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Néel proximity effect at antiferromagnet/superconductor interfaces
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Spin splitting induced in a conventional superconductor weakens superconductivity by destroying spin-singlet
and creating spin-triplet Cooper pairs. We demonstrate theoretically that such an effect is also caused by an
adjacent compensated antiferromagnet, which yields no net spin splitting. We find that the antiferromagnet
produces Néel triplet Cooper pairs, whose pairing amplitude oscillates rapidly in space similar to the antiferro-
magnet’s spin. The emergence of these unconventional Cooper pairs reduces the singlet pairs’ amplitude, thereby
lowering the superconducting critical temperature. We develop a quasiclassical Green’s functions description of
the system employing a two-sublattice framework. It successfully captures the rapid oscillations in the Cooper
pairs’ amplitude at the lattice spacing scale as well as their smooth variation on the larger coherence length
scale. Employing the theoretical framework thus developed, we investigate this Néel proximity effect in a
superconductor/antiferromagnet bilayer as a function of interfacial exchange, disorder, and chemical potential,
finding rich physics. Our findings also offer insights into experiments which have found a larger than expected
suppression of superconductivity by an adjacent antiferromagnet.
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I. INTRODUCTION

Conventional superconductors are formed by spin-singlet
Cooper pairs [1,2]. Exposing them to a net spin splitting, such
as via an applied magnetic field or due to interfacial exchange
interaction with a ferromagnet (F), causes spin-singlet pairs
to be converted into their spin-triplet counterparts [3–7]. This
weakens the conventional superconducting state and lowers
the critical temperature [8–10]. On the other hand, since the
net magnetization in an antiferromagnet (AF) vanishes, an
adjacent superconductor (S) interfaced to the former via a
compensated interface is expected to experience no net spin
splitting or reduction in critical temperature [11,12]. Never-
theless, unconventional Andreev reflection and bound states
at such S/AF interfaces have been predicted [13,14]. The rich
Josephson physics in S/AF/S hybrids has also been investi-
gated, theoretically [15–18] and experimentally [19–21].

Several experiments have found that AFs lower the criti-
cal temperature of an S layer [19,22–24], despite the no net
spin-splitting argument above. In some cases, the effect has
been comparable to or even larger than that induced by a
ferromagnet layer [23]. To understand this, several potential
consequences of the AF layer have been considered. First,
an AF doubles the spatial period of the lattice due to its
antiparallel spins on the two sublattices. This can open a band
gap in the adjacent conductor, which may reduce the normal-
state density of states in S and thus superconductivity [25,26].
Second, it has been shown that an uncompensated interface,
which seems to be common in experiments [11,27–29], to an

AF insulator does induce a net spin splitting [11], just like a
ferromagnet. Furthermore, the interfacial disorder was found
to cause spin-flip scattering and reduce superconductivity
[11,30]. While these offer potential mechanisms for affecting
the S, they do not account for the phenomena that underlie
the previously considered unconventional Andreev reflection
[13,14]. Also, the question of how can AFs affect adjacent S
more than ferromagnets remains unanswered. Furthermore, a
recent Bogoliubov–de Gennes numerical analysis of a hybrid
comprising a compensated AF interfaced with an S suggested
the interface to be spin active [31]. Hence, a key piece of the
puzzle in understanding S/AF bilayers appears to be missing.

In this article we undertake a detailed theoretical inves-
tigation of an S/AF bilayer with a compensated interface.
For simplicity, we assume the AF to be an insulator. We first
analyze this system numerically solving the Bogoliubov–de
Gennes equation on a two-dimensional lattice. In this analysis
we find that the Néel order of the AF induces spin-triplet
correlations in the S. Their amplitude flips sign from one
lattice site to the next, just like the Néel spin order in the
AF. Thus, we call these Néel triplet Cooper pairs. The AF
with its compensated interface has induced rapidly oscillating
triplet correlations that escape the conventional quasiclassical
description of the S since it cannot resolve variations on such
short length scales [32,33].

In order to adequately account for such rapid oscillations,
we develop a two-sublattice quasiclassical Green’s functions
description of the S. Employing it, we obtain analytic results
for the Néel pairing amplitude and the critical temperature of
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FIG. 1. (a) Sketch of the antiferromagnetic insulator interfaced
via a compensated interface to the thin superconductor, consid-
ered in the framework of a tight-binding Bogoliubov–de Gennes
Hamiltonian in Sec. II. The system represents a two-dimensional
12 × 100 spatial cluster. Blue points are S sites, red and green points
correspond to AF sites with opposite directions of the on-site magne-
tization ±m. (b) Spatial variation of the triplet correlations amplitude
Ft

i in the investigated AF/S bilayer. Each colored square codes the
value of Ft

i at a given site. Only a small vertical part of the bilayer is
shown, which is marked with a black rectangle in (a). An alternating
sign of the correlations in S commensurate with the Néel order in the
AF can be seen along the interfacial direction. The triplet amplitude
is normalized to the hopping amplitude, see the Appendix.

the ensuing superconducting state, finding results consistent
with our Bogoliubov–de Gennes numerics. Furthermore, the
developed framework allows us to address the role of chem-
ical potential in the normal state, disorder, and the strength
of interfacial exchange semianalytically, thereby providing
valuable insights.

We find that the Néel triplets are formed due to inter-
band pairing within the two-sublattice model. Thus, they are
formed when the chemical potential is such that there are
two bands around the Fermi surface within the energy �0,
the superconducting gap of S without the adjacent AF. The
formation of such Néel spin triplets comes at the expense
of destroying the spin-singlet correlation which reduces the
S critical temperature. On the other hand, disorder destroys
this interband pairing and diminishes the proximity effect of
the AF on the S. Thus, our investigated mechanism weak-
ens superconductivity strongly for clean systems, yielding an
opposite trend with respect to the role of disorder-mediated
spin-flip scattering. Thus, the role of disorder in proximity
effect with an AF can be positive or negative on the super-
conductivity. These competing effects further allow maxima
to be feasible in experiments [22–24].

