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The diagrammatic formalism and transport equation are conventionally considered as separate but comple-
mentary basic techniques to tackle the impurity scattering effect. To compare with previous studies from the
gauge-invariant kinetic equation approach [F. Yang and M. W. Wu, Phys. Rev. B 98, 094507 (2018); 102, 144508
(2020)], we analytically perform a diagrammatic formulation of the impurity scattering in superconductors, with
both transport and collective Higgs modes studied, to fill the long missing calculation of the Kubo current-current
correlation in superconductors with impurity scattering and resolve the controversy (whether the impurity
scattering can lead to the damping of Higgs mode) between the gauge-invariant kinetic equation and Eilenberger
equation. For transport behavior, through a special unitary transformation that is equivalent to the Wilson-line
technique for the diamagnetic response, we derive the Meissner-supercurrent vertex. Then, by formulating the
supercurrent-supercurrent correlation with Born and vertex corrections from impurity scattering, we recover the
previously revealed microscopic momentum-relaxation rate of superfluid by gauge-invariant kinetic equation.
This rate is finite only when the superconducting velocity is larger than a threshold, at which the normal
fluid emerges and causes friction with the superfluid current, similar to Landau’s superfluid theory of liquid
helium. This derivation also provides a physical understanding of the relaxation-time approximation in the
previous diagrammatic formulation in the literature, which leads to the friction resistance of the Meissner
supercurrent. For the collective Higgs mode, we calculate the amplitude-amplitude correlation with Born and
vertex corrections from impurity scattering. The vertex correction, which only emerges at the nonequilibrium
case, leads to a Higgs-mode damping, whereas the Born correction that is equivalent to equilibrium self-energy
makes no contribution due to the Anderson theorem. This induced damping agrees with the analysis through the
Heisenberg equation of motion and is also exactly the same as the one obtained from the gauge-invariant kinetic
equation.
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I. INTRODUCTION

The impurity scattering effect has attracted much atten-
tion in the field of superconductivity. On one hand, the
stationary magnetic-flux expulsion due to the generated dia-
magnetic supercurrent (Meissner effect) [1,2], as well as
the low-frequency optical conductivity described by the
phenomenological two-fluid model [3,4], are characteristic
transport properties of superconductors, among which eluci-
dating the impurity scattering effect is essential to understand
the superconductivity/resistivity phenomena. On the other
hand, recently, inspired by nonlinear optical experiments in
the THz regime [5–11], a great deal of effort has been devoted
to the collective gapful Higgs mode, which describes the
amplitude fluctuation of the superconducting order parameter
[12–21]. Being charge neutral, this collective excitation does
not manifest itself in the linear optical response, but can be
generated in the second-order one at clean limit [22], leading
to an experimentally observable fluctuation of superfluid den-
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sity [22]. The damping mechanism of the Higgs mode after
excitation then stimulated a lot of interest [10,23].

Theoretically, two kinds of schemes have been developed
in the literature to formulate the impurity scattering effect,
including the diagrammatic formalism and transport equation,
which are conventionally considered as separate but comple-
mentary basic techniques as a crosscheck, as demonstrated
in normal metals [24]. Nevertheless, in superconductors, the
relationship of the two techniques has not been well developed
in the literature for decades.

The formulation within the diagrammatic formalism re-
quires the inevitable calculation of the vertex correction by
impurity scattering [25,26], which is hard to tackle in su-
perconductors. Specifically, it has been established [27] that
superconductors with the small (large) mean-free path l in
comparison with the skin depth δ lie in the normal (anoma-
lous) skin-effect region and exhibit the London-type/local
(Pippard-type/nonlocal) electromagnetic response. The lin-
ear electromagnetic responses of superconductors in the
anomalous- and normal-skin-effect regions were discussed by
Mattis and Bardeen [28] as well as Abrikosov et al. [26],
based on the current-current correlation with the impurity
scattering. To handle the scattering effect, the Mattis-Bardeen
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theory introduces a phenomenological constant scattering
factor [28], which is similar to the relaxation-time approxima-
tion. Whereas Abrikosov et al. [26] applied an approximation
that assumes an isotropic Green’s function in considera-
tion of a dirty case (l � ξ , with ξ being the coherence
length) to integrate over the momentum variable of pair-
ing electrons to simplify the vertex-correction calculation.
Both approximations then drop the microscopic scatter-
ing process. Interestingly, both Mattis-Bardeen [28,29] and
Abrikosov-Gorkov [26] theoretical descriptions in the dia-
magnetic response derive a penetration depth λ = λc

√
ξ/l at

the dirty limit, with λc being the clean-limit result. By using
the relaxation-time approximation, this dependence was later
phenomenologically extended by Tinkham [30] to a general
form λ = λc

√
1 + ξ/l between clean and dirty cases, in good

agreement with the experiments [31–35]. Nevertheless, as a
direct consequence of this dependence that is derived from the
current-current correlation, the Meissner supercurrent, which
should be nonviscous, experiences a friction resistance by
scattering. The physical origin of this resistance becomes
untraceable due to the absent microscopic scattering process.
Moreover, these theoretical descriptions also fail to recover
the two-fluid model, which requires a microscopic distinc-
tion of the pairing (superfluid) and unpairing (normal fluid)
electrons [3,36,37]. In contrast to the transport behavior, the
diagrammatic formulation of the impurity scattering effect on
Higgs mode remains stagnant so far. While the calculation of
the amplitude-amplitude correlation at the clean case success-
fully gives the Higgs-mode energy spectrum in the long-wave
limit [38–42], it is complicated to formulate the corresponding
vertex correction by the impurity scattering.

The transport-equation approach with microscopic scatter-
ing can naturally contain and easily handle the calculation of
the vertex correction by scattering, as demonstrated in normal
metals [24,43]. In superconductors, three kinds of trans-
port equations that construct the microscopic scattering have
been developed in the literature, including the semiclassical
Boltzmann equation of quasiparticles [44–46], quasiclassi-
cal Eilenberger equation [47–51], and gauge-invariant kinetic
equation (GIKE) [52–55]. The semiclassical Boltzmann equa-
tion as an early stage of works only includes the quasiparticle
dynamics but fails to contain the superfluid dynamics [44–46].

The Eilenberger equation [47,50,51] is derived from
the basic Gorkov equation [26] of the τ3-Gree’s function
G3(x, x′) = −iτ3〈T̂ ψ (x)ψ†(x′)〉 through the quasiclassical
approximation which performs an integration over kinetic-
energy variable. Here, τi denotes the Pauli matrices in Nambu
space. This approach at the free case can successfully describe
the Higgs-mode energy spectrum [56] and discuss topics like
the proximity effect in multilayer junctions [48,49] as well as
vortex dynamics [57–60] and unconventional superconductiv-
ity [61–64]. While concerning the electromagnetic response,
the gauge invariance is lost during the derivation [65], leading
to an incomplete electromagnetic effect. As a consequence,
the Eilenberger equation only keeps the drive effect of the
vector potential [67], making it well tailored to handle the
diamagnetic response (i.e., derive the Ginzburg-Landau equa-
tion as well as the Meissner supercurrent [50]) and gives a
finite Higgs-mode generation in the second optical response at
the clean limit [22,68]. But the drive effect by scalar potential

and all density-related electromagnetic effects are generically
dropped out [22,67].

Focusing on the scattering effect, the Eilenberger equa-
tion contains the specific quasiclassical microscopic scattering
integral [47–51,56]. In the diamagnetic response, the derived
supercurrent from this approach also experiences a friction re-
sistance [47,51,56]. Particularly, in the Usadel equation [69],
which is a dirty-limit case of the Eilenberger equation, the
induced supercurrent is directly proportional to the diffusive
coefficient, consistent with the Mattis-Bardeen [28,29] and
Abrikosov-Gorkov [26] theoretical descriptions mentioned
above. Nevertheless, elucidating the origin of this friction
resistance has long been overlooked. As for the collective ex-
citation, with impurities, it is reported [56,70] that the derived
Higgs-mode energy spectrum in the Eilenberger equation is
free from the scattering influence, i.e., the impurity scatter-
ing does not cause the damping of the Higgs mode. In one
view in the literature, the Higgs mode as the gap fluctua-
tion is insensitive to disorder, as the Anderson theorem [71]
reveals a vanishing renormalization by impurity self-energy
on equilibrium s-wave gap [72–75] in consideration of the
time-reversal-partner pairing. Very recently, this viewpoint
has been challenged [54]. The key point lies in the fact that
the Higgs mode is a nonequilibrium excitation which breaks
the time-translational symmetry. Thus, applying the Ander-
son theorem to the nonequilibrium case is unsuitable. In this
circumstance, considering the fact that the Higgs-mode ex-
citation δ|�|τ1 and electron-impurity interaction V (r)τ3 are
noncommutative in Nambu space, one immediately concludes
that the nonequilibrium Higgs mode experiences a finite
impurity influence according to the Heisenberg equation of
motion. This analysis is then in sharp contrast to the derivation
from the Eilenberger equation [56] mentioned above.

The GIKE [52,53] is derived from the Gorkov
equation [26] of the τ0-Green’s function G0(x, x′) =
−i〈T̂ ψ (x)ψ†(x′)〉 within an equal-time scheme [76,77].
To retain the gauge invariance, the gauge-invariant τ0-Green’s
function is constructed through the Wilson line [66]. Then,
the complete electromagnetic effects are included [52] and
the charge conservation is naturally satisfied [53], making this
approach capable of formulating both magnetic and optical
responses in linear and nonlinear regimes. The well-known
clean-limit results, such as the Ginzburg-Landau equation and
Meissner supercurrent in the diamagnetic response and the
low-frequency optical conductivity captured by the two-fluid
model [52] as well as the linear electromagnetic responses of
the collective phase and Higgs modes [53], can be directly
derived from this microscopic approach. Very recently, in
the second optical response at the clean limit, the derived
finite Higgs-mode generation and vanishing charge-density
fluctuation from GIKE [53] are exactly recovered from the
basic path-integral approach [22].

Thanks to the equal-time scheme [76,77], the microscopic
scattering in superconductors, which is hard to tackle within
the diagrammatic formalism, becomes easy to handle within
the GIKE. From this approach, not only the previously
revealed phenomenological dependence of the penetration
depth on mean-free path by Tinkham is recovered [52] but
also the disorder-induced damping of Higgs mode is revealed
[54]. Specifically, it is analytically demonstrated [52] that
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the generated Meissner supercurrent in diamagnetic response
becomes viscous only when the superconducting velocity is
larger than a threshold at which the normal fluid emerges,
similar to Landau’s theory for the emerged fluid viscosity
in bosonic liquid helium at larger velocity [78]. The emer-
gence of the viscous superfluid in superconductors arises
from the friction between normal-fluid and superfluid cur-
rents due to the microscopic scattering [52]. A three-fluid
model consisting of normal fluid as well as viscous and
nonviscous superfluids is then proposed [52,55]. As for the
damping of Higgs mode, it is found [54] that the impurity
scattering leads to a fast exponential decay, which arises
from the noncommutation relation between Higgs mode and
electron-impurity interaction. This damping then agrees with
the analysis through the Heisenberg equation of motion men-
tioned above, but is in contrast to the previous derivation from
the Eilenberger equation [56].

