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In this paper, we present an in-depth analysis of the condensation energy Ec for a superconductor in a situation
when superconductivity emerges out of a non-Fermi liquid due to pairing mediated by a massless boson. This
is the case for electronic-mediated pairing near a quantum-critical point in metal, for pairing in SYK-type
models, and for phonon-mediated pairing in the properly defined limit, when the dressed Debye frequency
vanishes. We consider a subset of these quantum-critical models, in which the pairing in a channel with a proper
spatial symmetry is described by an effective 0 + 1 dimensional model with the effective dynamical interaction
V (�m ) = ḡγ /|�m|γ , where γ is model-specific (the γ model). In previous papers, we argued that the pairing
in the γ model is qualitatively different from that in a Fermi liquid, and the gap equation at T = 0 has an
infinite number of topologically distinct solutions, �n(ωm ), where an integer n, running between 0 and infinity,
is the number of zeros of �n(ωm ) on the positive Matsubara axis. This gives rise to the set of extrema of Ec

at Ec,n, of which Ec,0 is the global minimum. The spectrum Ec,n is discrete for a generic γ < 2 but becomes
continuous at γ = 2–0. Here, we discuss in more detail the profile of the condensation energy near each Ec,n and
the transformation from a discrete to a continuous spectrum at γ → 2. We also discuss the free energy and the
specific heat of the γ model in the normal state.

DOI: 10.1103/PhysRevB.106.144513

I. INTRODUCTION

This work extends our previous analysis [1–6] of the
interplay between non-Fermi liquid (NFL) physics and su-
perconductivity for quantum-critical (QC) itinerant fermionic
systems, whose low-energy dynamics can be described by
an effective model of dispersion-full electrons, interacting
by exchanging fluctuations of the critical order parameter.
Viewed in the particle-hole channel, this interaction gives rise
to singular self-energy �(k, ω) and NFL physics. Viewed in
the particle-particle channel, it gives rise to a strong attraction
in at least one pairing channel and to a spontaneous appear-
ance of an anomalous pairing vertex �(k, ω) at an elevated
Tc. The two phenomena compete with each other: a NFL
self-energy destroys Cooper logarithm in the particle-particle
channel, while the opening of a pairing gap transfers the spec-
tral weight out of low energies, rendering a coherent Fermi
liquid behavior of low-energy fermions. Because both NFL
and pairing come from the same source, the characteristic
scales for the two phenomena are comparable. This makes the
analysis of the competition quite challenging.

We analyze the interplay between pairing and NFL for a
subset of quantum-critical systems, in which critical order
parameter fluctuations are slow modes compared to fermions
for one reason or another. Examples include systems at the
verge of spin-density-wave order [7–15], charge-density wave
order [16–26], ferromagnetic and Ising-nematic order [27–31]
in 3D and 2D systems, fermions at a half-filled Landau level

[32–36], electron-phonon systems [37–41] in the properly
defined limit when the dressed Debye frequency vanishes.1

In all these cases, fermionic self-energy, excluding the ther-
mal piece, can be treated as momentum-independent �(ω)
(barring potential logarithms [15,43]), while the pairing ver-
tex �(k, ω), is either k-independent or can be factorized as
�(k, ω) = fk�(ω), where fk is the spatial gap structure for
the most strongly divergent channel (s-wave, d-wave, etc.).
The theory then becomes effectively 0 + 1 dimensional and
reduces to the set of two coupled equations for �̃(ω) =
ω + �(ω) and �(ω) with an effective dynamical four-fermion
interaction V (�). These can be obtained diagrammatically by
restricting to rainbow approximation for the self-energy and
ladder approximation for the pairing vertex. On the Matsubara
axis, the two equations are

�(ωm) = πT
∑

m′

�(ωm′ )√
�̃2(ωm′ ) + �2(ωm′ )

V (ωm − ωm′ ),

�̃(ωm) = ωm + πT
∑

m′

�̃(ωm′ )√
�̃2(ωm′ ) + �2(ωm′ )

V (ωm − ωm′ ).

(1)

1At the small dressed Debye frequency, the physics that we study
can be preempted by the development of a bipolaronic superconduc-
tivity [42]. We assume without proof that this does not happen.
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At T = 0, πT
∑

m′ = (1/2)
∫

dω′
m. The interaction V (�m) is

real and positive (attractive in our sign convention) and at a
small but finite bosonic mass ωD has the form

V (�m) = ḡγ(
�2

m + ω2
D

)γ /2 . (2)

The 0 + 1 dimensional model with V (�m) as in Eq. (2) has
been nicknamed the γ model. Different γ correspond to
different physical realizations (see Ref. [1] for details). At
a critical point, where ωD = 0, V (�m) becomes a singular
function of frequency, V (�m) = (ḡ/|�m|)γ . For electronic
pairing, the full set contains an additional equation describing
the feedback from the pairing on the bosonic propagator, but
we will neglect it as the feedback preserves Eqs. (1) and only
changes γ into γeff , which depends on T . The physics of
the feedback can then be analyzed by moving along the line
γ = γeff (T ) in the (γ , T ) plane.

A rather similar, although not identical set of equa-
tions holds for dispersion-less fermions randomly coupled to
each other [44,45], or to phonons [46–49]. The equations for
�(ωm) and �(ωm) can be partly decoupled by introducing
�(ωm) = �(ωm)/Z (ωm), often called the gap function, and
Z (ωm) = 1 + �(ωm)/ωm, which is the inverse quasiparticle
residue. The equations for �(ωm) and Z (ωm) are straightfor-
wardly obtained from (1):

�(ωm) = πT
∑

m′

�(ωm′ ) − �(ωm)ωm′
ωm√

(ωm′ )2 + �2(ωm′ )
V (ωm − ωm′ ), (3)

Z (ωm) = 1 + πT

ωm

∑
m′

ωm′√
(ωm′ )2 + �2(ωm′ )

V (ωm − ωm′ ).

(4)

Equations (3) and (4) have the same form as Eliashberg equa-
tions for electron-phonon problem with a finite V (0), and it
is customary to keep calling them Eliashberg equations even
when V (0) diverges.

Observe that Eq. (3) is an integral equation that does not
contain Z (ωm), and Eq. (4) expresses Z (ωm) via �(ωm′ ).
Note also that the potentially dangerous self-action term with
m = m′ can be safely eliminated in (3) because the numerator
there vanishes at m = m′. It should, however, be kept in (4).

In writing Eqs. (3) and (4), we assumed that Z (ωm) is
positive for all ωm. The authors of Ref. [50] analyzed potential
solutions with sign-changing Z (ωm). We do not consider such
solutions here as they only exist at a finite T , while our
primary interest is to understand system behavior at zero tem-
perature. We comment on the solutions with sign-changing
Z (ωm) in Appendix F. We argue that (i) at T = 0 such solu-
tions do not exist and (ii) a finite T solutions exist, but do not
obey the causality principle.

For large enough bosonic mass ωD, the normal state is
a Fermi liquid. Solving the gap equation, one obtains a
pairing instability at some Tp,0. The corresponding gap func-
tion �0(ωm) is a sign-preserving function of frequency. As
ωD decreases, new pairing instabilities emerge at Tp,n < Tp,0

(Ref. [2]). The number of solutions increases with decreasing
ωD and becomes infinite at ωD = 0, when a pairing boson
becomes massless. In this limit, there exists an infinite, dis-
crete set of solutions of the nonlinear gap equation at T = 0.

FIG. 1. A schematic plot of the free energy configuration in the
functional space and the saddle points corresponding to the gap
function �n(ωm ). The n > 0 solution is a saddle point of the free
energy, which has n unstable principle axes connected with the
n′ < n solutions, as illustrated by the flows in the plot. The n = 0
solution is a stable minimum.

One end of the set is the sign-preserving solution �0(ωm). The
other end is �∞(ωm) with infinitesimally small amplitude. For
the latter, we found the exact analytical expression by solving
exactly the linearized gap equation at T = 0 (Refs. [1,4]). All
gap functions from the set are analytic in the upper half-plane
of complex frequency z = ω′ + iω′′, i.e., the corresponding
Green’s functions are causal.

In this communication, we address two issues. One is
the profile of the condensation energy around �n(ωm). The
condensation energy Ec = Fsc − Fn is the difference between
the free energy of a superconductor, Fsc, and that of a would
be normal state at the same temperature. The condensation
energy is a functional of �(ωm) and Z (ωm), and the Eliash-
berg equations are stationary conditions δEc/δ� = 0 and
δEc/δZ = 0. We expand Ec to second order in deviations
from Ec,n for stationary gap function �n(ωm) with different
n and analyze the eigenvalues. For n = 0, all eigenvalues are
positive, i.e., �0(ωm) is a minimum of Ec. All other �n(ωm)
are saddle points, but rather specific ones (see Fig. 1). Namely,
for n = 1, we show that there is a single negative eigenvalue,
and the corresponding eigenfunction shifts �1(ωm) towards
�0(ωm). For n = 2, there are two negative eigenvalues, which
shift �2(ωm) towards �0(ωm) and towards �1(ωm). For a
generic �n(ωm), there are n negative eigenvalues. One can
find a “direction” in the space of �(ωm), along which all Ec,n

are connected by a single curve. Along this direction, each
Ec,n with n > 0 is an inflection point (see Fig. 7).

The other issue is the evolution of �n(ωm) and Ec,n near
γ = 2. We argued in Refs. [4,5] that at T = 0 and ωD = 0, the
set of �n(ωm) becomes continuous at γ → 2 in the particular
double limit, which we discuss below. Specifically, we argued
that all �n(ωm) with finite n become equivalent to �0(ωm)
down to ωm → 0, while �n(ωm) with n → ∞ form a one-
parameter continuous set �(ε, ωm), in which ε is a function
of (n∗/n), where n∗ ∼ | ln(2 − γ )|/(2 − γ ). By construction,
ε runs between 0+, for which �(0+, ωm) is infinitesimally
small and εmax, for which �(εmax, ωm) = �0(ωm). We further
argued that the condensation energy Ec,n also becomes contin-
uous Ec(ε) at γ → 2. We emphasize that this happens only at
T = ωD = 0. At any finite ωD or T , �n(ωm) and Ec,n remain
discrete at γ = 2.
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Here we discuss the transformation from a discrete spec-
trum to a continuous one for both �n(ωm) and Ec,n in more
detail. We show that the limit γ → 2 has to be taken with
special care because Ec,n formally diverges as 1/(2 − γ ) for
all values of n. Specifically, we show that for large but finite
n,

Ec,n = −ḡ2NF

(
1

2 − γ
− cn + · · ·

)
, (5)

where c = O(1) and NF ∝ N/EF is the total density of states
at the Fermi surface (N is the number of electrons and EF is
the Fermi energy). The prefactor c in (5) tends to a finite value
at γ → 2, yet, because the first term diverges, the condensa-
tion energy can be reexpressed as

Ec,n = − ḡ2NF

2 − γ
(1 − cn(2 − γ ) + · · · ). (6)

At γ → 2, the term proportional to b vanishes for all finite n.
We computed this term at n → ∞ and found

Ec(ε) = − ḡ2NF

2 − γ
g(ε), (7)

where ε is the same as for the set of the gap functions, and
g(0) = 0 and g(εmax) = 1.

The divergence in the overall factor in Ec(ε) can be avoided
if we treat γ → 2 as the double limit, in which NF scales
as 2 − γ , and the product NF /(2 − γ ) remains finite. In this
double limit one obtains a nondivergent, continuous spectrum
of Ec(ε) at γ → 2.

The emergence of a dispersion-full Ec(ε) may sound
surprising because all gap functions �(ε, ωm) satisfy
δEc[�(ε, ωm)]/δ�(ε, ωm) = 0, hence dEc(ε)/dε = 0 and
Ec(ε) is apparently flat. We show here that while dEc(ε)/dε

vanishes, dE2
c (ε)/dε2 and all higher-order derivatives diverge

at γ → 2. In this case, Taylor expansion around any ε has
to be taken to an infinite order, and the summation of Taylor
series yields the dispersion-full Ec(ε).

As a part of our analysis, we discuss two other issues.
One is the relation between Luttinger-Ward (LW) variational
free energy and the actual one, obtained using Hubbard-
Stratonovich transformation. We argue that the variational
free energy yields the correct Eliashberg equations as station-
ary conditions, but in general should not be used to expand
around stationary points as it does not correctly describe
fluctuations of inverse quasiparticle residue Z (ω). However,
when stationary Z (ω) is infinite, which at ωD = 0 holds for
γ > 1 at T = 0 and for all γ at a finite T , both stationary
solutions and fluctuations around it are properly described by
the variational (spin chain) free energy. For γ = 2, this result
has been obtained in Ref. [50].

The second issue is the specific heat in the normal state.
It was argued in Ref. [51] that C(T ) is negative for γ �
2 in some T range above the onset of pairing, i.e., the γ

model is unstable. We argue that this comes about because
the authors of Ref. [51] subtracted a particular temperature-
dependent piece from the free energy. We analyze the free
energy without the subtraction and find that C(T ) is positive at
all T .

The structure of the paper is the following. In the next
section, we present the expressions for the variational LW
free energy F var

sc and the actual, more complex free energy
Fsc, obtained by introducing normal and anomalous self-
energies �(ωm) and �(ωm) as auxiliary fields and integrating
out fermions using the Hubbard-Stratonovich transformation
[50,52,53]. We show that the condition that the free energy is
stationary with respect to variations of � and � yields the cor-
rect Eliashberg equations for both F var

sc and Fsc. We argue that
to account for fluctuation corrections one generally has to use
Fsc, but when stationary Z (ωm) = 1 + �(ωm)/ωm is infinite,
one can use more simple F var

sc . We discuss the free energy in
the normal state and the specific heat in Sec. II B. In Sec. III,
we analyze the free energy expansion around the discrete set
of the gap functions �n(ωm) for γ < 2. We discuss the dis-
crete set in Sec. III A, obtain the free energy expansion around
�n(ωm) with n = 0, 1, and 2 in Sec. III B, and obtain the
condensation energy for different n in Sec. III C. In Sec. IV,
we analyze the transformation from a discrete spectrum of
�n(ωm) to a continuous one-parameter set �(ε, ωm) at γ → 2
and discuss the corresponding transformation for the conden-
sation energy and the need to take the double limit γ → 2,
NF → 0, NF /(2 − γ ) → const. We present our conclusions
in Sec. V.

II. ELIASHBERG EQUATIONS AS STATIONARY
POINTS OF THE FREE ENERGY

As we said, the Eliashberg equations, Eqs. (1), or, equiva-
lently, Eqs. (3) and (4), can be obtained diagrammatically in
one-loop/ladder approximation. By general arguments, these
equations also emerge as conditions on stationary points of
the variational free energy. This has been demonstrated by
Eliashberg, who extended to a superconductor the variational
approach, pioneered by Luttinger and Ward (Ref. [54]). The
LW functional is expressed via variational functions �k and
�k , where k = (k, ωm) and ωm = (2m + 1)πT is fermionic
Matsubara frequency. It has the form

F var
sc = −V T

∑
k

[
ln

(− det Ĝ−1
k

) − iTr(�̂kĜk )
]

+V T 2
∑
k,k′

[GkV (k − k′)Gk′ −F ∗
k V (k − k′)Fk′ ] + · · · ,

(8)

where V is the system’s volume,
∑

k = ∫
dd k/(2π )d

∑
m

(d is the spatial dimensionality), �̃k = ωm + �k , εk is the
fermionic dispersion, and V (k − k′) is a four-fermion in-
teraction, which in general depends on both frequency and
momentum transfer.

The matrices Ĝk and i�̂k are the single-particle Green’s
function and the self-energy in Nambu representation of elec-
tron operators, �k = (ψk,↑, ψ

†
−k,↓)T. The dots in (8) stand for

higher-order terms in Gk and Fk .
In the explicit form,

Ĝk =
[

Gk Fk

F ∗
k −G−k

]
, i�̂k =

[
i�k i�k

−i�∗
k −i�−k

]
, (9)
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where the diagonal (off-diagonal) elements are the normal
(anomalous) components. The elements of Ĝk and �̂k are
related by the Dyson equation:

Gk = − ε−k − i�̃−k

(εk − i�̃k )(ε−k − i�̃−k ) + |�k|2
,

Fk = i
�k

(εk − i�̃k )(ε−k − i�̃−k ) + |�k|2
. (10)

The stationary solutions for �k and �k are obtained from
δF var

sc /δ�k = 0 and δF var
sc /δ�k = 0. This leads to

⎡
⎢⎢⎣

2 δFk
δ�k

− δGk
δ�k

− δG−k

δ�k

2 δFk
δ�−k

− δGk
δ�−k

− δG−k

δ�−k

2 δFk
δ�k

− δGk
δ�k

− δG−k

δ�k

⎤
⎥⎥⎦
⎡
⎢⎣

I1,k

I2,k

I2,−k

⎤
⎥⎦ = 0, (11)

where

I1,k = �∗
k − iT

∑
k′

V (k − k′)F ∗
k′ ,

I2,k = �k − iT
∑

k′
V (k − k′)Gk′ . (12)

The determinant of the 3 × 3 matrix in Eq. (11) equals to
2i(εk − i�̃k )(ε−k − i�̃−k ) and is generally nonzero. The three
equations are then independent, which implies that I1,k =

I2,k = 0, i.e.,

�∗
k = iT

∑
k′

V (k − k′)F ∗
k′ ,

�k = iT
∑

k′
V (k − k′)Gk′ . (13)

Assuming further that a soft boson is a slow excitation com-
pared to a fermion, one can factorize the integration over k
along and transverse to the Fermi surface. The integration
transverse to the Fermi surface is over fermionic dispersion.
When the Fermi energy EF is much larger that fermion-boson
coupling ḡ in Eq. (2), one can convert the momentum integra-
tion into that over εk in infinite limits, keeping the density of
states at its value at the Fermi surface. The integration along
the Fermi surface involves V (k − k′) with both k and k′ on the
Fermi surface. Restricting to hot regions on the Fermi surface,
when the interaction is peaked at a finite momentum trans-
fer or projecting into the most attractive pairing component,
when the interaction is peaked at zero momentum transfer,
we obtain the two Eliashberg equations (1). We refer a reader
to Ref. [1] for more detailed discussion of how the γ -model
description emerges from particular lattice models.