II. BOGOLIUBOV–DE GENNES ANALYSIS

We begin by numerically examining the system of
interest—an antiferromagnetic insulator interfaced via a com-
pensated interface to a thin superconductor [Fig. 1(a)]. To this
end, we set up a tight-binding Bogoliubov–de Gennes Hamil-
tonian for the two materials [34] and assume on-site local
s-wave correlations in the superconductor, assumed conven-
tional. For simplicity, we consider a two-dimensional system
(12 × 100 spatial cluster was considered) and employ peri-

odic boundary conditions along the interfacial direction. The
latter emulates an infinite-length interface. The alternating
Néel spin order in the AF induces a correspondingly oscil-
lating spin splitting at the interfacial lattice sites in the S via
exchange interaction between the AF spins and the S elec-
trons. Describing the Hamiltonian and methodology details
in the Appendix, we numerically diagonalize the Hamiltonian
and evaluate the superconducting state self-consistently.

The spin-triplet correlations amplitude Ft
i at each lattice

site with the radius-vector i is evaluated by summing the
anomalous Green’s function over the positive Matsubara fre-
quencies, as detailed in the Appendix. Figure 1(b) plots the
spatially resolved spin-triplet pairing amplitude in the inves-
tigated bilayer. A clear imprinting of the AF Néel order is
seen on the triplet pairing amplitude in the direction parallel
to the interface. This perfectly commensurate variation of the
triplet correlations is disturbed in the direction perpendicular
to the interface by Friedel oscillations [34] and a general lack
of out-of-plane momentum conservation due to the interface.
A finite Ft

i in the first few lattice sites of the AF is due
to a small leakage of the electron wave functions into the
insulating AF. Furthermore, although not explicitly shown, the
superconducting critical temperature is found to be reduced
substantially by the AF. It is worth noting that if instead
we consider a two-sublattice checkerboard ferrimagnet with
m1 �= m2, this order is also imprinted on the spin-triplet cor-
relations amplitude: it is a superposition of the perfect Néel
order presented here and a conventional triplet amplitude,
which is homogeneous along the interface. The same type of
the Néel triplet order also appears inside a metallic antiferro-
magnet due to the proximity to a superconductor.

Our numerical analysis clearly demonstrates a large prox-
imity effect of the AF on the S, despite a compensated
interface resulting in no net spin splitting on spatial averaging
over the S coherence length scale [11]. It also shows that in-
teresting physics is taking place on the lattice constant length
scale, which is beyond the resolution of the conventional
quasiclassical Green’s functions description of the supercon-
ductor [32]. Johnsen and co-workers also recently found the
compensated interface between AF and S to be spin active us-
ing a similar Bogoliubov–de Gennes numerics [31]. However,
they considered trilayers involving an additional ferromagnet,
which prevents a clear understanding of the phenomena taking
place at the AF/S interface.

III. QUASICLASSICAL GREEN’S FUNCTIONS
DESCRIPTION OF A TWO-SUBLATTICE SYSTEM

The description of superconductors in terms of quasiclas-
sical Green’s functions has proven immensely powerful in
understanding all kinds of hybrids involving magnets and su-
perconductors [5–7,32,33]. This framework is made tractable
by averaging over rapid spatial variations on the Fermi wave-
length length scale, which is comparable to or larger than
the lattice spacing. Such a procedure adequately captures the
properties of the superconducting state while ignoring some
small details of the underlying normal-metal state.

Motivated and guided by our numerical results based on
solving the Bogoliubov–de Gennes equation (Sec. II), we
wish to develop a quasiclassical Green’s function description
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FIG. 2. Schematic depiction of the setup under consideration. A
Néel ordered antiferromagnet (AF) is interfaced via a compensated
interface to a superconductor (S). The interface is in the y-z plane
and the first superconducting layer is at ix = 0. The lattice in both
parts of the structure is divided into two sublattices A and B. The
red arrows depict localized spins in the AF. The basis vectors of the
original (prior to the introduction of A and B sublattices) lattice in
the superconductor are ax , ay, az.

capable of capturing these effects semianalytically. In doing
so, we notice that the rapid oscillations in the pairing am-
plitude on the lattice constant scale are merely an expression
of the two-sublattice nature of the AF/S system. Thus, these
oscillations can be adequately captured by working with a
two-sublattice framework and the spatial variations on an in-
dividual sublattice are expected to remain slow, as compared
to the lattice spacing. This method is directly analogous to
capturing the spin order in an antiferromagnet [35] that shows
rapid oscillation between the two sublattices but slow spatial
variations within a single sublattice.

A. Two-sublattice Eilenberger equation

The unit cell with two sublattices A and B is introduced
as shown in Fig. 2. In the framework of this two-sublattice
approach the unit cells as a whole are marked by radius-vector
i. Then the staggered magnetism is described by mi,A(B) =
+(−)mi, where mi is the local magnetic moment at site A
of the unit cell with the radius vector i in the AF. This allows
us to consider mi as a slow function of the spatial coordinate.
We consider the homogeneously ordered Néel state of the AF
here, such that mi does not depend on the position i. The
superconductor S is described by the Hamiltonian

Ĥ = − t
∑

〈i jνν̄〉,σ
ψ̂

ν†
iσ ψ̂ ν̄

jσ +
∑
i,ν

(
�ν

i ψ̂
ν†
i↑ ψ̂

ν†
i↓ + H.c.

)−μ
∑
iν,σ

n̂ν
iσ

+
∑
iν,αβ

ψ̂
ν†
iα (hν

i σ)αβψ̂ν
iβ +

∑
iν,σ

V ν
i n̂ν

iσ , (1)

where ν = A, B is the sublattice index, ν̄ = A(B) if ν = B(A)
means that the corresponding quantity belongs to the opposite
sublattice, 〈i jνν̄〉 means summation over the nearest neigh-
bors, and ψ̂

ν†
iσ (ψ̂ν

iσ ) is the creation (annihilation) operator
for an electron with spin σ at the sublattice ν of the unit
cell i. t parametrizes the hopping between adjacent sites, �ν

i
accounts for on-site s-wave pairing, μ is the electron chemical
potential, and V ν

i is the local on-site potential that is later em-
ployed to capture the effect of impurities and disorder. n̂ν

iσ =

ψ̂
ν†
iσ ψ̂ν

iσ is the particle number operator at the site belonging
to sublattice ν in unit cell i. It has been demonstrated that
if the AF/S interface is modeled via the interfacial exchange
interaction between the localized spins of the antiferromagnet
and the spins of conduction electrons in the superconductor,
antiferromagnetic order parameter mi results in the proximity
induced exchange field hi ∼ mi on the superconducting side
of the interface [11]. Therefore, for the problem under con-
sideration the influence of the antiferromagnetic insulator on
the superconductor is described by the exchange field hA(B)

i =
h(−h)δix,0, where the δ symbol means that the exchange field
is only nonzero at the AF/S interface sites corresponding to
ix = 0 in the superconductor. We assume that the interface
is fully compensated, that is the interface exchange field is
staggered with zero average value.