In the present paper, to achieve a separate but complemen-
tary basic technique to compare with GIKE as a crosscheck,
we try to apply the diagrammatic formulation of the im-
purity scattering in superconductors to fill the long missing
calculation of the Kubo current-current correlation in super-
conductors with the impurity scattering in the textbook and
resolve the controversy (whether the impurity scattering can
lead to the damping of Higgs mode) between GIKE [54] and
the Eilenberger equation [56] mentioned above. Specifically,
for transport behavior in the diamagnetic response, because
of the Meissner effect [1,2], it is shown that the density
vertex τ3 [79] in the conventional kinematical momentum
operator p̂ − eAτ3 leads to a non-gauge-invariant current af-
ter the scattering treatment/correction on the current-current
correlation. To eliminate this unphysical current, we apply a
special unitary transformation that is equivalent to the Wilson-
line technique for the diamagnetic response, and obtain the
Meissner-supercurrent vertex. Then, by further calculating
the supercurrent-supercurrent correlation with Born and ver-
tex corrections from the impurity scattering, the microscopic
momentum-relaxation rate of superfluid, which is exactly
same as the one from GIKE [52,80], is derived. This rate
becomes finite only when the superconducting velocity is
larger than a threshold, at which the normal fluid emerges and
causes the friction with superfluid current. Then, the three-
fluid model proposed in Ref. [52] is recovered. Moreover,
this derivation also provides a physical understanding of the
relaxation-time approximation in the previous diagrammatic
formulation [28–30], which leads to the friction resistance
of the Meissner supercurrent as mentioned above. Further-
more, through the Wilson-line technique, a gauge-invariant
Hamiltonian that explicitly distinguishes the Meissner effect
and electric-field drive effect as well as the Josephson voltage
effect is proposed.

As for the collective Higgs mode, we perform an analyt-
ical calculation of the amplitude-amplitude correlation with
the Born and vertex corrections from impurity scattering. It
is found that the vertex correction leads to a fast exponen-
tial damping of Higgs mode, whereas the Born correction
that is equivalent to equilibrium impurity self-energy makes
no contribution because of the Anderson theorem [71–75].
This induced damping by impurity scattering is exactly same
as the one obtained from GIKE and agrees with analysis

through the Heisenberg equation of motion mentioned above,
in contrast to the previous derivation by the Eilenberger equa-
tion [56]. The revealed lifetime of the Higgs mode by impurity
scattering provides a possible origin for the experimentally
observed broadening of the resonance signal [7,8] as well
as the damping after optical excitation [5,6] of the Higgs
mode. In addition, as pointed out in Ref. [54], the damping
by impurity can cause a phase shift in the optical signal of
the Higgs mode, which exhibits a π jump at the resonance
frequency and hence provides a very clear feature for further
experimental detection.

II. MODEL

In this section, we first introduce the Hamiltonian and
action of superconductors in the presence of the supercon-
ducting momentum. Then, based on the basic path-integral
approach, we present the diagrammatic formalism to inves-
tigate the scattering effects on nonequilibrium property in
superconductors.

A. Hamiltonian and action

It is well-known in superconductors that in the stationary
magnetic response with a vector potential A, a supercurrent
is driven by superconducting momentum ps = −eA [26].
The Bogoliubov-de Gennes Hamiltonian of the conventional
s-wave superconducting states in the presence of the super-
conducting momentum reads [26]

H =
∫

dxψ†(x)[ξp̂+psτ3τ3 + �0τ1 + V (x)τ3]ψ (x), (1)

where ψ (x) = [ψ↑(x), ψ†
↓(x)]T represents the field operator

in Nambu space with x = (x0, x) being the space-time four-
vector; the momentum operator p̂ = −ih̄∇; ξp̂ = p̂2/(2m) −
μ with m denoting the effective mass and μ being the chem-
ical potential; �0 and V (x) denote the equilibrium gap and
impurity potential, respectively.

Based on the Hamiltonian above, the action of supercon-
ductors after Hubbard-Stratonovich transformation is written
as [79]

S =
∫

dx

{ ∑
s=↑,↓

ψ∗
s (x)[i∂x0 −ξp̂+ps −V (x)]ψs(x)

−ψ†(x)�0τ1ψ (x)− �2
0

g

}
, (2)

which in Nambu space becomes

S =
∫

dx

{
ψ†(x)

[
G−1

0 ( p̂)−V (x)τ3
]
ψ (x)− η f p2

s

2m

−η f V (x)− |�(x)|2
g

}
. (3)

Here, g denotes the BCS pairing potential and η f = ∑
k 1

emerges because of the anticommutation of the Fermi
field; the Green’s function G−1

0 ( p̂) = i∂x0 − ps · vp̂ − (ξp̂ +
p2

s
2m )τ3 − �0τ1 with vp̂ = p̂/m standing for the group velocity.
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The Fourier component of the Green’s function in Matsub-
ara representation is given by [26]

G0(p) = ipn−ps ·vk+ξkτ3+p2
sτ3/(2m)+�0τ1

(ipn − E+
k )(ipn − E−

k )
, (4)

where the four-vector momentum p = (pn, k) with pn =
(2n + 1)πT being the Matsubara frequency; the quasiparticle
energy spectra read

E±
k = ps · vk ± Ek, (5)

with Ek =
√

[ξk + p2
s/(2m)]2 + �2

0.
It is noted that the term ps · vk in the equilibrium

Green’s function denotes the Doppler shift [52,80–87], which
causes a tilted quasiparticle energy spectrum and hence
markedly influences the superconducting anomalous correla-
tion. Specifically, the gap equation reads [26]

T̄r[G0(p)τ1] =
∑

k

2�0Fk = −�0/g, (6)

where the anomalous correlation Fk is written as

Fk = f (E+
k ) − f (E−

k )

2Ek
. (7)

In momentum space, the anomalous correlation Fk vanishes
in regions with |ps · vk| > Ek where the quasielectron energy
E+

k < 0 or quasihole energy E−
k > 0, but remains finite in

the regions with |ps · vk| < Ek. Following the idea of the
Fulde-Ferrell-Larkin-Ovchinnikov state in conventional su-
perconductors [36,37], regions with nonzero and vanishing
anomalous correlations are referred to as the pairing and un-
pairing regions, respectively. Particles in the pairing region
contribute to the gap as a superfluid, whereas particles in
the unpairing region no longer participate in the pairing and
behave like normal ones, leading to the emergence of normal
fluid [36,52]. However, in the discussion of the scattering
effect, the essential Doppler shift term was approximately
neglected in previous works [26,28,29] and has long been
overlooked in the literature. In the present work, we sublate
this approximation by keeping the Doppler-shift term in the
Green’s function.

B. Diagrammatic formalism

In this part, through the path-integral approach, we present
the diagrammatic formalism to calculate the impurity scatter-
ing on nonequilibrium properties. For transport behavior in
the diamagnetic response of superconductors, a supercurrent j
is driven by a superconducting momentum ps = −eA. At the
clean limit, j = −e2nsA/m, with ns being the superfluid den-
sity, and the penetration depth then reads λc =

√
m/(4πe2ns)

[26]. Nevertheless, with impurities, considering the friction
resistance of the supercurrent mentioned in the Introduction
as well as the role of the Doppler shift mentioned above,
a self-consistent equation of motion of the superconducting
current is required. In this circumstance, following the tech-
nique of applying the test charge in the Coulomb screening
calculation [24], we consider a test nonequilibrium variation
δps(x) = −eδA on top of the uniform ps = −eA, which leads
to a nonequilibrium variation of the superconducting current

[j → j + δj(x)]. Then, by deriving the linear response of δj to
δps, one equivalently obtains the self-consistent equation of
motion of the superconducting current.

As for the Higgs mode (i.e., nonequilibrium gap fluctua-
tion δ|�(x)|), its equation of motion (∂2

t − ω2
H )δ|�| = 0 at

the clean and low-frequency case, showing a gapful energy
spectrum ωH = 2�0 in the long-wave limit, has been revealed
by various theoretical approaches in the literature [12,16–
22,38–42,53–56]. To discuss the damping, one also needs to
derive the equation of motion of δ|�| in the presence of the
scattering.

To start, we begin with a general self-energy �δ (x, p) by
nonequilibrium variation. The action including this nonequi-
librium self-energy is written as

S =
∫

dxψ†(x)
[
G−1

0 ( p̂) − �δ (x, p) − V (x)τ3
]
ψ (x)

−
∫

dx

[
η f �δ3 + η f p2

s

2m
+ η f V (x) + (�0 + δ|�|)2

g

]
,

(8)

where �δi denotes the τi component of �δ . Through the inte-
gration over the Fermi field within the path-integral approach,
one obtains the effective action,

S =
∫

dx

[
T̄r ln

[
G−1

0 − �δ − V τ3
] − (�0 + δ|�|)2

g
− η f

×
(

�δ3 + V + η f p2
s

2m

)]

×
∫

dx

[
T̄r ln G−1

0 − η f
p2

s

2m
− nV

− (�0 + δ|�|)2

g
− η f �δ3

− T̄r(G0�δ ) −
∞∑

n=2

1

n
T̄r{[G0(�δ + V τ3)]n}

]
, (9)

where we have used T̄r[G0τ3] + η f = n (refer to Ap-
pendix A), with n denoting the charge density.

The equilibrium part in the effective action above reads

S0 =
∫

dx

{∑
pn,k

ln (ipn − E+
k )(ipn − E−

k ) −
(

η f p2
s

2m
+ �2

0

g

)

−
∞∑

n=2

1

n
T̄r[(G0V τ3)n]

}
. (10)

It is noted that the last term on the right-hand side of
above equation denotes the equilibrium impurity self-energy
[72–75], which in principle can cause renormalization on the
equilibrium parameters, such as effective mass, chemical po-
tential (charge density), and superconducting momentum, as
well as gap [24].
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FIG. 1. Diagrammatic formalism for δS(2)
CR (i.e., �

(1)
δ -� (1)

δ cor-
relation). On the right-hand side of the equation of δS(2)

CR, the first
diagram denotes the bare �

(1)
δ -� (1)

δ correlation; the second and third
diagrams represent the Born and vertex corrections by impurity scat-
tering, respectively. In the figure, the dashed lines with cross and
diamond represent the impurity interaction and ladder diagram of
impurity scattering, respectively; the wavy line is associated with the
nonequilibrium self-energy �

(1)
δ ; the thin and thick solid lines denote

the bare and renormalized Green’s functions, respectively.

