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Flux noise in disordered spin systems
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Impurity spins randomly distributed at the surfaces and interfaces of superconducting wires are known to cause
flux noise in superconducting quantum interference devices (SQUIDs), providing a dominant mechanism for
decoherence in flux-tunable superconducting qubits. While flux noise is well characterized experimentally, the
microscopic model underlying spin dynamics remains a great puzzle. The main problem is that first-principles
theories based on an integration of the quantum Heisenberg equations of motion for interacting spins are too
computationally expensive to capture spin diffusion over large length scales, hindering comparisons between
microscopic models and experimental data. In contrast, third-principles approaches lump spin dynamics into
a single phenomenological spin-diffusion operator D∇2 that is not able to describe the quantum noise regime
and connect to microscopic models and different disorder scenarios such as spin clusters. Here we propose
an intermediate “second-principles” method to describe general spin dissipation and flux noise in the quantum
regime. It leads to the interpretation that flux noise arises from the density of paramagnon excitations at the
edge of the superconducting wire, with paramagnon-paramagnon interactions leading to spin diffusion, and
interactions between paramagnons and other degrees of freedom such as phonons, electrons, and two-level
systems leading to spin energy relaxation. At high frequency ω, we obtain an upper bound for flux noise, showing
that the (super)Ohmic noise observed in experiments is not originating from interacting spin impurities. We apply
the method to Heisenberg models in two-dimensional square lattices with a random distribution of vacancies,
with nearest-neighbor spins coupled by a constant exchange. Explicit numerical calculations of flux noise show
that it follows the observed power law A/ωα , with amplitude A and exponent α depending on temperature and
inhomogeneities such as spatial confinement and disorder. These results are compared to experiments in niobium
and aluminum devices. The method establishes a connection between flux noise experiments and microscopic
Hamiltonians with the goal of identifying relevant microscopic mechanisms and guiding strategies for reducing
flux noise.
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I. INTRODUCTION

While progress in experimental realization of quantum
computers based on superconducting wires and Josephson
junctions has been remarkable [1], the noise level in current
devices greatly reduces their capacity to solve problems, and
washes out their “quantum advantage.” One key issue is the
trade off between scalability and flux noise. Qubit frequency
tunability is essential to circumvent the frequency crowding
problem faced by superconducting circuits with more than
100 qubits. This requires the addition of superconducting
quantum interference devices (SQUIDs) to the circuit, in-
creasing their sensitivity to flux noise [2,3]. A similar issue
plagues SQUID qubits, in that additional qubit interconnec-
tion increases the impact of flux noise [4].

The origin of flux noise in superconducting devices re-
mains unknown, although there is consensus that it arises
from the dynamics of spin centers (magnetic impurities)
near the superconducting wires [5–11] (see Fig. 1). This
conclusion is supported by experiments showing noise am-
plitude following the Curie susceptibility law [χ̃ (ω = 0) ∝
1/T , where T is temperature] [7]. However, there are con-
flicting opinions about the magnetic order of the spins

causing noise. While some authors claimed proximity to a
spin glass phase [7,12], recent experiments were able to mea-
sure a Curie-Weiss susceptibility χ̃ (ω = 0) ∝ 1/(T − TCW)
which rules out the spin glass scenario. Instead, Ref. [11]
measured TCW ≈ −10 mK < 0 indicating proximity to an an-
tiferromagnetic phase, while [13] measured TCW ≈ +5 mK >

0 indicating proximity to a ferromagnetic phase.
Measurements of flux noise [11,12,14,15] are quite puz-

zling. They reveal approximate S̃�(ω) ∝ 1/ωα frequency
dependence over several decades of frequency, and show
quantum-noise asymmetry S̃−

� (ω) = S̃�(ω) − S̃�(−ω) due to
spontaneous emission [11]. To our knowledge all theories of
flux noise available in the literature are semiclassical so they
are not able to describe this asymmetry [8,12,16]. Moreover,
flux noise was shown to become either Ohmic ∝ ω [17] or
super-Ohmic ∝ ω3 above 4 GHz [11,18], and a key open
question is whether or not this high frequency contribution
is also due to impurity spins.

The main mechanism for spin energy relaxation in fer-
romagnetic metals, the so called Gilbert damping, relies on
magnetic excitations (magnons) decaying into electron-hole
pair excitations in the metal. In a superconductor these are
exponentially suppressed at temperatures much lower than

2469-9950/2022/106(14)/144506(13) 144506-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0154-7513
https://orcid.org/0000-0003-4258-270X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.144506&domain=pdf&date_stamp=2022-10-14
https://doi.org/10.1103/PhysRevB.106.144506


NAVA AQUINO AND DE SOUSA PHYSICAL REVIEW B 106, 144506 (2022)

FIG. 1. Origin of flux noise. Section of a superconducting wire
with spin impurities randomly distributed at its surface. The flux
produced by each spin is given by �̂i = −F(Ri ) · ŝi, where ŝi is the
spin operator of an impurity located at r = Ri. The “flux vector” F(r)
points along the magnetic field produced by the current density JSC

shown in the figure. Spin impurity dynamics leads to background flux
noise that limits coherence times for SQUID-based and flux-tunable
qubits.

the superconducting energy gap, making the Gilbert damp-
ing constant exponentially small [19]. In addition, the weak
magnetic fields in superconducting devices implies the spin-
orbit and hyperfine spin-flip rates are close to zero [5]. The
only remaining mechanism for spin energy decay in super-
conductors is due to the interaction between each impurity
spin with nearby amorphous two-level systems [5]. Such an
interaction leads to wide distributions of single-spin-flip rates
�i for different impurity spins i [20].

It is known in nuclear magnetic resonance experiments that
in the presence of spin-spin interaction, spins with �i = 0 can
relax by diffusing their nonequilibrium magnetization towards
sites with �i > 0 [21]. However, no theory to date has been
able to capture the coexistence of spin-spin interaction with
wide distributions of �i.

When �i = 0 for all spins i, the total spin magnetization is
conserved, and the spin fluctuations due to spin-spin exchange
interaction necessarily obey a spin diffusion equation at long
wavelengths [22,23]. A recent “pump and probe” experiment
[13] measured the flux time correlation function 〈�̂(t )�̂(0)〉
in SQUIDs, and showed that it behaved similar to Brownian
motion: 〈�(t )�(0)〉/〈�2〉 ∝ 1 − const.

√
t in the 1–1000 μs

time range. It provides evidence that the dynamics of flux �

in a superconducting device is described by the phenomena of
diffusion in this time range.

The usual theory for spin dynamics in a disordered spin
system is based on the assumption that the system is in a spin
glass phase, that is uniform and translational invariant [24].
These theories are not satisfactory for modeling flux noise
in superconducting devices for two reasons. First, there is
evidence that the impurity spins are in the paramagnetic (non-
spin-glass) phase [11,13]. Second, inhomogeneity and lack of
translation invariance play a crucial role. For example, the flux
produced by spins located close to the superconducting wire
edge is much larger than the flux produced by spins away
from the edges [6,25]. There is also the desire to know what
is the impact of nonhomogeneous spin distributions, such as
impurity spin clustering [15,16].