Derivation of Eliashberg equations from variational F var
sc

has been reported several times in the literature [55–57]. There
is one caveat here, which will be relevant to our consideration
below. Namely, under the assumptions used to derive Eq. (1),
�k = �(ωm) and �k = �(ωm). Then one can integrate over
momentum right in Eq. (8). The integration is straightforward
and yields [1,55]

F var
sc = −2πT NF

∑
m

ωm�̃m√
�̃2

m + |�m|2
− π2T 2NF

∑
m,m′

V (m − m′)
�̃m�̃m′ + 1

2 (�m�∗
m′ + �∗

m�m′ )√
�̃2

m + |�m|2
√

�̃2
m′ + |�m′ |2

, (14)

where NF ∼ N/EF is the total density of states (N is the number of particles in the system), and we introduced the shorthand
notations �m = �(ωm), �̃m = �̃(ωm), and V (m − m′) = V (ωm − ωm′ ). From δF var

sc /δ�m = 0 and δF var
sc /δ�m = 0, we then

obtain, instead of Eq. (11),

�m�̃mI1 − |�m|2I2 = 0, �̃2
mI1 − �∗

m�̃mI2 = 0. (15)

One can immediately verify that the determinant of the 2 × 2 matrix vanishes, hence there is only one independent equation.
Introducing Zm and �m as Zm = 1 + �m/ωm, �m = �m/Zm, we find that this is Eq. (3) for �m. There is no Eq. (4) on Zm. This
can be seen already from Eq. (14). Indeed, expressing �m and �m in terms of �m and Zm, we immediately find that F var

sc depends
only on �m:

F var
sc = −2πT NF

∑
m

ω2
m√

ω2
m + |�m|2 − π2T 2NF

∑
m,m′

V (m − m′)
ωmωm′ + 1

2 (�m�∗
m′ + �∗

m�m′ )√
ω2

m + |�m|2
√

ω2
m′ + |�m′ |2

. (16)

The independence of F var
sc on Zm seem to imply that fluctuations of Zm decouple from fluctuations of �m for any ωD. However,

variational F var
sc is not the free energy, which appears in the partition function Z = ∫

D[�, Z]e−Fsc (�,Z )/T . To obtain Fsc, one has
to follow a standard procedure: introduce auxiliary fields �m and �m and integrate out fermions using the Hubbard-Stratonovich
transformation. This has been implemented in Refs. [50,52,53], and the result is

Fsc = −2πT NF

∑
m

Zm

√
ω2

m + |�m|2 + T 2NF

∑
m,m′

V −1(m − m′)
[

(Zm − 1)(Zm′ − 1)ωmωm′ + 1

2
ZmZm′ (�m�∗

m′ + �∗
m�m′ )

]
,

(17)
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where the inverse matrix V −1(m − m′) satisfies
T 2 ∑

m′′ V (m − m′′)V −1(m′′ − m′) = δm,m′ (see Appendix A
for detail). The stationary conditions δFsc/δ�m = 0,
δFsc/δZm = 0 yield Eqs. (3) and (4), as one can
straightforwardly verify.

The free energy (17) depends on both �m and Zm, and the
quadratic form in deviations from a stationary solution gener-
ally contains terms with variations of �m and Zm. The authors
of Ref. [50] argued that for γ = 2 (the case they considered)
fluctuations of Zm get steeper when the bosonic mass gets
smaller, and the free energy Fsc(�m, Zm) with arbitrary �m

and stationary Zm, given by Eq. (4), coincides with F var
sc (�m)

up to regular corrections in powers of ωD/ḡ. We extended the
analysis of Ref. [50] to γ < 2 and found that this holds when
the stationary Zm diverges at ωD → 0. This is the case for
γ > 1 at T = 0 and for all γ > 0 at a finite T . We show the
details in Appendix A.

For the rest of the paper, we consider the limit of vanishing
ωD and use F var

sc (�m) for the free energy both at and away
from stationary points. At T = 0, we will be chiefly interested
in the system behavior for γ close to 2, when the equiva-
lence between F var

sc and Fsc holds. We will also present some
numerical results for smaller γ . These results are obtained
at a small, but finite T , when the equivalence between F var

sc
and Fsc again holds. To simplify the notation, we ignore the
superscript “var” for the variational free energy in the rest of
the main text.

A. Condensation energy

Condensation energy Ec is the difference between the free
energy of a superconductor with a stationary �m and that of
a would be normal state at the same T . For an s-wave BCS
superconductor Ec = −NF �2/2 at zero temperature. In our
case, stationary Fsc is given by (16), and the free energy in the
normal state is

Fnorm = − 2πT NF

∑
m

|ωm| − π2T 2NF

×
∑
m,m′

V (ωm − ωm′ )sgn(ωmωm′ ). (18)

The condensation energy

Ec = 2πT NF

∑
m

(
|ωm| − ω2

m√
ω2

m + �2
m

)

−π2T 2NF

∑
m,m′

V (ωm − ω′
m)

×
⎛
⎝ ωmω′

m + �m�m′√
ω2

m + �2
m

√
(ω′

m)2 + �2
m′

− sgn(ωmωm′ )

⎞
⎠. (19)

In writing (19), we assumed for simplicity that �m is real, i.e.,
we set its U(1) phase to be zero.

We note that both Fsc and Fnorm contain thermal contribu-
tion from m = m′. It is proportional to V (0) = (ḡ/ωD)γ and

diverges at ωD = 0 for any γ > 0.2 This term gives rise to
singular temperature-independent entropy at T > ωD, which
we discuss in Sec. II B below. At the same time, the ther-
mal pieces in (16) and (18) are identical and cancel out in
the expression for the condensation energy, Eq. (19), which
therefore remains nonsingular at ωD = 0.

Using the gap equation (3), one can reexpress Ec as

Ec = −πT NF

∑
m

|ωm| (
√

1 + D2(ωm) − 1)2√
1 + D2(ωm)

− 1

2
π2T 2NF

∑
m,m′

V (ωm − ω′
m)

× sgn(ωmωm′ )√
1 + D2(ωm)

√
1 + D2(ωm′ )

× (
√

1 + D2(ωm) −
√

1 + D2(ωm′ ))2, (20)

where we remind that D(ωm) = �(ωm)/ωm. The advantage
of using Eq. (20) is in that it explicitly shows that Ec < 0, i.e.,
that there is an energy gain from pairing. To see this explicitly
one should convert the sum into the one over m, m′ � 0 and
use V (ωm − ωm′ ) > V (ωm + ωm′ ).

At T = 0, 2πT
∑

m�0 → ∫ ∞
0 dωm. At γ < 2, the two inte-

grals in (20) are convergent both in the infrared and ultraviolet
limits even when ωD = 0. Convergence in the ultraviolet limit
follows from the fact that at large ωm, D(ωm) falls off as
1/|ωm|γ+1. In the infrared limit, �(ωm) approaches a finite
value �, and D(ωm) becomes large. Keeping only the leading
terms in (20), we obtain

Ec ∝
∫ �

0
dωm

∫ �

0
dωm′

(ωm − ωm′ )2

ωmωm′

×
(

1

|ωm − ωm′ |γ − 1

|ωm + ωm′ |γ
)

. (21)

This integral is convergent for all γ < 2.

B. Specific heat

The specific heat is C(T ) = T dS(T )/dT , where the en-
tropy S(T ) = −dF/dT and F = Fnorm + Ec.

Computation of the temperature dependence of the free en-
ergy for any γ > 0 requires care for two reasons, both related
to Fnorm. First, Fnorm contains a singular thermal contribution
from m = m′. Second, the frequency summation in both terms
in (18) does not converge, raising a possibility that there is
a contribution to the specific heat that depends on the upper
energy cutoff of the model. The frequency sums in Eq. (20)
for Ec are ultraviolet-convergent, so the jump of C(T ) at
T = Tc − 0 is cutoff-independent.

Because it is Fnorm that is potentially problematic for the
entropy and the specific heat, we consider the normal state.

2Similarly, at T = 0, both F var
sc and F var

norm contain
∫

V (�)d�. This
integral is regular in the infrared for γ < 1, but becomes singular at
γ > 1 and scales as (ḡ/ωD )γ−1.
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The first term in (18) is the free energy of the free Fermi gas,

F free
norm = −2πT NF

∑
m

|ωm|. (22)

The summation over Matsubara frequencies can be performed
using the Euler-Maclaurin formula in the form presented in
Ref. [58]:

F free
norm = −8π2T 2NF

∞∑
m=0

(m + 1/2)

≈ −2NF

∫ ∞

0
xdx − π2T 2NF

3
. (23)

The upper limit of the integral is actually the upper energy
cutoff in the theory, , then F free

norm = −NF (2 + π2T 2/3).
The 2 term is T independent and therefore is irrelevant for
S(T ) and C(T ). Keeping the second term, we reproduce the
known result for a Fermi gas: S(T ) = C(T ) = (2/3)π2T NF .

Alternatively, we can evaluate T
∑

m |ωm| directly, by re-
stricting to M Matsubara numbers for positive and for negative
ωm, i.e., keeping the particle-hole symmetry. An elementary
calculation then sets the relation between M and :

M = 

2πT
+ πT

12
+ O

(
1

2

)
. (24)

It is essential that there is no -independent term in this
relation. We verified the absence of the -independent term
in the complimentary calculation, in which we integrated over
fermionic dispersion εk over a finite range between − and ,
where  ∼ EF � ḡ, and then summed over all Matsubara fre-
quencies, as in this calculation the Matsubara sum converges
at |ωm| > .

We now use Eq. (24) for the calculation of the second
(interacting) term in Eq. (18),

F int
norm = −π2T 2NF ḡγ

∑
m,m′

sgn(ωmωm′ )

(|ωm − ωm′ |2 + ω2
D)γ /2 . (25)

Summing over M positive and M negative Matsubara frequen-
cies, we obtain after some straightforward algebra that for
T � ωD the second term in the free energy of Eq. (18) is

F int
norm = −NF πT 

(
ḡ

ωD

)γ

+ NF ḡγ 2−γ 2(2−γ − 1)

(1 − γ )(2 − γ )

− NF ḡγ (2πT )1−γ ζ (γ )

+ 3

2
NF ḡγ (2πT )2−γ ζ (γ − 1) + O(1/). (26)

This result is valid for γ �= 1 (we discuss γ = 1 below). In
obtaining this expression, we used the fact that

∑m
1 1/kγ is a

Harmonic number Hγ (m), used the summation formula [59]
n∑

m=1

Hγ (m) = (n + 1)Hγ (n) − Hγ−1(n) (27)

and the asymptotic expansion of Hγ (m) at large m

Hγ (m) = m1−γ

1 − γ
+ ζ (γ ) + 1

2mγ
+ O

(
1

mγ+1

)
. (28)

The first term in F int
norm comes from thermal fluctuations. It

gives a singular contribution to the entropy, which we discuss
below but does not contribute to the specific heat. The sec-
ond term is the interaction part of the ground state energy.
It does depend on the upper cutoff as 2−γ , but is just a
constant. The third term is a nonuniversal, cutoff-dependent
temperature contribution to the free energy. It scales as T 1−γ

and comes from fermions with |ωm − ωm′ | = O(T ), while
ωm, ωm′ = O(). Finally, the last term is a universal, cutoff-
independent term that scales as T 2−γ .3

Differentiating F int
norm twice over temperature, we obtain for

the specific heat

C(T ) = C(T ) + Cuniv(T ), (29)

where

C(T ) ≈ 2πNF

(
ḡ

2πT

)γ

γ (γ − 1)ζ (γ ) (30)

is a cutoff-dependent, nonuniversal contribution, and

Cuniv(T ) = 2

3
π2T NF (1 + 9(2 − γ )

× (γ − 1)ζ (γ − 1))

(
ḡ

2πT

)γ

(31)

is a much smaller universal piece. In (30), the product γ (γ −
1)ζ (γ ) is positive for all γ > 0 and evolves smoothly through
γ = 1. At γ = 1, the corresponding term in F int

norm scales as
 ln T . In (31), (2 − γ )(γ − 1)ζ (γ − 1) is positive for γ < 1
and negative for larger γ .

On a more careful look, we found that C(T ) originates
from the nonanalytic T 1−γ term in the fermionic self-energy
at large ωm. Indeed, the self-energy is

�(ωm) = ḡγ

{
πT

ω
γ
D

+ (2πT )1−γ

[
Hγ (m) + 0.5

(
Hγ

(


2πT

− 1 + m

)
− Hγ

(


2πT
+ m

))]}
(32)

(we set ωm > 0 for definiteness). At 1  m  /(2πT ),
Hγ (m)(2πT )1−γ ≈ (ωm)1−γ /(1 − γ ) + ζ (γ )(2πT )1−γ ,
hence4

�(ωm) ≈ ḡγ

(
πT

ω
γ

D

+ ω
1−γ
m

1 − γ
+ ζ (γ )(2πT )1−γ

)
. (33)

The first two terms in the self-energy do not contribute to the
specific heat, while the last T 1−γ term gives rise to /T γ

scaling of C(T ), as one can straightforwardly verify by sub-
stituting this asymptotic form into (32) and then into F int

norm =
−2πT NF

∑
m�0 �(ωm).

Taken as a face value, Eq. (30) implies that C(T ) ≈
C(T ) ∝ /T γ is positive. The upper energy cutoff  is

3Alternatively, these results can be obtained by subtracting and
adding back the divergent terms from the summand [60].

4The prefactor for the T 1−γ is negative for γ < 1, hence for these
γ , �(ωm ) has a negative temperature-dependent offset. This is con-
sistent with Ref. [61], where a negative offset has been found for
γ = 1/3 and 1/2.
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generally a fraction of the Fermi energy EF . The density of
states NF ∼ N/EF , where N is the number of electrons, hence
C(T ) per particle is of order (ḡ/T )γ .

The result C(T ) ∝ /T γ holds for the γ model, whose
free energy in the normal state is defined by Eq. (18), but
generally does not hold for the underlying microscopic mod-
els, for which the γ model has been argued to be the proper
low-energy model for the analysis of superconductivity. The
reason is that the free energy in (18) does not include the
contribution from the critical boson

Fbos = 1

2
T
∑

q

[ln D−1(q) + �(q)D(q)], (34)

where q = (�q,�m), D(q) is the bosonic propagator, and �(q)
is the bosonic polarization [D−1(q) = D−1

0 (q) − �(q), where
D0 is a bare bosonic propagator]. The argument for neglecting
Fbos is that the bosonic piece either does not change between
the normal and the superconducting state and hence cancels
out in the condensation energy, or its change is not relevant
from physics perspective and can be effectively described by
making the exponent γ T -dependent.

Such an argument, however, does not apply to the normal
state. There, Fbos has to be kept because, bosonic � is created
by the coupling to fermions. We analyzed the full free energy
for several underlying fermion-boson models [62] and in all
cases found that the contribution to the specific heat from
Fbos cancels out C(T ) from Eq. (30). It also gives rise to
another universal contribution to C(T ). For Ising-nematic case
(γ = 1/3), this universal contribution has the same form as
Cuniv(T ) in (31), while for the phonon case (γ = 2) it contains
a much larger positive T -independent term (see Ref. [62] for
details). For critical models towards an order with a finite
Q, e.g., antiferromagnetic Q = (π, π ), the universal term in
C(T ) differs from Cuniv in (31) by yet another reason – the self-
energy depends on the position on the Fermi surface and has
different forms in hot regions, where the γ -model description
is valid, and in the rest of the Fermi surface. Pairing involves
predominantly hot fermions and is adequately described by
the γ model. However, the free energy in the normal state
comes from the full Fermi surface and its singular part at
criticality has an extra T -dependent factor proportional to the
width of the hot region.

The specific heat of the γ model has been recently analyzed
in Ref. [51]. The authors of this work regularized the free
energy (18) by subtracting from it the term

−π2T 2NF

∑
m,m′

V (ωm − ωm′ ) (35)

(the same subtraction has been used in their other works in
Refs. [50,63]). This substraction changes F int

norm to

F int
norm, reg = −π2T 2NF

∑
m,m′

V (ωm − ωm′ )(sgn(ωmωm′ ) − 1).

(36)

Because the numerator is nonzero only when ωm and ωm′ have
opposite sign, thermal contribution from m = m′ vanishes,
hence (36) can be evaluated right at ωD = 0. The full outcome
of the subtraction is that the first and the third term in (26) dis-
appear. The analysis in Ref. [51] has been restricted to γ � 2,

in which case the second term in (26) also vanishes. The last,
universal term, proportional to T 2−γ , remains almost intact:
the only effect of subtraction is the change of the prefactor.
Specifically,

F int
norm, reg = 4π2NF ζ (γ − 1)(ḡ/2π )γ T 2−γ . (37)

Differentiating twice over T , the authors of Ref. [51] found
the regularized specific heat is negative for γ � 2 in some
T range above Tc and conjectured that this implies that the
normal state is unstable. Like we said, we found in the analysis
of the microscopic models at various γ (including models
with continuously varying γ ) that the total specific heat of a
coupled electron-boson model is positive. Whether a negative
sign of C(T ) in the regularized γ model, which is a portion of
the full C(T ) > 0, implies an instability of the normal state,
remains to be seen.5

Returning to Eq. (29), the specific heat for the underlying
fermion-boson model for γ = 1/3 has been recently analyzed
using quantum Monte Carlo technique [64]. In the regime
of vanishing bosonic mass, the specific heat increases with
decreasing T at strong enough coupling. At a face value, this
is consistent with C(T ) ∝ 1/T 1/3. It is however, possible that
the observed increase is due to superconducting fluctuations
above Tc, as the authors of Ref. [64] suggested.

C. Applicability of the γ model in the normal state
at finite T and ωD → 0

We now argue that there is another issue with the analysis
of the specific heat within the γ model in the normal state
at a finite T —the T range, where one can neglect thermal
vertex corrections, shrinks when the bosonic mass ωD → 0
and remains valid above Tc only if one rescales the Fermi
energy in line with ωD.

Below we consider the free energy given by (26), with no
subtraction.

The argument is threefold. First, as we already stated,
the analysis leading to Eq. (26) is valid only at T > ωD. At
smaller T , the system displays a Fermi liquid behavior and
the entropy and the specific heat per particle scale as T , even
without subtraction. We show the numerical result for the
entropy in Fig. 2.