The nonequilibrium part in the effective action reads

δS = −
∫

dx

[ ∞∑
n=2

1

n
T̄r([G0(�δ + V τ3)]n − (G0V τ3)n)

+ T̄r(G0�δ ) + η f �δ3 + 2�0δ|�| + δ|�|2
g

]
. (11)

In principle, one only needs to consider the linear response
of the weak nonequilibrium variation, i.e., keep up to the
second order of the weak nonequilibrium variation in the
nonequilibrium action. Then, by expanding the nonequilib-
rium self-energy as �δ = �

(1)
δ + �

(2)
δ with �

(1)
δ and �

(2)
δ

denoting the parts from the linear and second orders of the
variation, respectively, the nonequilibrium action in Eq. (11)
becomes

δS(2) = δS(2)
CR + δS(2)

VT −
∫

dx

(
η f �

(2)
δ3 + δ|�|2

g

)
, (12)

with the contribution of the �
(1)
δ -�(1)

δ correlation,

δS(2)
CR = −1

2

∫
dxT̄r

[
�

(1)
δ G0�

(1)
δ G0 + 2(G0V τ3)2

(
G0�

(1)
δ

)2

+ G0�
(1)
δ G0V τ3G0�

(1)
δ G0V τ3 + O(V n>2)

]
, (13)

as well as a direct �
(2)
δ -vertex contribution:

δS(2)
VT = −

∫
dxT̄r

[(
G0�

(2)
δ

)+ G0�
(2)
δ (G0V τ3)2 + O(V n>2)

]
.

(14)
Consequently, from the nonequilibrium action δS(2), by deter-
mining the corresponding nonequilibrium self-energy, one can
derive the property of the nonequilibrium variation as well as
the related scattering effect. Specifically, the �

(1)
δ -�(1)

δ corre-
lation δS(2)

CR in Eq. (13) is illustrated in Fig. 1 by a connected
Feynman diagram of the correlation. Corresponding to Fig. 1,
on the right-hand side of Eq. (13), the first term denotes the
bare �

(1)
δ -�(1)

δ correlation; the second and third terms repre-
sent the Born and vertex corrections by impurity scattering

FIG. 2. Diagrammatic formalism for δS(2)
VT (i.e., contribution di-

rectly from �
(2)
δ vertex). In the figure, the thin and thick solid lines

denote the bare and renormalized Green’s function, respectively; the
wavy line and dashed line with cross are associated with the nonequi-
librium self-energy �

(2)
δ and impurity interaction, respectively.

[24], respectively. Whereas the �
(2)
δ -vertex contribution δS(2)

VT
in Eq. (14) is illustrated by the Feynman diagram in Fig. 2 with
a renormalized bubble. As seen from the figure, the impurity
interaction in δS(2)

VT makes no contribution to the nonequilib-
rium property and only provides the renormalization to the
fermion bubble, which is same as the one by the equilibrium
impurity self-energy.

III. TRANSPORT BEHAVIOR

In this section, we focus on the transport behavior in the
diamagnetic response of superconductors. Physically, the cur-
rent is conventionally expressed as j = 〈ψ |�|ψ〉/m, with the
kinematical momentum operator �̂ = p̂ − eAτ3. Among this
expression, the current vertex p̂/m drives a current jd through
the current-current correlation within the path-integral ap-
proach [22,42] or Kubo formula [24]. The eAτ3/m part is
related to the density vertex τ3 [79] and directly pumps a
current jp = −e2nA/m, which is considered as an unphysical
non-gauge-invariant current in the literature [24,26]. In nor-
mal metals, at the stationary case, the drive current jd exactly
cancels the pump current jp, and hence, the total current
vanishes as it should be, since the stationary magnetic vector
potential can not drive the normal-state current. Whereas in
superconductors, only a part of jd cancels jp [22], and then
the diamagnetic superfluid current j = −ensA/m emerges in
the remaining part of the drive current jd .

For the convenience of analysis and understanding, we first
derive the equilibrium supercurrent j = ensps/m and hence
superfluid density ns from the equilibrium action S0 [Eq. (10)]
at the clean case. After that, with impurities, we discuss the
nonequilibrium transport behavior by considering a nonequi-
librium variation δps generated by eδA. It is shown that in the
calculation based on kinematical momentum operator δ�̂ =
p̂ − eδAτ3, the scattering treatment/correction leads to a mis-
match in the cancellation process of the non-gauge-invariant
pump current, because of the non-commutative [p̂,V (r)τ3]
and commutative [eδAτ3,V (r)τ3]. As a consequence, an un-
physical current emerges. To fix this issue, we apply a special
unitary transformation to eliminate the non-gauge-invariant
current vertex eδAτ3/m and obtain the Meissner supercur-
rent vertex. Then, by performing an analytical calculation
of the supercurrent-supercurrent correlation with Born and
vertex corrections from the impurity scattering, the micro-
scopic momentum-relaxation rate of superfluid is obtained to
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compare with GIKE and explain the relaxation-time approx-
imation in the previous diagrammatic formulations [28–30]
as well as the friction resistance of the Meissner supercur-
rent revealed in the previous works [26,28–30,47,51,56,69].
It is further proved that the applied unitary transformation is
actually equivalent to the Wilson-line technique [66] for the
diamagnetic response.

A. Equilibrium transport property

From the equilibrium action in Eq. (10) at the clean case,
the supercurrent is given by

j = −e∂ps S0 = jd + jp, (15)

where

jp = −2eps

m

∂S0

∂
(
p2

s/m
)

=
∑
pn,k

2eps
(
ξk + p2

s/2m
)

m(ipn − E+
k )(ipn − E−

k )
+ η f eps

m
= enps

m
(16)

and

jd = −evk
∂S0

∂ (vk · ps)
=

∑
pn,k

2evk(ipn − vk · ps)

(ipn − E+
k )(ipn − E−

k )

= 2ek2
F ps

3m2

∑
k

∂Ek (EkFk )

= 2ek2
F ps

3m2

∑
k

[
�2

0

Ek
∂Ek Fk + ∂ξk (ξkFk )

]

= ensps

m
− enps

m
. (17)

Here, the superfluid density ns is given by

ns = 2k2
F

3m

∑
k

�2
0

Ek
∂Ek Fk, (18)

which is exactly same as the results obtained in previous
works [26,42,52,80] by various approaches.

It is noted that jd is associated with the drive current
mentioned above, since it arises from the second order of
the current-vertex-related term ps · vk, whereas jp comes from
the density-vertex-related term p2

s τ3/(2m) and corresponds to
the non-gauge-invariant pump current. Then, it is clearly seen
that in normal metals with the vanishing superfluid density
(ns = 0), the drive current jd exactly cancels the pump current
jp, and hence the total current vanishes, whereas in supercon-
ductors, only the second term in jd [Eq. (17)] cancels jp [22],
and then, the superfluid current j = −ensA/m emerges in the
remaining part [first term in Eq. (17)] of jd .

B. Issue of gauge-invariance breaking in the conventional
current-current correlation

We next discuss the nonequilibrium property. Based on
the Hamiltonian in Eq. (1), considering a variation of
the superconducting momentum, i.e., ps → ps + δps(x), the

nonequilibrium self-energy reads

�δ = δps · vp̂ + δps · vpsτ3 + δp2
sτ3

2m
≈ δps · vp̂ + δp2

sτ3

2m
,

(19)
in which we have neglected the term δps · vpsτ3 in comparison
to δps · vp̂ since ps � kF in conventional superconductors.

One then has the current-vertex-related term �
(1)
δ = δps ·

vp̂ and density-vertex-related one �
(2)
δ = δp2

sτ3/(2m), which
therefore contribute to the drive δjd and pump δjp cur-
rents through the corresponding current-current correlation in
S(2)

CR [Eq. (13)/Fig. 1] and density-vertex contribution in S(2)
VT

[Eq. (14)/Fig. 2], respectively. Nevertheless, as pointed out
in Sec. II B, the correlation contribution S(2)

CR experiences the
Born and vertex corrections by impurity scattering, and hence
the drive current δjd experiences the scattering influence,
whereas the impurity interaction in the vertex contribution
S(2)

VT makes no contribution to the nonequilibrium property,
except for the normalization to the corresponding vertex. For
the density vertex in this circumstance, the renormalization
on charge density has been revealed to vanish in the literature
[72–75]. Therefore, one has the pump current δjp = enδps/m
free from the scattering influence.

As mentioned above, the non-gauge-invariant pump cur-
rent δjp needs to be canceled by the corresponding charge-
density part in the drive current δjd , so only the contribution
of the superfluid density retains in the diamagnetic response.
Nevertheless, with impurities, δjd experiences the scattering
influence but δjp does not, directly leading to a mismatch
in the cancellation process. This mismatch arises from the
breaking of the gauge invariance by scattering treatment.
Specifically, in the diamagnetic response, the prerequisite
for δjp to exactly cancel the corresponding charge-density
part in δjd requires a gauge-invariant expected value 〈ψ |p̂ −
eδAτ3|ψ〉/m of current. But due to the noncommutative
[p̂,V (r)τ3] and commutative [eδAτ3,V (r)τ3], the scatter-
ing treatment only plays a role in 〈ψ |p̂|ψ〉 but makes zero
influence on 〈ψ |eδAτ3|ψ〉, leading to the gauge-invariance
breaking of the expected value of current.

To solve this issue, Abrikosov et al. applied an approx-
imation [26] that assumes an isotropic Green’s function at
the dirty case to first integrate over the momentum variable
as mentioned in the Introduction. Then, one can distinguish
the contributions from superfluid density ns and total charge
density n in δjd , and eliminate the scattering effect in the later
contribution to cancel the non-gauge-invariant pump current
δjp, whereas the transport-equation formalism [52,65] applies
the Wilson-line [66] technique. This technique by construct-
ing the gauge-invariant basis |ψg〉 leads to a gauge-invariant
current vertex ĵg, and the non-gauge-invariant current part
eδAτ3/m naturally vanishes.

C. Supercurrent-supercurrent correlation

In this section, we apply a special unitary transformation
to eliminate the non-gauge-invariant current vertex eδAτ3/m
and obtain the Meissner supercurrent vertex. Then, one can
calculate the supercurrent-supercurrent correlation with Born
and vertex corrections from the impurity scattering and obtain
the microscopic momentum-relaxation rate of the superfluid.
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Specifically, from Eq. (2), considering a variation δps of
the superconducting momentum, the action is written as

S =
∫

dx

{ ∑
s=↑,↓

ψ∗
s (x)[i∂x0 − ξp̂+ps+δps − V (x)]ψs(x)

− ψ†(x)�0τ1ψ (x) − �2
0

g

}
. (20)

Applying the unitary transformation

ψ (x) → exp
[
iτ3

∫ x

0
δps(x′)·dx′

]
ψ (x), (21)

the action becomes

S =
∫

dxψ†
g (x)

[
i∂x0 − ξp̂+psτ3τ3 − V (x)τ3 − �0τ+

× exp

(
2i

∫ x

0
δps·dx′

)
− �0τ−

× exp

(
− 2i

∫ x

0
δps·dx′

)]
ψg(x)

−
∫

dx

[
�2

0

g
+ η f V (x)

]
. (22)

Here, we only focus on the stationary diamagnetic response
and neglect the electric-field effect.