Describing spin diffusion from “first principles,” i.e., by
integrating the Heisenberg equations of motion for a model
of interacting spins, is a well known challenge of theoretical
physics [23]. The standard method is what we call “third-
principles approach.” It assumes the spins can be described
by a continuous magnetization density M(r, t ) that satisfies
the phenomenological equation ∂M/∂t = D∇2M, with D the
spin diffusion constant. With all physical properties lumped
into a phenomenological constant D, the third-principles the-
ory can not establish a connection to microscopic model spin
Hamiltonians, spin spatial distributions, and the impact of
inhomogeneity and clusters.

A serious shortcoming of the third-principles approach is
that it requires the assumption of a hard boundary condition
such as M(r, t ) = 0 at wire edges and the surface of spin
clusters in order to ensure total spin conservation across the
boundaries [8,13]. A hard boundary condition like this is
unjustifiable, and in fact is known to be violated in magnetic
systems due to the appearance of confined surface or edge
magnons [26]. Developing a theory of spin dynamics that
properly accounts for the boundary effects is of crucial impor-
tance because flux noise is known to be dominated by spins
at the edge of the wire where the supercurrent is maximum
[6,25].

The purpose of this article is to propose a “second-
principles” theoretical framework for spin dissipation (dif-
fusion plus relaxation) that includes quantum noise and is
more “microscopic” than the usual third-principles approach.
The goal is to establish a connection between flux noise
measured in experiments and microscopic spin Hamiltonians,
without the prohibitive computational cost associated to the
first-principles approach. To do this, we assume spin dissi-
pation according to a random walk model governed by the
parameters of the spin Hamiltonian such as the microscopic
exchange interaction between each pair of spins.

Below we describe general theoretical results, and then
present explicit numerical calculations of flux noise for the
Heisenberg model with nearest neighbor interactions in the
paramagnetic phase (T > T mag

c ). Our calculations are done in
a finite spin lattice with a random distribution of vacancies,
showing explicit predictions for spatial confinement (wire
edges) and disorder due to random distribution of vacancies
across the wire’s surface as well as wide distributions of
individual spin-flip rates �i.

II. MODEL FOR FLUX NOISE AND LINEAR
RESPONSE THEORY

We start by describing the impact of wire currents on im-
purity spins and how it leads to a general expression for flux
noise. The magnetic moment of an impurity spin is given by
−gμBŝi, where g ≈ 2 is the g factor, μB is the Bohr magneton,
and ŝi is a dimensionless spin operator for an impurity located
at position Ri. It couples to the superconducting wire current
density by producing a flux [25],

�̂ = −
∑

i

xiF(Ri ) · ŝi, (1)

where the sum goes over all sites Ri of a virtual square lattice
containing N sites. The variable xi = 1 when there is a spin
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at the virtual site, and xi = 0 otherwise, and the spin density
is σ = ∑

i xi/N = Ns/N , where Ns is the number of spins.
The flux vector F(r) is directly proportional to BI (r), the
magnetic field produced by the wire’s current density: F(r) =
gμBBI (r)/I , where I is the total current flowing through the
wire.

The wire’s current in turn affect spins by imprinting an
external local field

hi = −gμBBI (Ri ) = −IF(Ri ), (2)

that couples to the spin according to Hc = −∑
i xihi · ŝi, so

hi has dimensions of energy. When the local field hi is time
dependent, the spins respond according to

〈
ŝa

i (t )
〉
h �=0 = 〈

ŝa
i (t )

〉
h=0 +

∑
j,b

∫ ∞

−∞
dt ′χab

i j (t − t ′)hb
j (t

′), (3)

where a, b = x, y, z and the dynamical susceptibility is given
by the linear response formula,

χab
i j (t − t ′) = xix j

i

h̄
θ (t − t ′)

〈[
ŝa

i (t ), ŝb
j (t

′)
]〉
. (4)

Defining spin noise as

S̃ab
i j (ω) = xix j

∫ ∞

−∞
dteiωt

〈[
ŝa

i (t ) − 〈
ŝa

i

〉][
ŝb

j (0) − 〈
ŝb

j

〉]〉
, (5)

and using Eq. (4), we obtain the general relationship between
susceptibility and spin noise,

χ̃ab
i j (ω) = 1

2π h̄

∫ ∞

−∞
dω′ 1 − e− h̄ω′

kBT

ω′ − ω − iη
S̃ab

i j (ω′), (6)

where η → 0+. Taking the imaginary part and using the fact
that S̃ab

i j (ω) = S̃ba
ji (ω)∗, we get the fluctuation-dissipation the-

orem for spins,

S̃ab
i j (ω) = 2h̄

1 − e−h̄ω/kBT

1

2i

[
χ̃ab

i j (ω) − χ̃ba
ji (ω)∗

]
. (7)

The flux noise is then given by

S̃�(ω) =
∫ ∞

−∞
dteiωt 〈δ�̂(t )δ�̂(0)〉

=
∑

i, j,a,b

F a(Ri )S̃
ab
i j (ω)F b(R j ), (8)

where δ�̂(t ) = �̂(t ) − 〈�̂〉 denotes flux fluctuation.

III. THEORY OF SPIN DYNAMICS

Our goal is to compute flux noise for the general Heisen-
berg quantum spin Hamiltonian,

H = −1

2

∑
i, j

xix jJi j ŝi · ŝ j −
∑

i

xihi · ŝi, (9)

plus spin energy relaxation due to other degrees of freedom
such as phonons, electron-hole excitations, and two-level sys-
tem defects [20]. Here Ji j is the exchange interaction between
spins i and j, that can be ferromagnetic (Ji j > 0) or antiferro-
magnetic (Ji j < 0), and hi is the local field defined in Eq. (2).

A. Static mean-field theory

In mean-field theory, we neglect higher order fluctuations
by approximating 〈ŝa

i ŝb
j〉 ≈ 〈ŝa

i 〉〈ŝb
j〉. We simplify the notation

by writing 〈ŝi〉 = si, i.e., the spin vector without a hat denotes
the average of the spin operator (a real vector). The mean-
field approximation is exactly the same as the “classical spin
model” used by many authors, e.g., Ref. [16]. An additional
approximation in mean-field theory is to assume the system’s
entropy can be written as a sum of single-spin entropies [27]:

〈S〉 = kB

∑
i

xi

[
ln 2 − 2|si|2 − 4

3
(|si|2)2 + O((|si|2)3)

]
.

(10)
This expression is specific to spin-1/2 impurities. Note that
cutting the expansion to fourth order affects the result only
when T 
 T mag

c , where T mag
c is a critical temperature for a

phase where si > 0. The free energy is thus given by

F = 〈H〉 − T 〈S〉 = −1

2

∑
i, j

xix jJi jsi · s j −
∑

i

xihi · si

− (kBT )
∑

i

xi

[
ln 2 − 2|si|2 − 4

3
(|si|2)2

]
. (11)

Usually thermal equilibrium is realized by the set of si that
leads to the global minimum of the free energy. For example,
take xi = 1 for all i, Ji j = J > 0 for nearest neighbors and
zero otherwise, and a lattice with periodic boundary condi-
tions (b.c.). In this case, the global minimum of F is realized
by si = seq for all i (the ferromagnetic homogeneous state),
with free energy given by

F
N

=
(

2kBT − zJ

2

)
(seq )2 + 4

3
kBT (seq )4 − kBT ln 2, (12)

where z is the number of nearest neighbors for each site of the
lattice. From this expression we see that a global minimum
with seq > 0 appears only when the first term changes sign,
leading to critical temperature kBT mag

c = kBTCW = zJ/4. The
same calculation can be done for J < 0 when the lattice can
be partitioned into two sublattices with one being n.n. to
the other. For this case, the global minimum of F is real-
ized by si = +seq for one sublattice and si = −seq for the
other (antiferromagnetic homogeneous state). This leads to
kBTc = z|J|/4. However, kBTCW = −z|J|/4 because the mag-
netic susceptibility does not have a singularity at Tc (it’s the
staggered susceptibility that is singular at Tc). These are the
well-known mean-field results for phase transitions in
the spin-1/2 Heisenberg model [27].