Second, the Eliashberg equation for the self-energy is valid
as long as vertex corrections are small. A straightforward
computation of vertex corrections at a finite T � ωD when
thermal fluctuations are the strongest, shows that they are
small as long as (

ḡ

ωD

)γ

 

T
(38)

or, equivalently, as long as T  Tmax, where Tmax ∼
(ωD/ḡ)γ . The temperature window, where Eq. (26) and the

5We note in passing that the regularization, aimed to elim-
inate the singular thermal piece, is not unique. In particular,
one can subtract −π 2T 2NF ḡγ

∑
m,m′ (1 + b − b sgn(ωmωm′ ))/(|ωm −

ωm′ |γ + ω
γ

D ) with arbitrary b. One can then choose b such that even
after regularization C(T ) remains positive down to any chosen T .
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FIG. 2. Entropy per volume S(T ) as a function of πT/ωD, where
we take the parameters ωD = 0.1ḡ and γ = 1.6. A cutoff  ∼ 15ḡ
is used to regularize the ultraviolet divergence. The grey region
highlights the Fermi liquid regime where πT  ωD.

corresponding expressions for the entropy and the specific
heat are valid, is then

ωD  T  Tmax. (39)

This window collapses when ωD → 0. The only way to keep
it finite is to consider the double limit ωD → 0,  → ∞ (i.e.,
EF → ∞) such that Tmax remains finite.

Third, the normal state description of the γ model is valid
only above the pairing instability temperature Tp. The latter is
of order ḡ for a generic γ . The normal state analysis is then
applicable when Tmax > ḡ. This strengthen the requirement
on the double limit: it should be ω

γ

D > ḡγ+1. At the lower
boundary T = Tp ∼ ḡ, we then have

S(Tp) ∼ 2NF

ḡ
, C(Tp) ∼ (NF ) � N. (40)

This implies that the specific heat per particle at Tp < T <

Tmax is at most O(1). The analysis of the free energy at T >

Tmax requires one to include series of vertex corrections and is
beyond the scope of this paper.

We emphasize in this regard that both thermal self-energy
and the singular part of the T = 0 self-energy at γ > 1 cancel
out in the Eliashberg equation for the superconducting gap. To
avoid vertex corrections at ωD → 0, one still needs to employ
the double limit ωD → 0, EF → ∞,6 however, the Eliashberg
gap equation does not contain EF , so the need for the double
limit does not affect the pairing problem.

There is an additional issue at a finite T , related to the
very derivation of the Eliashberg equations at a given γ

from the corresponding microscopic model with momentum
and frequency dependent V (k − k′). The derivation assumes
that bosons are slow modes compared to fermions, in which
case the momentum integration can be factorized such that
the integrations transverse and along the Fermi surfaces are

6Vertex corrections at T = 0 become singular at γ > 1, and to keep
them small, one needs to take the double limit ωD → 0, EF → ∞
such that EF ω

γ−1
D  ḡγ .

performed separately in fermionic and bosonic propagators,
respectively. This holds at T = 0, but may not hold at a finite
T , when thermal fluctuations are present [61]. As a result, the
thermal self-energy in the γ model and in the underlying mi-
croscopic model may differ even without vertex corrections.

III. A GENERIC γ < 2. A DISCRETE SET OF SOLUTIONS
OF THE GAP EQUATION AT T = ωD = 0, AND FREE

ENERGY EXPANSION AROUND THEM

In this section, we analyze the profile of the free energy in
the superconducting state for a generic γ < 2.

To set the stage for our analysis, we first briefly review
the results for �(ωm) at stationary points at T = 0. We con-
sider even-frequency gap functions, for which �(−ωm) =
�(ωm). For the analysis of odd-frequency gap functions, see
Refs. [65,66].

A. Discrete set of solutions, �n(ωm)

For large enough ωD � ḡ, the normal state is a Fermi liq-
uid with �(ωm) ≈ λωm, where λ = (ḡ/ωD)γ (γ /2). The gap
equation has a single sign-preserving solution �0(ωm). It has
a finite value at ωm = 0 and decreases as 1/|ωm|γ at large
frequencies.

When ωD/ḡ gets smaller, new solutions of the gap equa-
tion appear one-by-one. We label these solutions as �n(ωm),
where n = 1, 2 . . . A function �n(ωm) changes sign n times
along the positive Matsubara axis. These solutions are topo-
logically distinct as each zero of �n(ωm) is the center of a
dynamical vortex on the complex frequency plane z = ω′ +
iω′′.

At ωD = 0, the number of solutions become infinite, and
they form a discrete set, in which n ranges from zero to infin-
ity. The overall magnitude of �n(ωm) decreases exponentially
with n, and the “end point” of the set, �∞(ωm), is the solution
of the linearized gap equation

�∞(ωm) = ḡγ

2

∫
dω′

m

�∞(ω′
m) − �∞(ωm)ω′

m
ωm

|ω′
m|

1

|ω′
m − ωm|γ .

(41)

As a proof that such set does exist, we obtained the exact
analytical solution of this equation (Refs. [1,4,5]). At small
ωm  ḡ, �∞(ωm) oscillates as a function of ln (ḡ/|ωm|)γ as

�∞(ωm) = 2εḡ1−γ /2|ωm|γ /2 cos (β(γ ) ln (ḡ/|ωm|)γ + φ(γ )),
(42)

where β(γ ) and φ(γ ) are γ -dependent parameters and ε is
an arbitrarily small dimensionless overall factor. At larger ωm,
�∞(ωm) ∝ ε/|ωm|γ . In simple terms, at small ωm, �∞(ωm)
in the left-hand side (l.h.s.) of (41) can be neglected, which
is equivalent to neglecting the bare ωm in the fermionic prop-
agator compared to the self-energy, as one can easily verify.
The solution of (41) without the l.h.s. is the sum of the
two power laws �∞(ωm) ∝ |ωm|a with complex exponents
a = γ /2 ± iβγ . This is Eq. (42). A relative phase φ is a free
parameter in this approximation. At large ωm � ḡ, the depen-
dence �∞(ωm) ∝ 1/|ωm|γ follows from a’posteriori verified
assumption that typical ω′

m in (41) are of order ḡ, in which
case one can approximate 1/|ω′

m − ωm|γ in the right-hand side
(r.h.s.) of (41) by 1/|ωm|γ . The exact solution shows that there
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exists a particular φ, for which �∞(ωm) gradually transforms
between the limits of small and large |ωm|/ḡ.

Qualitative understanding of the appearance of a discrete
set of solutions of Eq. (3) can be obtained by expanding the
r.h.s. of the nonlinear gap equation (3) in powers of D(ωm) =
�(ωm)/ωm and analyzing the structure of perturbation series
in the gap amplitude ε, which we now treat as finite. The
analysis is tedious but straightforward. At small ωm  ḡ, the
expansion holds in powers of ε∗ = ε(ḡ/|ωm|)1−γ /2 and yields

�(ωm) = 2ε∗|ωm|[Q1 cos(ψ ) + (ε∗)2Q3 cos(3ψ + φ3)

+ (ε∗)4Q5 cos(5ψ + φ5) + . . . ], (43)

where

ψ = β(γ ) ln (ḡ/|ωm|)γ + φε∗, (44)

φε∗ = φ(γ ) + s1(ε∗)2 + s2(ε∗)4 + . . . , (45)

φ2k+1 = t0,2k+1 + t1,2k+1(ε∗)2 + t2,2k+1(ε∗)4 + . . . , (46)

Q2k+1 = r0,2k+1 + r1,2k+1(ε∗)2 + r2,2k+1(ε∗)4 + . . . (47)

The coefficients si, tl,2k+1 and rl,2k+1 are γ -dependent func-
tions, except for r0,1 = 1. We present the exact expressions in
Appendix D. For a generic γ < 2, they all are of order one.

We see that the expansion generates higher-order harmon-
ics with multiples of the argument ψ and phases φ2k+1. These
extra phase factors are most relevant to our reasoning. Without
them, oscillations from cos ψ, cos 3ψ, cos 5ψ ...would all be
in phase, and �(ωm) would oscillate as a function of ln(ωm/ḡ)
down to ωm = 0. Because of φ2k+1, the positions of the nodal
points in different harmonics are shifted by different amounts,
and when the corrections from the nonlinear terms become of
order one, oscillations get destroyed. At smaller frequencies,
it is natural to assume that �(ωm) approaches a constant
value �(0). For a generic γ < 2, this transformation occurs
when ε∗ becomes of order one, i.e., at a critical Matsubara
frequency |ωm| ∼ ωc = ḡε2/(2−γ ). To first approximation, the
gap function then follows �∞(ωm) from (42) down to ωc and
saturates at �(ωm) ∼ ωc at smaller frequencies. Such a gap
function is smooth (to discontinuity of a derivative) if ωm =
ωc is one of the extrema of �∞(ωm). The largest ωc = O(ḡ)
is above the highest frequency where �∞(ωm) changes sign.
The corresponding solution of the nonlinear gap equation is
sign-preserving �0(ωm), and the corresponding ε0 = O(1).
However, this is not the only option – because �∞(ωm) os-
cillates, ωc can be chosen as an extremum of �∞(ωm) after
it changes sign n times. In this case, ωc ∼ ḡe−nπ/(β(γ )γ ). The
corresponding solution is �n(ωm) that changes sign n times
at positive ωm, the corresponding εn ∼ e−πn(2−γ )/(2β(γ )γ ), and
the corresponding �n(0) is

�n(0) ∼ ωc ∼ ḡe−πn/(β(γ )γ ), (48)

At large n, both εn and �n(0) decrease exponentially with n.
In Fig. 3, we show the trial functions �n(ωm), constructed this
way, for a representative γ = 0.8 and for n = 0, 1, and 2. We
see that this reasoning works quite well. Namely, upon substi-
tuting the trial functions into the r.h.s. of Eq. (3), one recovers
the same function in the l.h.s. with reasonable accuracy (more
on this below).

FIG. 3. Trial gap function (blue solid line) of (a) n = 0, (b) 1, and
(c) 2 solutions, where γ = 0.8. Exact gap function of n = 0 solution
is shown by the black dotted line. In (b) and (c), the reproduced
gap function by substituting the trial gap function back to the gap
equation is shown by red dashed lines. Circles indicate ωc, below
which the trial gap function �n(ωm ) becomes a constant.

These results present our most direct evidence of a discrete
set of the gap functions �n(ωm), which satisfy the nonlinear
gap equation. The other evidences are (i) the exact analytical
result for �∞(ωm), (ii) strong numerical evidence for the
existence of a discrete set of the solutions of the nonlinear dif-
ferential equation, which well approximates Eq. (3) at small
γ (Ref. [1]), and (iii) a highly accurate numerical solution of
the linearized gap equation at a finite T , yielding a discrete
set of critical pairing temperatures Tp,n for n up to 17 [2].
These critical Tp,n decrease exponentially with n, consistent
with �n(0) in Eq. (48), and the corresponding eigenfunction
changes sign n times along the positive Matsubara axis.

We emphasize that these results hold for γ , which are not
particularly close to 2. For γ close to 2, the analysis of �n(ωm)
has to be modified, as we show in Sec. IV.

We also emphasize that all functions �n(ωm) from the
discrete set can be analytically continued into the upper half-
plane of complex frequency. We verified this analytically for
n = ∞ by replacing iωm by z = ω′ + iω′′ in the analytical
formula for �∞(ωm), and we checked this numerically for
n = 0, 1, and 2 by extending �n(ωm) that we just obtained,
to the upper frequency half-plane using Pade approximants.

B. Free energy expansion near �n(ωm)

We now analyze the form of the free energy Fsc near the
stationary solutions �n(ωm). Our goal here is to understand
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whether these solutions correspond to local minima or saddle
points. To address this issue we expand Fsc to second order in

δ�(ωm) = �(ωm) − �n(ωm) and analyze the quadratic form
in δ�(ωm).

We discuss the expansion of the free energy in detail in Appendix A and here just present the result. At ωD = 0, the free
energy is Fsc = Fsc,n + δFsc,n, where

Fsc,n = −NF 2πT
∑

m

ω2
m√

ω2
m + �2

n(ωm)
− π2T 2NF

∑
m,m′

V (ωm − ω′
m)

ωmω′
m + �n(ωm)�n(ω′

m)√
ω2

m + �2
n(ωm)

√
(ω′

m)2 + �2
n(ω′

m)
(49)

is the free energy for stationary �n(ωm), and

δFsc,n = NF π2T 2
∑

m,m′�0

1

Dn(ωm)Dn(ωm′ )

1(
1 + D2

n(ωm)
)3/2(

1 + D2
n(ωm′ )

)3/2 Qm,m′ (50)

with

Qm,m′ = ḡγ

[
(δD(ωm)Dn(ωm) − δD(ωm′ )Dn(ωm′ ))2

(
1

|ωm − ωm′ |γ + 1

|ωm + ωm′ |γ
)

+
(
δD(ωm)D2

n(ωm) − δD(ωm′ )D2
n(ωm′ )

)2

|ωm − ωm′ |γ +
(
δD(ωm)D2

n(ωm) + δD(ωm′ )D2
n(ωm′ )

)2

|ωm + ωm′ |γ
]

(51)

is the variation of the free energy to the second order in
δ�(ωm). In (51) we introduced Dn(ωm) = �n(ωm)/ωm and
δD(ωm) = δ�(ωm)/ωm and restricted to even-frequency vari-
ations δ�(ωm) = δ�(−ωm).

Because Qm,m′ is positive (the sum of full squares with
positive prefactors), δFsc,0 is definitely positive for the
sign-preserving D0(ωm). For n > 0, this is not guaranteed,
however, as Dn(ωm) changes sign n times along the positive
Matsubara axis, and the product Dn(ωm)Dn(ωm′ ) in the de-
nominator of (51) can be of either sign.

It is convenient to reexpress δFsc,n as

δFsc,n = (πT )2NF

∑
m,m′

Kn(ωm, ωm′ )δ�(ωm)δ�(ωm′ ), (52)

where

Kn(ωm, ωm′ ) = δmm′

2πT

ω2
mZn(ωm)

(ω2
m + �n(ωm)2)3/2

− V (ωm − ωm′ )

× ωmωm′ (ωmωm′ + �n(ωm)�n(ωm′ ))

(ω2
m + �n(ωm)2)3/2(ω2

m′ + �n(ωm′ )2)3/2
,

(53)

and Zn(ωm) = 1 + (πT/ωm)
∑

m′′ V (ωm − ωm′′ )ωm′′/√
ω2

m′′ + �2
n(ωm′′ ) is the inverse quasiparticle residue at

the stationary point.
The symmetric matrix Kn(ωm, ωm′ ) can be rewritten in the

diagonal form as

Kn(ωm, ωm′ ) =
∑

p

λ(p)
n �(p)

n (ωm)�(p)
n (ωm′ ), (54)

where λ
(p)
n (p = 1, 2 . . . ) are the eigenvalues and �

(p)
n (ωm) are

the eigenfunctions, which we will have to find. The eigen-
functions form a complete and orthogonal set and obey the
normalization condition

T
∑

m

�(p)
n (ωm)�(p′ )

n (ωm) = δp,p′ . (55)

Expanding δ�(ωm) = ∑
p Cp

n �
(p)
n (ωm) and substituting into

Eq. (52), we obtain δFsc,n = ∑
p λ

p
n (Cp

n )2. Obviously, if there
is a negative λ

p
n for at least one value of p, the free energy

gets reduced by deviations from �n(ωm) along this direction.
In this situation, �n(ωm) is a saddle point of the free energy.
If λ

p
n > 0 for all p, �n(ωm) is a local minimum.

We obtained the eigenvalues and eigenfunctions of
Kn(ωm, ωm′ ) for n = 0, 1 and 2 numerically on a nonuniform
mesh of 2000 × 2000 Matsubara frequencies. A nonuniform
grid was chosen to reach extremely low temperatures ∼10−10ḡ
(see Ref. [2] for detail). For stationary �n(ωm) we used the
trial functions, constructed in the previous section (Fig. 3).

We used two computational procedures to obtain λ
(p)
n and

�
(p)
n (ωm). In the first, we set δ�(ωm) to be real and even

under ωm → −ωm, but did not require that it is analytic in the
upper half-plane of frequency. Like we just said, our �n(z)
are analytic functions of z = ω′ + iω′′ at ω′′ > 0. However,
fluctuating δ�(ωm) do not have to be analytic. In the second
procedure, we restricted δ�(ωm) to analytic functions in the
upper half-plane (see Appendix B for details). We found the
same structure of eigenvalues and eigenfunctions in the two
cases. This equivalence implies that for physically relevant
fluctuations, δ�(z) is an analytic function of z.

Below we present the results obtained using the first com-
putational procedure. We show the eigenvalues λ

(p)
n for a

representative γ = 0.8 in Fig. 4. We see that for n = 0, all λ
(p)
0

are positive, as expected, i.e., �0(ωm) is a minimum of the free
energy functional (a global minimum as we will see momen-
tarily). For n = 1, there is one negative eigenvalue λ

(1)
1 . The

corresponding eigenfunction �
(1)
1 (ωm) sets the “direction”,

along which the free energy is reduced upon deviations from
�1(ωm). We show �

(1)
1 (ωm) in Fig. 5(a). We see that it is

sign-preserving and shifts the gap function towards the one
with n = 0. This can also be seen by analyzing how our
trial gap function �1(ωm) evolves under iterations. As we
showed in Fig. 3, this function satisfies the nonlinear gap
equation quite well. Still, it is not exactly �1(ωm), and likely
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FIG. 4. Eigenvalues of the kernel matrix Kω,ω′ for (a) n = 0,
(b) 1, and (c) 2 solutions, where γ = 0.8.

contains some amount of �
(1)
1 (ωm). Then it is natural to expect

that after a number of iterations the trial �1(ωm) will start
flowing towards �0(ωm). Figure 6 shows that this is exactly
the case: after the large number of iterations the trial �1(ωm)
approaches �0(ωm).

FIG. 5. Eigenfunctions corresponding to the negative eigenval-
ues of the kernel matrix Kω,ω′ for (a) n = 1 and (b) 2. We set γ = 0.8.

FIG. 6. Iteration process that solves the stationary points of the
nonlinear gap equation, Eq. (3), which starts from the input �trial

1 (ωm )
and saturates at �0(ωm ).

Another way to see this is to construct a one-parameter trial
gap function

�01(ωm; α) = cos α�1(ωm) + sin α�0(ωm), (56)

which interpolates between �1(ωm) at α = 0 and �0(ωm) at
α = π/2, and compute the free energy Fsc(α) as a function of
α. The result is shown in Fig. 7. We see that Fsc(α) indeed gets
smaller when α increases. We verified that Fsc(α) is quadratic
in α in the vicinity of �1, however the numerical prefactor is
very small.