Consequently, from the action in Eq. (22), for the small
variation, one finds the nonequilibrium self-energy:

�δ = −2�0τ2

∫ x

0
δps · dx′. (23)

Then, in comparison to Eq. (19) based on the conventional
current vertex, the density-vertex-related term δp2

sτ3/m that
is related to the non-gauge-invariant pump current vanishes
in Eq. (23), and hence there is no vertex contribution δS(2)

VT.
Particularly, it is noted that at the long-wave limit, the derived
self-energy in Eq. (23) becomes

�
(1)
δ = −2�0τ2δps · x̂ = 2i�0τ2δps · ∂k̂, (24)

which describes the drive effect by δps in the diamag-
netic response to generate the Meissner supercurrent [26].
We therefore refer to i2�0τ2∂k̂ as the Meissner-supercurrent
vertex.

Consequently, with the Meissner-supercurrent vertex
[Eq. (24)], one can derive the supercurrent-supercurrent cor-
relation δS(2)

CR [Eq. (13)/Fig. 1] with the Born and vertex
corrections by impurity scattering. By assuming an adiabatic
variation δps(x) = δpseiqz+0+x0 with z being the spatial coordi-
nate along the direction perpendicular to the surface, at weak
impurity interaction, after the summation of the Matsubara
frequency, the current δj = −e∂δp∗

s (x)δS(2) = −e∂δpsδS(2)/2 is
derived as (refer to Appendix B)

δj =
∑

k

evk

{
ρk + niπ

iζkvF q

∑
k′

|Vkk′ |2(ρk − ρk′ )

×
[∑

η=±

(
e−

kk′δ
(
Eη

k − Eη

k′
) + e+

kk′δ
(
Eη

k − E−η

k′
))]}

,

(25)

with ρk = (vk · δps) 2�2
0

Ek
∂Ek Fk and e±

kk′ = 1
2 (1 ± �2

0
EkEk′ ); ζk rep-

resents a coefficient (refer to Appendix B). It is noted that
ζkvF q is a diffusive pole, which emerges at the stationary
diffusion case. The first and second terms on the right-hand
side of Eq. (25) represent the source and scattering terms,
respectively, both of which exactly recover the ones from
GIKE [52,80].

Further considering the fact that (ρk − ρk′ )[δ(E+
k − E+

k′ ) +
δ(E−

k − E−
k′ )] in the scattering term of Eq. (25) vanishes

around the Fermi surface, the current becomes

δj =
∑

k

evk

{
ρk + niπ

iζkvF q

∑
k′

|Vkk′ |2(ρk − ρk′ )

×
[∑

η=±
e+

kk′δ
(
Eη

k − E−η

k′
)]}

. (26)

As pointed out in Refs. [52,80], the scattering term in
above equation is finite only at the emergence of the normal
fluid, which requires |vk · ps| > Ek as mentioned in Sec. II A,
whereas this condition requires a threshold pL = �0/vF for
the superconducting momentum ps to exceed. Therefore, at
ps < �0/vF , one has

δj = ensδps

m
, (27)

which is free from the diffusive influence by impurity scatter-
ing, showing the superconductivity phenomenon.

Whereas for ps > �0/vF , as pointed out in Ref. [52,80],
the current is captured by a three-fluid (normal fluid as well as
viscous and nonviscous superfluids) model and can be divided
into three parts:

δj = δjvs + δjnvs + δjn, (28)

with

δjvs =
∑
k∈Pv

evkρk

(
1 + �k

iζkvF q

)
, (29)

δjnvs =
∑
k∈Pnv

evkρk, (30)

δjn = −
∑
k∈U

evk

iζkvF q

∑
k′∈Pv

ρk′Dkk′ , (31)

and

�k = niπ
∑
k′∈U

|Vkk′ |2e+
kk′

[ ∑
η=±

δ
(
Eη

k − E−η

k′
)]

, (32)

Dkk′ = niπ |Vkk′ |2
[ ∑

η=±
e+

kk′δ
(
Eη

k − E−η

k′
)]

. (33)

Here, ni denotes the impurity density and N (0) represents the
density of states; �k stands for the microscopic momentum-
relaxation rate of superfluid; Dkk′ represents the microscopic
friction rate between superfluid and normal fluid; Pnv denotes
the nonviscous pairing regions in momentum space with finite
Fk but zero �k; Pv represents the viscous pairing regions with
both finite Fk and �k; U stands for the unpairing region with
vanishing Fk.
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Specifically, in the source term on the right-hand side of
Eq. (26), only particles in the pairing regions with nonzero
anomalous correlation Fk are driven by δps to contribute to the
current. For the k particle lying in the pairing region, one has
E+

k > 0 and E−
k < 0 as mentioned in Sec. II A. In this circum-

stance, in the scattering term, once the energy conservation
cannot be satisfied for any k′, the k particle is free from the
momentum-relaxation scattering, and one therefore gets the
nonviscous superfluid and hence the current jnvs in Eq. (30).
But once the energy conservation is satisfied, to give rise to
the nonzero scattering term, one finds E−

k′ > 0 by δ(E+
k − E−

k′ )
or E+

k′ < 0 by δ(E−
k − E+

k′ ), and hence the k′ particle lies in
the unpairing region (normal fluid) with vanishing Fk′ and
hence ρk′ . This scattering between particles in pairing and
unpairing regions behaves like the friction between superfluid
and normal fluid, leading to the viscous superfluid and the
current jvs in Eq. (29).

It is noted that for particles in the unpairing regions (normal
fluid), although the source term in Eq. (26) is zero as it should
be, but due to the friction mentioned above, the scattering term
is finite. Specifically, if the k particle lies in the unpairing
region with E−

k > 0 or E+
k < 0, according to the energy con-

servation in the scattering term, the k′ particle can lie in both
viscous pairing and unpairing regions, i.e., the particles from
the normal fluid experience the scattering from those in both
viscous superfluid and normal fluid. The scattering between
particles in normal fluid is natural but makes zero contribution
to the current as ρk∈U = ρk′∈U = 0 in the scattering term. But
through the friction drag with the viscous superfluid current,
a normal-fluid current is induced in Eq. (31).

Based on the analysis above, the total current at ps >

�0/vF can be rewritten as

δj = eneff
s δps

m
+ �eff

c

ivF q

eneff
s δps

m
, (34)

with the effective superfluid density,

ns =
∑

k∈Pnv+Pv

2k2
F cos θ2

k

m

�2
0

Ek
∂Ek Fk, (35)

and effective current-relaxation rate:

�eff
c =

∑
k∈Pv

vkρk�k/ζk − ∑
k∈U,k′∈Pv

vkρk′Dkk′/ζk∑
k∈Pnv+Pv

vkρk
. (36)

We then obtain the equation of motion of the supercurrent with
the influence of the scattering. Then, in real space, Eq. (34)
becomes a diffusive equation:

∂zδj = ∂zδps
eneff

s

m
+ �eff

c

vF

eneff
s δps

m
, (37)

which in consideration of the fact ∂zδps = ∂zps is equivalent
to

∂2
z j = ∂2

z ps
eneff

s

m
+ �eff

c

vF

eneff
s ∂zps

m
, (38)

Consequently, we arrive at a self-consistent equation of mo-
tion of the superconducting momentum/current with the
influence of the scattering. Clearly, the second term on the
right-hand side of the above equation denotes the friction

resistance of the supercurrent. As mentioned above, this resis-
tance [�k in Eq. (32) and Dk in Eq. (33)] is nonzero only with
the emergence of the normal fluid at ps > �0/vF . Therefore,
as pointed out in Ref. [52], the friction resistance of the Meiss-
ner supercurrent in the diamagnetic response emerges only
when the superconducting velocity is larger than a threshold at
which the normal fluid emerges, similar to Landau’s theory for
the emerged fluid viscosity in bosonic liquid helium at larger
velocity [78].

Together with the Maxwell equation, the penetration depth
from Eq. (38) is derived as

λ = λc

√
1

1 − ξ

l

≈ λc

√
1 + ξ

l
, (39)

where the coherence length ξ = λ/κ as well as the mean-
free path l = vF /(κ�eff

c ) and clean-limit penetration depth
λc = √

m/(4πe2neff
s ), with κ being the Ginzburg-Landau pa-

rameter. Then, the previously revealed phenomenological
dependence of the penetration depth on mean-free path by
Tinkham [30] is recovered within the diagrammatic formalism
at the weak scattering case—same as the formulation within
the GIKE [52].

1. Role of Doppler shift

It is noted that the Doppler shift plays two important roles
in the derivation/results above. On one hand, as mentioned in
Sec. II A, it leads to the generation of the normal fluid at ps >

�0/vF . On the other hand, it guarantees the vanishing intra-
band scattering in Eq. (25) by the (ρk − ρk′ )δ(Eη

k − Eη

k′ ) part
around Fermi surface, and hence only the interband scattering
by the (ρk − ρk′ )δ(Eη

k − E−η

k′ ) part retains. This interband
scattering occurs only when ps is larger than the threshold
�0/vF [52], and hence the momentum relaxation of the super-
fluid current emerges only at ps > �0/vF (where the normal
fluid emerges). However, in the previous formulation of the
scattering in superconductors [26], the Doppler shift was ap-
proximately neglected. As a consequence, the normal fluid
dynamics is absent. Most importantly, in this circumstance,
the interband scattering in Eq. (25) by the (ρk − ρk′ )δ(Eη

k −
E−η

k′ ) = (ρk − ρk′ )δ(
√

�2
0 + ξ 2

k +
√

�2
0 + ξ 2

k′ ) part is forbid-

den, but the interband scattering by the (ρk − ρk′ )δ(Eη

k −
Eη

k′ ) = (ρk − ρk′ )δ(
√

�2
0 + ξ 2

k −
√

�2
0 + ξ 2

k′ ) part is always
finite around Fermi surface. Consequently, the superfluid
current in the diamagnetic response always experiences the
friction resistance by impurity scattering as the theoretical
descriptions in the previous works [26,47,51,56,69] revealed,
in contrast to the superconductivity phenomenon.

D. A gauge-invariant description

In the previous part, within the diagrammatic formal-
ism, by applying the unitary transformation in Eq. (21), the
non-gauge-invariant-current vertex eAτ3/m, i.e., the issue of
gauge-invariance breaking by scattering treatment as men-
tioned in Sec. III B, is eliminated. To understand this unitary
transformation, following the treatment within the transport-
equation formalism [52,65], we next apply the Wilson-
line [66] technique to construct the gauge-invariant field
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operator and provide a gauge-invariant description to handle
the nonequilibrium transport property in superconductors.