B. Dynamical mean-field theory

Based on fundamental theories of spin dynamics [27], we
propose the following generalized equation of motion for the
spins:

dsi

dt
= 1

h̄
si × H i −

∑
j

Di jH j − �i
(
si − sinst eq

i

)
, (13)

expected to be valid for frequencies smaller than a cutoff 
c

to be discussed later. In addition to the usual spin precession,
this includes a discrete version of the intraspin dissipation
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operator Di j , together with isotropic spin energy relaxation
�i. The �i drives si towards its “instantaneous equilibrium”
value

sinst eq
i = seq

i +
∑

j

χ̃i j (0)δh j (t ), (14)

which is time-dependent due to local field dynamics, hi(t ) =
heq

i + δhi(t ), where heq
i is the static part. The quantities seq

i
do not depend on time, they are thermal equilibrium aver-
ages calculated assuming δhi(t ) = 0, i.e., they only depend
on heq

i and other static free energy parameters; χ̃ab
i j (0) =

∂ (seq
i )a/∂hb

j is the ω = 0 susceptibility, assumed isotropic
(∝ δab) to be consistent with our Hamiltonian (9). We call
Eq. (14) the “instantaneous approximation,” because it as-
sumes the other degrees of freedom causing spin energy
relaxation relax much faster than the spins themselves, so that
the spin system remains in thermal equilibrium with the other
nonspin degrees of freedom at all times. Note how Eq. (14)
introduces the ω = 0 susceptibility self-consistently into the
equation of motion (13).

The internal spin field is defined as

H i = −∂F
∂si

= xi

{∑
j

x jJi js j + hi − 4kBT

[
1 + 4

3
s2

i

]
si

}
, (15)

and the thermal equilibrium spin averages seq
i are determined

by imposing time independence, δhi(t ) = 0 and dsi
dt = 0 for

all i. This implies seq
i must be found by solving the system of

equations

1

h̄
seq

i × Heq
i −

∑
j

Di jH
eq
j = 0, (16)

where Heq
i is Eq. (15) with si = seq

i and hi = heq
i . Note how

Eq. (16) is always satisfied for Heq
i = 0, a smooth local

minimum of the free energy. However, other solutions with
Heq

i �= 0 may arise in the presence of site-dependent local
fields heq

i .
The three terms in the right-hand side of Eq. (13) cor-

respond to reactive dynamics, intra-spin-system dissipation
(e.g., diffusion), and spin energy relaxation due to other
degrees of freedom, respectively. The reactive term is nondis-
sipative, it does not change sign under time reversal t → −t
so it has the same symmetry as the left-hand side. The second
and third terms on the right-hand side do change sign under
time reversal, leading to an irreversible approach to thermal
equilibrium (the arrow of time). These terms must be added
ad hoc to the linearized equations of motion so that the ze-
roth (attainment of thermal equilibrium) and second (entropy
always increases) laws of thermodynamics are obeyed. That
is, the system is able to reach thermal equilibrium, and the
free energy always decreases as a function of time when the
system is in contact with a thermal reservoir.

A few notes about the microscopic origin of spin dis-
sipation Di j are warranted. The normal modes of Eq. (13)
are called magnons and paramagnons, to be defined be-
low. The reactive terms of Eq. (13) describe the dynamics
of noninteracting (para)magnons obtained by the mean-field

approximation. Exactly the same results are obtained
from different methods, e.g., using a Holstein-Primakoff
transformation to convert spin operators into Bosonic
creation/destruction operators; transforming Hamiltonian (9)
and keeping contributions that are quadratic in these Bosonic
operators leads to the same magnon modes as Eq. (13) with
Di j = �i = 0 [26]. However, the higher order terms that are
neglected in this quadratic approximation can be interpreted
as describing (para)magnon-(para)magnon interactions. The
introduction of Di j �= 0 serves to account for these interac-
tions phenomenologically.

IV. SPECIFICATION OF DISSIPATION MATRIX Di j IN
THE PRESENCE OF CONFINEMENT AND DISORDER

To go beyond the third-principles assumption of long
wavelength spin diffusion we need to come up with a specifi-
cation for Di j that respects several physical constraints. To do
this, we take inspiration from random walk models in a lattice.
The key idea is that exchange interaction Ji j is the main driver
for each random walk step, a spin “flip flop.” A sequence of
many flip flops will lead to diffusion. The constraint of total
spin conservation motivates our postulation of the following
spin dissipation matrix:

Di j = d0(T )

h̄J̄c

(
xix j |Ji j | − δi j

∑
k

xixk|Jik|
)

. (17)

Here d0(T ) is a function of temperature to be determined by
fitting the theory to experiments (note d0(T ) is dimension-
less). This is introduced to account for critical behavior of the
spin diffusion constant near T mag

c [28]. The quantity

J̄c = 1

Nc

∑
j,k∈clusterc

x jxk|Jjk| (18)

is the average exchange times coordination number for cth

cluster, the cluster that contains spin i. Such a cluster is
defined as the set of all spins j such that either Ji j �=
0 or there exists a set of sites k1, k2, . . . , kn such that
Jik1 Jk1k2 Jk2k3 · · · Jkn j �= 0. Nc is the number of spins in the iso-
lated cluster c. The following motivates this choice.

(1) When the local external field hi and spin relaxation rate
�i are both zero, Eq. (17) preserves total spin. For each iso-
lated spin cluster,

∑
i, j∈cluster Di jH j = 0, therefore summing

Eq. (13) over all spins in a cluster leads to d
dt (

∑
i∈cluster si ) =

0, so the total spin in each cluster is a constant of the motion.
Therefore we do not need to assume hard boundary conditions
[8,13] to describe confined systems such as spin clusters and
wire edges.

(2) This choice for Di j gives rise to diffusion in the
long wavelength regime. For example, for the homoge-
neous nearest-neighbor model in the square lattice with
Ji j = Ji,i+v = J for v = ±ax̂,±aŷ, we get

−
∑
i, j

δ(r − Ri )Di jH j = d0(T )a2kBT

h̄
∇2M(r), (19)

where we assumed high temperature (kBT � J and (si )2 
 1)
and took the continuum limit by defining the magnetiza-
tion density M(r) = −∑

i siδ(r − Ri ). Equation (19) may be
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compared to experiments that show spin diffusion constant
increasing with temperature [12].

(3) Consider the time derivative of the free energy in each
isolated spin cluster when hi is independent of time:

dF
dt

=
∑

i

∂F
∂si

· dsi

dt
= d0(T )

h̄J̄c

∑
i

H i ·
∑

j

xix j |Ji j |(H j − H i ) +
∑

i

�iH i · (
si − seq

i

)

= −d0(T )

h̄J̄c

∑
i< j

xix j |Ji j |(H i − H j )
2 −

∑
i

�i
(
F (si ) − F

(
seq

i

) + O[(δsi )
2]

)
. (20)

The first term on the RHS is always negative, showing that
our choice for Di j always tends to decrease the free energy as
time increases (i.e., it obeys the 2nd law of thermodynamics).
This justifies our use of modulus of Ji j in Eq. (17).