For n = 2 the same calculation yields two negative eigen-
values, λ

(1)
2 and λ

(2)
2 . We show the result in Fig. 4(c). The

eigenfunction �
(1)
2 corresponding to λ

(1)
2 is sign-preserving

and the eigenfunction �
(2)
2 , corresponding to λ

(2)
2 has one

nodal point [see Fig. 5(b)]. The free energy gets reduced upon
deviations from �2(ωm) along both directions. To show this
more explicitly, we construct the trial functions

�12(ωm; α) = cos(α)�2(ωm) + sin(α)�1(ωm), (57)

which interpolates between �2(ωm) and �1(ωm), and

�02(ωm; α) = cos(α)�2(ωm) + sin(α)�0(ωm), (58)

which interpolates between �2(ωm) and �0(ωm). For both
functions, we compute Fsc as a function of α. We show the
results in Fig. 7. We see that Fsc monotonically decreases
when the trial gap function moves from �2 to �1 or to �0.
This incidentally also shows that Fsc increases upon deviation
from �1(ωm) in the direction of �2(ωm), consistent with the
result that there is only one negative eigenvalue for n = 1.

One can also construct a two-parameter trial gap func-
tion that smoothly interpolates between �0(ωm), �1(ωm), and
�2(ωm), see Fig. 7(b). For this trial function, Fsc for n = 0 is
a minimum, Fsc for n = 2 is a maximum, and Fsc for n = 1 is
an inflection point.

C. A discrete set of condensation energies Ec,n

The condensation energy for the stationary �n(ωm) is
given by Eq. (20). For γ < 2, �n(ωm) form a discrete set,
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FIG. 7. (a) Free energy relative to the normal state value Fn

[i.e., the condensation energy in Eq. (19)] along different paths that
smoothly connect �0(ωm ), �1(ωm ), and �2(ωm ) (red dots). These
paths correspond to the trial functions �01(ωm; α), �12(ωm; α), and
�0z2(ωm; α). We set γ = 0.8. Insets show zoom-ins around �1(ωm )
and �2(ωm ). (b) The two-parameter trial gap function, smoothly
interpolating between �0, �1, and �2. For this function, �1 is an
inflection point.

and accordingly Ec,n also form a discrete set. In Fig. 7(a), we
present Ec,n for representative γ = 0.8 for n = 0, 1, and 2,
using the gap functions from Fig. 3. We see that Ec,0 is indeed
the largest by magnitude. At large n, Ec,n is exponentially
small in n, as expected.

IV. LIMIT γ → 2

In this section, we discuss how this set �n(ωm) and the con-
densation energy Ec,n evolve as γ → 2. The analysis below is
for T = 0.

A. �n(ωm) at γ = 2–0

We argued in the previous section that at γ < 2 the non-
linear gap equation (3) has an infinite number of solutions
�n(ωm), whose amplitudes decrease exponentially with n.
We obtained this result by using the exact solution of the
linearized gap equation, �∞(ωm), as the starting point and
analyzing the structure of the expansion in the gap amplitude
ε. We found that ε is quantized into a discrete set of εn.
The quantization follows from the fact that at ωm  ḡ, each
term in the expansion oscillates as a function of ln |ωm| with
its own phase. The explicit result for the expansion is given
by Eq. (43), which we reproduce here for convenience of a
reader:

�(ωm) = 2ε∗|ωm|[Q1 cos(ψ ) + (ε∗)2Q3 cos(3ψ + φ3)

+ (ε∗)4Q5 cos(5ψ + φ5) + . . . ], (59)

where ε∗ = ε(ḡ/|ωm|)1−γ /2, ψ = β(γ ) ln (ḡ/|ωm|)γ + φ, and
Q2k+1, φ2k+1, and φ are functions of (ε∗)2. The quantization
sets ε to be εn ∼ e−bn(2−γ )/2, where b = O(1).

We now analyze Eq. (59) at γ → 2. Here ε∗ ≈ ε down to
smallest ωm. The series Q2k+1 in Eq. (59) remain nonsingular
and evolve continuously at γ → 2 towards

Q1 = 1 + 1.3049ε2 + 2.99051ε4 + · · · , (60)

Q3 = 0.222548 + 0.618278ε2 + · · · , (61)

Q5 = 0.0426647 + · · · (62)

The series for ψ do become singular and transform β(γ =
2) = 0.38187 (Ref. [5]) into ε-dependent βε . Explicitly,

ψ = 2β(2) ln

(
ḡ

|ωm|
)(

1 − 0.5ε2 − 0.889ε4 + · · · ) + φε

= 2βε ln

(
ḡ

|ωm|
)

+ φε, (63)

where

βε = β(2)(1 − 0.5ε2 − 0.889ε4 + · · · ). (64)

The transformation β(2) → βε shifts the frequencies, at
which ψ = π/2 + nπ , to ωm ∝ e−nπ/2βε . The corrections
to phase φ(2), defined in Eq. (45), are also singular and
transform it into φε = φ(2) + (β2ε

2/(2 − γ ))(1 + 0.889ε2 +
. . . ). This transformation is, however, irrelevant as the phase
is defined up to an integer number of 2π .

Finally, the series for φ3, φ5, etc., also remain regular, but
each term contains 2 − γ as a prefactor. In explicit form,

φ3 = (2 − γ )[1/8 − 0.577535(ε∗)2 + · · · ], (65)

φ5 = (2 − γ )[0.452288 + · · · ]. (66)

We keep ε∗ here as it will be relevant for the understanding
of the behavior at small but finite 2 − γ . We see that all φ2k+1

vanish at γ = 2. In this case, the scale, at which oscillations
would be destroyed due to phase randomization, vanishes.
This eliminates the argument for the discretization of ε.

B. Crossover from a discrete to a continuous set at γ → 2

It is instructive to analyze in more detail how the contin-
uous set of �ε emerges. At γ � 2 we expect by continuity
that the phases φ2k+1 become of order one at some ε∗. This
happens when the rest of φ2k+1 compensates the overall 2 − γ .
This happens either because prefactors become singular at
some finite ε∗, as we suggested in Ref. [5], or because they
diverge at ε∗ → ∞ as, e.g., (ε∗)1/a. In the last case, which
we analyze here, oscillations survive down to ωm ∼ ḡ(ε(2 −
γ )a)2/(2−γ ). Matching this scale with the position of one of the
extrema of cos ψ at ωm ∝ ḡe−nπ/2βε , we obtain self-consistent
equation on discretized εn

εn ∼
exp

[− π
4βεn

n(2 − γ )
]

(2 − γ )a
. (67)

We see that at γ → 2, all εn with finite n  n∗ =
| ln (2 − γ )|/(2 − γ ) become equal to εn=0 = εmax ∼ 1

(2−γ )a .
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FIG. 8. The series for Qε given by Eq. (69). The series con-
verge for ε � 0.5. The dashed line is an extrapolation to somewhat
larger ε.

As we anticipated, εmax = ∞ at γ = 2.7 Simultaneously, εn

with n � n∗ → ∞ form a continuous spectrum, and at γ =
2–0, �n(ωm) form a continuous one-parameter set

�(ε, ωm) = 2ε|ωm|(Q1(ε) cos(ψ (ε))

+ Q3(ε)ε2 cos(3ψ (ε)) + · · · ), (68)

As expected, all �(ε, ωm) with finite ε change sign infinite
number of times at ωm ∝ e−πk/(2βε ), i.e., in our classification,
they all are n = ∞ solutions. The lower point of the set is
ε = 0+, which corresponds to the solution of the linearized
gap equation, �∞(ωm). It indeed changes sign infinite number
of times.

The other end point is ε → ∞. We argue below that this
limit is continuous, i.e., this end point is the sign-preserving
�n=0(ωm). This is the case if β∞ = 0 as then ψ becomes in-
dependent on frequency and �(∞, ωm) reduces to a constant
[up to corrections in powers of ωm/ḡ, which we neglected in
(68)]. The vanishing of β∞ in turn implies that the frequencies
ωm ∝ e−πk/(2βεn ), at which �n(ωm) with a finite n changes
sign, all vanish at γ → 2, as they should.

Below we present several arguments in favor of our as-
sertion that β∞ = 0. First, we look at series expansion in
ε. Equation (64) already shows that βε decreases with ε.
To obtain more precise result, we redo the expansion in ε

self-consistently, by evaluating each term assuming that βε is
vanishingly small. We obtain β2

ε ∝ Qε , where

Qε ≡ 1 − 3

2
ε2 + 3ε4 − 103

16
ε6 + 915

64
ε8

− 4149

128
ε10 + 19075

256
ε12 − 354279

2048
ε14 + · · · (69)

Our assertion is valid if Q∞ = 0. We plot Qε in Fig. 8. The
series converge well up to ε ∼ 0.5. Within this range, Qε

7If the phases φ2k+1 become O(1) at a finite ε∗, the results are the
same, only a = 0, hence εmax is finite.

smoothly decreases with increasing ε. The behavior is at least
consistent with the vanishing of Qε and hence βε at ε = ∞.

Second, we reevaluate �ε (ωm) along the same lines as
before, by redoing the expansion in ε keeping βε vanishingly
small. The result is, up to order ε15,

�(ε, ωm) = ε|ωm|
1024

[2048ε cos(ψ ) + ε3(1024 − 768ε2

+ 768ε4 − 960ε6 + 1392ε8 − 2226ε10

+ 3810ε12 + · · · ) cos(3ψ )

− ε5(−768 + 1280ε2 − 1920ε4 + 3000ε6

− 4970ε8 + 8670ε10 + · · · ) cos(5ψ )

+ ε7(640 − 1680ε2 + 3360ε4 − 6328ε6

+ 11886ε8 + · · · ) cos(7ψ )− ε9(−560 + 2016ε2

− 5040ε4 + 11130ε6 + . . . ) cos(9ψ )

+ ε11(504 − 2310ε2 + 6930ε4 + · · · ) cos(11ψ )

− ε13(−462 + 2574ε2 + · · · ) cos(13ψ )

+ ε15(429 + · · · ) cos(15ψ ) + · · · ]. (70)

We expect that at ε → ∞, �(ε, ωm) becomes independent
on ωm at ωm → 0. This holds when the expression in square
brackets in (70) compensates the overall factor |ωm| in the
r.h.s. of (70). A simple experimentation shows that this
can happen if φ∞ = π/2, in which case cos [(2k + 1)ψ] =
(−1)k+1[(2k + 1)2βε ln (ḡ/|ωm|) + . . . .], where dots stand
for higher order of the logarithm. The expression in square
brackets in (70) then becomes the series in ln (ḡ/|ωm|) with
ε-dependent prefactors. If the series are exponential, they can
cancel the overall |ωm| in (70), however, for this the prefactors
must tend to finite values at ε = ∞

We found that the prefactor Cε for ln (ḡ/|ωm|) is propor-
tional to Qε from (69):

Cε = −4εQεβε. (71)

As Qε ∝ β2
ε , the condition that C∞ is finite yields βε ∼

(1/ε)1/3 (hence Qε ∝ 1/ε2/3 → 0).
Third, as an independent check, we set ε to be large but

finite and evaluated �ε (ωm) near each nodal point ωp, for
which ψ = π/2 + π p. Setting ωm = ωp + δω and expanding
in δω, we obtain

�ε (ωp + δω) ≈ 4(−1)pεQεβεδω. (72)

If εQεβε tends to a constant at ε → ∞, as we anticipated,
�ε (ωp + δω) ∼ (−1)pδω. This is consistent with the behav-
ior of �n(ωm) with finite n at small but finite 2 − γ in the
frequency range, where �n(ωm) changes sign n times.

Substituting βε ∝ 1/ε1/3 into (67), we find the relation
between ε and n at γ = 2–0:

n

n∗ ∼ 4a

ε1/3
. (73)

This relation holds when ε � 1, i.e., when n  n∗. A more
general expression, valid also for ε � 1, is βε = (π/4a)n/n∗.
A more sophisticated analysis is required to relate ε and n at
smaller ε.
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C. Continuum spectrum of the condensation energy

The appearance of a continuum of solutions of the Eliash-
berg gap equation at γ = 2–0 and ωD = 0 poses the question
about the spectrum of the condensation energy. At a first
glance, the condensation energy should be flat as a function
of ε because each �ε (ωm) satisfies the stationary condi-
tion δFsc/δ� = δEc/δ� = 0, hence dEc/dε = δEc/δ�ε ×
d�ε/dε = 0, We argue that in our case the situation is more
tricky because the condensation energy formally diverges
at γ = 2–0 for all ε, which creates “zero times infinity”
conundrum. We argue that after proper regularization, the
condensation energy becomes a regular nonflat function of ε.

To understand how to reconcile a nonflat Ec(ε) with the fact
that each �ε is a stationary solution, consider γ slightly below
2. For any γ < 2, ε = εn are discrete, and the condensation
energy, given by Eq. (19), is also discrete Ec,n. Let’s start with
n = 0. At small frequencies the gap function �0(ωm) tends to
a finite value �0 ∼ ḡ. The first term in Eq. (19) is regular and
of order ḡ2NF . The leading contribution to the second term in
Eq. (19) comes from small frequencies and has the form

−NF ḡγ

∫ ω∗

0
dωm

∫ ω∗

0
dωm′

1

|ωm + ωm′ |γ , (74)

where the upper limit ω∗ ∼ ḡ. Evaluating the integral we find
that the condensation energy diverges at γ → 2 as

Ec,0 ≈ −ḡ2NF
1

2 − γ
. (75)

Consider next the condensation energy for a finite n. Be-
cause all �n(ω) tend to finite �n(0) at vanishing ωm, the
divergent 1/(2 − γ ) term is the same as in (75). The differ-
ence δEn = Ec,n − Ec,0 comes from the range where �n(ωm)
changes sign n times between the largest ωm ∼ ḡe−π/2βεn and
the smallest ωm ∼ ḡe−πn/2βεn . We obtained (see Appendix E
for details) δEc = cḡ2NF n, where c = O(1). Together with
Eq. (75) this yields

Ec,n = −ḡ2NF

(
1

2 − γ
− cn + · · ·

)

= Ec,0(1 − cn(2 − γ ) + · · · ). (76)

Equation (76) is valid as long as n  n∗, more ac-
curately, when n � n∗/((2 − γ )a/3| ln (2 − γ )| [ε ≈ εmax ∼
1/(2 − γ )a]. For larger n, the factor n(2 − γ ) in the r.h.s. of
(76) is replaced by

Jn = 2βε

π

(
1 − e− πn(2−γ )

2βε

) = 2βε

π
(1 − (ε(2 − γ )a)2) ≈ 2βε

π

(77)

(see again Appendix E 2 for details). This result holds for
n ∼ n∗, i.e., ε ∼ 1. For numerically large ε (but ε  εmax ∼
1/(2 − γ )a), βε ∼ 1/ε3, hence

Ec(ε) ≈ Ec,0

(
1 − c̄

ε1/3

)
, (78)

where c̄ = O(1). In the opposite limit n � n∗, i.e., at ε →
0, the gap function �∞(ωm) ∝ ε does not saturate at a fi-
nite value at ωm = 0. Yet we found in explicit calculation
in Appendix E 2 that Ec(ε) ∝ ε2/(2 − γ ) still diverges as

1/(2 − γ ). For a generic ε, we expect

Ec = Ec,0g(ε), (79)

where g(ε) ≈ 1 − c̄/ε1/3 for large ε and g(ε) ∼ ε2 for
small ε.8

The singular 1/(2 − γ ) dependence in Ec is the reason why
Ec(ε) disperses with ε despite that for each ε, �ε (ωm) is a
stationary point of Fsc. To see this explicitly, we substituted
�ε (ωm) from (68) into the expression for Ec, Eq. (19), and
expanded around some representative ε = ε0. The linear term
in the expansion of Ec(ε) in ε − ε0 vanishes, as it should, but
the prefactors for all higher derivatives diverge. In this special
case, the Taylor expansion in ε − ε0 must be kept to an infinite
order to obtain the correct functional form of Ec(ε) near ε0.

We see from (79) that if we measure Ec(ε) in units of
Ec(∞), we obtain the dispersing Ec/Ec(∞) = g(ε). This,
however, makes sense if Ec(∞) remains finite at γ = 2–0, i.e.,
if 1/(2 − γ ) divergence is regularized. The way to do this is to
take the double limit γ → 2 and NF /N → 0 (i.e., EF ∼  →
∞), such that the product NF /(N (2 − γ )) remains finite at
γ = 2–0. We illustrate this in Fig. 9. Once Ec(∞) is finite,
the spectrum of the condensation energies becomes a regular
gapless function of ε. In particular, for a finite n, the difference
(Ec,n − Ec,0)/N ∼ NF n/N vanishes.

The emergence of a continuum spectrum of Ec(ε) at γ =
2 + 0 due to a collapse of all Ec,n with finite n onto Ec,0

has a profound effect on the behavior of the superfluid stiff-
ness ρs at T = �D = 0 as it opens up a gapless channel
of “longitudinal” gap fluctuations. In Ref. [5], we argued
semi-phenomenologically that these fluctuations give rise to
singular downward renormalization of the stiffness and give
rise to vanishing Tc at γ = 2–0. We leave the detailed analysis
of ρs, based on the formula for Ec(ε), obtained in this paper,
to a separate study.

Note that the 1/(2 − γ ) divergence can also be regularized
by a finite T or a finite ωD. In both cases, the would be
divergent term in Ec becomes

−ḡ2NF ln
ḡ

T
or − ḡ2NF ln

ḡ

ωD
. (80)

The spectrum of Ec,n then remains discrete at γ = 2, but
becomes continuous in the properly defined double limit
T, ωD → 0 and NF → 0. Incidentally, the same double limit
is also required to keep vertex corrections to the Eliashberg
equations small. Vertex corrections at T = 0 are controlled by
λE = (NF /N )ḡ2/ωD), and to keep them small one has to set
NF /N to zero along with ωD → 0.

V. CONCLUSIONS

In this work, we extended our earlier analysis of pairing in
a metal tuned to a T = 0 quantum critical point, at which it
develops a spontaneous order in the particle-hole channel. At
this point, bosonic fluctuations of a critical order parameter
become massless. In earlier works [1–6], we analyzed the
pairing mediated by a massless boson and argued that this

8The emergence of the overall factor 1/(2 − γ ) in Ec was not noted
in Ref. [5]. Equation [40] in that paper is incorrect.
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FIG. 9. (Schematic) condensation energy Ec,n for (a) γ = 2 and (b) a generic γ < 2.

problem is qualitatively different from the BCS/Eliashberg
pairing in a metal away from a critical point. Specifically, a
massless boson gives rise not only to the pairing, but also to
a NFL behavior in the normal state. The competition between
NFL and pairing leads to new physics, not seen in noncritical
metals. We argued that under certain conditions low-energy
properties of a critical metal are described by a 0 + 1 di-
mensional dynamical model with an effective four-fermion
interaction V (�) ∝ 1/|�|γ . This model has been nicknamed
the γ model. We argued that for γ < 2, the ground state is
a superconductor with a regular, sign-preserving gap function
�0(ωm) on the Matsubara axis. Yet, the gap equation at T = 0
also allows an infinite, discrete set of topologically distinct
stationary solutions �n(ωm) with n nodal points at positive ωm

(n = 1, 2, . . . ). We argued that the set evolves with increasing
γ and eventually becomes a continuous one at γ = 2–0. At
this γ , the system undergoes a topological transition into a
state with novel measurable features.

