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Information geometry of quantum critical submanifolds:
Relevant, marginal, and irrelevant operators
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We analyze the thermodynamical limit of the quantum metric along critical submanifolds of theory space.
Building upon various results previously known in the literature, we relate its singular behavior to normal
directions, which are naturally associated with relevant operators in the renormalization group sense. We
formulate these results in the language of information theory and differential geometry. We exemplify our theory
through the paradigmatic examples of the XY and Haldane models, where the normal directions to the critical
submanifolds are seen to be precisely those along which the metric has singular behavior, while for the tangent
ones it vanishes—these directions lie in the kernel of the metric.
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I. INTRODUCTION

Classical information geometry is the study of the ge-
ometry of statistical manifolds, and it finds applications in
statistics, information theory, and statistical mechanics [1–3].
Recently, information geometry has seen a lot of application
in the study of quantum systems and their phase transitions
by analyzing different Riemannian metrics over spaces of
density operators, a generalization of classical probability
distributions [4–8] (for more details on quantum information
geometry and applications, see, for example, Refs. [9–17]). Of
particular interest are the exotic topological phases of matter
that go beyond the standard Landau-Ginzburg classification
paradigm and for which there is no well-defined local order
parameter, used to infer phase transitions. The quantum metric
[18]—a Riemannian metric over the space of pure quantum
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states based on state distinguishability—was shown to be a
quantity able to probe zero-temperature quantum phase transi-
tions among these phases as one varies some parameter in the
system [19–21]. In the context of Bloch bands, the quantum
metric in momentum space, in the particular setting of flat
bands, has received a lot of attention recently, as it gives
geometrical contributions to the characterization of a range of
different phenomena, such as exotic superconductivity and su-
perfluidity [22–25], the stability of fractional Chern insulating
phases [26–31], and light-matter coupling [32]. The quantum
metric is also central in determining maximally localized
Wannier functions [33,34], and it can be used as a practical
indicator for exotic momentum-space monopoles [35,36]. The
integral of the momentum-space quantum metric is a mea-
sure of electron localization, and it can be extracted through
spectroscopy measurements [37]. In two spatial dimensions,
one can define an associated complex structure, which is a
measure of anisotropy in localization [38].

More recently, relations between the quantum metric and
the Berry curvature, which determines topological invariants
of the system and gives rise to Berry-phase effects, have been
established and understood based on the Kähler structure of
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the space of quantum states [39,40]. These relations have
come to play an important role in recent studies concern-
ing the so-called ideal Chern bands, which are presumed
to be ideal candidates for hosting fractional Chern insulat-
ing phases, and the associated band structure engineering
and transport [31,41–46]. More general relations between the
quantum metric and topology of quantum states were derived
in the context of Dirac Hamiltonians [47].

The quantum metric over the space of parameters describ-
ing the system, being the “infinitesimal” distance between
two ground states, allows us to probe phase transitions. As
long as the quantum metric is regular, the ground state of the
system does not change substantially, keeping the system in
the same phase. On the other hand, if the quantum metric
becomes singular, it means that the ground state has under-
gone a dramatic change and thus the system has experienced
a phase transition. However, this singular behavior has its
subtleties regarding the scaling behavior when performing
the thermodynamical infinite-volume limit. In the follow-
ing, we will show how the quantum metric behaves along a
submanifold of parameter space composed of critical points—
described, in the long-wavelength and infinite-volume limit,
by conformal field theories. We will show that there exist
two types of directions of the parameter change: those which
take the system away from, and those which move it within
the critical submanifold. By performing a scaling analysis,
we show that the behaviors of these directions can be in-
terpreted in light of the theory of the renormalization group
(RG); namely, the former directions correspond to relevant
operators in the quantum theory, while the latter correspond
to irrelevant and marginal operators in the quantum theory.
While most of these results are known in the literature, they
appear to be scattered throughout a number of papers, done
by researchers working in different fields of physics who
may not necessarily be aware of each other’s results. Here,
we present a unified formulation of those results by describing
them through the language of information theory and differ-
ential geometry. We also illustrate our results on the examples
of the XY and the Haldane models. Finally, we present con-
clusions and future lines of research.