The second term on the RHS of Eq. (20) is negative
provided that the deviation out of equilibrium is small and
F (seq

i ) is a local minimum of the free energy. Therefore the
coupling to other nonspin degrees of freedom �i pushes the
system towards a local minimum of the free energy, without
subjecting to spin conservation.

V. CALCULATION OF DYNAMICAL SUSCEPTIBILITY

For small deviations from equilibrium we write hi = heq
i +

δhi(t ), and si = seq
i + δsi(t ), where both δhi(t ) and δsi(t ) are

small time-dependent perturbations.
We plug these into the equation of motion (13), drop

nonlinear terms such as (δsi )2, (δhi(t ))2, and use Eq. (16) to
simplify:

d

dt
(δsi ) = 1

h̄
seq

i ×
{

(δhi ) +
∑

j

x jJi j (δs j ) − 4kBT

[
1 + 4

3

(
seq

i

)2
]

(δsi ) − 32

3
kBT

[
seq

i · (δsi )
]
seq

i

}

−
∑

j

Di jx j

{
(δh j ) +

∑
k

xkJjk (δsk ) − 4kBT

[
1 + 4

3

(
seq

j

)2
]

(δs j ) − 32

3
kBT

[
seq

j · (δs j )
]
seq

j

}

+ 1

h̄
(δsi ) × Heq

i − �i(δsi ) + �i

∑
j

χ̃i j (0)(δh j ). (21)

We assume seq
i = seq

i ẑ and Heq
i = H eq

i ẑ and break this down
into two equations, one for δsz

i obtained by dot product with ẑ
on both sides of Eq. (21), and the other for δs+

i = δsx
i + iδsy

i
obtained by dot product with (x̂ + iŷ). Taking the time Fourier
transform we get two decoupled equations:

(ωI − P) · δs̃z = i(Γ · χ̃0 − D) · δh̃
z
, (22a)

(ωI − M) · δs̃+ =
[

i(Γ · χ̃0 − D) − 1

h̄
seq

]
· δh̃

+
, (22b)

where δs̃z, δs̃+ and δh̃
z
, δh̃

+
are N-component column

vectors, and I, Γ, χ̃0, D, seq are N × N matrices. They are de-
fined by [I]i j = xiδi j , [Γ]i j = xi�iδi j , [χ̃0]i j = χ̃i j (0), [D]i j =
xix jDi j , and [seq]i j = xis

eq
i δi j .

The matrices P and M are the paramagnon and magnon
matrices, respectively. They are given by

P = −i{Γ + D · J − 4kBT D · [I + 4(seq )2]}, (23a)

M = −i

{
Γ + D · J − 4kBT D ·

[
I + 4

3
(seq )2

]}

+ 1

h̄

{
Heq − seq ·

[
J − 4kBT

(
I + 4

3
(seq )2

)]}
, (23b)

where [J]i j = xix jJi j , and [Heq]i j = H eq
i δi j .

The eigenvalues of P and M are paramagnon and magnon
frequencies, respectively. While paramagnons cause spin
fluctuations along seq

i , the magnons cause fluctuations per-
pendicular to seq

i . In the paramagnetic phase (T > T mag
c )

with zero external fields, seq = Heq = 0 and the matrices P
and M become identical, signaling the presence of isotropic
spin fluctuations (i.e., paramagnons are threefold degen-
erate). From now on, we shall focus our discussion on
this paramagnetic regime, so we only need to consider the
spectrum of P.

Diagonalize P with a transformation U such that

U−1 · P · U = Pd = −i
∑

m

γmêm ⊗ êT
m, (24)

where m labels the paramagnon mode with frequency −iγm,
with êm unit column vectors, êT

m = (0, . . . , 0, 1, 0, . . . , 0), etc.
All elements of P are pure complex, therefore the U and
U−1 can be chosen to have real elements. Take the complex
conjugate of Eq. (24) and use P∗ = −P to see that γ ∗

m = γm.
Apply U−1 on both sides of Eq. (22a),

(ω − Pd ) · U−1 · δs̃z = iU−1 · (Γ · χ̃0 − D) · δh̃
z
, (25)
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and invert the diagonal matrix to get an exact expression for
the susceptibility:

(δs̃z ) = i
∑

m

U · êm ⊗ êT
m

ω + iγm
· U−1 · (Γ · χ̃0 − D) · δh̃

z
. (26)

Transformation (24) implies that column vector vm = U · êm

is the right eigenvector of P associated to the eigenvalue
−iγm. Similarly, the line vector v−1

m = êT
m · U−1 is the left

eigenvector of P associated to the same eigenvalue. We have
v−1

m · vm′ = δmm′ , but the set {vm} is not mutually orthogonal
because [P, P†] �= 0 (P is not normal).

Using these results, Eqs. (22a) and (26) imply the
following exact expression for the isotropic dynamical sus-
ceptibility:

χ̃ab(ω) = i(ωI − P)−1 · (Γ · χ̃0 − D)δab (27a)

= i
∑

m

vm ⊗ [
v−1

m · (
Γ · χ̃0 − D

)]
ω + iγm

δab, (27b)

valid for T > T mag
c with a, b = x, y, z. The dynamical suscep-

tibility has poles at the paramagnon frequencies ω = −iγm,
and these contribute to dissipation and noise. The param-
agnons are said to be purely dissipative because γm is real,
leading to e−iωt = e−γmt for the decay of the spin excitations.
For T > T mag

c , we have γm � 0 because the paramagnetic
phase is stable.

Conservation of total spin follows from 1T · D = 0T ,
where 1 is the column vector with all N components equal to
1. When in addition Γ = 0 all contributions to the paramagnon
matrix (23a) have D on the left, so it follows that the m = 0
mode defined by v̂−1

0 = 1T /
√

N is a left eigenvector of P
associated to γ0 = 0. This is true for general Ji j . Because
v−1

0 · D = 0T , m = 0 does not contribute to the sum in the
dynamical susceptibility Eq. (27b). This occurs as a direct
consequence of the conservation law d

dt (1T · δsz ) = 0, so we
say m = 0 is the nondissipative Goldstone paramagnon.

At high frequency ω � Maxm{γm}, Eq. (27b) leads to

χ̃ab(ω) ≈ i(Γ · χ̃0 − D)

ω
δab, (28)

because
∑

m vm ⊗ v−1
m = I. As Eq. (13) has an upper fre-

quency cutoff, Eq. (28) should be taken as an upper bound
on the modulus of the susceptibility.