Here we performed an in-depth analysis of the free energy
of the γ model for a generic γ < 2 and for γ infinitesimally
close to 2. One goal of our study was to understand the profile
of the free energy near each stationary �n(ωm), another was
to understand in more detail how a discrete set of �n(ωm)
becomes continuous at γ = 2–0 and how the spectrum of
condensation energies evolves near this γ .

For the free energy analysis, we first compared the two
forms of the free energy—the variational one, obtained by
extending the Luttinger-Ward-Eliashberg variational approach
to arbitrary γ , and the actual one, which appears in the
partition function after Hubbard-Stratonovich transformation.
The variational free energy has a simple form and yields the
stationary gap equation, which agrees with the one obtained
diagrammatically by summing up ladder diagrams with the
fully dressed Green’s functions. Yet, for a massive pairing
boson it does not adequately describe fluctuations around a
stationary point as it neglects variations of the quasiparticle
residue Z (ωm). We showed that for a massless boson fluc-
tuations of Z around its stationary value become irrelevant,
and the variational free energy can be used to obtain not only
stationary solutions, but also fluctuations around them. For
γ = 2, this has been earlier found in Ref. [50].

To obtain stationary �n(ωm) at T = 0, we used as a
point of departure the exact solution for infinitesimally small
�∞(ωm), which we found in previous works, expanded in
the gap amplitude ε, and explicitly demonstrated that ε is
discretized into εn. Using this reasoning, we obtained �n(ωm)
with n = 0, 1, and 2, which satisfy the gap equation with
high numerical accuracy.

We then expanded the free energy near stationary �n(ωm)
with these n to second order in deviations and analyzed the
stability of each solution. We found that the n = 0 solution is
a global minimum, while the expansion around �1(ωm) yields
one negative eigenvalue for deviations towards �0(ωm), and
the expansion around �2(ωm) yields two negative eigenvalues
for deviations towards �0(ωm) and �1(ωm). By continuity, we
expect n negative eigenvalues for �n(ωm). This result implies
that �0 is a true minimum, while �n with n > 0 is a saddle
point with n unstable directions.

As a biproduct of this analysis, we obtained the free energy
and the specific heat C(T ) in the normal state and compared
the results with recent studies by other groups.

For our second goal, we analyzed in more detail than
before the transformation from a discrete set of �n(ωm) into
a continuous one-parameter set �(ε, ωm) at γ = 2–0. We
demonstrated that when the exponent γ increases towards 2,
the set of discretized gap amplitudes εn progressively splits
into two subsets: the ones with n < n∗ ∼ | ln(2 − γ )|/(2 − γ )
all approach ε0, while the ones with n > n∗ form a continuum
set �(ε, ωm), where ε is a function of the ratio n/n∗ when both
tend to infinity. At γ = 2–0, all functions �(ε, ωm) oscillate
infinite number of times down to ωm = 0, i.e., in the count of
nodal points they all are n = ∞ solutions (the solution of the
linearized gap equation is the one at infinitesimally small ε).
This holds for all finite ε. However, the end point at ε = ∞ is
a sign-preserving �0(ωm), which at γ = 2–0 incorporates all
gap functions �n(ωm) with finite n. We showed that the range,
where �n(ωm) changes sign n times, shrinks to progressively
lower frequencies as γ → 2.

We used these results to obtain the condensation energy
Ec,n—the difference between free energy of a superconduc-
tor and of a would be normal state at the same T . We
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found Ec(ε) = Ec(∞)g(ε), where Ec(∞) = ḡ2NF (1/(2 − γ ),
and g(ε � 1) = 1 − O(1/ε1/3) and g(ε  1) ∼ ε2. We ar-
gued that this result makes sense if Ec(∞) remains finite at
γ = 2–0, i.e., if 1/(2 − γ ) divergence is regularized. The way
to do this is to take the double limit γ → 2 and NF /N → 0
(i.e., EF ∼  → ∞), such that the product NF /(N (2 − γ ))
remains finite at γ = 2–0. At the same time, we argued that
1/(2 − γ ) divergence in Ec(∞) is is the reason why Ec(ε)
disperses with ε despite that all �ε (ωm) are stationary points
of the free energy. We argued that if we expand Ec(ε) around
some ε0, the linear term in the expansion vanishes, as it
should, but the prefactors for all higher derivatives diverge.
In this singular case, Taylor expansion in ε − ε0 must be kept
to an infinite order to obtain the correct functional form of
Ec(ε).

We argued in Ref. [6] that γ = 2 is a critical point of
a topological phase transition. The argument is that the gap
function �0(ωm), for which the condensation energy is the
largest by magnitude for γ < 2 and γ > 2, lives on different
Riemann surfaces at γ < 2 and γ > 2. A related argument
that γ = 2 is special is that in the upper frequency half-plane,
�0(z), where z = ω′ + iω′′, possesses dynamical vortices, and
their number becomes infinite when γ approaches 2 from ei-
ther side. It is natural to expect a gapless branch of excitations
at the critical point, and the emergence of a gapless continuum
of Ec(ε) is in line with this reasoning.

The emergence of a continuum spectrum of Ec(ε) at
γ = 2 + 0 due to a collapse of all Ec,n with finite n onto
Ec,0 has a profound effect on the behavior of the super-
fluid stiffness ρs at T = �D = 0 as it opens up a gapless
channel of “longitudinal” gap fluctuations. In [5] we argued
semi-phenomenologically that these fluctuations give rise to
singular downward renormalization of the stiffness and give
rise to vanishing Tc at γ = 2–0. We leave the detailed analysis
of ρs, based on the formula for Ec(ε), obtained in this paper,
to a separate study. This analysis has to be made at small,
but finite ωD. The limit ωD → 0 also has to be taken together
with EF → ∞ to keep vertex corrections to the Eliashberg
gap equation small.
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APPENDIX A: EXPANSION OF FREE ENERGY
AND EQUIVALENCE OF Fsc AND Fvar

sc at ωD → 0

In this Appendix, we show that for a finite ωD, the expan-
sion of the actual free energy of an Eliashberg superconductor,
Fsc, to second order in variations around a stationary solution
�n(ωm) is non equivalent to the expansion of the variational
free energy F var

sc . However, at ωD → 0, the expansions become
equivalent for any value of γ at a finite T and for γ > 1 at
T = 0. We verified that F var

sc and Fsc remain equivalent also
beyond the second order.

1. Computation of V −1(�m)

The free energy Fsc is given by Eq. (17). It contains the
“inverse” interaction V −1(�m), which is the Fourier transform
of 1/V (τ ). We will need the explicit form of V −1(�m) at a
finite T and ωD  T . We compute it in this subsection and
use the result in the next subsection.

The interaction V (�m) is given by Eq. (2):

V (�m) = ḡγ(
�2

m + ω2
D

)γ /2 . (A1)

Its inverse Fourier transform is

V (τ ) = T

(
ḡ

ωD

)γ[
1 +

(
ωD

2πT

)γ

× (Liγ (e2πT τ ) + Liγ (e−2πT τ ))

]
, (A2)

where Liγ (x) is a polylogarithmic function. For ωD  T , the
second term is a small correction. Then

V −1(τ ) = 1

T

(
ωD

ḡ

)γ[
1 −

(
ωD

2πT

)γ

× (Liγ (e2πT τ ) + Liγ (e−2πT τ ))

]
. (A3)

The Fourier transform of (A3) is

V −1(�m) =
∫ 1/T

0
V −1(τ ) cos (�mτ )

= 1

T 2

(
ωD

ḡ

)γ [
δm −

( ωD

2πT

)γ

Im

]
, (A4)

where δm,0 is a Kronecker symbol and

Im = 1

2π

∫ 2π

0
dx cos (mx)(Liγ (ex ) + Liγ (e−x )). (A5)

We verified that I0 = 0 and Im>0 = 1/|m|γ . As a result,

V −1(�m) = 1

T 2

(
ωD

ḡ

)γ[
δm,0 − (1 − δm,0)

(
ωD

|�m|
)γ]

.

(A6)

The original V (�m) can be equally represented as

V (�m) =
( ḡ

ωD

)γ
[
δm,0 + (1 − δm,0)

(
ωD

|�m|
)γ]

. (A7)

We will use Eqs. (A6) and (A7) below.
We note in passing that at T = 0 the computation of

V −1(�m) for a continuous �m is more involved and requites
one to regularize the integral over τ and then take the proper
double limit. To be brief, we show how it works for γ = 2.
We have

V (τ ) = 1

2π

∫ ∞

−∞
d�mei�mτV (�m) = ḡ2

2ωD
e−ωD|τ |. (A8)

Then

V −1(τ ) = 2ωD

ḡ2
eωD|τ |. (A9)

The inverse interaction V −1(�m) = ∫ ∞
−∞ d�me−i�mτV −1(τ ).

To make this integral convergent, we add to the integrand
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e−δτ 2
and set δ → 0 at the end of calculations. Integrating over

τ , we obtain

V −1(�m) = 2ωD

ḡ
(S(�m) + S(−�m)), (A10)

where at large |�m| � (δ)1/2,

S(�m) = − 1

ωD + i�m
+

√
π

δ
e

(ωD+i�m )2

4δ . (A11)

Then

V −1(�m) = 4

ḡ2

[
− πωDδ(�m) − ω2

D

�2
m

+
√

π√
δ

ωD cos

(
ωD�m

2δ

)
e

(ωD+i�m )2

4δ

]
. (A12)

A simple experimentation shows that in the double limit, in
which we set ωD → 0 first and set δ → 0 after that, the last
term in (A12) reduces to 2πωDδ(�m) (To see this one can
just integrate the last term in (A12) over �m. The integration
yields 2πωD.) The total V −1(�m) is then

V −1(�m) = 4ωD

ḡ2

[
πδ(�m) − ωD

�2
m

]
. (A13)

In the same limit ωD → 0, we can express V (�m) as

V (�m) = ḡ2

ωD

[
πδ(�m) + ωD

�2
m

]
. (A14)

This analysis can be easily extended to γ < 2.

2. Expansion of free energy Fsc,n in ωD

The free energy, obtained in Hubbard-Stratonovich formal-
ism, is given by Eq. (17). We select the stationary solution
for the gap �n(ωm) and the quasiparticle residue Zn(ωm) =
Z (�n(ωm)) with some n and expand around them to sec-
ond order in δ�(ωm) = �(ωm) − �n(ωm) and δZ (ωm) =
Z (ωm) − Zn(ωm). The zeroth-order term F (0)

sc,n is

F (0)
sc,n = −NF 2πT

∑
m

Zn(ωm)
√

ω2
m + �2

n(ωm)

+ NF T 2
∑
m,m′

V −1(ωm − ωm′ )

× [Zn(ωm)�n(ωm)Zn(ωm′ )�n(ωm′ )

+ωmωm′ (Zn(ωm) − 1)(Zn(ωm′ ) − 1)]. (A15)

Using the Eliashberg equations

Zn(ωm)�n(ωm)

= πT
∑

m′
V (ωm − ωm′ )

�n(ωm′ )√
ω2

m′ + �2
n(ωm′ )

, (A16)

ωm(Zn(ωm) − 1)

= πT
∑

m′
V (ωm − ωm′ )

ωm′√
ω2

m′ + �2
n(ωm′ )

, (A17)

we reexpress F (0)
sc,n as

F (0)
sc,n = −NF 2πT

∑
m

Zn(ωm)
√

ω2
m + �2

n(ωm) + NF π2T 2
∑
m,m′

�n(ωm)�n(ωm′ ) + ωmωm′√
ω2

m + �2
n(ωm)

√
ω2

m′ + �2
n(ωm′ )

S(m, m′), (A18)

where

S(m, m′) = T 2
∑

m′′,m′′′
V −1(ωm − ωm′′ )V (ωm′′ − ωm′′′ )V (ωm′′′ − ωm′ ). (A19)

The sum is evaluated using the relation

T 2
∑
m′′

V −1(ωm − ωm′′ )V (ωm′′ − ωm′ ) = δm,m′ . (A20)

Using (A20), we obtain S(m, m′) = V (ωm − ωm′ ) and

F (0)
sc,n = −NF 2πT

∑
m

Zn(ωm)
√

ω2
m + �2

n(ωm) + NF π2T 2
∑
m,m′

�n(ωm)�n(ωm′ ) + ωmωm′√
ω2

m + �2
n(ωm)

√
ω2

m′ + �2
n(ωm′ )

V (ωm − ωm′ ). (A21)

Using the Eliashberg equations once again, we re-express F (0)
sc,n as

F (0)
sc,n = −NF 2πT

∑
m

ω2
m√

ω2
m + �2

n(ωm)
− π2T 2NF

∑
m,m′

V (ωm − ωm′ )
ωmωm′ + �n(ωm)�n(ωm′ )√

ω2
m + �2

n(ωm)
√

(ωm′ )2 + �2
n(ωm′ )

. (A22)

This is the same expression as the variational free energy F var
sc for stationary �n(ωm), Eq. (16).

First-order terms in the expansion of Fsc,n in δ� and δZ vanish because Fsc is stationary with respect to variations around
�n(ωm) and Z (�n(ωm)). The expansion to second order in variations yields

F (2)
sc,n = −NF πT

∑
m

(δ�m)2Zn(ωm)ω2
m(

ω2
m + �2

n(ωm)
)3/2 + NF T 2

∑
m,m′

V −1(ωm − ωm′ )

× [δ�mδ�m′Zn(ωm)Zn(ωm′ ) + δZmδZm′ (ωmω′
m + �n(ωm)�n(ω′

m)) + 2δZmδ�m′Zn(ωm′ )�n(ωm)]. (A23)
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For a generic ωD, δZm and δ�m are two independent variations. For small ωD, the largest contribution to Zn(ωm) comes from
the term with m = m′ in the r.h.s. of (A16). If we keep only this term, we find

Zn(ωm) =
(

ḡ

ωD

)γ
πT√

ω2
m + �2

n(ωm)
. (A24)

Based on this observation, we split δZm into two components, one of which satisfies Eq. (A24):

δZm = −�n(ωm)Zn(ωm)δ�m

ω2
m + �2

n(ωm)
+ δ̄Zm. (A25)

The first term in (A25) would be the variation of Zn(ωm) if Eq. (A24) was valid for arbitrary �(ωm), not just a stationary �n(ωm)
Substituting δZm from (A25) into (A23), we find F (2)

sc,n as the sum of three terms. The first one contains only δ�, the second
one contains only δ̄Z , and the third is the mixed term. The term with δ̄Z is

NF T 2
∑
m,m′

V −1(ωm − ωm′ )δ̄Zmδ̄Zm′ (ωmω′
m + �n(ωm)�n(ω′

m)). (A26)

We now use Eq. (A6) for V −1(�m). Substituting into (A26), we find that this component of F (2)
sc,n contains ω

γ

D as the overall factor
and hence vanishes as ωD → 0. The same happens with the mixed term. It is

−2NF T 2
∑
m,m′

V −1(ωm − ωm′ )δ̄Zmδ�m′
Zn(ωm′ )ωm′ (�n(ωm′ )ωm − �n(ωm)ωm′ )

ω2
m′ + �2

n(ωm′ )
. (A27)

Substituting V −1(ωm − ωm′ ) from (A6), we find that the leading term with m = m′ does not contribute because the summand
in (A27) vanishes at m = m′. Combining the subleading term in V −1 with Zn(ωm) ∝ (ḡ/ωD)γ , we find that the overall factor
in (A27) again scales as ω

γ

D and vanishes at ωD → 0. This implies that variations δ̄Z do not affect the free energy, at least for
quadratic deviations from a stationary point.

The remaining term in F (2)
sc,n is quadratic in δ�. Combing all contributions of this kind, we obtain

F (2)
sc,n = −NF

∑
m

(δ�m)2Zn(ωm)ω2
m(

ω2
m + �2

n(ωm)
)3/2 + NF T 2

∑
m,m′

V −1(ωm − ωm′ )δ�mδ�m′

× Zn(ωm)Zn(ωm′ )ωmω′
m(ωmω′

m + �n(ωm)�n(ω′
m))(

ω2
m + �2

n(ωm)
)(

ω2
m′ + �2

n(ωm′ )
) . (A28)

Substituting V −1 from (A6), we find after simple algebra that potentially divergent terms at ωD → 0 cancel out, and the remaining
piece is

F (2)
sc,n = −NF πT

∑
m

(δ�m)2Zn(ωm)ω2
m(

ω2
m + �2

n(ωm)
)3/2 + NF T 2

∑
m,m′

δ�mδ�m′V −1(ωm − ωm′ )

×Zn(ωm)Zn(ωm′ )ωmω′
m(ωmω′

m + �n(ωm)�n(ω′
m))(

ω2
m + �2

n(ωm)
)(

ω2
m′ + �2

n(ωm′ )
) . (A29)

Using again Eq. (A6) for V −1(ωm − ωm′ ) and reexpressing it via V (ωm − ωm′ ) from (A7), we obtain F (2)
sc,n as the sum of the two

terms: F (2)
sc,n = F (2,a)

sc,n + F (2,b)
sc,n , where

F (2,a)
sc,n = NF πT

∑
m

(δ�m)2ω2
m(

ω2
m + �2

n(ωm)
)3/2 + NF

π2

2
T 2

∑
m �=m′

V
(
ωm − ωm′

) ωmω′
m(

ω2
m + �2

n(ωm)
)3/2

(ω2
m′ + �2

n(ωm′ ))3/2

× [(δ�mωm′ − δ�m′ωm)2 + (δ�m�n(ωm′ ) − δ�m′�n(ωm))2] (A30)

and

F (2,b)
sc,n = NF

(
ωD

ḡ

)γ

πT
∑

m

(δ�m)2ω2
m(

ω2
m + �2

n(ωm)
)(Zn(ωm) − πT√

ω2
m + �2

n(ωm)

(
ḡ

ωD

)γ)2

. (A31)

Using Eq. (4), we find that the last bracket is the effective Zn(ωm), without the m′ = m term in the r.h.s. of (4). This expression
is nonsingular at ωD → 0. Then F (2,b)

sc,n vanishes at vanishing ωD because of the overall factor. Hence, in this limit, F (2)
sc,n = F (2,a)

sc,n .
The expression for F (2)

sc,n can be further simplified by using the Eliashberg equation for �n(ωm) and re-expressing the first term
in (A30) as the double sum over m and m′. The result looks more compact when expressed in terms of Dn(ωm) = �n(ωm)/ωm
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and δDm = δ�m/ωm. After simple algebra, we obtain

F (2)
sc,n = NF π2T 2ḡγ

∑
m,m′�0

1

Dn(ωm)Dn(ωm′ )

1(
1 + D2

n(ωm)
)3/2(

1 + D2
n(ωm′ )

)3/2 Qm,m′ , (A32)

where

Qm,m′ = ḡγ (δDmDn(ωm) − δDm′Dn(ωm′ )2)

(
1

|ωm − ωm′ |γ + 1

|ωm + ωm′ |γ
)

+
(
δDmD2

n(ωm) − δDm′D2
n(ωm′ )

)2

|ωm − ωm′ |γ +
(
δDmD2

n(ωm) + δDm′D2
n(ωm′ )

)2

|ωm + ωm′ |γ . (A33)

Note that the term with m = m′ vanishes because of vanishing numerator (to see this clearly one should keep infinitesimally
small ωD in the denominator).

