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Photogalvanic transport in fluctuating Ising superconductors
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In a two-dimensional noncentrosymmetric Ising superconductor in a fluctuating regime under the action of
a uniform external electromagnetic field, there emerge two contributions to the photogalvanic effect due to the
trigonal warping of the valleys. The first contribution stems from the current of the electron gas in its normal state,
while the second contribution is of an Aslamazov-Larkin nature: It originates from the presence of fluctuating
Cooper pairs when the ambient temperature approaches (from above) the temperature of the superconducting
transition in the sample. The way to lift the valley degeneracy is the application of a weak out-of-plane external
magnetic field producing a Zeeman effect. The Boltzmann equations’ approach for the electron gas in the normal
state and the time-dependent Ginzburg-Landau equations for the fluctuating Cooper pairs allow for the study of
the photogalvanic current in two-dimensional transition-metal dichalcogenide Ising superconductors.
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I. INTRODUCTION

In two-dimensional (2D) materials, photoinduced trans-
port phenomena, which are second order with respect to
an external electromagnetic (EM) field, are in the focus of
state-of-the-art research [1]. The majority of these effects fall
into two categories. The first one includes the rectification
effects that occur under an external uniform alternating EM
illumination, which produces stationary uniform electric cur-
rents in the system. The second category encompasses all
the effects characterized by the system response at a doubled
field frequency, thus describing second-harmonic generation
phenomena.

Second-order transport phenomena are usually sensitive to
the polarization of the EM field and the symmetry of the sys-
tem under study, namely, time-reversal symmetry and spatial
inversion symmetry. The phenomenological relation between
the photoinduced rectified electric current and the amplitude
of the external EM field reads jα = ζαβγ EβE∗

γ , where ζαβγ is
the third-order tensor acquiring nonzero components in non-
centrosymmetric materials. In nongyrotropic semiconductor
materials, the (rectified) photoinduced electric current occurs
as a second-order response to the linearly polarized external
EM wave. This constitutes the photogalvanic effect (PGE).
This effect does not directly relate to either light pressure,
photon-drag phenomena, or nonuniformity of either the sam-
ple or light field intensity, such as the photoinduced Dember
effect. Instead, the microscopic origin of the conventional
PGE lies in the asymmetry of the interaction potential or the
crystal-induced Bloch wave function [2–4].

In modern van der Waals structures based on 2D mono-
layers of transition-metal dichalcogenides (TMDs) [5,6], the
PGE current may arise due to the specific band structure

of the material possessing two time-reversal-coupled valleys
in the Brillouin zone. A typical example of these materials
is molybdenum disulfide, MoS2. It possesses the D3h point
group, and the presence of the C3 axis results in the emergence
of a trigonal warping of the electron dispersion in each valley,
reflecting the noncentrosymmetry of the crystal structure. The
theoretical analysis shows that the PGE current arises here
in each valley (involving electrons residing in both valleys),
and these currents have different signs in different valleys.
As a result, net PGE current self-compensates and vanishes.
A nonzero net current may only occur if the time-reversal
symmetry is broken due to, e.g., the presence of an external
magnetic field or illumination of the sample by a circularly
polarized EM field causing interband transitions [7–9].

Furthermore, a recent discovery of the superconducting
(SC) transition in TMDs [10–12] stimulated additional inter-
est to the study of transport phenomena in 2D Dirac materials
exposed to external EM fields at lower temperatures [13–15].
In the intermediate range of temperatures lying in between the
normal and SC state of the electron gas, when 0 < T − Tc �
Tc (where Tc is a SC critical temperature), the order parame-
ter starts to experience fluctuations [16–18]. Moreover, large
spin-orbit coupling in TMDs results in strong out-of-plane
electron spin polarization and large in-plane critical magnetic
fields beyond the Pauli limit. Thus, all the ingredients of an
Ising superconductor possessing unique physical properties
are available. When the time-reversal symmetry breaks by a
weak magnetic field due to the Zeeman effect, and given the
absence of spatial reversal symmetry, TMDs might demon-
strate a pronounced nonreciprocal response in the regime of
SC fluctuations [11,12,19–22].