II. QUANTUM METRIC ALONG
A CRITICAL SUBMANIFOLD

Suppose we are given a many-body Hamiltonian depend-
ing smoothly on some parameters, collectively denoted by
x, living in a smooth manifold T of dimension n. We re-
fer to T as theory space. These parameters will typically
correspond to couplings and external fields determining the
system’s Hamiltonian H (x), with x ∈ T . We will be interested
in the ground state, i.e., the zero-temperature properties of
the system. In particular, we consider the pullback of the
Fubini-Study metric (which is the natural unitarily invariant
metric in the space of pure quantum states), also known as the
fidelity susceptibility or the information metric, with respect
to the family of ground states ρ(x) = |ψ (x)〉〈ψ (x)| of H (x),
with x ∈ T . Note that there may be parameters for which
the ground state is not unique, in which case we will adopt
a regularization procedure where we consider the pullback
of the Bures metric—a Riemannian metric on the space of

density operators—under the map x �→ e−H (x)/T /Tr(e−H (x)/T )
and eventually take the T → 0 limit. Note that, in order to
be able to infer the phase transitions, one must first take the
T → 0 limit before the thermodynamic limit, since the two
do not commute, as discussed in Ref. [21]. Only then is the
regularization procedure meaningful, giving consistent results
and treating nondegenerate and degenerate cases equally. Ad-
ditionally, the Boltzmann-Gibbs distribution will always treat
degenerate ground states equally, because they have the same
energy, which is reasonable to assume given no additional
information. The Bures metric has two independent contri-
butions coming from the “classical” and “quantum” parts
of the density matrix ρ = ∑

j p j |ψ j〉〈ψ j |, corresponding to
the variations on the probabilities and the eigenstates of ρ,
respectively; see Ref. [6]:

ds2 = 1

4

∑
j

d p2
j

p j
+ 1

2

∑
j �=i

|〈ψ j |d|ψi〉|2 (p j − pi )2

pi + p j
. (1)

The first term is the classical Fisher metric corresponding to
the statistical model determined by the probability distribu-
tion (p j ). The second term, measuring the variations in the
eigenstates of ρ, has the nice property that for pure states
ρ = |ψ〉〈ψ | it reduces to the Fubini-Study metric

gFS = 〈dψ |(1 − |ψ〉〈ψ |)|dψ〉. (2)

Under the map x �→ |ψi(x)〉〈ψi(x)|, where |ψi(x)〉 is an eigen-
state of H (x) (assuming such a state is globally defined,
up to a phase), the pullback of the Fubini-Study metric gFS

describes a metric in the space of theories T —the quantum
metric, which has the nice formula in terms of the remaining
eigenstates

g =
∑
j �=i

〈dψi(x)|ψ j (x)〉〈ψ j (x)|dψi(x)〉. (3)

We will now take |ψi(x)〉 = |ψ (x)〉 to be the ground state of
H (x). It is convenient to interpret the quantum metric g in
terms of operators acting on the Hilbert space. At a given
point x ∈ T , the metric assigns a bilinear non-negative pairing
g(u, v) of tangent vectors u, v ∈ TxT . Physically, an element
v ∈ TxT generates a first-order variation in the parameters of
the theory at x ∈ T . As such, it has a corresponding operator,
Ov , acting on the Hilbert space, which, using local coordinates
xi, i = 1, . . . , n, where v = vi ∂

∂xi , is given by

Ov = vi ∂H

∂xi
, (4)

where we assume the Einstein summation convention. It is
clear that the operator Ov is associated with perturbation the-
ory in the sense that H (x + εv) = H (x) + εOv + O(ε2). At
each parameter point x from our space of theories T , once we
fix local coordinates xi, i = 1, . . . , n, we have a basis for an
associated linear space of operators given by Oi(x) = O∂/∂xi ,
i = 1, . . . , n. The pullback of the Fubini-Study metric under
the map x �→ |ψ (x)〉〈ψ (x)| describes the quantum metric in
the space of theories T . Note, however, that it may happen
that the metric is degenerate, meaning it is not necessarily
invertible at every point x where it is defined—simply because
the Jacobian of the transformation can be singular. Alterna-
tively, we can view the degeneracy of the metric in light of the
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tangent-vector-to-operator correspondence v �→ Ov . Assum-
ing the eigenstates are nondegenerate in energy, let |ψi(x)〉 be
the eigenstates for H (x) with corresponding energies Ei(x).
The eigenstates of H (x + εv) can be obtained from first-order
perturbation theory around H (x) as follows:

|ψi(x + εv)〉 = |ψi(x)〉 + ε
∑
j �=i

〈ψ j (x)|Ov|ψi(x)〉
Ei(x) − Ej (x)

|ψ j (x)〉,

(5)

where we assume a parallel transport gauge
〈ψi(x)|vk ∂

∂xk |ψi(x)〉 = 0. The order ε term can vanish if
v ∈ TxT is in the kernel of the assignment v �→ Ov . More
generally, it can vanish if and only if Ov preserves the
eigenspace L(i)

x = spanC{|ψi(x)〉}, the fiber at x of the ith
eigenbundle of H . Observe that from Eq. (3), it follows that
for any u ∈ TxT ,

g(v, u) = 1

2

∑
j �=i

〈ψi|Ov|ψ j〉〈ψ j |Ou|ψi〉
(Ei(x) − Ej (x))2 + (v ↔ u), (6)

and we see that g(v, ·) = 0, i.e., g(v, u) = 0 for all u ∈ TxT if
and only if Ov preserves the eigenspace L(i)

x . In short, for the
ground state ρ(x) = |ψ (x)〉〈ψ (x)|, the above statement can be
expressed as