We now perform the same calculation staring from the variational free energy F var
sc , Eq. (16). This free energy depends only

on �(ωm). Expanding Eq. (16) to second order in δ�m = �(ωm) − �n(ωm) and using the Eliashberg equation for stationary
�n(ωm), we obtain after long but straightforward algebra that F var

sc,n = F var,(0)
sc,n + F var,(2)

sc,n , where F var,(0)
sc,n and F var,(2)

sc,n are given by
the same Eqs. (A22) and (A32) as F (0)

sc,n and F (2)
sc,n, respectively. This implies that at vanishing ωD, the expansion of the actual free

energy around a stationary point coincides with the expansion of the variational free energy. For γ = 2, this has been established
in Ref. [50].

More accurately, at a nonzero T , F var,(0)
sc,n coincides with F (0)

sc,n for arbitrary ωD, but F var,(2)
sc,n = F (2)

sc,n only up to corrections of
order (ωD/ḡ)γ . This holds for all n, including n = 0. At T = 0, F var,(0)

sc,n and F (0)
sc,n again coincide, and F var,(2)

sc,n and F (2)
sc,n differ by

terms of order (ωD/ḡ)γ−1. This difference is small for γ > 1, when Zn(ωm) diverges at vanishing ωD. For these γ , F (2)
sc,n is given

by Eq. (A32) with π2T 2 ∑
m,m′�0 replaced by (1/4)

∫ ∞
0

∫ ∞
0 dωmdωm′ . For γ < 1, Zn(ωm) remains finite at ωD = 0, and F var,(2)

sc,n

and F (2)
sc,n do not coincide, even at ωD = 0. Specifically, F var,(2)

sc,n is still given by Eq. (A32) with the sum replaced by the integral,
but F (2)

sc,n has an additional contribution from fluctuations of δ̄Zm.

3. Beyond second order in δ�m

We now go further and verify that at T > 0, F var
sc and Fsc remain equivalent to all orders in δ�m, up to terms O(ωD/ḡ)γ . To

see this, we use as inputs the facts that at vanishing ωD and a finite T (i) V −1(�m) is represented by series of (ωD/ḡ)γ as in
Eq. (A6), (ii) �m remains a regular function of ωm, and (iii) Zm contains a divergent thermal piece. We single out the divergent
term and redefine Zm as

Zm = πT√
ω2

m + �2
m

(
ḡ

ωD

)γ

+ Z̄m. (A34)

We then expand Fsc in series of (ωD/ḡ)γ . After straightforward algebra, done without using the Eliashberg gap equations, we
obtain:

Fsc = F var
sc + NF

(
ωD

ḡ

)γ ∑
m

[
Z̄2

m

(
ω2

m + �2
m

) − 2umZ̄mω2
m + vmω2

m

] + O

(
ωD

ḡ

)2γ

, (A35)

where

um = 1 + 2πT
∑
m �=m′

V (m − m′)
ω′

m/ωm + �m′�m/ω2
m√

ω2
m′ + �2

m′

, vm = 1 + 2πT
∑
m �=m′

V (m − m′)
ω′

m/ωm√
ω2

m′ + �2
m′

. (A36)

One can check that the prefactor for (ωD/ḡ)γ is nonsingular. Eq (A35) then shows that Fsc and F var
sc differ by terms O(ωD/ḡ)γ .

This difference vanishes in the limit ωD → 0.

APPENDIX B: EXPANSION OF FREE ENERGY
AROUND STATIONARY Fsc,n FOR THE SUBCLASS

OF ANALYTIC GAP FUNCTIONS

In this Appendix, we discuss the details of our calculation
of the matrix of quadratic deviations from �n(ωm), assuming
that the deviations δ�(ωm) are analytic functions of complex
z = ω′ + iω′′, when extended into the upper half-plane of
frequency.

An analytic δ�(ωm) can by expressed via the Cauchy
relation in terms of ψ (ω) = Im δ�(ω) along the real axis.

Substituting this relation into the expression for the free en-
ergy, we obtain F (2)

sc,n in the form

F (2)
sc,n = NF

∫ ∞

0

∫ ∞

0
dωdω′ψn(ω)ψn(ω′)K̄ω,ω′ , (B1)

where

K̄ω,ω′ =
∑

p

λp
nSp

n (ω)Sp
n (ω′) (B2)
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FIG. 10. Eigenvalues of the kernel matrix of F (2)
sc,n in a restricted

subspace analytic in the upper half-plane of frequency, where (a) n =
0, (b) n = 1, and (c) n = 2 solutions. Here we take γ = 0.8.

and

Sp
n (ω) = 2T

∑
m

�
p
n (ωm)ω

ω2 + ω2
m

. (B3)

The functions Sp
n (ω) are not orthogonal and their set is over-

complete, as one can explicitly verify. We now introduce a
complete set of orthogonal functions S̄k

n (x), which satisfy∫ ∞

0
dxS̄k

n (x)S̄k′
n (x) = δk,k′ . (B4)

Expressing Qω,ω′ and Sp
n (x) in terms of these functions, we

obtain

Qω,ω′ =
∑

p

λ̄p
nS̄p

n (ω)S̄p
n (ω′),

Sp
n (x) =

∑
k

gp,kS̄k
n (x). (B5)

A simple manipulation then shows that

λ̄p
n =

∑
k

λk
ng2

p,k . (B6)

In Fig. 10, we compare the eigenvalues λ̄
p
n (n = 0, 1, 2)

with λ
p
n , which we obtained by diagonalizing F (2)

sc,n from
Eq. (52) from the main text without imposing the condition of
analyticity on δ�(ωm). We see that the two sets are nonequiv-
alent, yet in both cases there are n negative eigenvalues for
the expansion around �n(ωm). The eigenfunctions, which cor-
respond to negative λ̄

p
n , define the unstable directions in the

restricted subspace towards �n′ (ωm) with n′ < n, as shown in
Fig. 11. This implies that all physically relevant perturbations

FIG. 11. Eigenfunctions corresponding to the negative eigenval-
ues shown in Fig. 10 (b) n = 1 and (c) n = 2, which are analytic in
the upper half-plane of frequency. Here we take γ = 0.8.

are described by analytic δ�(ωm). This result is also con-
sistent with the analysis in the main text of the free energy
for hybrid trial functions, made of combinations of stationary
�n(ωm). All stationary gap functions are analytic in the upper
half-plane of frequency, as we explicitly verified, hence the
hybrid trial functions are also analytic.

APPENDIX C: EVOLUTION OF TRIAL �trial
n (ωm)

UNDER ITERATIONS

Our trial solutions “almost” satisfy the gap equation, but
are not the exact �n(ωm) and hence evolve under itera-
tions. The analysis in the main text and in the previous
Appendix shows that under iterations all trial �trial

n (ω) should
slowly move towards the actual �0(ωm). To verify this, we
re-express the gap equation as

�(ωm) =
πT ḡγ

∑
m′ �=m

1
|ωm−ω′

m|γ
�(ω′

m )√
(ω′

m )2+�2(ω′
m )

1 + πT ḡγ

2
�(ωm )

ωm

∑
m′ �=m

1
|ωm−ω′

m|γ
ω′

m√
(ω′

m )2+�2(ω′
m )

(C1)

and initiate the iteration process by substituting the trial
�trial

n (ωm) into the r.h.s.
For n = 0, the iteration procedure converges to the exact

�0(ωm), which we already used in the calculation of eigen-
functions for the free energy variations. For n = 1, the trial
�trial

1 (ωm) remains almost unchanged under first few itera-
tions, but eventually gets modified and moves towards �0(ωm)
(see Fig. 6). The same happens with the trial �trial

2 (ωm).
To quantify this analysis, we linearized the gap equa-

tion (C1) in deviations from the trial gap functions and found
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FIG. 12. Eigenvalues λ̄p of the corresponding kernel of the iter-
ation procedure following Eq. (C1) for the n = 0, n = 1, and n = 2
gap functions, respectively, where γ = 0.8. Solid symbols mark the
eigenstates corresponding to unstable “directions” of the iteration
matrix. The eigenvalue λ̄p slightly above 1 for both n = 1, 2 solu-
tions corresponds to stable “direction” of the iteration matrix, whose
value becomes larger than one because the trivial gap function is
close to not exactly located at the saddle point of the free-energy
functional.

the eigenvalues of the corresponding kernel, λ̄
(p)
n . One can

easily verify that the trial function is stable (i.e., the iteration
procedure converges) if |λ̄(p)

n | < 1 for all p and unstable if
|λ̄(p)

n | > 1 for at least for one value of p. We show the result
in Fig. 12. We see that for n = 0 all eigenvalues are below 1,
while for n = 1 and n = 2, there are one and two eigenvalues
larger than 1, respectively.

APPENDIX D: EXPANSION IN TERMS
OF THE GAP AMPLITUDE

In this Appendix, we describe in some detail amplitude
expansion for the function D(ωm) = �(ωm)/ωm. Expanding

the r.h.s. of Eq. (43) in powers of D, we obtain

ωmD(ωm) = ḡγ

2

∫ ∞

−∞
dω′

m(D(ω′
m) − D(ωm))

sgn(ω′
m)

|ω′
m − ωm|γ

×
(

1 − 1

2
D2(ω′

m) + 3

8
D4(ω′

m) + · · ·
)

. (D1)

We will be searching for the solution in the form

D(ωm) =
∑

j

D(2 j+1)(ωm), (D2)

where j = 0, 1, 2, . . . The first term D(1)(ωm) is the solution
of the linearized gap equation [the one which we labeled
as D∞(ωm) in the main text]. We assign an overall fac-
tor ε to D(1)(ωm) and set D(2 j+1)(ωm) to be proportional to
ε (2 j+1). The expansion in (D2) then holds in powers of ε2.
At each order of the expansion in ε we obtain the equa-
tion on D(2 j+1)(ωm) with the source term expressed in terms
of D(2 j+1)(ωm) with smaller j. Specifically,

ωmD(2 j+1)(ωm) − ḡγ

2

∫ ∞

−∞
dω′

m

(
D(2 j+1)(ω′

m) − D(2 j+1)(ωm)
)

sgn(ω′
m)

|ω′
m − ωm|γ = K (2 j+1)(ωm), (D3)

where

K (0)(ωm) = 0, (D4)

K (3)(ωm) = − ḡγ

4

∫ ∞

−∞

dω′
msgn(ω′

m)

|ω′
m − ωm|γ

× (
D(1)(ω′

m) − D(1)(ωm)
)
(D(1) )2(ω′

m), (D5)

K (5)(ωm) = ḡγ

2

∫ ∞

−∞

dω′
msgn(ω′

m)

|ω′
m − ωm|γ

×
[
−1

2

(
D(3)(ω′

m) − D(3)(ωm)
)
(D(1) )2(ω′

m)

+ (
D(1)(ω′

m) − D(1)(ωm)
)

×
(

3

8
(D(1) )4(ω′

m) − D(1)(ω′
m)D(3)(ω′

m)

)]
,

(D6)

and so on.
Below we focus on the solution for D(2 j+1)(ωm) at small

ω  ḡ. At these frequencies,

D(1)(ωm) = 2ε∗ cos (ψ0(ωm)), (D7)

where ε∗ = ε|ωm|γ /2−1 and

ψ0(ωm) = β ln |ωm/ḡ|γ + φ, (D8)

where β = βγ and φ = φ(γ ) are γ -dependent numbers (see
the discussion around Eq. (42) in the main text and Refs. [1,4–
6]). Substituting this D(1)(ωm) into (D5) we obtain the source
term for D(3)(ωm) in the form

K (3)(ω) = (ε∗)3ḡγ |ωm|1−γ (ε∗)3
(
eiψγ (ω)I (3)

1 + e3iψ0(ω)I (3)
3

)
+ c.c., (D9)
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where

I (3)
1 ≡ − 1

4 I (3α + iβγ , 2α + 2iβγ ) − 1
2 I (3α + iβγ , 2α), (D10)

I (3)
3 ≡ − 1

4 I (3α + 3iβγ , 2α + 2iβγ ), (D11)

α ≡ γ /2 − 1, and

I (a, b) ≡
∫ ∞

−∞

dx

|x − 1|γ
(|x|a − sgn(x)|x|b). (D12)

This integral is infrared convergent for γ < 3. It contains the “high-energy” part, which is determined by internal frequencies of
order ḡ, and the universal part, which comes from x = O(1) and determines the behavior of D(3)(ωm) at ωm  ḡ. The universal
part of I (a, b) is

I (a, b) = B(γ − 1 − a, 1 + a) + B(γ − 1 − b, 1 + b) + B(1 + a, 1 − γ ) − B(1 + b, 1 − γ )

+ B(γ − 1 − a, 1 − γ ) − B(γ − 1 − b, 1 − γ ). (D13)

Substituting this into the expression for K (3)(ωm) and solving Eq. (D3) for D(3)(ωm), we obtain

D(3)(ωm) = sgn(ωm)(ε∗)3
(
Q(3)

1 eiψ0(ωm ) + Q(3)
3 e3iψ0(ωm )

) + c.c., (D14)

where

Q(3)
2r+1 = −2

I (3)
2r+1

I (3α + i(2r + 1)βγ , 0)
, r = 0, 1. (D15)

Adding D(1)(ωm) and D(3)(ωm), we see that D(3)(ωm) affects the prefactor for cos ψ0(ωm) and also generates the higher harmonic
cos 3ψ0(ωm).

Further, we use the expressions for D(1)(ωm) and D(3)(ωm) and compute the source term for D(5)(ωm):

K (5)(ωm) = ḡγ |ωm| 3
2 γ−4(ε∗)5

(
eiψ0(ωm )I (5)

1 + e3iψ0(ωm )I (5)
3 + e5iψ0(ωm )I (5)

5

) + c.c., (D16)

where

I (5)
1 = 3

16 [6I (5α + iβγ , 4α) + 4I (5α + iβγ , 4α + 2iβγ )]

− 1
4

[
2Q(3)

1 I (5α + iβγ , 2α) + Q(3)∗
1 I (5α + iβγ , 2α + 2iβγ ) + Q(3)

3 I (5α + iβγ , 2α − 2iβγ )
]

− 1
2

[
Q(3)

1 I (5α + iβγ , 4α) + Q(3)∗
1 I (5α + iβγ , 4α) + (

Q(3)
1 + Q(3)∗

3

)
I (5α + iβγ , 2α + 2iβγ )

]
, (D17)

I (5)
3 = 3

16 [4I (5α + 3iβγ , 4α + 2iβγ ) + I (5α + 3iβγ , 4α + 4iβγ )]

− 1
4

[
2Q(3)

3 I (5α + 3iβγ , 2α) + Q(3)
1 I (5α + 3iβγ , 2α + 2iβγ )

]
− 1

2

[(
Q(3)

1 + Q(3)
3

)
I (5α + 3iβγ , 4α + 2iβγ ) + Q(3)∗

3 I (5α + 3iβγ , 4α + 4iβγ )
]
, (D18)

I (5)
5 = 3

16 I (5α + 5iβγ , 4α + 4iβγ ) − 1
4 Q(3)

3 I (5α + 5iβγ , 2α + 2iβγ ) − 1
2 Q(3)

3 I (5α + 5iβγ , 4α + 4iβγ ). (D19)

The induced solution is

D(5)(ω) = sgn(ωm)(ε∗)5
(
Q(5)

1 eiψ0(ωm ) + Q(5)
3 e3iψ0(ωm ) + Q(5)

5 e5iψ0(ωm )
) + c.c., (D20)

where

Q(5)
2r+1 = −2

I (5)
2r+1

I (5α + i(2r + 1)βγ , 0)
. (D21)

This expansion can be straightforwardly extended to higher orders. The generic form of the gap function is

D(ωm) = sgn(ωm)ε∗[(1 + (ε∗)2Q(3)
1 + (ε∗)4Q(5)

1 + · · · )eiψ0(ωm ) + (ε∗)2
(
Q(3)

3 + (ε∗)2Q(5)
3 + · · · )e3iψ0(ωm )

+ (ε∗)4
(
Q(5)

5 + . . .
)
e3iψ0(ωm ) + · · · ] + c.c. (D22)

The expression for D(ωm) in the main text is obtained by further expressing
∑∞

j=k Q(2 j+1)
2k+1 (ε∗)2 j+1 in each line in (D22) as

∞∑
j=k

Q(2 j+1)
2k+1 (ε∗)2 j+1 = (ε∗)2k+1Q2k+1ei(φ2k+1+(2k+1)ψ ), (D23)

where Q2k+1, φ2k+1, and ψ are given by series in ε∗. These series are presented in Eqs. (44)–(47) in the main text.
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APPENDIX E: CONDENSATION ENERGY NEAR γ = 2

The condensation energy for a stationary �n(ωm) is given by Eq. (19). We reproduce this formula here for convenience of a
reader. At T = 0, which we consider here, we have

Ec,n = NF

∫
dωm

(
|ωm| − ω2

m√
ω2

m + �2
n(ωm)

)
− 1

4
NF

∫∫
dωmdω′

mV (ωm − ω′
m)

×
(

ωmω′
m + �n(ωm)�n(ω′

m)√
ω2

m + �2
n(ωm)

√
(ω′

m)2 + �2
n(ω′

m)
− sgn(ωmω′

m)

)
. (E1)

The first term in (E1) is infrared convergent and is determined by fermions with ωm ∼ ḡ. This term is not singular at γ = 2 and
below we just skip it. We argue in this Appendix that the second term in (E1) becomes singular in the limit γ → 2 To see this
we first consider Ec,0, which is the largest by magnitude.