Now consider the opposite limit, ω → 0. Since χ̃ab(0) ≡
χ̃0δab, setting ω = 0 in Eq. (27a) leads to (P + iΓ) · χ̃0 = iD,
and using Eq. (23a) we get

χ̃ab(ω = 0) = χ̃0δab = (4kBT I − J)−1
δab. (29)

This is the generalized Curie-Weiss susceptibility for a non-
homogeneous spin system (valid for T > T mag

c ).
Exact analytical results can be obtained for the special

case of a translation-invariant spin system. If the system is
close to being translation-invariant, e.g., only a few vacancies
are present so that σ = 〈xi〉i � 1, and �i does not depend
appreciably on i, a homogeneous approximation (HA) can be
proposed. The HA replaces xi, �i, Ji j , and Di j by their spatial
averages σ , �̄, J̄i j , and D̄i j (the latter two depending only on
R j − Ri), making the problem analytically solvable. In this

case, Appendix A shows that the exact susceptibility can be
obtained by spatial Fourier transformation,

χ̃ab(q, ω) = i(�̄χ̃ (q, 0) − D̃(q))δab

ω + i{−D̃(q)[4kBT − J̃ (q)] + �̄} , (30)

where D̃(q) = ∑
v D̄i,i+ve−iq·v and J̃ (q) = ∑

v J̄i,i+ve−iq·v .
The paramagnon modes are labeled by m = q ∈ 1st Brillouin
zone, each with frequency eigenvalue

γm = γq = −D̃(q)[4kBT − J̃ (q)] + �̄, (31)

and associated right and left eigenvectors vm = eq, v−1
m =

e†
q/Ns, respectively, where e†

q = (e−iq·R0 , . . . , e−iq·RN−1 ), and
Ns is the number of occupied sites forming a translation-
invariant lattice.

When ω → 0, Eq. (30) leads to

χ̃ab(q, 0) = 1

4kB

1

T − TCW(q)
δab, (32)

where TCW(q) = J̃ (q)/(4kB) is the Curie-Weiss temperature
in Fourier space.

Without translation invariance, e.g., in the presence of spin
clusters, Eq. (29) shows that the ω = 0 susceptibility may
have several different temperature poles TCW(0), each asso-
ciated with different clusters having different Ji j or number of
neighbors. However, TCW only depends on spin-spin interac-
tion, it does not depend on relaxation parameters �i.

VI. FLUX NOISE AND PARAMAGNON DENSITY

The explicit expression for flux noise is obtained by plug-
ging Eq. (27b) into Eq. (7) and using Eq. (8)

S̃�(ω) = 2h̄ω

1 − e− h̄ω
kBT

∑
m,a

FaT · vm
[
v−1

m · (Γ · χ̃0 − D) · Fa
]

ω2 + γ 2
m

,

(33)
where FaT = (F a(R0), . . . , F a(RN−1)) represents the a com-
ponent of the flux vector for all spins. A convenient way to
interpret this expression is to write it in terms of a density of
Lorentzian contributions

S̃�(ω) = 2π h̄ω

1 − e− h̄ω
kBT

∫ ∞

−∞
dγ

γ /π

ω2 + γ 2
ρ�(γ ), (34)

where ρ�(γ ) is the paramagnon flux density, defined as

ρ�(γ ) = 1

γ

∑
m,a

(FaT · vm)
[
v−1

m · (Γ · χ̃0 − D) · Fa
]
δ(γ − γm),

(35)
where δ(x) is the Dirac delta function.

When the spin system is translation-invariant, the param-
agnon flux density is given by

ρ�(γ ) = 1

Nsγ

∑
q

|F̃(q)|2[�̄χ̃ (q, 0) − D̃(q)]δ(γ − γq),

(36)

where F̃(q) = ∑
j F je−iq·R j is the flux vector in Fourier

space.
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Finally, in the high frequency limit ω � Maxm{γm}
Eq. (33) implies

S̃�(ω) = 2h̄

1 − e− h̄ω
kBT

1

ω

∑
a

FaT · (Γ · χ̃0 − D) · Fa. (37)

Since Eq. (13) has an upper frequency cutoff 
c, the actual
S̃�(ω) is expected to be less than Eq. (37) at ω > 
c. In this
regime, Eq. (37) provides an upper bound on flux noise.

VII. PARAMAGNON FLUX DENSITY IN THE PRESENCE
OF SPIN DIFFUSION FROM AN INFINITE

PLANE OF SPINS

Before we display numerical calculations with our explicit
expression for Di j shown in Eq. (17), it is of value to consider
a simplified model for Di j based on the third-principles theory.
Assume the spin system is an infinite square lattice with no
vacancies (homogeneous). Moreover, assume the supercon-
ducting wire is also infinite with flux vector given by the “edge

model” shown in Fig. 1:

F(r) = F0(δx,−W/2 − δx,W/2)ẑ, (38)

where W is the wire width and δx,±W/2 are Kronecker delta
functions. Equation (38) gives a good description of thin-film
wires where it is shown that F i is sharply peaked at the wire
edges [25].

The simplest model for Di j is to emulate the third-
principles theory. To do this, assume the phenomenological
paramagnon relaxation rates are given by γq = D(T )q2 + �̄,
with D(T ) the spin diffusion constant. Inspection of Eq. (31)
shows that this γq is obtained by a choice of Di j that has the
following Fourier representation at low q:

D̃(q) = − D(T )q2

4(kBT − J )
. (39)

Plug these into Eq. (36) along with χ̃ (q, 0) ≈ 1/[4(kBT − J )]
and |F̃(q)|2 = 4F 2

0 N2
sy sin2 (qxW/2)δqy,0 to get

ρ�(γ ) = 4F 2
0 N2

sy

Nsγ

∫ π/a0

−π/a0

dq
2π

Nsxa0

sin2

(
qxW

2

)
�̄ + Dq2

4(kBT − J )
δ(γ − Dq2 − �̄)

= F 2
0 a0Nsy

2π (kBT − J )
√

D
sin2

[√
(γ − γmin)W 2

4D

]
θ (γmax − γ )θ (γ − γmin)

(γ − γmin)1/2 , (40)

where θ (x) is the Heaviside step function, with γmin = �̄

and γmax = D(π/a0)2 + �̄ defining the region where ρ�(γ ) is
nonzero. The sine squared represents interference between the
two edges of the wire; in most cases this averages out to 1/2
either because of small fluctuations in wire shape or frequency
resolution during integration over γ . Apart from this, ρ�(γ )
follows a power law in frequency

ρ�(γ ) = C(T )θ (γmax − γ )θ (γ − γmin)

γ α
, (41)

with exponent α = 1/2 and amplitude C(T ).
Plug Eq. (41) into Eq. (34) to get

S̃�(ω) = 2h̄ω

1 − e− h̄ω
kBT

C(T )
bα (ω)

ωα
, (42)

where

bα (ω) =
∫ γmax/ω

γmin/ω

dx
x1−α

1 + x2
. (43)

Thus, when γmin 
 ω 
 γmax, bα (ω) ≈ π/[2 sin (πα/2)]
and the flux noise scales as a power law in frequency with
the same exponent α, S̃�(ω) ∝ 1/ωα .

We emphasize that the α = 1/2 obtained in this section is
a direct consequence of assuming long-wavelength diffu-
sion in an infinite and homogeneous (spin density σ = 1)
lattice of spins. The next section shows explicit numerical
calculations of the impact of spatial confinement and disorder
using Eq. (17) for Di j .

VIII. NUMERICAL EVALUATION OF THE PARAMAGNON
FLUX DENSITY: HEISENBERG MODEL IN THE 2D

SQUARE LATTICE WITH A RANDOM DISTRIBUTION
OF VACANCIES

For numerical calculations with our proposed Di j in
Eq. (17), we consider a 20×20 (N = 400) “virtual” square
lattice. We randomly populate Ns � N sites with spins, yield-
ing spin density σ = Ns/N . The remaining unoccupied virtual
sites are called vacancies, see Fig. 1. All calculations below
are done with open boundary condition (b.c.) along x, and
periodic b.c. along y, describing spins confined within the
region of the SC wire.