[Ov, ρ(x)] = 0 ⇐⇒ g(v, ·) = 0. (7)

From a mathematical perspective, we can understand the
above statement as follows. There are two points to be con-
sidered here. One is that the smooth map H : T � x �→ H (x),
where H (x) belongs to the (real) vector space of Hermitian
operators, has a differential dH , and what we call Oi is the
pushforward dH ( ∂

∂xi ), which makes sense on a local chart
where the local coordinates xi’s are defined. The map dH can
be seen as a vector bundle map between the tangent bundle
TT and the pullback under H of the tangent bundle of the
(real) vector space of Hermitian operators. The map dH is not
necessarily injective, so one must be careful in identifying the
tangent space TxT with the image of dH at a point.

The second point is that the smooth assignment P : x �→
P(x) = |ψi(x)〉〈ψi(x)| (provided the ith eigenline bundle is
well defined), where we identify the target space as the pro-
jectivization of the Hilbert space, also has a differential which
is given explicitly by

dP = QdPP + PdPQ, (8)

where Q = I − P = ∑
j �=i |ψ j〉〈ψ j | is the orthogonal com-

plement projector (here, the |ψ j〉’s are locally defined
orthonormal eigenvectors of H). Above we used the fact that
P2 = P ⇒ PdPP = 0. Observe that

QdPP =
∑
j �=i

〈ψ j |d|ψi〉|ψ j〉〈ψi| = (PdPQ)† (9)

and that (under the assumption Ei �= Ej , for i �= j)

H |ψi〉 = Ei|ψi〉 ⇒ 〈ψ j |dH |ψi〉
Ei − Ej

= 〈ψ j |d|ψi〉. (10)

It follows that

QdPP =
∑
j �=i

〈ψ j |d|ψi〉|ψ j〉〈ψi| =
∑
j �=i

〈ψ j |dH |ψi〉
Ei − Ej

|ψ j〉〈ψi|.

(11)

The differential of P, the injectivity of which determines the
nondegeneracy of the quantum metric (since the Fubini-Study
metric is a Riemannian and hence nondegenerate metric on
the projectivization of the Hilbert space), is controlled by the
differential of H . Observe that for a tangent vector v in T we
have (QdPP)(v) = 0 ⇐⇒ dP(v) = 0 (because QdPP and
PdPQ are orthogonal) and also dP(v) ⇐⇒ P∗gFS(v, ·) = 0.
Now the only way (QdPP)(v) vanishes is if dH (v) = Ov

preserves the state |ψi〉.
We can relate the above discussion to the so-called symmet-

ric logarithmic derivative equation as follows. The symmetric
logarithmic derivative of a family of density operators is
determined by an operator valued 1 − form G solving the
symmetric logarithmic derivative equation

dρ = Gρ + ρG. (12)

In the particular case of ρ = P = |ψi〉〈ψi|, we can see that

G = QdPP + PdPQ (13)

solves Eq. (12), and hence the vanishing of (QdPP)(v), for
a tangent vector v, is equivalent to the vanishing of G(v),
known as the symmetric logarithmic derivative operator of
ρ = P with respect to v.

Suppose now we have a set C ⊂ T of quantum critical
points where the theory is gapless and our geometric quantity
of interest g is presumably singular in the thermodynamical
limit. Note that the notion of singularity here is different
from the familiar notion of singularity of a smooth vector
field in the context of differential geometry. Here the singu-
larity is associated with the quantum metric. More precisely,
we say that the quantum metric has a singularity at a point
x ∈ T if, by taking local coordinates centered at x and hence
obtaining a matrix representation of it (by considering the
natural coordinate tangent vectors), some of the associated
matrix elements are not defined at that point. Note that this
notion is really coordinate independent: If this happens in a
coordinate system, it will happen in any coordinate system.
The thermodynamical limit assumes, in particular, that the
volume of the system Ld , where L is the linear length of the
system and d is the spatial dimension, goes to infinity. For
considerations involving the thermodynamical limit, it will be
convenient to consider the rescaled quantum metric g/Ld . We
also make the assumption that the quantum critical theories,
as described by points x ∈ C ⊂ T , are conformally invariant
so that they are described, in the continuum limit and at large
distances, by a conformal field theory (CFTd ). For simplicity,
we assume that C is a submanifold of T , and we refer to it
as a critical submanifold. Note that in the model examples
below, there will be regions of theory space which are critical
in the same sense, i.e., the Hamiltonian is gapless in those
regions; however, these regions will fail to be submanifolds.
We will refer to these regions as critical regions. Of particular
interest to us will be the tangent bundle of C in T , i.e., the
vector bundle over C that at each point x ∈ C associates the
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FIG. 1. An illustration of the space of theories T (here, a
compact surface of genus 1), together with a quantum critical sub-
manifold C ⊂ T (here, a circle). The red arrow is meant to illustrate
a tangent vector to C at x ∈ C, which maps to a marginal or irrelevant
operator. The blue arrow illustrates a normal vector to C at x ∈ C,
mapping to a relevant operator.