The Matsubara Green’s function in the two-
sublattice formalism is an 8 × 8 matrix in the direct
product of spin, particle-hole, and sublattice spaces.
Introducing the two-sublattice Nambu spinor ψ̌i =
(ψ̂A

i,↑, ψ̂A
i,↓, ψ̂B

i,↑, ψ̂B
i,↓, ψ̂

A†
i,↑, ψ̂

A†
i,↓, ψ̂

B†
i,↑, ψ̂

B†
i,↓)T we define the

Green’s function as follows:

Ǧi j (τ1, τ2) = −〈Tτ ψ̌i(τ1)ψ̌†
j (τ2)〉, (2)

where 〈Tτ · · · 〉 means imaginary time-ordered thermal aver-
aging. At first we consider the clean case corresponding to
V ν

i = 0. For the system described by Hamiltonian (1) the
Heisenberg equation of motion for spinor ψ̌i takes the form

dψ̌i

dτ
= [Ĥ, ψ̌i] = τz(t ĵ + μ − �̌iσy − hσ̌δix,0ρz )ψ̌i, (3)

where σk , τk , and ρk (k = x, y, z) are Pauli matrices in
spin, particle-hole, and sublattice spaces, respectively. σ =
(σx, σy, σz )T is the vector of Pauli matrices in spin space,
σ̌ = σ(1 + τz )/2 + σ∗(1 − τz )/2 is the quasiparticle spin op-
erator, and �̌i = �iτ+ + �∗

i τ− with τ± = (τx ± iτy)/2. Here
we assume that �A

i = �B
i = �i, that is the order parameter

values are equal for A and B sites of a unit cell. For this reason
�̌i is proportional to the unit matrix in the sublattice space. It
follows from physical considerations since the change A → B
is equivalent to h → −h and the order parameter should not
depend on odd powers of the exchange field for the problem
under consideration. Also, this physical assumption is con-
firmed by subsequent self-consistent calculations. In general,
for a case of nonequivalent sublattices matrix �̌i is also diag-
onal in the sublattice space, but the diagonal components can
be not equal �̌A

i �= �̌B
i ,

ĵψ̌i = ρ+
∑

a

ψ̌i+a−az + ρ−
∑

a

ψ̌i+a+az . (4)

Here a ∈ {±ax,±ay,±az}, see Fig. 2 for definition of these
vectors. ρ± = (ρx ± iρy)/2. The Green’s function Eq. (2)
obeys equation

dǦi j

dτ1
= −δ(τ1 − τ2)δi j −

〈
Tτ

dψ̌i(τ1)

dτ1
ψ̌

†
j (τ2)

〉
. (5)

Substituting Eq. (3) into Eq. (5) and expressing the Green’s
function in terms of the Matsubara frequencies ωm =
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πT (2m + 1) we obtain

G−1
i,l Ǧi j (ωm) = δi j, (6)

G−1
i,l = τz(t ĵ + μ − �̌iıσy − hσ̌δix,0ρz ) + iωm. (7)

Analogously one obtains the equation where the operator G−1

acts on the Green’s function from the right:

Ǧi j (ωm)G−1
j,r = δi j, (8)

G−1
j,r = (

t ĵ + μ + �̌iıσy − hσ̌δix,0ρz
)
τz + iωm. (9)

where the operator ĵ acts on the Green’s function from the
right as follows:

Ǧi j ĵ =
∑

a

Ǧi, j+a−azρ− +
∑

a

Ǧi, j+a+azρ+. (10)

Furthermore, we consider the Green’s function in the mixed
representation:

Ǧ(R, p) = F (Ǧi j ) =
∫

d3re−ip(i− j)Ǧi j, (11)

where R = (i + j)/2 and the integration is over i − j. The
term ĵǦi j in the mixed representation takes the form

F ( ĵǦi j ) = teipzazρ+
∑

a

e−ipaǦ

(
R + a

2
− az

2

)
+ te−ipzazρ−

∑
a

e−ipaǦ

(
R + a

2
+ az

2

)
, (12)

ai is the absolute value of ai for i = x, y, z. Now we define the following transformed Green’s function:

ˇ̃G(R, p) =
(

1 0
0 −iσy

)
τ

ρxe
−ipzazρz

2 Ǧ(R, p)e
ipzazρz

2

(
1 0
0 −iσy

)
τ

, (13)

where subscript τ means that the explicit matrix structure corresponds to the particle-hole space. Then taking into account
Eq. (12) from Eq. (6) we obtain

[iωmτz + μ + τz�̌(R) − h(R)στzρz]ρx
ˇ̃G(R, p) + t

ρ0 + ρz

2

∑
a

e−ipa ˇ̃G

(
R + a

2
− az

2
, p

)

+t
ρ0 − ρz

2

∑
a

e−ipa ˇ̃G

(
R + a

2
+ az

2
, p

)
= 1, (14)

where ρ0 is the unit matrix in the sublattice space. The dependence of the Green’s function on R is assumed to be slow, therefore
from now we can consider R as a continuous variable. We also generalized our consideration to the case of an arbitrary spatial
profile of the exchange field h(R).