We begin with the action in consideration of a four-vector
variation eδAμ = (eδφ, eδA) of electromagnetic potential:

S =
∫

dx
∑

s=↑,↓
ψ∗

s (x)[i∂x0 − ξp̂+ps−eδA − eδφ(x)]ψs(x)

−
∫

dx

[
ψ†(x)�̂(x)ψ (x) + |�(x)|2

g

]

=
∫

dx

[
ψ†(x)Ĝ−1ψ (x) − η f

(ps − eδA)2

2m
− |�(x)|2

g

]
.

(40)

Here, Ĝ−1 = i∂x0 − ξp̂+psτ3−eδAτ3τ3 − eδφ(x)τ3 − �̂(x);
�̂(x) = �(x)τ+ + �∗(x)τ−, where the superconducting
order parameter �(x) = [�0 + δ|�(x)|]eiδθ (x) with �0

and δ|�(x)| as well as δθ (x) denoting the equilibrium
gap and nonequilibrium Higgs mode [12–21] as well
as the superconducting phase fluctuation [12,79,88–
96], respectively. In addition, we expand the scalar
potential as

δφ(x) = δφ0(x0) +
∫ x

0
∇x′δφ(x0, x′)dx′ (41)

to distinguish the Josephson voltage effect [97] by δφ0(x0) and
electric-field drive effect by ∇xδφ(x0, x).

It is noted that under a gauge transformation,

ψ (x)→eiτ3χ (x)ψ (x), (42)

the action in Eq. (40) satisfies the gauge structure in supercon-
ductors revealed by Nambu [88,95],

eδAμ → eδAμ − ∂μχ (x), (43)

δθ (x) → δθ (x) + 2χ (x), (44)

where the four-vector ∂μ = (∂x0 ,−∇).
Under the gauge transformations in Eqs. (42)–(44), the

conventional Wilson-line [66] technique to construct gauge-
invariant field operator ψg = eiτ3P

∫ x
0 dxμeδAμψ is difficult to

handle for deriving the gauge-invariant kernel Ĝ−1 and per-
forming the further calculation within the diagrammatic
formalism. To simplify the formulation, we restrict the gauge-
transformation function χ (x) to depend on either a spatial
coordinate or time coordinate. Then, one can apply a sim-
plified Wilson-line technique to construct the gauge-invariant
field operator:

ψg(x) = exp

[
iτ3e

( ∫ x0

0
δφ0dx′

0 −
∫ x

0
δA·dx′

)]
ψ (x).

(45)
Consequently, on basis of the gauge-invariant ψg(x), the ac-
tion in Eq. (40) becomes

S =
∫

dx

[
ψ†

g (x)Ĝ−1
g (x)ψg(x) − |�(x)|2

g

]
, (46)

with the Green’s-function kernel:

Ĝ−1
g (x) = i∂x0 − ξp̂+psτ3τ3 −

∫ x

0
eE·dx′ − |�|τ+ exp

(
iδθ + 2ie

∫ x0

0
δφ0dx′

0 − 2ie
∫ x

0
δA·dx′

)

− |�|τ− exp

(
− iδθ − 2ie

∫ x0

0
δφ0dx′

0 + 2ie
∫ x

0
δA·dx′

)
. (47)

Here, E = −∇xδφ − ∂x0δA denotes the gauge-invariant elec-
tric field. It is noted that Ĝ−1

g (x) is directly gauge invariant
under the gauge transformations in Eqs. (43) and (44). Particu-
larly, in the derived Ĝ−1

g (x) via Wilson-line technique, there is
no non-gauge-invariant-current (density-vertex-related) term,
similar to the derivation within the transport-equation formal-
ism [52], whereas in diamagnetic response, the Wilson-line
technique in Eq. (45) reduces to the unitary transformation in
Eq. (21), and hence the derivation applying this unitary trans-
formation in Sec. III C avoids the issue of gauge-invariance
breaking by the scattering treatment mentioned in Sec. III B.

Furthermore, it is established that superconductors
can directly respond to vector potential A (Meissner
effect/Ginzburg-Landau kinetic term) in addition to the elec-
tric field E = −∇Rφ − ∂t A, differing from normal metals that
solely respond to electric field, whereas the conventional cal-
culation with the vector potential alone is hard to distinguish
these two effects in superconductors. Therefore, Ĝ−1

g (x) in
Eq. (47) provides an efficient Lagrangian/Hamiltonian kernel,
which explicitly distinguishes the drive effect by the electric
field eE and the Meissner effect driven by effective vector

potential [26],

iδθ − 2ie
∫ x

0
δA·dx′ = 2i

∫ x

0
(∇xδθ/2 − eδA)dx′, (48)

as well as the Josephson effect induced by effective electric
voltage [97],

iδθ + 2ie
∫ x0

0
δφ0dx′

0 = 2i
∫ x0

0
(∂x0δθ/2 + eδφ0), (49)

and all these characteristic effects manifest themselves in
a gauge-invariant description. One therefore expects a wide
application of this kernel to study the mesoscopic physics in
superconductors as well as more diagrammatic-formalism and
transport-equation investigations.

IV. HIGGS MODE

We next focus on the Higgs mode. Based on the BCS
Hamiltonian in Eq. (1), considering a variation of the
superconducting gap (i.e., Higgs mode), the nonequilib-
rium self-energy is derived as �δ (x) = δ|�(x)|τ1. In this
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circumstance, δS(2)
CR in Eq. (13) denotes the contribution from

the amplitude-amplitude correlation with the Born and vertex
corrections by impurity scattering.

For the free case, we take zero superconducting momentum
(i.e., ps = 0) and hence vanishing Doppler shift. In this situ-
ation, the Green’s function in Eq. (4) becomes the standard
BCS one [26], similar to the previous formulations of the
Higgs mode at the clean limit in the literature [12,16–22,
38–42,53–56]. Then, in center-of-mass frequency-momentum
space [x = (x0, x) → q = (�, q)], at weak impurity interac-
tion, and long-wave limit (q = 0), after the summation of the
Matsubara frequency, one has (refer to Appendix C)

δS(2) =
∫

d�|δ�|2{[(2�0)2 − �2]βH − 2i��H }, (50)

with �H = 2niπ
∑

kk′ |Vkk′ |2 �2
0ξ

2
k Fk

E2
k (4E2

k −�2 )2 δ(Ek − Ek′ ) = ∑
k γk

4ξ 2
k Fk

(4E2
k −�2 )2 and βH = ∑

k
Fk

4E2
k −�2 . Here, γk = 2niπN (0)�2

0/

(|ξk|Ek )
∫ d�k′

8π
|VkF−k′

F
|2 and the anomalous correlation be-

comes Fk = f (Ek )− f (−Ek )
2Ek

. It is noted that the emerged term
2i��H (second term) in Eq. (50) by impurity scattering is
proportional to �, suggesting that the impurity scattering ef-
fect on the Higgs mode is a nonequilibrium property with the
time-translational-symmetry breaking. Actually, it is pointed
out that this scattering part arises from the vertex correction
solely, whereas the Born correction makes no contribution at
all (refer to Appendix C). This is because the Born correction
is equivalent to the renormalization of the equilibrium impu-
rity self-energy and hence vanishes according to the Anderson
theorem [71–75], whereas the vertex correction that only
emerges at nonequilibrium case breaks the time-translational
symmetry, as mentioned in the Introduction, and hence, makes
a finite contribution to the Higgs-mode damping.

Furthermore, from ∂δ|�|δS(2) = 0, the equation of motion
of the Higgs mode is given by

βH [(2�0)2 − �2 − 2i��H/βH ]δ|�| = 0. (51)

It is noted that this equation at the clean limit (�H = 0) re-
duces to the previously revealed one by various theoretical
approaches in the literature [12,16–22,38–42,53–56], showing
a gapful energy spectrum ωH = 2�0.

At low frequency ��2�0, one can consider that the
coefficients βH and �H are independent on �. Then, the
equation of motion in Eq. (51) becomes[

∂2
t + (2�0)2 − 2�H/βH∂t

]
δ|�| = 0, (52)

which is a typical one of the damped oscillator (i.e., damped
Klein-Gordon equation in the field theory) as it should be
since the Higgs mode represents the radial collective ex-
citation in the Mexican-hat potential of free energy [12].
Moreover, at the clean limit, this equation of motion, written
in time space, exactly recovers the one derived from the su-
perconducting Ginzburg-Landau Lagrangian by considering
an amplitude variation of the Landau order parameter [20,22].

Whereas in the presence of the external optical excitation
at THz regime, the equation of motion of the Higgs mode in
Eq. (51) is rewritten as

βH [(2�0)2 − �2 − 2i��H/βH ]δ|�| = Q(�), (53)

where Q(�) represents the response function determined by
the external excitation/field. The left-hand side of this equa-
tion derived in the present paper, i.e., the spectral function of
Higgs mode, is an intrinsic character of the system, irrelevant
of the external probe, and can therefore manifest itself in the
out-of-equilibrium properties.

On one hand, for the continuous-wave single-frequency
excitation, in the second-order response, the response function
is given by Q(�) = Q0δ(� − 2ω). Then, at weak scattering,
from Eq. (53), the magnitude of the second-order response
of the Higgs mode Q0√

β2
H [4�2

0−(2ω)2]2+(4ω�H )2
exhibits a resonant

peak at 2ω = 2�0 with a broadening caused by the impurity
scattering, consistent with the experimental findings from the
third-harmonic signal [7,8]. It is also noted that the existence
of the impurity scattering results in an imaginary part in the
second-order response of the Higgs mode, and hence leads to
a phase shift φH in this signal. Particularly, this phase shift
φH ∝ arctan[(ω2 − �2

0)−1] at weak scattering, and hence, ex-
hibits a significant π -jump at ω = �0, as predicted in Ref.
[54] by numerical calculation from the GIKE, providing a
very clear feature for the experimental detection. Recently, a
π jump of the phase shift has been experimentally observed at
ω = �0 in the second-order optical response of the disordered
high-Tc cuprate-based superconductors [10]. The origin of this
jump is still controversial, whereas it is suggested that the
π -jump of the phase shift in the second-order optical response
can also be realized in the conventional superconductors due
to the scattering effect.