1. Condensation energy for �0(ωm)

The gap function �0(ωm) is sign-preserving and tends to �0(0) ∼ ḡ at ωm  ḡ. Using this, we express the condensation
energy as

Ec,0 ≈ −1

4
ḡγ NF

[∫ O(ḡ)

−O(ḡ)

dωmdω′
m

|ωm − ω′
m|γ (1 − sgn(ωm)sgn(ω′

m)) + regular terms

]
. (E2)

This integral can be easily evaluated and for γ � 2 yields

Ec,0 � −ḡ2NF

[
1

2 − γ
+ regular terms

]
. (E3)

At a finite ωD, the demominator in (E2) is replaced by ((ωm − ω′
m)2 + ω2

D)γ /2. The integral then remains finite even at γ = 2,
and Ec,0 becomes

Ec,0 � −ḡ2NF

[
ln

ḡ

ωD
+ regular terms

]
. (E4)

The same happens when ωD = 0, but temperture T is finite. At γ = 2, we have

Ec,0 � −ḡ2NF

[
ln

ḡ

T
+ regular terms

]
, (E5)

2. Condensation energy for �n(ωm) with n > 0

For any finite n, the gap function �n(ωm) still saturates at a finite value �n(0) at ωm = 0. At low enough frequencies,
�n(0) � ωm, and the integrand of the condensation energy Ec,n has the same as for n = 0. Then Ec,n contains the same divergent
piece as in (E3).

We will also need the expression for the difference Ec,n − Ec,0. We show below that it primarily comes from the regions near
the nodal points in �n(ωm), where |�n(ωm)| � |ωm|. To demonstrate this, we divide the frequency range into two subranges –
�N around the nodal points and �A away from nodal points. We use the convention

�N : ∪p{ω(p) − δω(p) < |ωm| < ω(p) + δω(p)}, (E6)

where p = 1, . . . , n and |�n(ω(p) ± δω(p) )| = |ω(p) ± δ(p)|. Then |�n(ωm)| < |ωm| for ωm ∈ �N and |�n(ωm)| > |ωm| for ωm ∈
�A. Because the positions of nodal points of �n(ωm) depend on the logarithm of frequency, it is convenient to introduce the
logarithmic variable x = ln(|ωm|/ḡ)γ . The neighborhood of the nodal point ωp transforms to xp − δp < x < xp + δp, where
xp � −π p/βε . We argued in the main text that for finite n and γ → 2, εn ≈ 1/(2 − γ )a (a > 0), βε ∼ ε−1/3 ∝ (2 − γ )(a/3), and
�n(ω(p) ± δωm)/|ωp| � (−1)p(x − xp). The condition |�n(ωm)| ∼ |ωm| corresponds to |x − xp| ∼ 1.

Below we consider contributions to δEc,n from different combinations of ωm, ω′
m, each within either �N or �A.

(1) ωm, ω′
m ∈ �N .

In this frequency domain, |�(ωm)| < |ωm| and |�(ω′
m)| < |ω′

m|. The the corresponding contribution to δEc,n is

δE (1)
c,n � −1

4
ḡγ NF

∫∫
ωm,ω′

m∈�N

dωmdω′
m

|ωm − ω′
m|γ (sgn(ωm)sgn(ω′

m) − 1), (E7)

where the superscript (1) refers to the integration domain. Converting the integral in (E7) to positive ωm and negative ω′
m or vice

versa and changing the frequencies to x = xp + y and x′ = xp′ + y′, we obtain to leading order in 2 − γ

δE (1)
c,n � 1

4
ḡγ NF

n∑
p,p′=1

∫∫ O(1)

0
dydy′

[
2 cosh

xp − xp′ + y − y′

4

]−2

e
2−γ

4 (xp+xp′ ). (E8)
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The integrand decays exponentially as a function of |p − p′|, hence the dominant contribution to the integral comes from p = p′.
Keeping only this term, we obtain

δE (1)
c,n � 1

4
ḡγ NF

∫∫ O(1)

0
dydy′

[
2 cosh

y − y′

4

]−2 n∑
p=1

e
2−γ

2 xp = ḡ2NF
c1

2 − γ
Jn, (E9)

where Jn = 2βεn
π

(1 − e− πn(2−γ )
2βεn ) and c1 = O(1). At γ → 2 and finite n, the exponential factor in Jn can be expanded in n, yielding

δE (1)
c,n = ḡ2NF c1n.
(2) ωm, ω′

m ∈ �A.
In this frequency range, |�(ωm)| > |ωm| and |�(ω′

m)| > |ω′
m|. The contribution to the condensation energy is

δE (2)
c,n = −1

4
ḡγ NF

∫∫
ωm,ω′

m∈�A

dωmdω′
m

|ωm − ω′
m|γ (sgn(�n(ωm))sgn(�n(ω′

m)) − 1). (E10)

We further divide �A into sub-intervals �
p
A between two adjacent nodal points ωp and ωp+1, where p = 1, 2, . . . , n and ωn+1 ≡ 0.

The sign structure of �n(ωm) i such that ωm and ω′
m must come from intervals �

p
A and �

p′
A with odd p + p′. Introducing again

logarithmic variables x = xp − y and x′ = xp′+1 + y′, we obtain after simple algebra

δE (2)
c,n � ḡ2NF

4

∑
p+p′∈odd

∫ O(π/βε )

O(1)
dy

∫ O(π/βε )

O(1)
dy′

[
1∣∣2 sinh

xp−xp′+1−y−y′

2

∣∣2 + 1(
2 cosh

xp−xp′+1−y+y′

2

)2

]
e(xp+xp′+1 )( 2−γ

4 ). (E11)

Given that xp − xp′+1 ∝ (p′ − p + 1)/βε and βε  1, this integral is exponentially small unless p′ + 1 = p. Keeping only such
term, we obtain

δE (2)
c,n � ḡγ NF

4

∫ O(π/βε )

O(1)
dy

∫ O(π/βε )

O(1)
dy′

[
1∣∣2 sinh y+y′

2

∣∣2 + 1(
2 cosh y+y′

2

)2

]
n∑

p=1

e
2−γ

2 xp = ḡ2NF
c2

2 − γ
Jn, (E12)

where c2 = O(1). The integral over y, y′ is confined to y, y′ ∼ 1, hence it is not surprising that δE (2)
c,n is of the sam order as δE (1)

c,n .
(3) ωm ∈ �N , ω′

m ∈ �A.
On general grounds we expect that the contribution from (3) is the same as from (1) and (2), but it is instructive to explicitly

verify this. We compute the contribution from |�(ωm)| < |ωm| and |�(ω′
m)| > |ω′

m| and multiply the result by 2. The contribution
to the condensation energy is

δE (3)
c,n � 1

2
ḡγ NF

∫∫
ωm∈�N ,ω′

m∈�A

dωmdω′
m

|ωm − ω′
m|γ . (E13)

In terms of logarithmic variables, it becomes

δE (3)
c,n � 1

4
ḡγ NF

n∑
p=1

∫ xp+δp

xp−δp

dx
n∑

p′=1

∫ xp′−δp′

xp′+1+δp′+1

dx′
(

1∣∣2 sinh x−x′
2

∣∣2 + 1(
2 cosh x−x′

2

)2

)
e(x+x′ )( 2−γ

4 ). (E14)

The dominant contribution again comes from two neighboring patches. Keeping only this contribution, we obtain

δE (3)
c,n � 1

4
ḡγ NF

∫ O(1)

−O(1)
dy

∫ O(π/βε )

O(1)
dy′

(
1∣∣2 sinh y−y′

2

∣∣2 + 1(
2 cosh y−y′

2

)2

)(
n+1∑
p=2

+
n∑

p=1

)
e

2−γ

2 xp = ḡ2NF
c3

2 − γ
Jn, (E15)

The integral over y, y′ is free from divergences as y and y belong to different ranges. It is again confined to y′ � 1, y � 1.
In total, δEc,n = ḡ2NF

c
2−γ

Jn, where c = c1 + c2 + c3. This is what we used in the main text.

3. Condensation energy for infinitesimally small gap function

The reasoning in the main text for the dispersion of Ec(ε) at γ = 2–0 implies that the overall factor 1/(2 − γ ) is present in
Ec(ε) for all nonzero ε, including the smallest ε → 0. At vanishing ε, �(ωm) = ε�∞(ωm) is the solution of the linearized gap
equation. This gap function does not saturate at ωm = 0 and instead keep oscillating down to the smallest frequencies. In this
situation, the argument about the overall factor 1/(2 − γ ), which we presented in the previous two sections, does not hold, and
it is a’priori unclear whether Ec(ε) at ε → 0 does contain 1/(2 − γ ). We show that it does.

It is convenient to use the condensation energy in the form given by Eq. (20). The first term in (20) is not singular for any γ ,
so we focus on the second term. For small D(ωm) we have

Ec � −NF
ḡγ

16

∫∫
dωmdω′

m

(
1

|ωm − ω′
m|γ − 1

|ωm + ω′
m|γ

)
(D2(ωm) − D2(ω′

m))2, (E16)
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where

D(ωm) = 2ε∗ cos [(β(γ ) ln (ḡ/|ωm|)γ + φ(γ ))], (E17)

and ε∗ = ε(ḡ/|ωm|)1−γ /2 [see Eq. (43)]. For simplicity, we absorbed the numerical factor Q1 into ε). For γ � 2, ε∗ increases for
decreasing ωm, and becomes of order one at ωm = ω∗ ∼ ḡε2/(2−γ ). At smaller ωm, |D(ωm)| becomes larger than one. Eq. (E16)
is valid at ωm and ω′

m larger than ω∗, which then sets the lower limit of integration in (E16). At infinitesimally small ε, ω∗ is also
infinitesimally small and further decreases at γ → 2. Yet, for any finite ε and finite 2 − γ , ω∗ remains finite.

We now evaluate the 2D integral in (E16). It is convenient to introduce logarithmic variables x = ln(ḡ/ωm)γ and x′ =
ln(ḡ/ω′

m)γ . The integration over x and over x′ is between O(1) and x∗ = γ ln(ḡ/ω∗) = 2γ /(2 − γ ) ln(C/ε), where C = O(1).
We further introduce a = x + x′ and b = x − x′. The condensation energy is re-expressed in terms of a and b as

Ec = −NF ḡ2 ε4

16γ 22γ

∫ 2x∗

O(1)
dae

2−γ

2γ
a
∫ 2x∗−a

0
db

(
1

(sinh b
2γ

)γ
− 1

(cosh b
2γ

)

)[
sin(β(γ )a + 2φ(γ )) sin β(γ )b cosh

(
γ − 2

2γ
b

)

+ (1 + cos(β(γ )a + 2φ(γ )) cos(β(γ )b)) sinh

(
γ − 2

2γ
b

)]2

. (E18)

We see that the integral over a is confined to the upper limit a ∼ x∗, but the one over b is confined to b = O(1). We can then
safely extend the upper limit of the integration over b to infinity. Taking the limit γ → 2 in the last factor in (E18) and averaging
over rapidly oscillating factor sin2(β(γ )a + 2φ(γ )), we obtain

Ec − NF ḡ2 ε4

512
I
∫ 2x∗

O(1)
dae

2−γ

4 a, (E19)

where

I =
∫ ∞

0
db

(
1

sinh2 b
4

− 1

cosh2 b
4

)
sin2(β(2)b)

� 5.75683. (E20)

Evaluating the remaining integral over a, we obtain

Ec = −NF ḡ2 ε4

512
I

4

2 − γ
e(2−γ )x∗/2. (E21)

Substituting the expression for x∗, we obtain

Ec = −NF ḡ2 C2I

128

ε2

2 − γ
. (E22)

The computation of the prefactor C requires more sophisticated analysis.
We see that Ec scales as 1/(2 − γ ), even for the smallest ε. We cited this result in the main text.
The 1/(2 − γ ) divergence at small ε can be regularized by a finite bosonic mass ωD, like we found for larger ε. We found

that at a finite ωD the factor 1/(2 − γ ) is replaced by ε2 ln ḡ/ωD. As a result, the condensation energy scales as Ec ∝ ε4 ln ḡ/ωD.

APPENDIX F: THE SOLUTIONS OF THE GAP EQUATION,
FOUND IN Ref. [50] AND THEIR CAUSALITY

In the Ref. [50], the authors found the new class of solu-
tions of Eliashberg equations for γ = 2 both in the normal
and superconducting state. In the spin-chain language, in-
troduced in [50], these solutions correspond to “spin-flip”
configurations, in which spins on some lattice sites are an-
tiparallel to the local field, generated by other spins. In terms
of the Green’s function, they correspond to sign-changing
G(kF , ωm) along ωm > 0.

In this Appendix, we show that such solutions cannot
be analytically continued to the upper half plane (UHP) of
complex frequency without singularities, i.e., they violate
causality principle. We also show explicitly that these solu-
tions do not exist at T = 0. This last point was already made
in Ref. [50].

The analysis of the analytic properties can be done most
easily in the normal state. We focus on k = kF and define
G(ωm) = G(kF , ωm). We recall that the solution on the Mat-
subara axis is casual if there exists a function G(z) of complex
z = ω′ + iω′′, which is analytic and has no singularities in the
UHP and for which G(z = iωm) = G(ωm). On the real axis,
the function G(ω) is a conventional retarded Green’s function;
at large |z| in the UHP, G(z → ∞) ≈ 1/z.

Like in Ref. [50], we assume particle-hole symmetry, in
which case G(z = iω′′) must be real. Then if G(ωm) changes
sign once between Matsubara points ωm and ωm+1, then the
real G(z = iω′′) must either have a pole or have a zero in the
interval z ∈ (iωm, iωm+1). The former possibility immediately
indicates that G(z) has a pole in the UHP and thus violate the
causality principle. Now we discuss the latter possibility and
demonstrate that G(z) still must have a pole somewhere in the
UHP.
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FIG. 13. The contour � used in the definition (F1). The radius of
the arc is very large. The blue dots represent the Matsubara points.
The red cross represents a zero of the function G(z).

For the proof, consider the following integral

1

2π
Im

∮
�

∂z ln G(z)dz, (F1)

where the closed contour � is shown in Fig. 13. The contour �

consists of two parts: the large arc of radius R → ∞ and the
line along the real axis. The integral along the large arc can
be evaluated using the asymptotic large z form G(z) ≈ 1/z.
Substituting this form into (F1) and using z = Reiφ , we find
Im

∫
arc ∂z ln G(z)dz = −π .

To evaluate the integral along the interval (−R, R) on the
real axis, we note that i) the Eliashberg self energy depends
only on ω, and ii) the density of states, ∼ − ∫

dkImG(ω, k),
must be positive at all real ω. One can then make sure that
ImG is negative and does not change sign on the real axis,
while ReG is negative at ω → −∞ and positive at ω → +∞.
It then immediately follows that Im

∫ R
−R ∂ω ln G(ω)dω = π .

Hence

Im
1

2π

∮
�

∂z ln G(z)dz = 0 (F2)

On the other hand, the function ∂z ln G(z) is an analytic
function in the UHP with a simple pole of residue +1 at the
point where G(z) = 0. Using the residue theorem we then
immediately find that

Im
1

2π

∮
�

∂z ln G(z)dz = 1 (F3)

We see that (F3) is incomparable with (F2). This can only be
avoided if G(z) has a pole in the UHP as at this point ∂z ln G(z)
has a pole with residue −1, and the r.h.s of (F3) is 1 − 1 = 0.
In general, the r.h.s of (F3) is n − p, where n is the number
of zeros and p is the number of poles, counted with their
multiplicity. Then if G(ωm) changes sign on the Matsubara
axis more than once, there must be multiple poles of G(z) in
the UHP. The requirement that G(z) must have a poles in the
UHP contradicts the causality principle.

1. T = 0

Now we return to the Eliashberg equations and show that
Zω cannot change sign on the positive Matsubara axis at T =
0 in the limit of vanishing bosonic mass. At T = 0, the system
is in the superconducting state, and we analyze Eliashberg
equations for a nonzero �(ωm).

First, we notice that at T = 0, Zω is a real function of ωm.
It also must be a continuous function, as the Green’s function
in the superconducting state must be analytic in the UHP.

As the authors of [50] noticed, the r.h.s. of the Eliashberg
equation (4) sign(Zωm′ ) in the numerator under the sum. In the
main text we set this term to 1 as we were only interested
in the sign-preserving solutions for Z (ωm). Now we keep this
term. At T = 0, the equation for Z (ωm) becomes

Zωm = 1 + gγ

2ωm

∫ ∞

−∞

dω′
m√

ω′
m

2 + �2
ω′

m

sgn
(
Zω′

m

) 1(
(ωm − ω′

m)2 + ω2
D

)γ /2 . (F4)

We will be interested in the limit ωD → 0.
Both functions Zωm and �ωm are real and Zωm→∞ → 1, �ωm→∞ → 0.
We want to check, if it is possible that
(i) both Zωm and �ωm are smooth functions;
(ii) Zωm changes sign N times at frequencies ωn, where n = 0, . . . , N − 1.
We take the derivative of Zωm over ωm and evaluate the integral by parts

∂ωm Zωm = − 1

ωm

(
Zωm − 1

) − gγ

2ωm

∫ ∞

−∞

dω′
m√

ω′
m

2 + �2
ω′

m

sgn
(
Zω′

m

)
∂ω′

m

1(
(ωm − ω′

m)2 + ω2
D

)γ /2

= − 1

ωm

(
Zωm − 1

) − gγ

2ωm

⎡
⎢⎣ sgn

(
Zω′

m

)
√

ω′
m

2 + �2
ω′

m

1(
(ωm − ω′

m)2 + ω2
D

)γ /2

∣∣∣∣∣∣
∞

−∞

−
∫ ∞

−∞
dω′

m

1(
(ωm − ω′

m)2 + ω2
D

)γ /2 ∂ω′
m

sgn(Zω′
m

)√
ω′

m
2 + �2

ω′
m

⎤
⎦
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= − 1

ωm
(Zω − 1) + gγ

2ωm

⎡
⎣2(−1)N+1

N−1∑
n=0

(−1)n(
(ωm − ωn)2 + ω2

D

)γ /2

1√
ωn

2 + �2
ωn

+
∫ ∞

−∞
dω′

m

sgn(Zω′
m

)(
(ωm − ω′

m)2 + ω2
D

)γ /2 ∂ω′
m

1√
ω′

m
2 + �2

ω′
m

⎤
⎦, (F5)

where we used ∂ω′
m
sgn(Zω′

m
) = 2(−1)N+1 ∑N−1

n=0 (−1)nδ(ωm − ωn). By assumption, Zωm is a smooth function, so Zωn = 0, for all
n. Setting ωm = ωk in (F5), we obtain

∂ωm Zωm |ωm=ωk
= 1

ωk
+ gγ

2ωk

∫ ∞

−∞
dω′

m

sgn(Zω′
m

)(
(ωk − ω′

m)2 + ω2
D

)γ /2 ∂ω′
m

1√
ω′

m
2 + �2

ω′
m

+ gγ

ωk
(−1)N+1

N−1∑
n=0

(−1)n(
(ωk − ωn)2 + ω2

D

)γ /2

1√
ωn

2 + �2
ωn

. (F6)

We see that in the limit ωD → 0, the most singular term is the term in the sum with n = k. Keeping only this term, we get in this
limit

lim
m→0

∂ωm Zωm |ωm=ωk
∼ gγ

ωk

(−1)k+N+1

ω
γ/2
D

1√
ωk

2 + �2
ωk

→ ±∞. (F7)

This shows that in the limit ωD → 0, the sign-changing function Zωm is not smooth function as its derivative over ωm diverges at
any finite ωm.