Analogously, from Eq. (8), it follows:

ˇ̃G(R, p)[iωmτz + μ + τz�̌(R) − h(R)στzρz]ρx + t
∑

a

eipa ˇ̃G

(
R + a

2
+ az

2
, p

)
ρ0 + ρz

2

+t
∑

a

eipa ˇ̃G(R + a
2

− az

2
, p)

ρ0 − ρz

2
= 1. (15)

Subtracting Eqs. (14) and (15) we obtain

{[iωmτz + μ + τz�̌(R) − h(R)στzρz]ρx,
ˇ̃G(R, p)} + Ǎ = 0, (16)

where,

Ǎ = t
ρ0 + ρz

2

∑
a

e−ipa ˇ̃G

(
R + a

2
− az

2
, p

)
+ t

ρ0 − ρz

2

∑
a

e−ipa ˇ̃G

(
R + a

2
+ az

2
, p

)

− t
∑

a

eipa ˇ̃G

(
R + a

2
+ az

2
, p

)
ρ0 + ρz

2
− t

∑
a

eipa ˇ̃G

(
R + a

2
− az

2
, p

)
ρ0 − ρz

2
. (17)

Now we introduce the quasiclassical ξ -integrated Green’s
function:

ǧ(R, pF ) = − 1

iπ

∫
ˇ̃G(R, p)dξ, (18)

where ξ (p) = −2t (cos pxax + cos pyay + cos pzaz ) is the
normal state electron dispersion counted from the Fermi
energy. In general, in the framework of the two-sublattice
formalism, the Brillouin zone (BZ) is reduced along the

pz direction, that is pz ∈ [−π/2az, π/2az]. This results in
the appearance of two normal state quasiparticle dispersion
branches ξ± = ∓2t (cos pxax + cos pyay + cos pzaz ) − μ in
the reduced BZ. Only one of them has a Fermi surface in
the first BZ. Let it be ξ+, then the Fermi momentum pF is
determined by the equation ξ+(pF ) = 0. The quasiclassical
Green’s function (18) depends only on the direction of the
momentum on the Fermi surface, as usual. Please note, that
in the framework of the developed formalism, μ is assumed
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to be small with respect to t and, therefore, can be neglected
in ξ+(p), which is reduced to ξ (p) in this case. On the other
hand, the Fermi energy (as measured from the bottom of the
band) and momentum are large such that the usual condi-
tions for the validity of the quasiclassical theory remain valid.
Moreover, if μ is of the order of t , the quasiclassical formal-
ism developed here fails to work. Technically it is because
μ ∼ t still enters Eq. (16) in contrast to the well-known one-
sublattice formalism, and the quasiclassical formalism does
not allow such a high-energy term. Physically it means sup-
pression of all the correlations between electrons belonging
to different normal state dispersion branches and Umklapp
scattering processes [35–37], see Sec. III D for further details.
In the framework of the quasiclassical approximation ˇ̃G(R +
a/2 ± az/2, p) ≈ ˇ̃G(R, p) + (a ± az )∇ ˇ̃G(R, p)/2 we obtain

− 1

iπ

∫
Ǎdξ = it

∑
a

sin pF a(∇ǧ(R, pF )a)

= ivF ∇ǧ(R, pF ), (19)

where vF = dξ/d p|p=pF
= 2t (ax sin[pxax] + ay sin[pyay] +

az sin[pzaz]). After the ξ integration the resulting Eilenberger
equation for the quasiclassical Green’s function takes the form

{[iωmτz + μ + τz�̌(R) − h(R)στzρz]ρx, ǧ(R, pF )}
+ ivF ∇ǧ(R, pF ) = 0. (20)

Equation (20) should be supplemented by the normalization
condition

ǧ2(R, pF ) = 1, (21)

which is typical for the quasiclassical theory. In order to verify
its validity in our case one can multiply Eq. (20) by ǧ(R, pF )
from the left, then from the right, and add the resulting equa-
tions. This procedure leads to the conclusion that ǧ2(R, pF )
obeys the same Eq. (20) and, therefore, ǧ2(R, pF ) = 1 is a
solution of this equation for arbitrary spatial profiles of �̌(R)
and h(R). In particular, one can assume that �̌(R) and h(R)
evolve smoothly to zero values, that is the system transforms
to a normal metal. Given that Eq. (21) holds in the normal
metal one can conclude that ǧ(R, pF ) obeying Eqs. (20) and
(21) is a true solution of the problem under consideration.
Below we directly show that Eq. (21) is valid in the limit of
the normal metal �̌(R) → 0 and h(R) → 0.

Equations (20) and (21) are the desired two-sublattice
Eilenberger equation together with the normalization con-
dition on the quasiclassical Green’s function matrix. These
constitute the main result of this subsection. The sublattice
degree of freedom adds the ρx,y,z Pauli matrices to the frame-
work. It is worth noting that Eq. (20) can also be employed
for treating interfaces with ferrimagnets, when hA �= −hB. In
this case h(R)ρz in Eq. (20) is changed by a diagonal matrix
in the sublattice space ĥ(R) = hA(R)(1 + ρz )/2 + hB(R)(1 −
ρz )/2. In the limit hA = hB it corresponds to the ferromagnetic
case. Also, Eq. (20) adequately describes an antiferromagnetic
metal if the exchange field is small as compared to the Fermi
energy h  εF .

B. Inclusion of disorder

So far we have considered a homogeneous and clean su-
perconductor. A key strength of the quasiclassical framework
is that it can account for several nonidealities, such as im-
purity scattering or disorder. These are especially important
in modeling and understanding experiments which employ
superconductors with a varying degree of disorder.

Considering impurity potential in the superconductor in the
framework of the Born approximation [32], it can be obtained
that Eq. (16) is modified as follows:

{[iωmτz + μ + τz�̌(R) − h(R)στzρz]ρx

−�̌imp(R), ˇ̃G(R, p)} + Ǎ = 0, (22)

where the impurity self-energy �̌imp takes the form

�̌imp = 1

πNF τ

∫
d3 p

(2π )3
[ρ+ ˇ̃G(R, p)ρ+ + ρ− ˇ̃G(R, p)ρ−]

= 1

πNF τ

∫
dξ 〈NF (pF )[ρ+ ˇ̃G(R, p)ρ+

+ ρ− ˇ̃G(R, p)ρ−]〉pF
, (23)

where 〈· · · 〉pF
means Fermi-surface averaging, and NF (pF ) is

the momentum direction-dependent density of states (DOS)
at the Fermi surface. NF is the momentum—averaged DOS at
the Fermi surface. τ is the quasiparticle mean free time, which
is connected to the on-site impurity potential Vi as 〈ViVj〉 =
(1/πNF τ )δi j . In this case one can express the impurity self-
energy Eq. (23) via the quasiclassical Green’s function:

�̌imp(R) = i

τ
[ρ+ ˇ̄g(R)ρ+ + ρ− ˇ̄g(R)ρ−], (24)

where ˇ̄g(R) = 〈NF (pF )
NF

g(R, pF )〉pF
. Then Eq. (20) in the pres-

ence of impurities takes the form

{[iωmτz + μ + τz�̌(R) − h(R)στzρz]ρx

−�̌imp(R), ǧ(R, pF )} + ivF ∇ǧ(R, pF ) = 0. (25)

C. Green’s function of a homogeneous normal metal at an
arbitrary disorder

Now let us find the quasiclassical Green’s function in
the spatially homogeneous normal metal in the presence of
spatially homogeneous, but staggered, exchange field h as
produced by a compensated antiferromagnet interface. Then
the Green’s function ˇ̃G(R, p) does not depend on R and
Eq. (14) is reduced to

[(iωmτz + μ − hστzρz )ρx − ξ (p) − �̌imp] ˇ̃G(p) = 1, (26)

where we have also added the impurity self-energy. In the
clean limit τ → ∞, i.e., if we disregard impurity scattering,
Eq. (26) can be easily solved resulting in the following answer
for the ξ -integrated Green’s function Eq. (18):

ǧ = τz
hσρy + (ωm − iτzμ)ρx√

h2 + (ωm − iμτz )2
. (27)

It is seen that the normalization condition Eq. (21) im-
mediately follows from Eq. (27). It is important that the
Néel structure of the exchange field radically changes the
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FIG. 3. Normal state LDOS for different values of impurity
scattering time τ , which is measured in units of the inverse bulk
superconducting critical temperature T −1

c0 . ε is measured in units of
Tc0. We consider μ = 0 and h = 0.3Tc0 in this figure.

well-known answer for the quasiclassical Green’s function
in the normal metal ǧN = 1, which is valid for the case of
ferromagnet-type exchange field h. This is primarily because
the staggered spin splitting due to the antiferromagnet opens
a gap in the normal-state local density of states (LDOS) of the
superconductor:

N (ε) = 1

4
Tr8

[
1 + τz

2
ρxRe[ǧ(iωm → ε + iδ)]

]
(28)

at ε = −μ. The LDOS at μ = 0 and in the absence of impuri-
ties is shown in Fig. 3 by the red line. The LDOS at finite μ is
obtained by shifting the corresponding plots along the energy
axis Nμ �=0(ε) = Nμ=0(ε + μ).

In the presence of impurities the solution of Eq. (26) cannot
be written explicitly, but the quasiclassical Green’s function
still has the off-diagonal structure in the sublattice space, that
is

ǧ =
(

0 ǧAB

ǧBA 0

)
, (29)

where

ǧAB =
√[

β̌ + i

τ
ǧBA

]−1[
α̌ + i

τ
ǧAB

]
,

ǧBA =
√[

α̌ + i

τ
ǧAB

]−1[
β̌ + i

τ
ǧBA

]
, (30)

with

α̌(β̌ ) = ∓hστz + i(ωmτz − iμ). (31)

From Eqs. (29) and (30) it follows that in the presence of
impurities the normalization condition Eq. (21) also holds.

Irrespective of the impurity strength, the general answer for
normal quasiclassical Green’s function takes the form

ǧ =
(

ĝN 0
0 ˆ̃gN

)
τ

, (32)

FIG. 4. Electron dispersion of the normal-state S in the reduced
Brillouin zone (BZ) pa ∈ [−π/2, π/2] considering a 1D system
with two sites in the unit cell ξ±(p) = ∓2t cos pa − μ. The recip-
rocal lattice vector due to the periodicity enforced by the AF is
Q1D = π/a. The spectrum branches are doubled in the BZ due to
the reduction of the BZ volume. The blue line indicates ordinary
pairing between (p0, ξ1 = 0) (1) and (−p0, ξ2 = 0) (2) electrons cor-
responding to the zero total pair momentum. The green line indicates
Néel pairing between p0(1) and −p0 + Q1D (3) corresponding to the
total pair momentum Q1D. From the point of view of the first BZ it
is an interband pairing between electrons (1) and (3′). Taking into
account that p0 is defined from the condition −2t cos p0a − μ = 0
one immediately obtains that ξ1 − ξ3′ = 2μ. That is, the energy dif-
ference between (1) and (3′) electrons grows with μ thus reducing the
efficiency of pairing. The antiferromagnetic gap opening as discussed
in Fig. 3 has been disregarded in the present simplified figure. �0 is
the zero-temperature gap of the bulk S.

where the electron and hole components of the Green’s func-
tion take the following structure in the sublattice space:

ĝN = Aρx + Bρynhσ,

ˆ̃gN = Ãρx + B̃ρynhσ, (33)

nh = h/h. The difference between two sublattices is contained
in the second terms in Eq. (33). It is seen that it is directly
determined by the presence of the staggered exchange field.
The normal state LDOS at finite impurity concentration is
presented in Fig. 3. It is seen that the gap in the LDOS is
gradually suppressed with impurity strength.

D. Relating single-sublattice and two-sublattice pictures

We now discuss a physical picture for the Néel Cooper
pairs. The essential physics is captured conveniently within
a one-dimensional (1D) model and we consider that here
for clarity [38]. In this model, a 1D AFM is interfaced to a
1D superconductor running along the AFM. Therefore, the
electron wave vector bears only one component which is along
the interface.

Now, if we disregard the AFM, the normal-state electronic
dispersion of S can be depicted as in Fig. 4 with a BZ pa ∈
[−π, π ], where a is the lattice constant. Within this single-
sublattice dispersion for the normal state of S, the AF Néel
order imprinted on the S via a staggered spin-splitting field
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causes scattering between electronic states that differ by the
wave number Q1D = π/a, which is the reciprocal state unit
vector for the AF. This has sometimes been termed Umklapp
scattering in the literature [35–37]. However, we should keep
in mind that the momentum change is the reciprocal unit
vector of the AF, and not the S. Thus, the AF converts con-
ventional spin-singlet pairing between +p and −p electronic
states into Néel spin-triplet pairing between, for example, +p
and −p + Q1D (see Fig. 4). Such a pairing oscillates rapidly
in space similar to the Néel order with the wave number Q1D.