The goal of this work is to develop a microscopic theory
of a linear PGE effect in fluctuating Ising superconductors
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exposed to a linearly polarized EM field. The time-reversal
symmetry here is waived due to the presence of a weak
Zeeman field pointed across the monolayer [23,24]. Trigo-
nal warping of the valleys K and K ′ characteristic of MoS2

serves as a microscopic mechanism of the effect. Within the
D3h point symmetry group, the third-order conductivity (or
transport coefficient) tensor possesses only one nonzero com-
ponent. Thus, phenomenologically, the PGE current can be
expressed as jx = ζ (|Ex|2 − |Ey|2), jy = −ζ (ExE∗

y + E∗
x Ey).

Therefore, the main task comes down to the calculation of
the coefficient ζ and analyzing its behavior for various EM
field frequencies and temperatures in the vicinity of Tc, taking
into account the contribution of normal electrons and the
corrections arising from the SC order parameter fluctuations.

II. EFFECTIVE ELECTRON DISPERSION IN
CONDUCTION BAND

The superconducting transition in the MoS2 monolayer
occurs at electron densities exceeding 1014 cm−2 [10]. At
such high densities, the Fermi level lies deeply in the con-
duction band. Thus, it is feasible to use a simplified electron
energy dispersion. Then, according to the two-band model, the
Hamiltonian reads (in h̄ = kB = 1 units)

H = �

2
σz + v(ηpxσx + pyσy) +

(
0 μp2

+
μp2

− 0

)

+ sη
λc

2
(σz + 1) − sη

λv

2
(σz − 1) + s�Z , (1)

where � is the material band gap, σi are the Pauli matrices,
v is the band parameter with the dimensionality of velocity,
η = ±1 is the valley index, p is the electron momentum,
p± = ηpx ± ipy, μ is the band parameter describing the trig-
onal warping and nonparabolicity of electron dispersion, s
is the z component of electron spin, λc,v describe spin-orbit
splitting of the conduction and valence bands, and �Z ∝ B is
the Zeeman energy due to the external magnetic field applied
across the monolayer plane.

The eigenvalues of the Hamiltonian (1) read

Esη(p) = s�Z + sη
λc + λv

2

±
√[

� − sη(λv − λc)

2

]2

+ |hp|2,

|hp|2
�

= εp + ηw(p3
x − 3px p2

y ), (2)

where εp = p2/2m is the electron kinetic energy in the con-
duction band, m = �/(2v2) is the electron effective mass, and
w = 2vμ/� is a warping amplitude. It should be mentioned,
that in Eq. (2) we omitted the terms ∝ p4. Expression (2) can
be further expanded using the inequality |hp|2/�2 � 1,

Esη(p) ≈ s(�Z + ηλc) + εp + ηw(p3
x − 3px p2

y ), (3)

counting the conduction band energy from the value �/2.

III. NORMAL-STATE ELECTRON GAS
CONTRIBUTION TO PGE

Let us first study the PGE current of normal-state elec-
trons exposed to a uniform external EM field E(t ) = Ee−iωt +
E∗eiωt with normal incidence to the monolayer, thus E =
(Ex, Ey, 0). In the case ω � εF , where εF is the Fermi en-
ergy, the Boltzmann equation [25,26] represents a suitable
tool to analyze the PGE transport [1,7]. In the framework
of the (single) relaxation time approximation, the Boltzmann
equation reads

∂ f

∂t
+ eE(t ) · ∂ f

∂p
= − f − f0

τ
, (4)

where f is the electron distribution function, f0 is the Fermi
distribution, e is the elementary charge, and τ is the scatter-
ing time (on the pointlike impurities). In the expansion f =
f0 + f1(t ) + f2 + f2(t ) + · · · with respect to the amplitude of
the external electric field, the first-order correction depends
on time, f1(t ) = f1e−iωt + f ∗