tangent space TxC ⊂ TxT . The point that we want to make,
which will be clear from the discussion below, is that the
rescaled metric g/Ld is actually, in the thermodynamical limit,
only divergent along directions which are complementary to
TC, which we refer to as directions of increased ground-state
distinguishability and are associated with relevant operators
in the framework of the RG. To be precise, the thermodynam-
ical limit of g/Ld , which we denote by g∗, vanishes exactly
along tangent vectors to C, i.e., g∗(v, ·) = 0 for any vector
v ∈ TxC ⊂ TxT . As a consequence, the directions where g∗ is
nonvanishing are normal to TC—i.e., each can be seen, effec-
tively, as orthogonal to TC with respect to some Riemannian
metric in T . The rigorous statement is that, for each x ∈ C,
there is an exact sequence of vector spaces

0 −→ TxC −→ TxT −→ NxC −→ 0, (14)

defining the vector space of normal directions at x, NxC =
TxT /TxC, giving rise, globally, to the normal bundle NC =
TT |C/TC → C; see Fig. 1 (by an exact sequence of vector
spaces, we mean a sequence of vector spaces and linear maps
where the kernel of the next one is equal to the image of
the current one). Observe that for x ∈ C and any u ∈ TxT ,
if g∗(u, u) �= 0, we have that g∗(u + v, u) = g∗(u, u) for any
v ∈ TxC, since v is annihilated by g∗. The vector u defines a
nontrivial element [u] of NxC = TxT /TxC, and g∗(u, u) only
depends on [u]. A choice of a complement of TxC gives a
particular unique representation of [u] as an element of TxT .
In practice, one chooses an auxiliary Riemannian metric h
defined over T (actually, it is enough to have it defined over
TT |C) and identifies NxC ∼= (TxC)⊥h using the notion of an
orthogonal complement provided by h. Importantly, the iso-
morphism class of this vector bundle is independent of this
choice. Finally, we remark that, in light of Eq. (7), we see that
the operators associated with TxC commute with the ground
state at x modulo subextensive terms, i.e., terms that scale as
Lr , with r < d .

For the convenience of the reader, before moving on to the
relation with RG, we list our assumptions.

(i) The theory space or parameter space T is assumed to be
a smooth (C∞) manifold.

(ii) A critical submanifold C is a submanifold C ⊂ T
where H (x) is, in the thermodynamical limit, gapless for every
x ∈ C. If C is not a submanifold (as happens in the examples
considered) but H (x) is, in the thermodynamical limit, gapless
for every x ∈ C, we refer to it as a critical region.

(iii) Points in C are assumed to be described by conformal
field theories in the continuum limit, at low energies.

III. RELATION TO RG

We consider a critical point x0 ∈ C ⊂ T and assume that
the Oi’s are local operators, meaning that they can be written
as

Oi =
∑

r

Oi(r), (15)

for Oi(r) having support in some bounded neighborhood of
r. The sum over lattice sites r makes sense before taking the
continuum limit. It is convenient to introduce the imaginary-
time-evolved operators, namely,

Oi(τ, r) = eτH (x0 )Oi(r)e−τH (x0 ), (16)

where τ denotes the imaginary time. At the critical point x0 ∈
C, we may assume that the Oi’s have well-defined scaling
dimensions �i such that

Oi(τ, r) −→ O′
i(τ, r) = Oi(ζ

zτ, ζr)ζ�i , (17)

under a transformation r → ζr and τ → ζ zτ , where z is the
dynamical critical exponent. If this is not the case, assuming
dim T is big enough, we may use a linear coordinate change,
so that the above equation holds. These scaling dimensions
arise from the linearization of the renormalization group flow
near the critical point x0 ∈ C; see Ref. [48] for details.

Due to the expression

gi j (x) =
∫ ∞

0
dττe−ετ

×
[

1

2
〈{Oi(τ ),O j (0)}〉 − 〈Oi(τ )〉〈O j (0)〉〉

]
, (18)

with ε → 0+ and {·, ·} being the anticommutator, one dis-
covers that gi j (x0) has the finite-size scaling law originally
found by Campos Venuti, Zanardi, and co-workers [5,7] and
later found in the work of Miyaji et al. [49], in the context of
gauge-gravity duality,

gi j (x0) ∼ L2d+2z−�i−� j , (19)

where L is the linear size of the system and d is its spatial di-
mension. In particular, we have the following classification of
operators according to how their couplings are renormalized
under an RG transformation, as we flow onto the infrared en-
ergy scales: (i) Oi is relevant if �i < d + z, (ii) Oi is marginal
if �i = d + z, and (iii) Oi is irrelevant if �i > d + z.