On the other hand, for the long-time dynamic after the
excitation, the response function can be approximately treated
as a short pulse, and one has Q(t ) = Q0δ(t ) in time space
with the Fourier component Q(�) = Q0 in frequency space.
Then, from Eq. (51), with the consideration of the frequency
dependence of βH and �H in the frequency integral, the long-
time dynamic of the Higgs mode after excitation behaves as
(refer to Appendix D)

δ|�(t )| ∼ cos(2�0t )e−γ̄ t

√
�0t

, (54)

where γ̄ is the average of γk in the momentum space. It is
noted that this solution at clean case δ|�(t )| ∼ cos(2�0t )√

�0t
has

been derived from the equation of motion above in the liter-
ature through various approaches and referred to as coherent
BCS oscillatory decay [13–15,19,98], whereas in contrast to
the coherent BCS oscillatory decay at clean limit, the im-
purity scattering leads to the faster exponential decay. The
derived damping rate γ̄ is exactly same as the one obtained
from GIKE through both analytical and numerical calcula-
tions [54]. The oscillatory decay behavior with oscillating
frequency at the Higgs-mode energy 2�0 and fast exponential
decay in Eq. (54) also agrees with the experimental findings
from the pump-probe measurement with a short pulse [5,6],
whereas it is suggested that the damping rate of the Higgs
mode increases by increasing the impurity density, providing a
possible scheme for the experimental detection by measuring
the impurity-density dependence of the Higgs-mode damping
rate or resonance broadening.

The induced damping of the Higgs mode by impurity
scattering agrees with the analysis through the Heisenberg
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equation of motion as mentioned in the Introduction, since
the Higgs-mode excitation and electron-impurity interaction
are noncommutative in Nambu space, whereas as mentioned
in the Introduction, the previous derivation of the Higgs mode
within the Eilenberger equation [56] fails to give this damping
and derives a Higgs-mode energy spectrum that is free from
the scattering influence and hence insensitive to impurities,
against the results from GIKE [54]. The present paper through
the diagrammatic formulation exactly helps to resolve this
controversy. Actually, this is because the microscopic scat-
tering integral in the Eilenberger equation is incomplete. As
proved in Ref. [67], because of the quasiclassical approxi-
mation on the τ3-Green’s function, the scattering integral in
the Eilenberger equation only involves the anisotropic part of
the Green’s function that is related to the transport property,
but generically drops the isotropic one which determines the
Higgs mode [67].

V. SUMMARY

In summary, we have analytically performed a diagram-
matic formulation of the impurity scattering in superconduc-
tors in the present paper to compare with previous studies
through GIKE [52,54]. Theoretically, compared to the trans-
port equation approach, the diagrammatic formalism provides
a basic and complementary technique to tackle the im-
purity scattering effect for nonequilibrium properties as a
crosscheck. However, as pointed out in the Introduction, in
superconductors, the diagrammatic formulation has not been
rigorously developed in the literature due to the inevitable
calculation of the vertex correction by impurity scattering.
Various approximations [26,28–30] that in fact drop the mi-
croscopic scattering process have been taken in the literature
to handle the scattering effect in transport properties. Par-
ticularly, the revealed Meissner supercurrent, which should
be nonviscous, experiences a friction resistance by scattering
in those previous works [26,28–34,47,51,56,69]. As for the
Higgs mode, even with the growing experimental evidence
of its damping, the diagrammatic formulation of amplitude-
amplitude correlation with vertex correction by impurities is
still absent in the literature, not to mention that the Eilenberger
equation [56] and GIKE [54] revealed opposite conclusions
about the disorder effect on the Higgs mode. Consequently,
all of these call for a revisit of the impurity scattering within
the diagrammatic formalism. We have therefore performed
the diagrammatic formulations of both transport behavior and
collective Higgs mode with impurities in the present paper.

For transport behavior, we tend to fill the long missing
rigorous textbook calculation of the Kubo current-current
correlation with impurity scattering in superconductors.
Specifically, in the diamagnetic response, within the conven-
tional calculation based on kinematical momentum operator
�̂ = p̂ − eAτ3, it is shown that a non-gauge-invariant cur-
rent emerges after the scattering treatment/correction in the
current-current correlation. To resolve this issue of the gauge
invariance breaking, we apply a special unitary transfor-
mation, and obtain the Meissner-supercurrent vertex. Then,
the supercurrent-supercurrent correlation with the Born and
vertex corrections from impurity scattering is formulated. Par-
ticularly, in contrast to previous works [26] in the literature

that overlooked the Doppler shift, we keep this effect in the
quasiparticle energy spectra.

Then, the present diagrammatic formulation of the im-
purity scattering effect in transport properties confirms the
previously revealed microscopic momentum-relaxation rate
of the superfluid and the current captured by the three-fluid
(normal fluid as well as viscous and nonviscous superflu-
ids) model [52,80]. The momentum-relaxation rate of the
superfluid is finite only when the superconducting momen-
tum is larger than a threshold �0/vF , at which the normal
fluid emerges and causes the friction with the superfluid cur-
rent, similar to Landau’s superfluid theory of bosonic liquid
helium [78]. This derivation uncovers the physics behind
the relaxation-time approximation in previous diagrammatic
formulations [28–30], which leads to the theoretically re-
vealed [26,28–30,47,51,56,69] and experimentally confirmed
[31–35] friction resistance of the Meissner supercurrent.

It is also pointed out that the Doppler shift is essential in
theoretical calculations to handle the scattering effect, as it
guarantees the vanishing momentum-relaxation rate of super-
fluid at small superconducting velocity. The Doppler shift that
emerges with the presence of the superconducting momen-
tum in transport behavior causes a tilted quasiparticle energy
spectrum and hence markedly influences the superconduct-
ing anomalous correlation, as demonstrated/established in the
previous works [52,80–87]. However, in the discussion of the
scattering effect, this effect has long been totally overlooked
in the literature. Thus, in previous theoretical descriptions
[26,47,51,56,69] that overlooked this effect, the derived su-
perfluid current always experiences the friction resistance by
impurity scattering as a consequence, in contrast to the super-
conductivity phenomenon.

Furthermore, using the Wilson-line technique, a gauge-
invariant Hamiltonian that explicitly distinguishes the Meiss-
ner effect and electric-field drive effect as well as the
Josephson voltage effect is proposed. This kernel helps us to
understand the unitary transformation applied in the present
paper, which eliminates the issue of gauge-invariance break-
ing by scattering treatment and gives the supercurrent vertex
in the diagrammatic formalism. We expect a wide appli-
cation of this kernel to study the mesoscopic physics in
superconductors as well as more diagrammatic-formalism and
transport-equation investigations.

As for the collective Higgs mode, the present diagram-
matic formulation with impurities confirms the Higgs-mode
damping mechanism caused by impurity scattering, which
not only agrees with the analysis through the Heisenberg
equation of motion but also directly helps to resolve the
current controversy between GIKE [54] and the Eilenberger
equation [56] in the literature. Specifically, we calculate the
amplitude-amplitude correlation with the Born and vertex
corrections from impurity scattering. The vertex correction,
which only emerges at the nonequilibrium case with time-
translational-symmetry breaking, leads to a fast exponential
damping of the Higgs mode, whereas the Born correction that
is equivalent to equilibrium impurity self-energy makes no
contribution because of the Anderson theorem [71–75]. The
derived damping by impurity scattering from the diagram-
matic formalism exactly recovers the one from GIKE [54] and
agrees with the analysis through the Heisenberg equation of

144509-11



F. YANG AND M. W. WU PHYSICAL REVIEW B 106, 144509 (2022)

motion, but is in contrast to the vanishing one obtained in
the Eilenberger equation [56]. The reason leading to missing
damping is due to the generically incomplete scattering inte-
gral in the Eilenberger equation [67]. The lifetime of the Higgs
mode due to the impurity scattering provides a possible origin
for the experimentally observed broadening of the resonance
signal [7,8] as well as the damping after optical excitation
[5,6] of the Higgs mode. Moreover, as pointed out in Ref.
[54], the damping by impurities can cause a phase shift in the
optical signal of Higgs mode, which exhibits a π jump at the
resonance frequency and hence provides a very clear feature

for further experimental detection. In addition, the damping
rate of the Higgs mode increases by increasing the impurity
density, providing a possible scheme for the experimental
detection by measuring the impurity-density dependence of
the Higgs-mode damping rate or resonance broadening.
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APPENDIX A: DERIVATION OF CHARGE DENSITY

In this Appendix, we present the derivation of the charge density. With the density vertex τ3 in Nambu space [79], in the
effective nonequilibrium action in Eq. (12), the contribution from the density-vertex-related part of the nonequilibrium self-
energy reads {T̄r[G0(p)τ3] + η f }�δ3. In this contribution, substituting the Green’s function in Eq. (4), one finds the prefactor,

T̄r[G0(p)τ3] + η f =
∑
pn,k

2
(
ξk + p2

s/2m
)

m(ipn − E+
k )(ipn − E−

k )
+ η f =

∑
k

[
1 + 2

(
ξk + p2

s

2m

)
Fk

]
= −2k2

F

3m

∑
k

∂ξk (ξkFk ) ≈ 2k2
F N (0)

3m
,

(A1)
which is exactly the charge density n.

APPENDIX B: DERIVATION OF SUPERCURRENT-SUPERCURRENT CORRELATION

In this Appendix, we derive the supercurrent-supercurrent correlation with Born and vertex corrections from the impurity
scattering. Specifically, for transport behavior in the diamagnetic response, substituting the derived self-energy in Eq. (24) that
is related to the Meissner-supercurrent vertex, the supercurrent-supercurrent correlation S(2)

CR [Eq. (13)/Fig. 1] is written as

δS(2)
CR = 2�2

0

∫
dxT̄r

[
τ2(δps · vk̂ )∂ξk G0τ2(δps · vk̂ )∂ξk G0 + 2(G0V τ3)2(G0τ2δps · vk̂∂ξk )2

+ G0τ2(δps · vk̂ )∂ξk G0V τ3G0τ2(δps · vk̂ )∂ξk G0V τ3
] = Iba + Ibc + Ivc, (B1)

with the bare supercurrent-supercurrent correlation Iba as well as Born IBc and vertex Ivc corrections written as

Iba = 2�2
0

∑
ipn,k

[(δps · vk )2Tr[τ2∂ξk G0(ip+
n , k+)τ2∂ξk G0(ipn, k)], (B2)

IBc = −2�2
0

∑
ipn,kk′

(δps · vk )2ni|Vkk′ |2{Tr[∂ξk G0(ipn, k)τ2G0(ip+
n , k+)τ2∂ξk G0(ipn, k)τ3G(ipn, k′)τ3] + (p+ → p−)}, (B3)

Ivc = −2�2
0

∑
ipn,kk′

(δps · vk )(δps · vk′ )ni|Vkk′ |2Tr[∂ξk G0(ipn, k)τ2G0(ip+
n , k+)τ3G0(ip+

n , k′+)τ2∂ξk′ G0(ipn, k′)τ3]. (B4)

Here, we have kept up to the second order of the impurity interaction by considering the case of weak impurity scattering. Here,
p± = (ip±

n , k±) = (ipn±i0+, k ± q).
With the Green’s function in Eq. (4), around the Fermi surface, one has ∂ξk G0(ipn, k) ≈ τ3/�k(ipn) with �k(ipn) = (ipn −