In the discussion above, we have disregarded the gap open-
ing (see Fig. 3) caused by the imposition of staggered spin
splitting on the S. This gap opening seems natural when we
recognize that the Néel ordered AF reduces the periodicity
of the adjacent S by imposing a staggered spin splitting on it
and reducing the BZ to pa ∈ [−π/2, π/2]. Thus, within this
adequately rigorous two-sublattice picture, the gap opening is
natural and happens at the BZ boundary [26,38]. We continue
to ignore it in the ongoing discussion and in Fig. 4, returning
to the gap in understanding further physical phenomena be-
low. Furthermore, within this two-sublattice picture, we now
have two bands in the electronic dispersion. What appeared
as pairing between +p0 and −p0 + Q1D states in the single-
sublattice picture is actually pairing between the +p0 state
from one band with the −p0 state from the other band, as
depicted in Fig. 4.

We also see that the Néel or interband pairing is tak-
ing place between two states which generally have different
energies. They become degenerate only under the special con-
dition when the chemical potential μ is zero so that we have
perfect half-filling in the system, and when we disregard the
gap opening due to the staggered spin splitting. As Cooper
pairing takes place between electrons within an energy �0

(the superconducting gap of the bulk S) from the Fermi sur-
face, the strength of interband pairing depends on the LDOS
in the normal state. This understanding will be employed to
qualitatively understand several of our results below.

In principle, our two-sublattice formalism can be refor-
mulated in terms of the two-band picture. The resulting
equations would be to some extent similar to the quasiclassical
formalism developed for two-band superconductors, where
superconductivity and spin density waves coexist [39,40].
Furthermore, it is interesting to compare the suppression of
superconductivity by a compensated AF studied herein to
the destruction of superconductivity by magnetic impurities
[30]. In the case under investigation, the conversion of singlet
Cooper pairs into Néel triplets, the latter having zero ampli-
tude on spatial averaging, lowers the critical temperature. On
the other hand, unordered magnetic impurities create triplet
Cooper pairs with random spin polarization axes thereby sup-
pressing singlets and superconductivity.

IV. CRITICAL TEMPERATURE OF THE
SUPERCONDUCTOR/ANTIFERROMAGNET BILAYER

We now employ the quasiclassical formalism developed
in the previous section to study the proximity effect and the
superconducting critical temperature in the AF/S bilayer. The
S layer is assumed to be thin with respect to the coherence
length, i.e., dS  ξS . In this case the Green’s function ǧ is

approximately constant in the superconductor except for the
trajectories nearly parallel to the AF/S interface [41,42] and
Eq. (20) can be integrated over the S width dS .

We work at temperatures close to the critical temperature
and linearize the Eilenberger equation with respect to �/Tc.
In this approximation the Green’s function takes the form

ǧ =
(

ĝN f̂
ˆ̃f ˆ̃gN

)
τ

, (34)

where all the components are 4 × 4 matrices in the direct
product of spin and sublattice spaces. The diagonal compo-
nents ĝN and ˆ̃gN are to be calculated in the normal state of the
superconductor, which is done in the previous section. The

anomalous components f̂ and ˆ̃f are of the first order with re-
spect to �/Tc and contain singlet and Néel triplet correlations.
The resulting equation for the anomalous Green’s function f̂
takes the form

{iωmρx − heffσρzρx, f̂ } + [μρx, f̂ ] + �(ρx ˆ̃gN − ĝNρx )

− i

τ
([ρ+ĝNρ+ + ρ−ĝNρ−] f̂ − f̂ [ρ+ ˆ̃gNρ+ + ρ− ˆ̃gNρ−])

− i

τ
([ρ+ f̂ ρ+ + ρ− f̂ ρ−] ˆ̃gN − ĝN [ρ+ f̂ ρ+ + ρ− f̂ ρ−])=0,

(35)

where heff = hax/dS is the absolute value of the effective
staggered exchange field, induced in the superconductor due
to proximity with the AF insulator. Now let heff = heffez. Then
the solution of Eq. (35) takes the form

f̂ = fsρx + ftρyσz, (36)

where

fs = �
−i(A2 − Ã2) + τ [(Ã − A)μ + iheff(B + B̃)]

2
[
(B + B̃)heff + ωm(A + Ã − iμτ )

] , (37)

ft =�
i(B + B̃)(A − Ã + ωmτ )

2[(B + B̃)heff + ωm(A + Ã − iμτ )]
. (38)

In the clean limit, Eqs. (37) and (38) are reduced to

fs = �

2iωm

(
ωm − iμ√

h2
eff + (ωm − iμ)2

+ ωm + iμ√
h2

eff + (ωm + iμ)2

)

+ �h2
eff

2μωm

(
1√

h2
eff+(ωm−iμ)2

− 1√
h2

eff+(ωm+iμ)2

)
,

(39)

ft =heff�

2μ

( 1√
h2

eff + (ωm − iμ)2
− 1√

h2
eff + (ωm + iμ)2

)
.

(40)

From Eq. (36), it is seen that the triplet part of the anomalous
Green’s function is opposite at two sublattices (due to the ρy

term). Thus, the quasiclassical approach adequately captures
and demonstrates the Néel triplets previously seen in the nu-
merical solution (Fig. 1).

Equation (40) demonstrates that the Néel triplets are odd-
frequency correlations [5,43]. However, in contrast to the
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FIG. 5. Anomalous Green’s function of the Néel triplet correla-
tions summed over positive Matsubara frequencies Ft

A = ∑
ωm>0 ft

as a function of heff for different values of the mean free time τ .
Red line represents the same quantity for an S/F interface with a
ferromagnetic insulator producing the same value of the effective
exchange field (but homogeneous, not staggered) in the superconduc-
tor. The S/F interface is not sensitive to impurities, for this reason
only one line is shown for the ferromagnetic case. Each line ends
at the critical value of heff corresponding to the full suppression of
superconductivity. We consider μ = 0 here.

usual odd-frequency triplets in S/F heterostructures [5,7],
they are suppressed by impurities as demonstrated in Fig. 5,
which presents the dependence of the Néel triplets on heff

at different impurity strengths. The suppression of the Néel
triplets by impurities is because they are constituted by inter-
band pairing and scattering from impurities mixes the states
in the two bands. Furthermore, it is seen that in the absence of
impurities the absolute value of the Neel triplet correlations
is very close to the value of triplets at the S/F interface with
the same parameters. The difference between them becomes
essential at higher value of heff, where the suppression of
superconductivity at the S/AF interface due to the antiferro-
magnetic gap also plays an important role.