We then see that for tangent vectors whose associated
operators are relevant operators, the metric should blow up
in the L → ∞ thermodynamical limit. For tangent vectors
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associated with irrelevant operators the metric should vanish
in the thermodynamical limit. Finally, for tangent vectors
associated with marginal operators, the metric should scale
as L0, meaning it should be finite, with possible logarithmic
corrections. Accordingly, if we are in a point x taken from a
small neighborhood of x0 ∈ C, the relevant operators move
us outside C, the irrelevant operators move us back to x0,
while the marginal operators move us within C, since the
corresponding theory is also scale invariant. Thus we expect
that the tangent space Tx0C can be identified with the sub-
space of all irrelevant and marginal operators in the image
of Tx0T � v �→ Ov . The marginal operators in the image of
Tx0T � v �→ Ov then form a complementary subspace Nx0C,
such that Tx0T = Tx0C ⊕ Nx0C.

Consider the rescaled metric gi j (x0)/Ld . The scaling be-
havior of its diagonal components is given by

gii

Ld
∼ 1

Ld
L2z+2d−2�i , (20)

and hence it vanishes for 2z + d − 2�i < 0 and is finite or
blows up for 2z + d − 2�i � 0 in the thermodynamic limit.
In particular, for irrelevant and marginal operators, it goes to
zero. Surprisingly, it also vanishes for those relevant operators
that are not “sufficiently relevant,” namely, those that satisfy

z + d > �i > z + d

2
. (21)

Its thermodynamical limit g∗ vanishes along Tx0C, so we can
identify Tx0C as a subspace of Tx0T where the rescaled metric
has a nontrivial kernel. In the following, we consider two
particular examples for which the tangent bundle to C in T
is exactly the kernel of g∗—the XY and the Haldane models.

IV. XY MODEL

In the XY anisotropic spin-half chain with N sites on a
circle in the presence of an external magnetic field, we have
the family of Hamiltonians

H (γ , λ) = −
N−1∑
j=0

(
1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1 + λ

2
σ z

j

)
,

(22)

parametrized by (γ , λ) ∈ R2, where γ is the anisotropy and λ

is the magnetic field. This model is usually solved by using a
Jordan-Wigner transformation,

c j = eiπ
∑ j−1

k=0 σ+
j σ−

j σ−
j and c†

j = σ+
j e−iπ

∑ j−1
k=0 σ+

j σ−
j , (23)

which takes spin variables, σ j’s, to fermionic ones, c j’s, to get

H (γ , λ) = −
N−1∑
j=0

[(c†
j+1c j + c†

j c j+1) + γ (c j+1c j + c†
j c

†
j+1)]

− 2λ

N−1∑
j=0

(
c†

j c j − 1

2

)
, (24)

where the fermions satisfy twisted boundary conditions
c†

N = c†
0(−1)

∑
j c†

j c j according to the parity operator.
One then considers the system as a whole with fixed pe-

riodic or antiperiodic boundary conditions for the fermions.

The translation invariance of the Hamiltonian motivates us to
Fourier-expand c†

j = 1√
N

∑
k e−ik jc†

k , where, due to the bound-

ary conditions, we have eikN = ±1, which gives the two sets
of allowed momenta. For the periodic boundary conditions the
allowed momenta have the form

k = 2π

N
m, m ∈ {0, . . . , N − 1}, (25)

while for the antiperiodic boundary conditions we have

k = 2π

N
m + π

N
, m ∈ {0, . . . , N − 1}. (26)

In either case, the corresponding two Hamiltonians assume
the same form

H (γ , λ) =
∑

k

[( − λ − cos(k))(c†
kck − c−kc†

−k )

+ iγ sin(k)c−kck − iγ sin(k)c†
kc†

−k], (27)

where we dropped the overall constant −∑
k cos(k). It is

convenient to introduce the Nambu spinor

ψ
†
k = (c†

k c−k ), (28)

in terms of which we have

H (γ , λ) = 1

2

∑
k

ψ
†
k H (k)ψk, (29)

with H (k) = �d (k) · �σ and �d (k) = (0, 2γ sin(k),−2(λ +
cos(k))). One can then diagonalize each Hamiltonian through
a Bogoliubov-Valatin transformation to obtain the two spectra
and corresponding eigenstates. By fixing periodic boundary
conditions for the fermions, only the states with even
parity are true eigenstates of the original Hamiltonian.
Similarly, fixing antiperiodic boundary conditions, only
odd-parity states are eigenstates of the original Hamiltonian.
To find the true ground state of the system, one needs to
consider the lowest-energy state according to this prescription,
the parity of which may depend on the considered system
size. In particular, it is known (see Ref. [50]) that there are
phases with two degenerate ground states for |λ| < 1 and
γ �= 0, and even phases with infinitely many ground states in
the thermodynamical limit (where λ = 0 and γ = ±1).