All calculations assume the nearest-neighbor (n.n.) Heisen-
berg model in a square lattice with Ji j = J

∑
v δi, j+v for v =

±a0x̂,±a0ŷ. Divide matrix (23a) by d0(T )|J|/h̄, so that the
eigenvalues γm are expressed in units of d0(T )|J|/h̄. That
way the problem is now specified by kBT/|J|, h̄�i/(d0(T )|J|),
and h̄ω/(d0(T )|J|). As a result, when �i = 0, the calculated
exponent α is independent of the choice of d0(T ) [although
γmin, γmax do depend on d0(T )].

Figure 2 shows explicit calculations of ρ�(γ ) using
Eq. (35) with numerical calculations of the eigenvalues γm

of P, with the δ(x) function approximated by a Gaussian
with standard deviation 0.1γmax. The flux vector was given
by the “edge model,” see Eq. (38) and Fig. 1. Results for
kBT/|J| = 12 and �i = 0 are shown for both J > 0 (FM)
and J < 0 (AFM), using spin densities σ = 1, 0.75, and 0.5.
The latter two are averaged over 512 random instances, each
containing a different distribution of vacancies in the virtual
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FIG. 2. Explicit calculations of paramagnon flux density ρ�(γ ) for a confined system of spins (20×20 virtual lattice with open b.c. along x),
using the edge model for the flux vector (Eq. (38) and Fig. 1). Results are shown for kBT/|J| = 12 and �i = 0 for (a) J > 0 (FM) and (b)
J < 0 (AFM), for spin densities σ = 1, 0.75, 0.5. The cases with σ < 1 were averaged over 512 random instances, each containing a different
distribution of vacancies in the virtual lattice with the same Ns = σN . These plots demonstrate that ρ�(γ ) remains a power law in γ , even
in the presence of confinement (open b.c.) and disorder (σ < 1). However, the exponent α > 1/2, in contrast to α = 1/2 in the absence of
confinement and disorder.

lattice with the same Ns = σN . These results demonstrate that
ρ�(γ ) remains a power law in γ , even in the presence of con-
finement (open b.c.) and spatial disorder (σ < 1). However,
the corresponding exponent α > 1/2, contrasting to the case
without confinement/disorder (Sec. VII).

Figure 3 shows explicit calculations of the frequency ex-
ponent α appearing in both ρ�(γ ) and S̃�(ω) as a function
of T and σ , with all other parameters like in Fig. 2. It is
seen that α decreases with T for the FM model, and has
the opposite behavior for the AFM model. At high T , both
FM/AFM models lead to α ≈ 0.7 for σ = 1; this demon-
strates the importance of confinement. As σ decreases from
1, α further deviates from its infinite/homogeneous value of

1/2. This demonstrates the impact of disorder. Note how the
dependence of α on σ is nonmonotonic.

Interestingly, several experiments with niobium devices
measure α = 0.7 [4,29].

IX. DISORDER DUE TO WIDE DISTRIBUTION
OF RELAXATION RATES �i AND SPIN-SPIN

INTERACTIONS

Another model for disorder is to assume an arbitrary distri-
bution of relaxation rates �i. When Ji j = Di j = 0, ρ�(γ ) and
S̃�(ω) can be computed exactly. The eigenvalues of P are sim-
ply γi = �i, and the eigenvectors are the unit column vectors

FIG. 3. Explicit calculations of flux noise frequency exponent α as a function of temperature for �i = 0 in the n.n. Heisenberg model with
confinement and disorder, with all other parameters as in Fig. 2. (a) FM case with J > 0, (b) AFM case with J < 0. Note how α decreases
(increases) with T for the FM (AFM) cases. In all cases, α > 1/2 demonstrating the relevance of confinement and disorder. The dependence
of α on σ is nonmonotonic.
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FIG. 4. Noise frequency exponent α in the presence of both spin-spin interaction J and �i = �max exp (−λmaxri ), with ri ∈ [0, 1] a random
number for each site i. The spin density is σ = 1 for all calculations (no vacancies), so the only source of disorder is the variations in �i; all
other parameters are the same as in Fig. 3. The parameters �′

max are renormalized relaxation cutoffs, assumed to be constant (see text). Results
show that the introduction of �i to the interacting spin system increases the values of α in the low to intermediate T range, with the impact of
�i washed out at high T .

êi. Using Eq. (35) the paramagnon flux density becomes

ρ�(γ ) = 1

γ

∑
i

|F i|2�iχ̃0δ(γ − �i )

= 1

4kBT

∑
i

|F i|2
∫

d�p(�)
�

γ
δ(γ − �)

= 1

4kBT

∑
i

|F i|2 p(γ ), (44)

where in the second line we plugged Eq. (29) and took an
average using p(�), the probability density for rates �i. The
justification for wide distributions of spin-flip rates �i for spin
impurities is given in Refs. [5,20]. Each spin interacts with
one or more amorphous two-level systems (TLSs), leading to
the cross-relaxation rate (joint spin flip and TLS switch):

�i = �max(T )e−λ, (45)

where �max(T ) is a cutoff for �i, and λ is a random variable
uniformly distributed in the interval [0, λmax]; it models the
barrier for TLS switch, see Fig. 3(a) of Ref. [5]. Such a model
is described by the probability density

p(�) = 1

λmax

1∣∣ d�
dλ

∣∣ = 1

λmax

1

�
, (46)

for �min(T ) < � < �max(T ), and zero otherwise, where
�min = �maxe−λmax . Plug this into Eq. (44) and use Eq. (34)
to get the flux noise

S̃�(ω) = π h̄ω

1 − e− h̄ω
kBT

∑
i |F i|2

4kBT λmax

1

ω
, (47)

for �min < ω < �max, with constant S̃�(ω) = S̃�(�min) for
ω < �min, and S̃�(ω) = 0 for ω > �max. From now on we
will refer to this model as the spin 1/ f model, since it is

the spin equivalent of the well-known 1/ f noise model in
semiconducting devices.

Now consider the impact of nonzero spin-spin interaction
Ji j and dissipation Di j . Figure 4 shows numerical calcula-
tions using the second-principles theory, for σ = 1 and other
parameters as in Fig. 3, plus the spin 1/ f model with dif-
ferent choices of �′

max = h̄�max(T )/(d0(T )|J|). In Eq. (47),
we see that the T dependence in �max does not affect the
noise provided that �min < ω < �max; this occurs because low
frequency noise is independent on the cutoff for �i. The same
argument applies in the presence of Ji j , provided �′

max is a
sufficiently large constant in our calculations. We simulated
the spin 1/ f model by choosing �i = �max exp (−λmaxri ) with
λmax = 20 and ri ∈ [0, 1] a random number generated for each
of the 400 sites.

The calculations should be compared to the case of Ji j = 0,
that has α = 1 (Eq. (47)). As shown in Fig. 4, the addition of a
wide distribution of �i to the interacting spin system increases
α in the low to intermediate T range. At high T , the impact of
�i is washed out.

X. SIMPLE EXPRESSIONS FOR FLUX NOISE
FOR COMPARISON TO EXPERIMENTS

The previous sections showed that the paramagnon flux
density scales as a power law in γ , ρ�(γ ) = C/γ α , for γmin 

γ 
 γmax, and ρ�(γ ) ≈ 0 outside this range. The exponent
α and amplitude C depend on temperature, confinement, and
disorder.