E+
k )(ipn − E−

k ). Then, after the summation of Matsubara frequency, the bare supercurrent-supercurrent correlation [Eq. (B2)]
reads

Iba = −
∑
ipn,k

2�2
02(δps · vk )2

�k(ipn)�k+ (ip+
n )

≈ −2�2
0

∑
ipn,k

2(δps · vk )2

�2
k(ipn)

= −
∑

k

(δps · vk )2 2�2
0

Ek
∂Ek Fk. (B5)

Moreover, using the fact 1
�k (ipn ) = 1

2Ek

∑
η=±

η

ipn−Eη

k
, the Born [Eq. (B3)] and vertex [Eq. (B4)] corrections by impurity

scattering are given by

IBc = −4�2
0

∑
ipn,kk′

(δps · vk )2ni|Vkk′ |2
[

(ip+
n − vk+ · ps)(ipn − vk′ · ps) − �2

0

�2
k(ipn)�k+ (ip+

n )�k′ (ipn)
+ (p+ → p−)

]

= 4�2
0

∑
ipn,kk′,ηλ

(δps · vk )2ni|Vkk′ |2
[
�2

0 − (ip+
n − vk+ · ps)(ipn − vk′ · ps)

4Ek′Ek+�2
k(ipn)

η

ip+
n − Eη

k+

λ

ipn − Eλ
k′

+ (p+ → p−)

]
, (B6)
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Ivc = 4�2
0

∑
ipn,kk′,ηλ

(δps · vk )(δps · vk′ )ni|Vkk′ |2 (ip+
n − vk+ · ps)(ip+

n − vk′+ · ps) − �2
0

�k+ (ip+
n )�k′ (ipn)�k(ipn)�k′+ (ip+

n )

= 4�2
0

∑
ipn,kk′

(δps · vk )(δps · vk′ )ni|Vkk′ |2 (ip+
n − vk+ · ps)(ip+

n − vk′+ · ps) − �2
0

4Ek+Ek′+�k′ (ipn)�k(ipn)

η

ip+
n − Eη

k+

λ

ip+
n − Eλ

k′+
. (B7)

Further considering the imaginary (i.e., scattering) parts of the Born and vertex corrections, through the summation of the
Matsubara frequency, one has

IBc = −iπ4�2
0

∑
ipn,kk′,η′ηλ

(δps · vk )2ni|Vkk′ |2η′ηλ

[
�2

0 − (ipn − vk+ · ps)(ipn − vk′ · ps)

4Ek′Ek+2Ek�k(ipn)
(
ipn − Eη′

k

) δ
(
ipn − Eη

k+
)

ipn − Eλ
k′

− (k+ → k−)

]

= −iπ4�2
0

∑
kk′,ηη′λ

(δps · vk )2ni|Vkk′ |2ηη′λ
[

�2
0 − (

Eλ
k′ − vk+ · ps

)
λEk′

4Ek′Ek+�k
(
Eλ

k′
)(

Eλ
k′ − Eη′

k

) f
(
Eλ

k′
)
δ
(
Eλ

k′ − Eη

k+
)

2Ek
− (k+ → k−)

]

= iπ4�2
0

∑
kk′,ηη′λ

(δps · vk )2 ni|Vkk′ |2
4Ek

η′
[

e−ηλ

k+k′
f
(
Eη

k+
)
δ
(
Eλ

k′ − Eη

k+
)

�k
(
Eη

k+
)(

Eη

k+ − Eη′
k

) − (k+ → k−)

]
(B8)

and

Ivc = iπ4�2
0

∑
ηλ,ipnkk′

ηλ(δps · vk )(δps · vk′ )ni|Vkk′ |2 �2
0 − (ipn − vk+ · ps)(ipn − vk′+ · ps)

4Ek+Ek′+�k′ (ipn)�k(ipn)

[
δ
(
ipn − Eη

k+
)

ipn − Eλ
k′+

+ δ
(
ipn − Eλ

k′+
)

ipn − Eη

k+

]

= iπ4�2
0

∑
ipn,kk′,ηλ

ηλ(δps · vk )(δps · vk′ )ni|Vkk′ |2 �2
0 − (ipn − vk+ · ps)(ipn − vk′+ · ps)

4Ek+Ek′+�k′ (ipn)�k(ipn)

2δ
(
ipn − Eη

k+
)

ipn − Eλ
k′+

= iπ8�2
0

∑
ipn,kk′,ηλ

(δps · vk )(δps · vk′ )ni|Vkk′ |2 �2
0 − (ipn − vk+ · ps)(ipn − vk′+ · ps)

4Ek+Ek′+2Ek′�k(ipn)

ηλλ′δ
(
ipn − Eη

k+
)

(
ipn − Eλ

k′+
)(

ipn − Eλ′
k′

)

= −iπ8�2
0

∑
kk′,ηλλ′

(δps · vk )(δps · vk′ )ni|Vkk′ |2
�k

(
Eη

k+
) [

λ′e−ηλ

k+k′+ f
(
Eλ

k′+
)
δ
(
Eλ

k′+ − Eη

k+
)

4Ek′
(
Eλ

k′+ − Eλ′
k′

) − λe−ηλ′
k+k′+ f

(
Eλ′

k′
)
δ
(
Eλ′

k′ − Eη

k+
)

4Ek′
(
Eλ

k′+ − Eλ′
k′

) ]

= −iπ8�2
0

∑
kk′,ηλλ′

(δps · vk )(δps · vk′ )ni|Vkk′ |2
�k

(
Eη

k+
) e−ηλ

k+k′+λ′
[

f
(
Eλ

k′+
)
δ
(
Eλ

k′+ − Eη

k+
)

4Ek′
(
Eλ

k′+ − Eλ′
k′

) − f
(
Eλ

k′
)
δ
(
Eλ

k′ − Eη

k+
)

4Ek′
(
Eλ′

k′+ − Eλ
k′
) ]

, (B9)

in which we have used the fact δ(Eη′
k+ − Eη

k ) ≡ 0.
For the long-wave case, the leading contribution in Eq. (B8) comes from the η = η′ part, and the Born correction becomes

IBc ≈ iπ4�2
0

∑
kk′,ηλ

(δps · vk )2 ni|Vkk′ |2
4Ek

η

[
e−ηλ

kk′ f
(
Eη

k+
)

(
Eη

k+ − Eη

k

)2
(Eη

k+ − E−η

k )
− (k+ → k−)

]
δ
(
Eλ

k′ − Eη

k

)

≈ iπ4�2
0

∑
ηλ

∑
kk′

(δps · vk )2 ni|Vkk′ |2
4Ek

η

[
e−ηλ

kk′ f
(
Eη

k+
)

(
Eη

k+ − Eη

k

)2

(
1

2ηEk
− Eη

k+ − Eη

k

4E2
k

)
− (k+ → k−)

]
δ
(
Eλ

k′ − Eη

k

)

= iπ8�2
0

∑
ηλ

∑
kk′

(δps · vk )2 ni|Vkk′ |2
4Ek

η

[
e−ηλ

kk′ f
(
Eη

k+
)

(
Eη

k+ − Eη

k

)2

(
1

2ηEk
− Eη

k+ − Eη

k

4E2
k

)
− (k+ → k)

]
δ
(
Eλ

k′ − Eη

k

)

≈ −π
∑
ηλkk′

(δps · vk )2ni|Vkk′ |2e−ηλ

kk′
2�2

0

Ek
∂Ek

[
η f

(
Eη

k

)
Ek

]
δ
(
Eλ

k′ − Eη

k

)
iζkvF q

, (B10)
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whereas in Eq. (B9), both λ′ = λ and λ′ = −λ parts play an important role, and the vertex correction reads

Ivc ≈ −iπ8�2
0

∑
kk′,ηλ

(δps · vk )(δps · vk′ )ni|Vkk′ |2(
Eη

k+ − Eη

k

)(
Eη

k+ − E−η

k

) e−ηλ

kk′

[
λ

eηλ

kk′

4Ek′

f
(
Eλ

k′+
) − f

(
Eλ

k′
)

Eλ
k′+ − Eλ

k′
− f

(
Eλ

k′+
)

4E2
k′

]
δ
(
Eλ

k′+ − Eη

k

)

≈ π�2
0

∑
kk′,ηλ

(δps · vk )(δps · vk′ )ni|Vkk′ |2e−ηλ

kk′
2�2

0

Ek
∂Ek′

[
η f

(
Eλ

k′
)

Ek′

]
δ
(
Eλ

k′ − Eη

k

)
iζkvF q

. (B11)

Here, ζkvF q = 2vq · ps + 4ξkvk · q/Ek + η(vk · q)2/Ek ≈ 2vq · ps + 4ξkvk · q/Ek + (vk · q)2/Ek at the long-wave case. Con-
sequently, with Eqs. (B5) and (B10) as well as (B11), the supercurrent-supercurrent correlation with Born and vertex corrections
by impurity scattering and hence the current in Eq. (25) are derived.

Moreover, it is noted that ζkvF q in the scattering contribution [Eqs. (B10) and (B11)] provides a diffusive pole that emerges
at the stationary diffusion case, whereas for the nonstationary case at the long-wave limit [i.e., δps(x) = δpse−i(�+i0+ )x0 ], with
p± = (ip±

n , k±) = [ipn±(� + i0+), k] in Eq. (B1), the diffusive pole ζkvF q in Eqs. (B10) and (B11) is replaced by −� after
the derivation, and one finds a current,

δj = eneff
s δps

m
− �eff

c

i�

eneff
s δps

m
, (B12)

which is similar to the one described by the Drude model.