The critical temperature of the AF/S bilayer is calculated
from the self-consistency equation

1 = iπλTc

∑
ωm

fs

�
, (41)

where λ is the dimensionless coupling constant. The depen-
dence of the critical temperature of the AF/S bilayer on the
effective exchange field is presented in Fig. 6 for different
values of the impurity strength. We can observe two important
physical phenomena in this figure.

First, the critical temperature is indeed suppressed by the
staggered exchange. In the clean case the efficiency of sup-
pression by the staggered field is of the same order, and
even higher, as the suppression by the ferromagnet with the
same absolute value of the exchange field. The stronger sup-
pression of the superconductivity by the staggered exchange
as compared to the uniform ferromagnetic exchange field is
explained by the presence of the antiferromagnetic gap at the
Fermi surface (see Fig. 3), which prevents electronic states
inside this gap from superconducting pairing.

FIG. 6. Critical temperature of the AF/S bilayer as a function of
heff for different values of mean free time τ . μ = 0.01Tc0. Orange
line represents Tc(heff ) for an S/F interface with a ferromagnetic
insulator producing the same value of the effective exchange field
(but homogeneous, not staggered) in the superconductor. The dashed
parts of the curves correspond to the unstable solutions, see text for
further details.

Second, the critical temperature for a given heff grows
with impurity concentration. That is, the impurities reduce the
efficiency of suppression. It is in sharp contrast with the be-
havior of a F/S bilayer, where the degree of suppression is not
sensitive to the impurity concentration. This highly unusual
behavior results from two facts, which act in parallel. First of
all, as it is discussed above, the odd-frequency Néel triplets
are suppressed by impurities. Second, the antiferromagnetic
gap at the Fermi surface is also suppressed by impurities. It
makes the corresponding electronic states available for super-
conducting pairing.

The dashed parts of the curves in Fig. 6 represent the
unstable branches of Tc(heff ). It really means that starting from
some value of heff the self-consistency equation for the super-
conducting order parameter (beyond the linearized limit) has
two different solutions corresponding to two different critical
temperatures. One of them (with higher critical temperature)
represents the stable solution and the other (with lower critical
temperature) corresponds to the maximum of the system free
energy, which is absolutely unstable. The situation is similar
to the physics of S/F bilayers [7–9,44].

Néel triplets are also suppressed by finite values of μ for
a given heff. This is demonstrated in Fig. 7. The physical
reason for the suppression is understood from the discussion
in Sec. III D and the corresponding Fig. 4. Electrons can
effectively pair if their energies are within the bulk supercon-
ducting gap �0 from the Fermi surface. Néel-type or interband
pairing involves electrons with different energies with the
energy difference 2μ between them (see Fig. 4). When this
energy difference exceeds �0, the Néel-type pairing is not
effective. This simple picture is valid for small values of heff

when the antiferromagnetic gap in the electron dispersion
can be ignored. As it is seen from Fig. 7, at heff � μ the
suppression of Néel triplets by μ is greatly weakened. The
suppression of the Neel triplets by nonzero μ naturally results
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FIG. 7. Anomalous Green’s function of the Néel triplet correla-
tions as a function of heff for different values of μ. Each line ends
at the critical value of heff corresponding to the full suppression of
superconductivity. We consider the clean limit τ−1 = 0 here.

in the reduced sensitivity of the critical temperature to the
exchange field at larger μ, as has been demonstrated in Fig. 8.

V. DISCUSSION

A theoretical accounting of the band gap created in the
normal-state electron dispersion by the staggered spin split-
ting induced by an adjacent Néel ordered AF has previously
been considered [26], without disorder. Furthermore, emer-
gence of a finite spin splitting in the S due to the commonly
found uncompensated interface and spin-flip scattering offer
other known mechanisms of proximity effect in an AF/S
bilayer [11]. Our analysis in this article has revealed a pre-
viously unexplored mechanism—converting spin-singlet into
Néel spin-triplet Cooper pairs—of suppressing superconduc-
tivity in the S by an adjacent compensated AF. Furthermore,
employing the two-sublattice quasiclassical Green’s functions
theory developed, our analysis reveals the effect of disorder on
all these mechanisms. This seemingly complete picture allows

FIG. 8. Critical temperature of the AF/S bilayer as a function of
heff for different values of μ. Unstable branches are not shown. The
results correspond to the clean limit τ−1 = 0.

us to envisage the various competing effects taking place in a
realistic AF/S bilayer [19,22–24].

Let us understand the qualitative dependencies of these
mechanisms. The role of finite spin splitting in S due to an
uncompensated interface with an AF together with spin-flip
scattering due to interfacial disorder is nearly identical to that
of proximity effect due to an adjacent ferromagnet [11,30].
For the case of a compensated interface that we have con-
sidered here, both the band gap opening mechanism and the
induction of Néel triplets are most active when the Fermi
wave vector in the normal state of the S (without AF) is
close to the reciprocal space unit vector of the AF. In that
case, the band gap opening tends to make the normal state
of S into an insulator thereby diminishing density of states
and weakening superconductivity. At the same time, under
those conditions, the two bands (Fig. 4) are energetically close
resulting in conversion of spin-singlet into Néel (or interband)
spin-triplet Cooper pairs. Notably, disorder suppresses both
these effects. Furthermore, if the S normal state does not have
the required Fermi surface, both of these mechanisms become
inactive and one recovers the Werthammer treatment of the
proximity effect in the AF/S bilayer [12], where the AF, if
metallic, merely acts as a normal metal.