1 eiωt , whereas the second-order
correction consists of the stationary, f2, and alternating, f2(t ),
part. Summing up all the first-order terms yields

f1 = −eτωE · ∂ f0

∂p
= eτωv · E(− f ′

0), (5)

where τω = τ/(1 − iωτ ), f ′
0 = ∂ f0/∂Esη, and the electron ve-

locity reads v = ∂pEsη(p).
The stationary part of the second-order correction reads

f2 = −eτ

(
E · ∂ f ∗

1

∂p
+ E∗ · ∂ f1

∂p

)
, (6)

which determines the PGE current,

jα = e
∫

dp
(2π )2

vα f2, α = x, y. (7)

Combining Eqs. (5) and (6), and integrating by parts in
Eq. (7), yields the expression for the PGE current density in
the form

jα = e3τ (τ ∗
ωEβE∗

γ + τωE∗
β Eγ )

×
∑
s,η

∫
dp

(2π )2

∂2vα

∂ pβ∂ pγ

f0[Esη(p)],

∂2vα

∂ pβ∂ pγ

≡ ∂3Esη(p)

∂ pβ∂ pγ ∂ pα

, (8)

where f0[Esη(p)] = θ [εF − Esη(p)] for a degenerate electron
gas with θ [x] the Heaviside step function. Considering that
∂2vα/∂ pβ∂ pγ = ±6ηw (here, “+” stands for the xxx compo-
nent, while “−” stands for the xyy, yxy, yyx components, the
others are zero), from Eq. (8) it follows that the PGE current is
proportional to the differences between electron densities n±
in both valleys, jα ∝ ∑

s,η η nη. Therefore, the normal-state
electron gas does not contribute to the nonreciprocal current in
the framework of this model, as it is also claimed in Ref. [23].
The reason for such behavior is that the Zeeman field only
redistributes the electrons between spin-resolved subbands in
each valley, keeping the total electron density in the valley
unchanged.
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In order to have a finite PGE response, it is necessary to
modify the original model, Eqs. (3) and (4), by introducing
energy-dependent relaxation time τε. In a particular case of
electron scattering on Coulomb impurities in a 2D system,
the relaxation time is proportional to the electron energy,
τε = τ0εp, where τ0 is a coefficient. Henceforth, in Eqs. (4)–
(7), τ should be replaced by τε = τ0εp = τ0[εp + ηw(p3

x −
3px p2

y )]. Then, the PGE current density in the static limit
ωτε = τ0ωεF � 1 (which additionally provides the relation
between ω and the doping) reads

jα = 2e3EβE∗
γ

∑
s,η

∫
dp

(2π )2
vατε

∂

∂ pβ

{
τε

∂

∂ pγ

f0

}
. (9)

To derive (9), we also assumed the absence of intervalley
scattering [27] and neglected the spin-flip processes transfer-
ring the electrons between spin-resolved subbands in a given
valley.

Expanding Eq. (9) in the lowest order in w and restoring
dimensionality yields (see the Supplemental Material [28])

j = 108
e3τ 2

0 �Zλcwne

h̄3 F(E), (10)

where F(E) = (|Ex|2 − |Ey|2,−ExE∗
y − EyE∗

x ), and ne =
n+ + n− is a total electron density in both valleys. The PGE
current of the normal-state electron gas, Eq. (10), represents
the first important result of this paper: The nonreciprocal
PGE response is finite in the case of electron scattering off
Coulomb impurities in 2D samples.

Taking the electron density ne ∼ 1014 cm−2, the external
magnetic field B = 1 T, the amplitude of the EM field E0 =
1 V/cm, τ0 = 10 ps/eV (which is the highest possible value
found from the relation τ0ωεF � 1 for ne = 1014 cm−2 and
ω = 0.1 ps−1), and typical parameters for MoS2 [23,29], λc =
3 meV and w = −3.4 eV Å3, we find that a typical magnitude
of the PGE current due to the normal 2D electron gas contri-
bution amounts to j ∼ 10 nA/cm.