Instead of considering this procedure, because solving the
XY model is not the aim of this paper, for simplicity, we will
fix periodic boundary conditions for the fermions and take that
as our model. The ground state is then easy to understand,
and one can perform the standard analysis in the thermody-
namic limit. The critical region then consists of three critical
submanifolds given, respectively, by the segment defined by
γ = 0 and |λ| � 1, and the two lines given by |λ| = 1 (see,
for example, Ref. [4]). The segment and the lines intersect
transversally. The whole set, i.e., the union of the critical
submanifolds, is not a submanifold itself, as the intersection
points do not have neighborhoods homeomorphic to R.

For this model, we see that g∗ restricted to the critical
lines vanishes precisely on tangent vectors to the critical lines,
except on the intersections (λ, γ ) = (±1, 0), where it blows
up in all directions. On the complementary subspaces to the
tangent spaces it always blows up. In this case there are
no operators which are not sufficiently relevant. We remark
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that at the two critical points (γ , λ) = (0,±1), corresponding
to the intersection between the segment and the two lines,
the metric blows up along any direction, and hence they
behave as if they were two isolated critical points (because
the normal spaces in this case coincide with the whole of
T(0,±1)T ). Note, however, that they are not isolated critical
points in the strict sense, as any neighborhood of them finds
other critical points. We refer the reader to the Appendix for
details.

V. HALDANE MODEL

We consider the Haldane model Hamiltonian [51]

H= t
∑
〈l,m〉

c†
l cm + t ′∑

〈〈l,m〉〉
e−iνlmφc†

l cm + M
∑

l

εl c
†
l cl , (30)

where εl = 1 on site A and −1 on site B; νlm = ±1 depending
on the direction of next-nearest-neighbor hopping. This model
supports quantized conductance without applying an external
magnetic field. We also fix t = 1 and t ′ = 1/3. In this case,
(φ, M ) are the coordinates describing the parameter manifold
in which different topological phases exist. We remark that, in
this case, the manifold has the topology of an infinite cylinder
S1 × R, since we have to identify φ and φ + 2π . The critical
region for this model is well known, and in the (φ, M ) plane

they have the shape of a figure eight; see Ref. [51]. Once we
identify the points φ ∼ φ + 2π , the resulting critical region
consists of two circles which intersect at two points described
by (M, φ) = (0, 0) and (π, 0), both intersecting transver-
sally. To calculate the fidelity susceptibility, one considers the
model on a two-dimensional (2D) lattice with L2 sites and
takes periodic boundary conditions. Then, one can write the
Hamiltonian, in momentum space, which is described by a
2 × 2 Bloch Hamiltonian of the form H (k) = �d (k) · �σ , where
�d (k) is a three-dimensional vector, �σ is the vector of Pauli
matrices, and k is the momentum in the first Brillouin zone
BZ2; see Ref. [51] (we are omitting a term proportional to
the identity matrix which is irrelevant for the present discus-
sion). Explicitly, the vector d(k) = (d1(k), d2(k), d3(k)) is
given by

d1(k) = 1 + cos(k · a1) + cos(k · a2),

d2(k) = sin(k · a1) + sin(k · a2),

d3(k) = M + 2
3 sin(φ)[sin(k · a1) − sin(k · a2)

− sin (k · (a1 − a2))], (31)

with a1 = (a/2)(3,
√

3) and a2 = (a/2)(3,−√
3), where a is

the lattice constant that we take to be equal to 1. The quantum
metric over the parameter space is then given by

g(M, φ) = 1

4

∑
k

(
∂�n
∂M

· ∂�n
∂M

dM2 + 2
∂�n
∂M

· ∂�n
∂φ

dφdM + ∂�n
∂φ

· ∂�n
∂φ

dφ2

)
, (32)

where �n(k) = �d (k)/| �d (k)|, and the sum is restricted to the
allowed momenta for the corresponding finite-size system
which yields a discrete torus inside the Brillouin zone—
more explicitly, these momenta are represented in R2 by

k = ∑2
i=1 kiei, where ki ∈ { 2π j

L : j = 0, . . . , L − 1}, i = 1, 2,
and {ei}2

i=1 is a basis for the reciprocal lattice. The fidelity
susceptibility is then χ = g/L2. We remark that the expression
for χ defines a Riemann sum for an integral and, once we take
N → ∞, we obtain the formula

χ (M, φ) = 1

4

∫
BZ2

d2k

(2π )2

(
∂�n
∂M

· ∂�n
∂M

dM2 + 2
∂�n
∂M

· ∂�n
∂φ

dφdM + ∂�n
∂φ

· ∂�n
∂φ

dφ2

)
, (33)

which can safely be used away from the critical points. For
numerical purposes, one can use the procedure outlined in
Sec. IV of Ref. [21] to compute g and χ for a finite system
and a very small, but nonvanishing, temperature.