Hence, to some extent, the experimental observation of a
finite proximity effect and reduction of superconductivity in
AF/S bilayers can be understood as due to the uncompensated
interface that causes spin-splitting and spin-flip scattering.
However, a proximity effect that turns out to be stronger
than that due to a ferromagnet and that shows a maximum
at specific AF thickness cannot be explained in this manner
[19,22,23]. These observations hint at the role of band gap
opening and/or the Néel triplets mechanism investigated here.
A decrease in the average disorder with increasing thickness
of the AF should allow for a stronger suppression of the
superconductivity as per these two mechanisms. With further
increase in the AF thickness, the S Cooper pairs do not leak
into the metallic AF far enough and the proximity effect gets
saturated. Furthermore, with reduced disorder, the weakening
of superconductivity due to spin-flip scattering is decreased
that may result in a recovery of the S critical temperature.
Nevertheless, a fully detailed analysis of such a system should
adequately consider a metallic AF, in contrast with our consid-
eration of proximity effect due to an insulating AF.

VI. SUMMARY

We have demonstrated theoretically the emergence of un-
conventional spin-triplet Cooper pairs in a superconductor
exposed via a compensated interface to an antiferromagnetic
insulator. The pairing amplitude for these alternates sign on
the lattice length scale, similar to the Néel spin order in
the antiferromagnet. Thus, we call these Néel triplets and
show that these are formed from pairing between electronic
states from two different bands, i.e., interband pairing. For-
mulating a two-sublattice quasiclassical Green’s functions
description of the bilayer, we investigate the effect of this
interband pairing on the superconducting critical temperature.
The ensuing powerful formulation provides a semianalytic
description and a clear physical understanding of the key
phenomena as a function of disorder and chemical poten-
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tial. Such Néel or interband triplets may already be playing
an important role in experiments on proximity effect in
superconductor/antiferromagnet hybrids.
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APPENDIX: BOGOLIUBOV–DE GENNES ANALYSIS:
FORMULATION AND SOLUTION

In this Appendix we formulate and solve the Bogoliubov–
de Gennes equation [34] which has been employed for the
numerical analysis presented in Sec. II. The system of our
interest is described via the following Hamiltonian:

H = − t
∑
〈i j,〉σ

ĉ†
iσ ĉ jσ +

∑
i

(�iĉ
†
i↑ĉ†

i↓ + H.c.) − μ
∑

iσ

n̂iσ

+
∑
i,αβ

ĉ†
iα (miσ)αβ ĉiβ, (A1)

where i = (ix, iy)T is the radius vector of the site and greek
letters correspond to the spin indices. 〈i j〉 means summation
over the nearest neighbors. �i and mi denote the on-site
superconducting and magnetic order parameters at site i, re-
spectively. ĉ†

iσ (ĉiσ ) creates (annihilates) an electron of spin
σ =↑,↓ on the site i, t denotes the nearest-neighbor hop-
ping integral, and μ is the filling factor. n̂iσ = ĉ†

iσ ĉiσ is the
particle number operator at site i. We also define the vector
of Pauli matrices in spin space σ = (σx, σy, σz )T . We assume
that the antiferromagnet is of G type. Then the magnetic
order parameter can be taken in the form mi = (−1)ix+iy m
inside the antifferomagnet. x and y axes are taken normal
to the AF/S interface and parallel to it, respectively. It is
assumed that the antiferromagnetism is due to the localized
electrons and the amplitude of the on-site magnetization is
not influenced by the adjacent metal. Therefore, we do not
calculate m self-consistently and it is assumed to be con-
stant inside the AF region. It has been demonstrated for a
similar AF/S/F structure [31] that in the framework of the
BdG approach the self-consistent calculation of the antifer-
romagnetic order parameter only gives a minor suppression

of the antiferromagnetic order parameter near the interface
inside the antiferromagnet, and does not lead to any qualitative
changes inside the superconductor, which is the focus of our
study. We diagonalize the Hamiltonian (A1) by the Bogolubov
transformation:

ĉiσ =
∑

n

ui
nσ b̂n + vi∗

nσ b̂†
n, (A2)

where b̂†
n (b̂n) are the creation (annihilation) operators of

Bogolubov quasiparticles. Then the resulting Bogolubov–de
Gennes equations take the form

−μui
n,σ − t

∑
j∈〈i〉

u j
n,σ + σ�iv

i
n,−σ + (miσ )σαui

n,α = εnui
n,σ

−μvi
n,σ − t

∑
j∈〈i〉

v j
n,σ + σ�∗

i ui
n,−σ +(miσ∗)σαvi

n,α = −εnv
i
n,σ ,

(A3)

where j ∈ 〈i〉 means summation over nearest neighbors of
site i and εn are the eigenstate energies of the Bogolubov
quasiparticles.

The superconducting order parameter in the S layer is
calculated self-consistently:

�i = g〈ĉi↓ĉi↑〉 = g
∑

n

(ui
n,↓vi∗

n,↑(1 − fn) + ui
n,↑vi∗

n,↓ fn),

(A4)

where g is the coupling constant. The quasiparticle dis-
tribution function is assumed to be the equilibrium Fermi
distribution fn = 〈b†

nbn〉 = 1/(1 + eεn/T ).
Furthermore, we investigate the structure of superconduct-

ing correlations at the AF/S interface with infinite supercon-
ducting layer. The anomalous Green’s function in Matsubara
representation can be calculated as Fi,αβ = −〈ĉiα (τ )ĉiβ (0)〉,
where τ is the imaginary time. The component of this anoma-
lous Green’s function for a given Matsubara frequency ωm =
πT (2m + 1) is calculated as follows:

Fi,αβ (ωm) =
∑

n

(
ui

n,αvi∗
n,β

iωm − εn
+ ui

n,βvi∗
n,α

iωm + εn

)
. (A5)

Only off-diagonal in spin space components, corresponding
to opposite-spin pairs, are nonzero for the case under con-
sideration. The singlet (triplet) correlations are described by
F s,t

i (ωm) = Fi,↑↓(ωm) ∓ Fi,↓↑(ωm). Please note that the on-
site triplet correlations are odd in Matsubara frequency, as
it should be according to the general fermionic symmetry.
Therefore, we calculate the sum over the positive Matsubara
frequencies Ft

i = ∑
ωm>0

Ft
i (ωm).
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