IV. SUPERCONDUCTING FLUCTUATIONS’
CONTRIBUTION TO PGE

The electric current density operator due to the presence of
SC fluctuations reads

j = e∗

2
{�∗v(p̂)� + �v(−p̂)�∗}, (11)

where e∗ = 2e is a charge of a Cooper pair, v(p̂) is a Cooper
pair velocity operator, p̂ = −i∇ is a momentum operator,
and the superconducting order parameter �(r, t ) satisfies the
time-dependent Ginzburg-Landau (TDGL) equation with ac-
counting of the trigonal warping contribution to the kinetic
energy of a Cooper pair,[

γ
∂

∂t
+ ε(p̂) + 2ieγ ϕ(r, t )

]
�(r, t ) = f (r, t ). (12)

In Eq. (12), γ = πα/8, α is the parameter of GL the-
ory, which is inversely proportional to the effective mass
m and square of the coherence length ξ , 4mαTcξ

2 =
1, thus ε(p) = p2/4m + αTcε + �(p3

x − 3px p2
y ) ≡ αTc(ε +

p2ξ 2) + �(p3
x − 3px p2

y ) is the Cooper pair kinetic energy, and

ε = (T − Tc)/Tc is the reduced temperature. The coherence
length in 2D reads

ξ 2 = v2
F τ 2

2

[
ψ

(
1

2

)
− ψ

(
1

2
+ 1

4πT τ

)
+ ψ ′( 1

2

)
4πT τ

]
, (13)

where ψ (x) is the digamma function, and vF = √
4πne/m

is the Fermi velocity. Furthermore, in Eq. (12), ϕ(r, t ) =
ϕeikr−iωt + ϕ∗e−ikr+iωt is the scalar potential, which obeys
standard correspondence with the external uniform EM field,
E = −∇ϕ.

The Cooper pair trigonal warping amplitude �, entering
Eq. (12) through the term ε(p̂), in a clean superconductor
(τTc 
 1) and for the s-wave singlet pairing can be expressed
through the Zeeman field and the normal electron warping
amplitude w [23],

� = 93ζ (5)�Zλcw

28ζ (3)(πTc)2
. (14)

To estimate it, let us substitute typical parameters for MoS2

(given in the last paragraph of the previous section) and the
SC critical temperature Tc = 10 K: |�| ≈ 0.46 eV Å3 for B =
1 T.

The right-hand side of Eq. (12) is the Langevin force,
describing SC fluctuations in the equilibrium. It satisfies the
white-noise law,

〈 f ∗(r) f (r′, t ′)〉 = 2γ T δ(r − r′)δ(t − t ′), (15)

which allows us to find an expression for the SC order param-
eter in equilibrium, 〈|�0p|2〉 = [α(ε + ξ 2p2)]−1 (here, �0p is
the Fourier transform of the order parameter).

As concerns the applicability of the TDGL equation in
the form (12), it is only valid in the low-frequency domain
(ωτ � 1) given an arbitrary ratio between ω and Tc. In the
range of moderate and high frequencies (ωτ � 1), various
nonlocality corrections emerge [30]. Treating them requires
the usage of quantum-field theory approaches beyond the
TDGL equation. Therefore, this theory is applicable to
either clean superconductors, ω < τ−1 < Tc, or “dirty” super-
conductors obeying the relation (ω, Tc)τ < 1. Moreover, in
addition to the Aslamazov-Larkin correction there exist other
fluctuating contributions, such as the Maki-Tompson [31,32]
and the “density of states” [33] ones, which are beyond the
scope of the present paper. Treating them also requires the
using of quantum-field theory approaches beyond the TDGL
equation [17].