In Fig. 2 we present fidelity susceptibilities (rescaled quan-
tum metric diagonal components) χMM = gMM/L2 (the upper
plots) and χφφ = gφφ/L2 (the middle plots) calculated at
temperature T = 2 × 10−5 and Nx = Ny = 30 sites. We see
that both plots clearly show the critical lines, apart from
parts of the second plot when the change of the parame-
ter φ is precisely tangent to the critical manifold, showing
that the tangent directions have decreased distinguishability.
Just like the case of the XY model, the points (M, φ) =
(0, 0) and (0, π ) behave as isolated critical points, and the
metric blows up in all directions in the thermodynamic
limit.

The off-diagonal contribution to the metric shows a very
interesting behavior, which we proceed to explain. First, it
is consistent with what is inferred from the diagonal contri-
butions, as it also singles out the critical region. Secondly, it
gives us additional information about the tangent spaces to the
critical submanifold. Namely, we see that χMφ changes sign
along the critical region in six points, where it is necessarily
zero. The reason for this is twofold. Recall that χMφ is given
by the scalar product between ∂

∂M and ∂
∂φ

. At the “isolated
critical points” (M, φ) = (0, 0) and (0, π ), this scalar product
becomes zero, and the two vectors become orthogonal. On
the other hand, at the other four points, characterized by
φ = ±π/2, the vector ∂

∂φ
is precisely tangent to the critical

region, which can be inferred from the plot of χφφ .
To further analytically confirm the behaviors exhibited in

Fig. 2, one would need to perform careful expansions, as
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FIG. 2. Fidelity susceptibilities χMM (φ, M ) (top), χφφ (φ, M )
(middle), and χMφ (φ, M ) (bottom) calculated at temperature
T = 2 × 10−5 and Nx = Ny = 30 sites.

we did in the Appendix for the (modified) XY model. The
analysis, however, is similar but more cumbersome. Since our
intent is not to solve particular models, but rather to commu-
nicate the idea that tangent directions to critical manifolds are
special, we decided to leave these technical details to future
work.

VI. CONCLUSIONS

In this paper, we analyzed the thermodynamical limit of
the quantum metric along critical submanifolds of theory
space. We related its singular behavior to normal directions,
which are naturally associated with relevant operators. In the
paradigmatic examples of the XY and Haldane models, we

have seen (exactly for the first model and numerically for the
second) that the normal directions to the critical submanifolds
are precisely those where the metric has singular behavior in
the thermodynamical limit, while the tangent ones vanish. In
both of these models, the critical regions consist of critical
submanifolds, which intersect transversally, and the intersec-
tion points behave as isolated critical points with enhanced
distinguishability. Further analysis of this phenomenon can
serve as a future line of research. As we have seen, our
theory predicts that there can also be directions associated
with relevant operators that lie in the kernel of g∗, a remark
which also deserves further investigation. It would be inter-
esting to understand how the above results generalize to the
finite-temperature case, where Eq. (18) relating the metric and
two-point correlation functions gets modified for the case of
the Bures metric. Unlike the Bures metric, for the case of the
interferometric metric considered in Ref. [52], the same func-
tional form as (18) is retained—with the expectation value
now taken with respect to the appropriate density matrix, and
it would be interesting to understand, within the present con-
text, what the physical relevance of considering either metric
is. Additionally, the Bogoliubov-Kubo-Mori (BKM) Fisher
metric [9,53] seems to be another relevant physical metric
in the context of finite-temperature systems, and it would be
interesting to understand this case as well.
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APPENDIX: THERMODYNAMIC LIMIT
OF THE QUANTUM METRIC

In this Appendix, we analyze the thermodynamical limit
of the quantum metric in the case of the anisotropic XY
spin chain in an external magnetic field. A straightforward
calculation shows that the components of the quantum metric
are given by

gλλ = 1

4

∑
k

γ 2 sin2(k)

[(λ − cos(k))2 + γ 2 sin2 k]2
,

gγ γ = 1

4

∑
k

(λ − cos(k))2 sin2(k)

[(λ − cos(k))2 + γ 2 sin2 k]2
,
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gλγ = 1

4

∑
k

γ sin2(k)( cos(k) − λ)

[γ 2 sin2(k) + (λ − cos(k))2]2
.

Below, we analyze the large-N behavior of the above ex-
pressions in the critical region.

1. Segment γ = 0 and |λ| � 1

For the critical submanifold defined by γ = 0 and |λ| � 1,
with tangent vector ∂

∂λ
, we immediately see that gλλ = 0 inde-

pendently of N . For gγ γ the metric becomes

gγ γ (λ, 0) = 1

4

∑
k

sin2(k)

(λ − cos(k))2 .

