 15

2 δab. While a single gener-
ator T a is not invariant under arbitrary transformations g, the
vector of all generators transforms under the adjoint represen-
tation. As such we construct T as a three-legged tensor, where
the physical legs carry the representation [3 0 0], while the
auxiliary leg carries [2 1 0]. We approximate the ground state
by a uniform MPS, formulated directly in the thermodynamic
limit

(2)

and parametrized by a single tensor A. By virtue of the
Mermin-Wagner theorem [30], the ground state leaves the
global continuous SU(3) symmetry unbroken, and combined
with the fundamental theorem of MPSs [1,31] this leads to a
symmetry constraint on the local MPS tensors of the form

(3)

Here, vg represents a (possibly projective) representation of
g ∈ SU(3).

The resulting states can be partitioned into three distinct
SPT phases, classified by an element of the second cohomol-
ogy group of SU(3), which is isomorphic to Z3 [22,32]. These
phases can equivalently be characterized by edge modes that
transform under a (combination of) irreducible representa-
tions [m n 0] with fixed value of m + n mod 3, which is
reflected in the local symmetry of the MPS tensors by the
same restriction on virtual representations vg. Again, the use
of symmetric tensors allows us to impose which sectors are
present on the virtual level, targeting states that belong to a
definite SPT phase.

FIG. 2. Top: Highest values in the entanglement spectra of the
lowest energy state in the trivial SPT phase (left) and the nontrivial
SPT phase (right). Bottom: Transfer matrix spectrum of the trivial
SPT state.

In order to determine the SPT phase of the ground state,
we separately optimize states in each phase, and find that the
two nontrivial phases yield equivalent results. Using uniform
MPSs directly in the thermodynamic limit, we optimize with
a combination of the VUMPS algorithm [6] and Riemannian
optimization over the Grassmann manifold of left-canonical
MPS tensors, as described in Ref. [33]. We additionally allow
for a dynamic distribution of the total effective bond dimen-
sion D over the different representations on the virtual level
up to a fixed truncation error of the resulting MPS.

First, we note that for a fixed truncation error the states
within the non-trivial SPT phases comparatively take on ef-
fective values of D that are about three times larger, while
yielding higher values for the energy, showing that they are
less suited as a variational ansatz. Second, inspection of the
entanglement spectrum shows a consistent threefold degen-
eracy of all Schmidt values for the nontrivial SPT states, as
shown in Fig. 2, which may be interpreted as a consistent
matching of charges to imitate an MPS within the trivial SPT
phase. For example, singling out the dominant values of both
spectra, the decomposition of the tensor product of representa-
tions shows [2 1 0] ∈ [3 1 0] ⊗ [2 2 0] ⊗ [1 0 0]. Finally, the
nontrivial SPT states consistently converge to a noninjective
MPS, as is indicated by the degeneracy of the dominant eigen-
value of the transfer matrix, showing that these MPSs are
unphysical.

To obtain an accurate value of the ground-state energy, we
compute the lowest energy state for values of the truncation
error up to 10−6. This leads to a variational upper bound on
the ground-state energy of E0/J = −2.1763966502 at D =
122 231, in excellent agreement with the results of Ref. [29].
Furthermore, we linearly extrapolate our results as a function
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TABLE I. Extrapolated correlation length and correlation func-
tion oscillation periods.

Charge Correlation length Oscillation period

[3 0 0] 66(1) 0
[3 3 0] 66(1) 0
[2 1 0] 116.5(8) ±2π/3
[4 2 0] 85(3) ±2π/3

of the energy variance of the variational ground states. This
extrapolation yields E0/J = −2.1763984(9).

We also note that both the entanglement spectrum and the
transfer matrix spectrum have degenerate values in conjugate
representations.

Correlation length. Spin chains whose energy spectrum has
a nonvanishing gap above the ground state are characterized
by exponentially decaying correlation functions with a finite
correlation length ξ , while gapless models give rise to power-
law behavior. As such, a finite value of ξ is a strong indicator
of a finite energy gap. The correlation length of an MPS with
bond dimension D can be calculated as

ξ−1
D = − ln |λ1|, (4)

where λ1 is the magnitude of the second largest eigen-
value of the MPS transfer matrix (normalized to have largest
eigenvalue 1). Additionally, the corresponding complex phase
determines the oscillatory behavior of the correlation func-
tion. We note that this will always lead to a finite result
at finite D; thus we need to extrapolate and show that ξ∞
remains finite. Adapting the extrapolation procedure outlined
in Ref. [34], ξ−1 scales with the logarithm of the ratio of
the second and third largest eigenvalues of the transfer matrix
spectrum as

ξ−1
D = aδb + ξ−1

∞ , where δ = ln
|λ1|
|λ2| . (5)

For our purposes, it is sufficient to set b = 1, as a linear fit
yields excellent results.