Let us start with a clean superconductor case. Expand-
ing the order parameter with respect to the scalar potential,
�(r, t ) = �0(r, t ) + �1(r, t ) + �2(r, t ) + · · · , and then sub-
stituting this expansion in Eq. (11) keeping only the second-
order terms, gives two contributions to the electric current
density,

jI
α = e{�∗

1 vα (p̂)�1 + �1vα (−p̂)�∗
1 }, (16)

jII
α = e{�∗

0 vα (p̂)�2 + �∗
2 vα (p̂)�0}

+ e{�∗
0 vα (−p̂)�2 + �∗

2 vα (−p̂)�0}, (17)
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where

�0(x) =
∫

dx′g(x − x′) f (x′), (18)

�1(2)(x) = −2ieγ
∫

dx′g(x − x′)ϕ(x′)�0(1)(x
′), (19)

with x = (r, t ) the short-hand notation, and

g(r, t ) =
∑
ε,p

eipr−iεt gp(ε) ≡
∑
ε,p

eipr−iεt

−iγ ε + ε(p)
(20)

the fluctuation propagator in standard form.
Combining Eqs. (16)–(20) and performing the averaging

over the fluctuating Langevin forces gives a general expres-
sion for the PGE current:

jα = 2(2eγ )3T
∑
ε,q

|gq(ε)|2{|gk+q(ε + ω)|2vα (q + k)

− vα (q)[gq(ε)gq+k(ε + ω) + g∗
q(ε)g∗

q+k(ε + ω)]}|ϕ|2
+ (k → −k, ω → −ω). (21)

Let us mention that in Eq. (21), only the static contribution
to the product of two scalar potentials is accounted for, thus
disregarding the 2ω harmonics.

After the integration over energy, Eq. (21) acquires a more
compact form,

jα = (2e)3γ 2T
∑

q

{
vα (q + k)

ε(q)ε(q + k)
− vα (q)

ε2(q)

}

× ε(q) + ε(q + k)

γ 2ω2 + [ε(q) + ε(q + k)]2 |ϕ|2

+ (k → −k, ω → −ω). (22)

Evidently, this current vanishes at k → 0. It motivates the
need to expand the PGE current up to the second order over
k using the correspondence between the electrostatic potential
and components of the electric field, (−ikβ )(ikγ )|ϕ|2 = EβE∗

γ .
The first-order corrections vanish since the terms with oppo-
site signs (directions) of k cancel each other out.

Furthermore, expanding ε(p) in Eq. (22) up to the first
order in warping � and integrating over the momentum q,
gives the paraconductivity contribution to the PGE as j = ζSF,
where after restoring dimensionality,

ζS = 3e3�mπ

16h̄3kBTcε2

1

ω̃2

[
1 + log (1 + ω̃2)

ω̃2
+ π

2

(
1

ω̃3
− 1

ω̃

)

− 1

ω̃

(
1 + 1

ω̃2

)
arctan ω̃ + 1

ω̃

(
1 − 1

ω̃2

)
arctan

1

ω̃

]
,

ω̃ = π h̄ω

16kB(T − Tc)
, (23)

which represents the second important result of this paper.
The third-order ac paraconductivity tensor ζS experiences

its maximum at the static limit, ζS (ω̃ � 1) ≈ ζ0(1 − 2ω̃2/5),
whereas it decays with an increase of the frequency of the EM
field as ζS (ω̃ 
 1) ≈ 6ζ0/ω̃

2, where ζ0 = 2e3�mπ/64h̄3Tcε
2

is the paraconductivity tensor for the dc nonreciprocal current
[23,24] (interestingly, using the Boltzmann kinetic equa-
tion gives the same result—see the Supplemental Material
[28]).

FIG. 1. Photogalvanic current of fluctuating Cooper pairs
[Eq. (23) where � is replaced with �τ ] as a function of tempera-
ture for ω = 0.1 ps−1 and various relaxation times: τ = 5 ps (red),
τ = 0.3 ps (green), and τ = 0.1 ps (blue). All parameters are for
MoS2: superconducting critical temperature Tc = 10 K, the warping
amplitude w = 3.4 eV Å3, λc = 3 meV, B = 1 T, and the amplitude
of the electromagnetic field is E0 = 1 V/cm.