APPENDIX C: DERIVATION OF AMPLITUDE-AMPLITUDE CORRELATION

In this Appendix, we present the derivation of the amplitude-amplitude with Born and vertex corrections from the impurity
scattering. Specifically, for the collective Higgs mode, substituting the derived self-energy �

(1)
δ = δ|�|τ1, the amplitude-

amplitude correlation S(2)
CR [Eq. (13)/Fig. 1] is written as

δS(2)
CR = −1

2

∫
dxT̄r[δ|�|τ1G0δ|�|τ1G0 + (G0V τ3)2(G0δ|�|τ1)2 + G0δ|�|τ1G0V τ3G0δ|�|τ1G0V τ3]

= −Hba − HBc − Hvc, (C1)

where the bare amplitude-amplitude correlation Hba as well as Born HBc and vertex Hvc corrections read

Hba = δ|�|2
2

∑
ipn,k

Tr[τ1G0(ip+
n , k)τ1G0(ipn, k)] = δ|�|2

∑
ipn,k

ip+
n ipn − ξ 2

k + �2
0

�k(ip+
n )�k(ipn)

, (C2)

HBc = δ|�|2
2

∑
ipn,kk′

ni|Vkk′ |2{Tr[τ1G0(ip+
n , k)τ1G0(ipn, k)τ3G(ipn, k′)τ3G0(ipn, k)] + (p+ → p−)

}

= δ|�|2
∑

ipn,kk′
ni|Vkk′ |2

[(
ip+

n ipn − ξ 2
k + �2

0

)[
(ipn)2 − �2

0

] + 2ξ 2
k�2

0 + �ipnξ
2
k

�2
k(ipn)�k′ (ipn)�k(ip+

n )
+ (p+ → p−)

]
, (C3)

Hvc = δ|�|2
2

∑
ipn,kk′

ni|Vkk′ |2Tr[G0(ipn, k)τ1G0(ip+
n , k+)τ3G0(ip+

n , k′+)τ1G0(ipn, k′)τ3]

= δ|�|2
∑

ipn,kk′
ni|Vkk′ |2 �2

0(ipn + ip+
n )2 − (

ipnip+
n − E2

k + 2�2
0

)(
ipnip+

n − E2
k′ + 2�2

0

)
�k(ip+

n )�k′ (ipn)�k(ipn)�k′ (ip+
n )

. (C4)

Here, p± = (ip±
n , k±) = [ipn±(� − i0+), k] and we have kept up to the second order of the impurity interaction by considering

the case of weak impurity scattering.
After the summation of Matsubara frequency, the bare amplitude-amplitude correlation that has been well established in the

literature [22,38–42] is written as

Hba = δ|�|2
∑
ipn,k

(ip+
n )2 + (ipn)2 − (ip+

n − ipn)2 − 2E2
k + 4�2

0

2�k(ip+
n )�k(ipn)

= δ|�|2
∑
ipn,k

[
4�2

0 − �2

2�k(ip+
n )�k(ipn)

+ 1

�k(ipn)

]

= δ|�|2
[ ∑

ipn,k

4�2
0 − �2

2�k(ip+
n )�k(ipn)

− 1

g

]
= δ|�|2

[ ∑
k

(
4�2

0 − �2
)
Fk

�2 − 4E2
k

− 1

g

]
. (C5)

It is noted that the last term in the above equation is canceled by the last term in Eq. (12), and then the previously established
equation of motion of Higgs mode at the clean and low-frequency case [22,38–42] is recovered.
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We then consider the imaginary (i.e., scattering) parts of the Born [Eq. (C3)] and vertex [Eq. (C4)] corrections by using the
fact 1

�k (ip+
n ) = 1

2Ek

∑
η=±

η

ipn+−i0+−Eη

k
, where ipn+ = ipn + �.

Specifically, through the summation of the Matsubara frequency, one finds the imaginary part of the Born correction:

HBc = δ|�|2iπ
∑
ηλ

ηλ
∑

ipn,kk′
ni|Vkk′ |2

[(
ipn+ipn − ξ 2

k + �2
0

)[
(ipn)2 − �2

0

] + 2ξ 2
k�2

0 + �ipnξ
2
k

4EkEk′�2
k(ipn)

δ
(
ipn+ − Eη

k

)
ipn − Eλ

k′
− (� → −�)

]

= δ|�|2iπ
∑
ηλ

ηλ
∑
kk′

ni|Vkk′ |2
[(

2�2
0 − �ηEk

)
ξ 2

k′ + 2ξ 2
k�2

0 + �(ηEk − �)ξ 2
k

4EkEk′ (Ek + Ek′ )2

f
(
Eλ

k′
)
δ
(
Eλ

k′ + � − Eη

k

)
(Ek − Ek′ )2

− (� → −�)

]

≈ δ|�|2iπ
∑

η

∑
kk′

ni|Vkk′ |2
(
4�2

0 − �2
)
ξ 2

k

4EkEk′ (Ek + Ek′ )2

[
f (Eη

k′ )δ(Ek′ − Ek )

�2
− f

(
Eη

k′
)
δ(Ek′ − Ek )

�2

]
= 0. (C6)

Consequently, the Born correction to the amplitude-amplitude correlation by impurity scattering vanishes. This is because the
Born correction is equivalent to the renormalization of the equilibrium impurity self-energy whereas, according to the Anderson
theorem [71], this renormalization does not influence the gap, and hence makes no contribution to the damping of the Higgs
mode. Actually, the bare amplitude-amplitude correlation and Born correction together can be rewritten as

Hba + HBc = δ|�|2
2

∑
ipn,k

Tr[τ1Ḡ(ip+
n , k)τ1Ḡ(ipn, k)], (C7)

with the renormalized Green’s function Ḡ = G0 + G0V τ3GV τ3G (thick solid line in Fig. 1) given by [72–75] Ḡ(ipn, k) =
[i p̄n + ξkτ3 + �̄0τ1]/[(i p̄n)2 − ξ 2

k − �̄2
0]. Here, p̄n and �̄0 denote the renormalized Matsubara frequency and gap by impurity

self-energy, respectively. It has been revealed in the literature [72–75] that p̄n/�̄0 = pn/�0, leading to a vanishing influence from
the renormalization on gap equation (Anderson theorem [71]). Then, similar to the derivation of the bare amplitude-amplitude
correlation [Eq. (C5)], Eq. (C7) is directly derived as

Hba + HBc = δ|�|2
∑
ipn,k

4�̄2
0 − �̄2

2
(
ξ 2

k + �̄2
0 + p̄2

n

)2 = δ|�|2
∑
ipn

πN (0)
4�̄2

0 − �̄2

4
(
�̄2

0 + p̄2
n

)3/2 = δ|�|2(4�2
0 − �2)

∑
ipn

πN (0)�0/�̄0

4
(
�2

0 + p2
n

)3/2

= δ|�|2(4�2
0 − �2)

∑
ipn,k

�0/�̄0

2
(
ξ 2

k + �2
0 + p2

n

)2 , (C8)

in which there is no damping term of the Higgs mode. Clearly, the Born correction makes no contribution to the damping of
Higgs mode.

The imaginary part of the vertex correction [Eq. (C4)] by impurity scattering after the summation of Matsubara frequency is
written as

Hvc = δ|�|2iπ
∑
ηη′λ

∑
ipn,kk′

ni|Vkk′ |2η′ �
2
0(2λEk′ − �)2 − (

2�2
0 − λEk′�

)2

8E3
k�k′

(
Eλ

k′ − �
) 2ηλδ

(
ipn+ − Eλ

k′
)

(
ipn+ − Eη

k

)(
ipn − Eη′

k

)

= δ|�|2iπ
∑
ηη′λ

∑
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ni|Vkk′ |2η′ηλ

(
4�2

0 − �2
)
ξ 2

k

4E3
k�k′

(
Eλ

k′ − �
) f

(
Eη

k − �
)
δ(Eη

k − Eλ
k′ ) − f

(
Eλ

k′ − �
)
δ
(
Eη′

k + � − Eλ
k′
)

Eη

k − � − Eη′
k

≈ δ|�|2iπ
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ηη′λ
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(
4�2

0 − �2
)
ξ 2

k

4E3
k�k′
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Eλ

k′ − �
) f

(
Eη

k − �
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δ
(
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k − Eλ
k′
) − f

(
Eλ

k′ − �
)
δ
(
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k − Eλ
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)

Eη

k − � − Eη′
k

. (C9)

The η′ = η part vanishes in above equation. Then, with η′ = −η, one has

Hvc = δ|�|2iπ
∑
ηλ

∑
kk′

ni|Vkk′ |2λ
(
4�2

0 − �2
)
ξ 2

k

4E3
k�(� − 2λEk′ )

[
f
(
Eη

k − �
)

� − 2ηEη

k

+ f
(
Eλ

k′ − �
)

� + 2ηEη

k

]
δ
(
Eη

k − Eλ
k′
)

= δ|�|2iπ
∑

η

∑
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ni|Vkk′ |2
(
4�2

0 − �2
)
ξ 2

k

2E3
k (� − 2ηEk )

η f
(
Eη

k

)
�2 − 4E2

k

δ(Ek − Ek′ )

= δ|�|2i�π
∑
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ni|Vkk′ |2
(
4�2
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)
ξ 2

k Fk

E2
k

(
4E2
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)2 δ(Ek − Ek′ ) − δ|�|2iπ

∑
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ni|Vkk′ |2
(
4�2
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)
ξ 2

k

E2
k

(
4E2

k − �2
)2 δ(Ek − Ek′ )

≈ δ|�|2i�π
∑
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ni|Vkk′ |2 4�2
0ξ

2
k Fk
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k

(
4E2
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)2 δ(Ek − Ek′ ). (C10)
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Here, we have only kept the terms that are relevant to the Higgs-mode damping (i.e., linearly dependent on �). Consequently,
with Eqs. (C5) and (C6) as well as (C10), from the nonequilibrium action δS(2) = −Hba − Hbc − Hvc − δ|�|2/g, Eq. (50) is
derived.

APPENDIX D: DERIVATION OF EQ. (54)

In this Appendix, we derive the long-time dynamic of the Higgs mode [Eq. (54)] from the equation of motion in Eq. (51). In
the presence of the external excitation, the equation of motion of the Higgs mode in Eq. (51) is rewritten as

βH [(2�0)2 − �2 − 2i��H/βH ]δ|�| = Q(�), (D1)

where Q(�) represents the response function determined by the external excitation/field solely.
In consideration of the long-time dynamic after the excitation, the response function can be approximately treated as a short

pulse, and then, one has Q(t ) = Q0δ(t ) in time space with the Fourier component Q(�) = Q0 in frequency space. At weak
scattering, Eq. (D1) becomes

Q0 = δ|�|
∑

k

{
[(2�0)2 − �2]Fk

4E2
k − �2

− 2i�γk4ξ 2
k Fk(

4E2
k − �2

)2

}
≈ δ|�|

∑
k

{
[(2�0)2 − �2]Fk

�2 − 4E2
k

− 2i�γkFk

4E2
k − �2

+ 2i�γk4�2
0Fk(

4E2
k − �2

)2

}

≈ δ|�|
∑

k

[(2�0)2 − (� + iγk )2]Fk

4E2
k − (� + iγk )2

. (D2)

Consequently, from the above equation, the temporal evolution of the Higgs mode at low temperature is given by

δ|�(t )| ∼
∫

d�

2π

Q0e−i�t√
(2�0)2 − (� + iγ̄ )2

= e−γ̄ t
∫ ∞+iγ̄

−∞+iγ̄

d�

2π

Q0e−i�t√
(2�0)2 − �2

. (D3)

It is noted that for the integrand in Eq. (D3), in the complex plane of �, there exist two branching points at � = ±2�0. Then,
similar to the previous work [15], after the standard construction of the closed contour, one obtains

δ|�(t )|∼πe−γ̄ t e2i�0t + e−2i�0t

√
4�0t

= πe−γ̄ t cos(2�0t )√
�0t

. (D4)
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