For gγ γ the metric is finite for |λ| > 1, but for |λ| � 1 we
have to be careful because the equation

cos(k) = λ

will have exactly one solution in the thermodynamical limit.
In that case, let k∗ be the solution. If k is an allowed mo-
mentum in a small neighborhood of k∗, i.e., k = k∗ + δq, then
we may write cos(k) ≈ λ − sin(k∗)δk = λ − √

1 − λ2δk and
sin(k) ≈ sin(k∗) + λδk = √

1 − λ2 + λδk (where the sine is
positive, since k ∈ [0, π ]). Then,

sin2(k)

(λ − cos(k))2 ∼ (1 − λ2)

(1 − λ2)δk2
∼ N2,

so we see that

gγ γ (λ, 0) ∼ N2, as N → ∞, for |λ| < 1.

For |λ| = 1, then cos(k) ≈ ±1 + O(δk2) and sin(k) ≈ −δk
(with δk < 0 since the sine is positive). Hence

sin2(k)

(λ − cos(k))2 ∼ δk2

δk4
∼ 1

δk2
∼ N2,

as before.

2. Line λ = 1

For the critical submanifold defined by λ = 1, with tangent
vector ∂

∂γ
, we have

gλλ(1, γ ) = 1

4

∑
k

γ 2 sin2(k)

[(1 − cos(k))2 + γ 2 sin2 k]2
.

We have to look at momenta in the neighborhood of k = 0,
i.e., k = δk (with δk > 0), and then

sin(k) ≈ δk and cos(k) ≈ 1 − 1
2δk2,

so

γ 2 sin2(k)

[(1 − cos(k))2 + γ 2 sin2 k]2
≈ γ 2δk2

[
1
4δk4 + γ 2δk2

]2

≈ 1

γ 2δk2
∼ N2

γ 2
;

thus

gλλ(1, γ ) ∼ N2

γ 2
.

This means that as N → ∞, it blows up. Now,

gγ γ (1, γ ) = 1

4

∑
k

(1 − cos(k))2 sin2(k)

[(1 − cos(k))2 + γ 2 sin2 k]2
.

Looking at the momenta in the neighborhood of k = 0 as
before, we see that

(1 − cos(k))2 sin2(k)

[(1 − cos(k))2 + γ 2 sin2 k]2
≈ 1

4

δk6

(
1
4δk4 + γ 2δk2

)2

≈ 1

4γ 4
δk2,

so gγ γ (1, γ ) is finite for γ �= 0 and gγ γ (1, γ ) ∼ 1
N2γ 4 as

γ → 0.

3. Line λ = −1

For the critical submanifold defined by λ = −1, with tan-
gent vector ∂

∂γ
, we have

gλλ(−1, γ ) = 1

4

∑
k

γ 2 sin2(k)

[(1 + cos(k))2 + γ 2 sin2 k]2
.

We have to look at momenta in the neighborhood of k = π ,
i.e., k = π + δk (with δk < 0), and then

sin(k) ≈ −δk and cos(k) ≈ −1 + 1
2δk2,

so

γ 2 sin2(k)

[(1 + cos(k))2 + γ 2 sin2 k]2
≈ γ 2δk2

[
1
4δk4 + γ 2δk2

]2

≈ 1

γ 2δk2
∼ N2

γ 2
;

thus

gλλ(1, γ ) ∼ N2

γ 2
.

This means that as N → ∞, it blows up. Now,

gγ γ (−1, γ ) = 1

4

∑
k

(1 + cos(k))2 sin2(k)

[(1 + cos(k))2 + γ 2 sin2 k]2
.

Looking at the momenta in the neighborhood of k = π as
before, we see that

(1 + cos(k))2 sin2(k)

[(1 + cos(k))2 + γ 2 sin2 k]2
≈ 1

4

δk6

(
1
4δk4 + γ 2δk2

)2

≈ 1

4γ 4
δk2,

so gγ γ (−1, γ ) is finite for γ �= 0 and gγ γ (−1, γ ) ∼ 1
N2γ 4 as

γ → 0.
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4. Summary

(i) For critical line γ = 0 and tangent vector ∂/∂λ,

gλλ(λ, 0) = 0 and gγ γ (λ, 0) =
{∼N2 as N → ∞, for |λ| � 1

finite otherwise.

(ii) For critical line λ = 1 and tangent vector ∂/∂γ ,

gλλ(1, γ ) ∼ N2

γ 2
and gγ γ (1, γ ) =

{
finite for γ �= 0
∼ 1

N2γ 4 as γ → 0.

(iii) For critical line λ = −1 and tangent vector ∂/∂γ ,

gλλ(−1, γ ) ∼ N2

γ 2
and gγ γ (−1, γ ) =

{
finite for γ �= 0
∼ 1

N2γ 4 as γ → 0.

In this case we see that g∗ = limN→∞
g
N restricted to the critical lines vanishes precisely on tangent vectors to the critical

lines, except on the intersections (λ, γ ) = (±1, 0), where it blows up in all directions. On the complementary subspaces to the
tangent spaces it always blows up. In this case there are no operators which are not sufficiently relevant.
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