As discussed above Eq. (30), when σ � 1 and �i is nearly
uniform we can use the homogeneous approximation (HA)
described in Appendix A to obtain simpler analytical expres-
sions. The HA replaces xi, �i, Ji j , and Di j by their spatial
averages, σ , �̄, J̄i j , and D̄i j , making the problem analyti-
cally solvable. In particular, ρ�(γ ) is approximated by the
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FIG. 5. Temperature dependence of flux noise amplitude. Due
to the formation of magnetized spin clusters, the noise amplitude
for the FM model has a singularity at T = T mag

c = σ |J̄|/kB. As a
result, the FM S̃�(ω) decreases with increasing T . For the AFM
model (J̄ < 0), S̃�(ω) is instead slightly increasing with T . The solid
curves are based on Eq. (50), with dashed ones representing simple
extrapolation to determine σ |J̄| for the AFM model. Data points
are numerical evaluation with the second-principles theory, using
T = 10J̄/kB and h̄ω/|J̄| = 0.1 as the high T and low ω, respectively,
and d0(T ) = 1, �i = 0.

translation-invariant Eq. (36). Consider its integral over all γ :∫
dγ ρ�(γ ) = 1

Ns

∑
q

|F̃(q)|2 1

γq
[�̄χ̃ (q, 0) − D̃(q)]

= 1

Ns

∑
q

|F̃(q)|2
4kBT − J̃ (q)

,

= σ
∑

i |F i|2
4(kBT − σ J̄ )

, (48)

where in the second line we used Eqs. (31) and (32), and
in the third line we assumed the typical scale for variations
in F(r) is much larger than the lattice spacing a0, so that
J̃ (q) can be approximated by J̃ (0) = 4σ J̄ . Now equate this
to

∫
dγC/γ α ≈ Cγ 1−α

max /(1 − α) (valid for α < 1) in order to
obtain an expression for amplitude C; plug this into Eq. (42)
to get

S̃�(ω) = h̄ω

1 − e− h̄ω
kBT

σ (1 − α)
∑

i |F i|2
2γ 1−α

max (kBT − σ J̄ )

bα (ω)

|ω|α . (49)

When α � 1, the temperature dependence of γmax ∝ d0(T )T
is washed out, leading to a simple relation valid for h̄ω 

kBT :

S̃�(ω, T )

S̃�(ω, T � σ J̄/kB)
≈ kBT

kBT − σ J̄
. (50)

Note how within HA and for α � 1 this noise amplitude ratio
is independent of d0(T ) and other details such as values of �i.

Figure 5 shows this dependence for the FM (J̄ > 0) and
AFM (J̄ < 0) cases, and compares Eq. (50) to numerical
evaluation with T = 10J̄/kB and h̄ω/|J̄| = 0.1 chosen as the
high temperature and frequency, respectively, and d0(T ) = 1,

�i = 0. It shows that the amplitude of S̃�(ω, T ) for a given ω

decreases with increasing T for the FM model. For the AFM
model it instead increases with T . Extrapolating to lower tem-
peratures (including T < 0 for AFM) allows determination of
the value of σ J̄ that models the spins.

The singularity in S̃�(ω) for the FM model as T gets close
to T mag

c = σ J̄/kB is due to the formation of clusters of spins
with nonzero magnetization (short range order) [15,25]. As
seen in Fig. 5, numerical results deviate from Eq. (50) demon-
strating the effect of confinement, disorder and the value of α

(α < 1 for most T, see Fig. 3) on the T dependence of spin
clusters.

Similar considerations apply to the antisymmetric flux
noise

S̃−
� (ω) = S̃�(ω) − S̃�(−ω)

= σ (1 − α)
∑

i |F i|2
2γ 1−α

max (kBT − σ J̄ )
h̄|ω|1−αbα (ω). (51)

This is seen to have weak frequency dependence when α � 1.
Plotting 1/S̃−

� (ω) as a function of T yields a straight line that
extrapolates to zero at T = σ J̄ < 0. In Quintana et al. [11]
(inset of Fig. 3) this procedure reveals σ J̄ = −10 mK.

XI. DISCUSSION AND CONCLUSIONS

Several experiments in SQUID-based devices
[4,11,12,15,18,29] have concluded that flux noise follows the
empirical law

S̃�(ω) = A

ωα
, (52)

where amplitude A and exponent α < 1 are both temperature-
dependent. Here we developed a theory of flux noise due to
interacting spins that is able to calculate A and α for realistic
model impurity spin systems with disorder due to vacancies
and wide distributions of spin relaxation rates, and for spins
confined in bounded regions such as SC wires.

To achieve this we needed to develop a method that does
not rely on the “third-principles” diffusion operator D∇2. Our
“second-principles” method instead assumes lattice sites are
coupled by a dissipation matrix Di j given by Eq. (17). We
showed that this choice obeys fundamental principles such
as total spin conservation and the second law of thermody-
namics. Our prescription for Di j depends on spin Hamiltonian
parameters such as exchange interaction, establishing a direct
connection between flux noise and model spin Hamiltonians.

A central concept is the interpretation of flux noise in
terms of (para)magnon excitations. Flux noise is shown to
be directly related to the density of edge (para)magnons, the
ones that lead to fluctuations at the superconducting wire
edges, where spin flips cause the largest flux changes to
the device. While Di j accounts for the interactions between
(para)magnons, the rates �i describe interactions between
spins and other degrees of freedom such as phonons, electron
gas excitations, and two-level system defects.

Section VII shows that choosing Di j consistent with D∇2

(third-principles theory) and assuming an infinite, translation-
invariant spin system leads to temperature-independent noise
exponent α = 1/2, in contradiction to experiments. In
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contrast, Secs. VIII and IX show that numerical calculations
with the “second-principles” prescription for Di j [Eq. (17)]
makes α temperature-dependent and in the range observed in
experiments. Both Di j and �i seem to be required to explain
experiments.

We can separate experiments in two groups, the ones using
niobium and the ones using aluminum devices. Measurements
in niobium devices show both amplitude A and exponent α

decreasing with increasing T (Fig. 3 of Ref. [15]). According
to our Eq. (50) and Fig. 5, this A(T ) requires a ferromagnetic
model (J > 0). Our calculated α(T ) for �i = 0 ranges from
0.9 at low T to 0.7 at high T for a confined system (spins
only on top of the wire) with a small number of vacancies
(σ � 1), but the exponent can approach 0.5 when the spin
system extends beyond the wire [Eq. (40)]. In comparison,
experimental measurement shows α(T ) going from 0.8 to 0.4
with increasing T [15]. Therefore a n.n. Heisenberg model
with J > 0 and σ � 1 and low �i 
 J/h̄ provides a reason-
able model.

Much less data exist for aluminum devices, but one ex-
periment definitely shows that their A(T ) and α(T ) are
qualitatively different from niobium. In Ref. [11], A(T ) is
shown to increase with T , and based on our Fig. 5 an anti-
ferromagnetic model (J < 0) is required. The authors reached
the same conclusion by measuring asymmetric noise S̃−

� (ω)
and extrapolating to T < 0 to get TCW = −10 mK. According
to our interpretation this implies σ J̄/kB = −10 mK. The mea-
sured exponent α = 0.96 − 1.05 can not be explained by our
theory with �i = 0 [Fig. 3(b)]. However, Fig. 4(b) shows that
introducing a wide distribution of �′

is (the spin 1/ f model)
makes α ≈ 1 at low temperatures. This indicates the necessity
of a model with both �i and J nonzero in aluminum devices.
Measurements of α(T ) over a wide temperature range are not
yet available to confirm this scenario.