[1] A. Abanov and A. V. Chubukov, Interplay between supercon-
ductivity and non-Fermi liquid at a quantum critical point in a
metal. i. the γ model and its phase diagram at T = 0: The case
0 < γ < 1, Phys. Rev. B 102, 024524 (2020).

[2] Y.-M. Wu, A. Abanov, Y. Wang, and A. V. Chubukov, Interplay
between superconductivity and non-fermi liquid at a quantum
critical point in a metal. ii. the γ model at a finite T for 0 <

γ < 1, Phys. Rev. B 102, 024525 (2020).
[3] Y.-M. Wu, A. Abanov, and A. V. Chubukov, Interplay be-

tween superconductivity and non-fermi liquid behavior at a
quantum critical point in a metal. iii. the γ model and
its phase diagram across γ = 1, Phys. Rev. B 102, 094516
(2020).

[4] Y.-M. Wu, S.-S. Zhang, A. Abanov, and A. V. Chubukov, In-
terplay between superconductivity and non-fermi liquid at a
quantum critical point in a metal. iv. the γ model and its phase
diagram at 1 < γ < 2, Phys. Rev. B 103, 024522 (2021).

[5] Y.-M. Wu, S.-S. Zhang, A. Abanov, and A. V. Chubukov, Inter-
play between superconductivity and non-fermi liquid behavior
at a quantum-critical point in a metal. v. the γ model and its
phase diagram: The case γ = 2, Phys. Rev. B 103, 184508
(2021).

[6] S.-S. Zhang, Y.-M. Wu, A. Abanov, and A. V. Chubukov, In-
terplay between superconductivity and non-fermi liquid at a
quantum critical point in a metal. vi. the γ model and its phase
diagram at 2γ < 3, Phys. Rev. B 104, 144509 (2021).

[7] A. J. Millis, Nearly antiferromagnetic fermi liquids: An
analytic eliashberg approach, Phys. Rev. B 45, 13047
(1992).

[8] B. L. Altshuler, L. B. Ioffe, A. I. Larkin, and A. J. Millis, Spin-
density-wave transition in a two-dimensional spin liquid, Phys.
Rev. B 52, 4607 (1995).

[9] S. Sachdev, A. V. Chubukov, and A. Sokol, Crossover and
scaling in a nearly antiferromagnetic fermi liquid in two dimen-
sions, Phys. Rev. B 51, 14874 (1995).

[10] A. Abanov, A. V. Chubukov, and A. M. Finkel’stein, Coherent
vs. incoherent pairing in 2d systems near magnetic instability,
Europhys. Lett. 54, 488 (2001); A. Abanov, A. V. Chubukov,
and J. Schmalian, Quantum-critical theory of the spin-fermion
model and its application to cuprates: Normal state analysis,
Adv. Phys. 52, 119 (2003); A. Abanov and A. V. Chubukov,
A Relation between the Resonance Neutron Peak and ARPES
Data in Cuprates, Phys. Rev. Lett. 83, 1652 (1999); A. Abanov,
A. V. Chubukov, and J. Schmalian, Fingerprints of spin medi-
ated pairing in cuprates, J. Electron Spectrosc. Relat. Phenom.
117-118, 129 (2001); A. Abanov, A. V. Chubukov, and M. R.
Norman, Gap anisotropy and universal pairing scale in a spin-
fluctuation model of cuprate superconductors, Phys. Rev. B 78,
220507(R) (2008).

[11] S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Fluctuat-
ing spin density waves in metals, Phys. Rev. B 80, 155129
(2009).

[12] E. G. Moon and S. Sachdev, Competition between spin density
wave order and superconductivity in the underdoped cuprates,
Phys. Rev. B 80, 035117 (2009).

[13] N. E. Bonesteel, I. A. McDonald, and C. Nayak, Gauge Fields
and Pairing in Double-Layer Composite Fermion Metals, Phys.
Rev. Lett. 77, 3009 (1996).

[14] Y. Wang and A. V. Chubukov, Superconductivity at the Onset
of Spin-Density-Wave Order in a Metal, Phys. Rev. Lett. 110,
127001 (2013).

[15] M. A. Metlitski and S. Sachdev, Quantum phase transitions of
metals in two spatial dimensions. ii. spin density wave order,
Phys. Rev. B 82, 075128 (2010).

144513-27

https://doi.org/10.1103/PhysRevB.102.024524
https://doi.org/10.1103/PhysRevB.102.024525
https://doi.org/10.1103/PhysRevB.102.094516
https://doi.org/10.1103/PhysRevB.103.024522
https://doi.org/10.1103/PhysRevB.103.184508
https://doi.org/10.1103/PhysRevB.104.144509
https://doi.org/10.1103/PhysRevB.45.13047
https://doi.org/10.1103/PhysRevB.52.4607
https://doi.org/10.1103/PhysRevB.51.14874
https://doi.org/10.1209/epl/i2001-00266-0
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1103/PhysRevLett.83.1652
https://doi.org/10.1016/S0368-2048(01)00251-1
https://doi.org/10.1103/PhysRevB.78.220507
https://doi.org/10.1103/PhysRevB.80.155129
https://doi.org/10.1103/PhysRevB.80.035117
https://doi.org/10.1103/PhysRevLett.77.3009
https://doi.org/10.1103/PhysRevLett.110.127001
https://doi.org/10.1103/PhysRevB.82.075128


ZHANG, WU, ABANOV, AND CHUBUKOV PHYSICAL REVIEW B 106, 144513 (2022)

[16] M. Vojta and S. Sachdev, Charge Order, Superconductivity,
and a Global Phase Diagram of Doped Antiferromagnets, Phys.
Rev. Lett. 83, 3916 (1999).

[17] K. B. Efetov, H. Meier, and C. Pepin, Pseudogap state near a
quantum critical point, Nat. Phys. 9, 442 (2013).

[18] H. Meier, C. Pépin, M. Einenkel, and K. B. Efetov, Cascade
of phase transitions in the vicinity of a quantum critical point,
Phys. Rev. B 89, 195115 (2014).

[19] K. B. Efetov, Quantum criticality in two dimensions and
marginal fermi liquid, Phys. Rev. B 91, 045110 (2015).

[20] A. M. Tsvelik, Ladder physics in the spin fermion model, Phys.
Rev. B 95, 201112(R) (2017).

[21] J. Bauer and S. Sachdev, Real-space eliashberg approach to
charge order of electrons coupled to dynamic antiferromagnetic
fluctuations, Phys. Rev. B 92, 085134 (2015).

[22] C. Castellani, C. Di Castro, and M. Grilli, Singular Quasipar-
ticle Scattering in the Proximity of Charge Instabilities, Phys.
Rev. Lett. 75, 4650 (1995).

[23] A. Perali, C. Castellani, C. Di Castro, and M. Grilli, d-wave
superconductivity near charge instabilities, Phys. Rev. B 54,
16216 (1996).

[24] S. Andergassen, S. Caprara, C. Di Castro, and M. Grilli,
Anomalous Isotopic Effect Near the Charge-Ordering Quantum
Criticality, Phys. Rev. Lett. 87, 056401 (2001).

[25] Y. Wang and A. V. Chubukov, Enhancement of superconductiv-
ity at the onset of charge-density-wave order in a metal, Phys.
Rev. B 92, 125108 (2015).

[26] D. Chowdhury and S. Sachdev, Density-wave instabilities of
fractionalized fermi liquids, Phys. Rev. B 90, 245136 (2014).

[27] Z. Wang, W. Mao, and K. Bedell, Superconductivity near Itin-
erant Ferromagnetic Quantum Criticality, Phys. Rev. Lett. 87,
257001 (2001).

[28] R. Roussev and A. J. Millis, Quantum critical effects on
transition temperature of magnetically mediated p-wave super-
conductivity, Phys. Rev. B 63, 140504(R) (2001).

[29] A. V. Chubukov, A. M. Finkel’stein, R. Haslinger, and D. K.
Morr, First-Order Superconducting Transition near a Ferro-
magnetic Quantum Critical Point, Phys. Rev. Lett. 90, 077002
(2003).

[30] D. Dalidovich and S.-S. Lee, Perturbative non-fermi liquids
from dimensional regularization, Phys. Rev. B 88, 245106
(2013).

[31] S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Enhance-
ment of Superconductivity near a Nematic Quantum Critical
Point, Phys. Rev. Lett. 114, 097001 (2015).

[32] P. A. Lee, Gauge field, aharonov-bohm flux, and high-Tc super-
conductivity, Phys. Rev. Lett. 63, 680 (1989).

[33] B. Blok and H. Monien, Gauge theories of high-tc superconduc-
tors, Phys. Rev. B 47, 3454 (1993).

[34] C. Nayak and F. Wilczek, Non-fermi liquid fixed point in 2 + 1
dimensions, Nucl. Phys. B 417, 359 (1994).

[35] B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Low-energy prop-
erties of fermions with singular interactions, Phys. Rev. B 50,
14048 (1994).

[36] Y. B. Kim, A. Furusaki, X.-G. Wen, and P. A. Lee, Gauge-
invariant response functions of fermions coupled to a gauge
field, Phys. Rev. B 50, 17917 (1994).

[37] P. B. Allen and R. C. Dynes, Transition temperature of strong-
coupled superconductors reanalyzed, Phys. Rev. B 12, 905
(1975).

[38] A. Karakozov, E. Maksimov, and S. Mashkov, Effect of the fre-
quency dependence of the electron-phonon interaction spectral
function on the thermodynamic properties of superconductors,
Zh. Eksp. Teor. Fiz. 68, 1937 (1975).

[39] F. Marsiglio and J. P. Carbotte, Gap function and density of
states in the strong-coupling limit for an electron-boson system,
Phys. Rev. B 43, 5355 (1991), for more recent results see F.
Marsiglio and J.P. Carbotte, “Electron-Phonon Superconduc-
tivity”, in “The Physics of Conventional and Unconventional
Superconductors”, Bennemann and Ketterson eds., Springer-
Verlag, (2006) and references therein; F. Marsiglio, Eliashberg
theory: A short review, Annals of Physics, 417, 168102 (2020).

[40] R. Combescot, Strong-coupling limit of eliashberg theory, Phys.
Rev. B 51, 11625 (1995).

[41] A. V. Chubukov, A. Abanov, I. Esterlis, and S. A. Kivelson,
Eliashberg theory of phonon-mediated superconductivity –
when it is valid and how it breaks down, Ann. Phys. 417,
168190 (2020).

[42] C. Zhang, J. Sous, D. R. Reichman, M. Berciu, A. J. Millis,
N. V. Prokof’ev, and B. V. Svistunov, Bipolaronic high-
temperature superconductivity, arXiv:2203.07380.

[43] M. A. Metlitski and S. Sachdev, Quantum phase transitions of
metals in two spatial dimensions. i. ising-nematic order, Phys.
Rev. B 82, 075127 (2010).

[44] C. Li, S. Sachdev, and D. G. Joshi, Superconductivity of
non-fermi liquids described by Sachdev-Ye-Kitaev models,
arXiv:2208.05493.

[45] D. Chowdhury and E. Berg, Intrinsic superconducting instabili-
ties of a solvable model for an incoherent metal, Phys. Rev. Res.
2, 013301 (2020).

[46] I. Esterlis and J. Schmalian, Cooper pairing of incoherent elec-
trons: An electron-phonon version of the Sachdev-Ye-Kitaev
model, Phys. Rev. B 100, 115132 (2019).

[47] Y. Wang, Solvable Strong-Coupling Quantum-Dot Model with
a Non-Fermi-Liquid Pairing Transition, Phys. Rev. Lett. 124,
017002 (2020).

[48] D. Hauck, M. J. Klug, I. Esterlis, and J. Schmalian, Eliashberg
equations for an electronphonon version of the Sachdev–Ye–
Kitaev model: Pair breaking in non-Fermi liquid superconduc-
tors, Ann. Phys. 417, 168120 (2020).

[49] L. Classen and A. Chubukov, Superconductivity of incoherent
electrons in the Yukawa Sachdev-Ye-Kitaev model, Phys. Rev.
B 104, 125120 (2021).

[50] E. A. Yuzbashyan and B. L. Altshuler, Migdal-eliashberg theory
as a classical spin chain, Phys. Rev. B 106, 014512 (2022).

[51] E. A. Yuzbashyan, M. K.-H. Kiessling, and B. L. Altshuler,
Superconductivity near a quantum critical point in the
extreme retardation regime, Phys. Rev. B 106, 064502
(2022).

[52] E. Yuzbashyan, Free energy for eliashberg spins using func-
tional integral approach (private communication).

[53] M. Protter, R. Boyack, and F. Marsiglio, Functional-integral
approach to gaussian fluctuations in eliashberg theory, Phys.
Rev. B 104, 014513 (2021).

[54] J. M. Luttinger and J. C. Ward, Ground-state energy
of a many-fermion system. ii, Phys. Rev. 118, 1417
(1960).

[55] R. Haslinger and A. V. Chubukov, Condensation energy in
strongly coupled superconductors, Phys. Rev. B 68, 214508
(2003).

144513-28

https://doi.org/10.1103/PhysRevLett.83.3916
https://doi.org/10.1038/nphys2641
https://doi.org/10.1103/PhysRevB.89.195115
https://doi.org/10.1103/PhysRevB.91.045110
https://doi.org/10.1103/PhysRevB.95.201112
https://doi.org/10.1103/PhysRevB.92.085134
https://doi.org/10.1103/PhysRevLett.75.4650
https://doi.org/10.1103/PhysRevB.54.16216
https://doi.org/10.1103/PhysRevLett.87.056401
https://doi.org/10.1103/PhysRevB.92.125108
https://doi.org/10.1103/PhysRevB.90.245136
https://doi.org/10.1103/PhysRevLett.87.257001
https://doi.org/10.1103/PhysRevB.63.140504
https://doi.org/10.1103/PhysRevLett.90.077002
https://doi.org/10.1103/PhysRevB.88.245106
https://doi.org/10.1103/PhysRevLett.114.097001
https://doi.org/10.1103/PhysRevLett.63.680
https://doi.org/10.1103/PhysRevB.47.3454
https://doi.org/10.1016/0550-3213(94)90477-4
https://doi.org/10.1103/PhysRevB.50.14048
https://doi.org/10.1103/PhysRevB.50.17917
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1103/PhysRevB.43.5355
https://doi.org/10.1103/PhysRevB.51.11625
https://doi.org/10.1016/j.aop.2020.168190
http://arxiv.org/abs/arXiv:2203.07380
https://doi.org/10.1103/PhysRevB.82.075127
http://arxiv.org/abs/arXiv:2208.05493
https://doi.org/10.1103/PhysRevResearch.2.013301
https://doi.org/10.1103/PhysRevB.100.115132
https://doi.org/10.1103/PhysRevLett.124.017002
https://doi.org/10.1016/j.aop.2020.168120
https://doi.org/10.1103/PhysRevB.104.125120
https://doi.org/10.1103/PhysRevB.106.014512
https://doi.org/10.1103/PhysRevB.106.064502
https://doi.org/10.1103/PhysRevB.104.014513
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRevB.68.214508


SUPERCONDUCTIVITY OUT OF A NON-FERMI LIQUID: … PHYSICAL REVIEW B 106, 144513 (2022)

[56] A. Secchi, M. Polini, and M. I. Katsnelson, Phonon-mediated
superconductivity in strongly correlated electron systems: A
luttinger–ward functional approach, Ann. Phys. 417, 168100
(2020).

[57] A. Benlagra, K. Kim, and C. Pépin, The luttinger–ward func-
tional approach in the eliashberg framework: a systematic
derivation of scaling for thermodynamics near the quantum
critical point, J. Phys.: Condens. Matter 23, 145601 (2011).

[58] L. D. Landau and E. M. Lifshitz, Statistical Physics: Volume 5
(Elsevier, 2013).

[59] M. Kronenburg, Some generalized harmonic number identities,
arXiv:1103.5430.

[60] S. S. Pufu, Anomalous dimensions of monopole operators in
three-dimensional quantum electrodynamics, Phys. Rev. D 89,
065016 (2014).

[61] A. Klein, A. V. Chubukov, Y. Schattner, and E. Berg, Normal
State Properties of Quantum Critical Metals at Finite Tempera-
ture, Phys. Rev. X 10, 031053 (2020).

[62] S.-S. Zhang, E. Berg, and A. V. Chubukov (unpublished).
[63] E. A. Yuzbashyan and B. L. Altshuler, Breakdown of the

migdal-eliashberg theory and a theory of lattice-fermionic su-
perfluidity, Phys. Rev. B 106, 054518 (2022).

[64] O. Grossman, J. S. Hofmann, T. Holder, and E. Berg, Specific
Heat of a Quantum Critical Metal, Phys. Rev. Lett. 127, 017601
(2021).

[65] Y.-M. Wu, S.-S. Zhang, A. Abanov, and A. V. Chubukov, Odd
frequency pairing in a quantum critical metal, Phys. Rev. B 106,
094506 (2022).

[66] J. Linder and A. V. Balatsky, Odd-frequency superconductivity,
Rev. Mod. Phys. 91, 045005 (2019).

144513-29

https://doi.org/10.1016/j.aop.2020.168100
https://doi.org/10.1088/0953-8984/23/14/145601
http://arxiv.org/abs/arXiv:1103.5430
https://doi.org/10.1103/PhysRevD.89.065016
https://doi.org/10.1103/PhysRevX.10.031053
https://doi.org/10.1103/PhysRevB.106.054518
https://doi.org/10.1103/PhysRevLett.127.017601
https://doi.org/10.1103/PhysRevB.106.094506
https://doi.org/10.1103/RevModPhys.91.045005