Imposing the symmetry of the local tensors again allows us
to target the eigenvalues of the transfer matrix for eigenvectors
with definite quantum numbers, corresponding to elementary
excitations carrying those charges [35]. As such we repeat
the procedure outlined above separately for several quantum
numbers. The distribution of the largest magnitude eigenval-
ues can be seen to have distinct phases, appearing in multiples
of 2π/3, and the spectrum is degenerate for conjugate charges
(see Fig. 2).

The resulting extrapolations, which are depicted in Fig. 3,
lead to the correlation lengths shown in Table I, where we note
that the dominant correlation length is ξ = 116.5(8) sites in
the sector [2 1 0], with an oscillation period of ±2π/3.

Excitations. As outlined in the introduction, the low-lying
elementary excitations can be characterized in terms of the
tangent space of the ground-state manifold, which is translated
into a variational ansatz commonly referred to as the quasipar-

FIG. 3. Correlation length extrapolations for the ground state.
The inverse correlation length ξ−1 is plotted against the refinement
parameter δ, extrapolated to δ = 0. The conjugate representations
give equal results because of the degeneracy of the transfer matrix
spectrum.

ticle ansatz [36],

(6)

Here, α denotes the SU(3) charge of the excited state and
n labels the location where we have changed a ground-state
MPS tensor into a new excitation tensor B; the latter con-
tains all variational parameters and can be readily optimized
by solving an eigenvalue problem [4]. As such this ansatz
represents states with definite momentum, and through the
use of symmetries can be used to effectively target isolated
bands in the spectrum with definite quantum numbers [6]. The
“Haldane gaps” are expected to be found in sectors that appear
in the tensor product of two adjoint representations [29]:

[2 1 0] ⊗ [2 1 0] → 2 · [2 1 0] ⊕ [3 0 0] ⊕ [3 3 0] ⊕ [4 2 0].
(7)

With a truncation error of the ground state of 10−4, we com-
pute the full dispersion relation for the elementary excitations,
shown in Fig. 4, which shows that the smallest Haldane gap is
situated at momentum p = ±2π/3 within the [2 1 0] sector.
This is consistent with the results of the correlation lengths,
where the maximum value is found in that same sector, with
the same phase.

Further decreasing the truncation error, we are able to ob-
tain results up to an effective bond dimension of D = 63 766,
and we compute that the smallest gap of the system is �/J =
0.0263 in the aforementioned sector. In the other sectors we
find values that are at least twice this value, indicating that
these correspond to two-particle states.

In Ref. [29] an excitation gap of 0.040(3) was found in the
[3 0 0] sector. Based on the above value and our findings that
the lowest excitation in this sector is a two-particle state, we
estimate a gap in this sector of 2�/J ≈ 0.052, slightly outside
the error bounds of the previous work. This could point to a
two-particle bound state appearing in this sector, which would
lead to a smaller energy gap. For these kinds of states, the
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FIG. 4. Top: Dispersion relation of the elementary excitations
of different charges. Bottom left: Value of the smallest Haldane
gap, in the sector [2 1 0], for different bond dimensions D. Bottom
right: Calculated dispersion relation around the minimum, along with
the theoretical prediction for Lorentz-invariant gapped systems from
Eq. (8).

quasiparticle ansatz is less well suited, which could explain
the difference in results. We have attempted to improve on
our results by using a string ansatz for broader excitations, as

described in Ref. [37], but a systematic growing of the string
ansatz proved computationally unfeasible for this model.

As a consistency check, we verify the prediction that the
low-energy behavior in this system can be described by an
effective field theory, yielding a dispersion relation of the form

E (p) =
√

�2 + ν2(p − pmin)2, (8)

where ν denotes the characteristic velocity in the system.
Exploiting Lorentz invariance, we can relate this velocity to
the correlation length and the gap as ν = ξ� [35,38]. This
prediction can then be compared to the obtained dispersion
relation around the minimum, and supplies proof of the va-
lidity of our results, as it ties together the correlation length
and excited states, which have been calculated independently
(Fig. 4).

Conclusions. In this work we have confirmed the theoret-
ical predictions of a Haldane gap in the SU(3) spin [3 0 0]
chain using tensor-network methods directly in the thermody-
namic limit, where the local tensors obey the symmetry of the
system. In agreement with the numerical results using finite-
size scaling methods presented in Ref. [29], we find that the
ground state has an energy density of E0/J = −2.1763984(9)
and we argue that it belongs to the trivial SPT phase. The
ground state of this system is shown to have a maximal corre-
lation length of ξ = 116.5(8) in the sector [2 1 0] with a phase
of ±2π/3. The dispersion relation of the elementary excita-
tions is shown to reach its minimum value of �/J = 0.0263
in the same sector at momentum p = 2π/3.
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