In addition to low frequency flux noise, experiments also
measure Ohmic (∝ ω) [17] or super-Ohmic (∝ ω3) [11,18]
flux noise in the GHz range. We now argue that this behavior
can not arise from interacting spins alone.

Our theory is fundamentally based on the assumption of
“hydrodynamics”, i.e. that spin degrees of freedom can be
described by the classical equation of motion (13) [30]. As
a result, it overestimates the noise for ω > 
c, where 
c

is a high-frequency cutoff. The cutoff 
c can be estimated
from exact calculations of the moments of the noise spectrum
at T → ∞. Calculations for the 3d Heisenberg model [22]
suggests h̄
c ∼ 10J/h̄ for our 2d case. When ω > 
c, S̃i j (ω)
drops off faster than 1/ω2, so that our Eq. (33) becomes an
upper bound for flux noise. In Eq. (37), this upper bound was
shown to be ∝ 1/ω when quantum noise is included. As the
1/ω upper bound holds for all interacting spin models, this
allows us to conclude that the high frequency Ohmic [17] or
super-Ohmic [11,18] flux noise observed in SQUIDs can not
originate from a model of interacting impurity spins. A likely
source is the normal resistance due to excited quasiparticles,
either by thermal or nonequilibrium sources such as cosmic
rays [31].

In conclusion, we developed a “second-principles” theory
of flux noise due to interacting spins that is able to account
for the confinement and disorder present in realistic impurity
spins systems on superconducting devices. The theoretical

framework allows explicit prediction of the amplitude and ex-
ponent of flux noise due to different wire geometries and spin
disorder scenarios, such as random vacancies and wide distri-
butions of spin-flip rates due to interactions with amorphous
TLSs. Comparing numerical results to experiments allowed
us to specify different spin Hamiltonians for niobium and
aluminum devices. Generalizations of the theory that include
time dependent external currents and fields can be used to
design of optimal control strategies that reduce the impact of
flux noise on quantum devices.
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APPENDIX A: EXACT SOLUTION OF THE
HOMOGENEOUS CASE AND HOMOGENEOUS

APPROXIMATION

When the spin system is translation-invariant, the “second-
principles” method yields exact analytic expressions for the
spin noise for general Di j using spatial Fourier transforms.
This is the case when the system has periodic b.c., and the
vacancies are organized in a regular sublattice of the full
virtual lattice. The homogeneous case (no vacancies, σ = 1)
with periodic b.c. is the most relevant example.

When the system is not translation invariant, we may take
spatial averages over parameters xi, Di j , Ji j , and �i in order
to force its equation of motion to become exactly solvable. In
this case the resulting analytic solution is called homogeneous
approximation (HA).

In the paramagnetic phase (T > T mag
c ), the EOM Eq. (21)

becomes

d

dt

(
δsa

i

)=−
∑

j

Di jx j

[(
δha

j

) +
∑

k

xkJjk
(
δsa

k

) − 4kBT
(
δsa

j

)]

−�i
(
δsa

i

) + �i

∑
j

χ̃i j (0)
(
δha

j

)
, (A1)

for a = x, y, z. If this is not translation invariant, replace
xi, Di j, �i by their average values:

x̄ = 1

N

∑
i

xi = σ, (A2a)

D̄v = 1

Nσ 2

∑
i

xixi+vDi,i+v, (A2b)

J̄v = 1

Nσ 2

∑
i

xixi+vJi,i+v, (A2c)

�̄ = 1

Nσ

∑
i

xi�i, (A2d)

χ̃v (0) = 1

Nσ 2

∑
i

χ̃i,i+v (0). (A2e)
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Equation (21) becomes

d

dt

(
δsa

i

) = −
∑

v

σ D̄v

[(
δha

i+v

) +
∑
v′

σ J̄v′
(
δsa

i+v+v′
)

− 4kBT
(
δsa

i+v

)]−�̄
(
δsa

i

) + �̄
∑

v

χ̃v (0)
(
δha

i+v

)
.

(A3)

Take the Fourier transform in both sides

δs̃a
q(ω) =

∫
dt

∑
j

e−i(q·R j−ωt )(δsa
j

)
, (A4)

to obtain the dynamical susceptibility,

χ̃ab(q, ω) = [�̄χ̃ (q, 0) − D̃(q)]δab

−iω + {−D̃(q)[4kBT − J̃ (q)] + �̄} , (A5)

where

D̃(q) = σ
∑

v

D̄ve−iq·v, (A6a)

J̃ (q) = σ
∑

v

J̄ve−iq·v. (A6b)

This result implies the zero-frequency susceptibility,

χ̃ab(q, ω = 0) = 1

4kB

δab

T − TCW(q)
, (A7)

with Curie-Weiss temperature TCW(q) = 1
4kB

J̃ (q).
Using the fluctuation-dissipation theorem the spin noise in

Fourier space becomes exactly equal to

S̃ab(q, ω) = 2h̄ω

1 − e−h̄ω/kBT

× [�̄χ̃ (q, 0) − D̃(q)]δab

ω2 + {−D̃(q)[4kBT − J̃ (q)] + �̄}2 . (A8)

In the notation of Eq. (27b), the paramagnon modes are la-
beled by m = q ∈ 1st Brillouin zone, each with frequency
eigenvalue

γm = γq = −D̃(q)[4kBT − J̃ (q)] + �̄, (A9)

and right and left eigenvectors vm = eq, v−1
m = e†

q/Ns, respec-
tively, where e†

q = (e−iq·R0 , . . . , e−iq·RN−1 ).

Note that we assumed the presence of Ns R′
is forming a

translation-invariant lattice, so there are Ns q′s in the first
Brillouin zone. As a consequence Eq. (A8) does not have σ

appearing explicitly in the numerator.
Similar to what was done in Sec. VI, we can define a mode

density to interpret Eq. (A8),

S̃ab(q, ω) = 2π h̄ω

1 − e− h̄ω
kBT

∫
dγ

γ /π

ω2 + γ 2
ρab(γ , q). (A10)

The ρab(γ , q) is called paramagnon wavevector density (in
contrast to the paramagnon flux density defined by Eq. (35)).
It is given by

ρab(γ , q) = 1

γ
[�̄χ̃ (q, 0) − D̃(q)]δ(γ − γq)δab. (A11)

For the n.n. Heisenberg model in the 2d square lattice, we
get

D̃(q) = −d0(T )

h̄

[
sin2

(
qxa0

2

)
+ sin2

(
qya0

2

)]
, (A12a)

J̃ (q) = 2σJ[cos (qxa0) + cos (qya0)]. (A12b)

We remark that D̃(q) does not depend on σ because from
Eq. (18) J̄c = 4σ |J|, so that σ cancels out in the definition of
D̃(q). These results lead to the effective diffusion constant in
the HA,

Dhom(q) ≡ − D̃(q)[4kBT − J̃ (q)]

q2
(A13)

= d0(T )a2
0

h̄

[
kBT − σJ

(
1 − q2a2

0

4

)]
+ O(q4).

Finally, in the HA approximation the flux noise with edge
flux vector Eq. (38) is given by

S̃�(ω) = 4F 2
0

Nsy

Nsx

∑
q

sin2

(
qW

2

)
S̃zz(qx̂, ω), (A14)

where q = 2π
Nsxa0

(n − Nsx
2 ) with n = 0, 1, . . . , Nsx − 1, where

Ns = NsxNsy is the number of occupied sites.
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