Evidently, the dc component of ζS decays as (T − Tc)−2

that is much faster than the conventional Aslamazov-Larkin
correction in 2D, σ AL ∝ (T − Tc)−1 [16]. Moreover, the para-
conductivity starts to decrease rapidly with an increase of
frequency even for ω � (T − Tc) while the power of this
decrease coincides with the power of ε dependence of the
dc conductivity component. Note, Eq. (23) is only valid for
a linearly polarized EM field, while the PGE vanishes in the
case of a circularly polarized light.

The next task is to generalize Eq. (23) for the case of
an arbitrary impurity concentration by accounting for the re-
laxation time in the derivation of the Ginzburg-Landau free
energy using the Green’s function technique (see the Supple-
mental Material [28]). Indeed, the influence of SC fluctuations
might be more prominent in dirty samples in accordance with
the Ginzburg-Levanyuk criterion [34]. The calculations in the
case of an arbitrary τTc show that instead of the trigonal warp-
ing amplitude for the Cooper pairs �, which enters Eq. (23)
in the clean limit, there comes into play an effective warping
coefficient, �τ = � · fτ (2πTcτ ), where

fτ (x) = 7ζ (3)

31ζ (5)

πne

m2

x3

(πTcξ )2

{
−2π2 + 4ψ ′

(
1

2
+ 1

2x

)

+ 1

x

[
14ζ (3) − ψ ′′

(
1

2
+ 1

2x

)]}
, (24)

which represents a monotonous function of τ , and
fτ (2πTcτ 
 1) → 1 in the limit of a clean superconductor,
whereas it vanishes linearly in the dirty case, fτ (2πTcτ �
1) → 0. Interestingly enough, the trigonal warping term in
the Ginzburg-Landau free energy and, as a consequence, in
the photogalvanic current depends on the coherence length ξ

and the relaxation time τ . Thus, the Cooper pairs in the fluc-
tuating regime turn out sensitive to the presence of impurities
in the sample, which is in contrast with the conclusions of
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FIG. 2. Photogalvanic current of fluctuating Cooper pairs
[Eq. (23) where � is replaced with �τ ] as a function of electromag-
netic field frequency for T = 10.2 K and various relaxation times:
τ = 5 ps (red), τ = 0.3 ps (green), and τ = 0.1 ps (blue). All other
parameters are the same as in Fig. 1.

the Aslamazov-Larkin theory being applied to the first-order
response current.

Figures 1 and 2 show the temperature and frequency depen-
dencies of the PGE current. Red curves correspond to the case
of a clean superconductor, τTc 
 1. In terms of the EM field
intensity, I = cε0|E|2/2 with c the speed of light and ε0 the
vacuum permittivity, the estimation gives j/I ≈ 400 nA m/W
for T = 10.1 K and B = 1 T. Green and blue curves cor-
respond to the case of dirty superconductors, τTc � 1, and
demonstrate the effect of the pointlike impurities on the tem-
perature and frequency dependencies of the PGE contribution
due to SC fluctuations.

The above-developed theoretical description of fluctuating
PGE transport shows the key role of the external mag-
netic field and corresponding Zeeman contribution to the GL
functional. In the absence of a magnetic field, the warping
parameter � = 0, and the Cooper pair dispersion becomes
ε(p) = αTc(ε + p2ξ 2), that corresponds to an isotropic su-

perconductor. In this case, the specific type of PGE effect,
called coherent PGE [35,36], may exist: The rectified current
appears as the third-order response to the EM field having
the ground ω and double-frequency 2ω harmonics. The cor-
responding theory of coherent PGE in isotropic fluctuating
superconductors was developed in our recent paper [37].

V. CONCLUSIONS

We conclude that in a two-dimensional noncentrosym-
metric fluctuating Ising superconductor possessing trigonal
warping of the valleys and exposed to a uniform external
electromagnetic field, there emerge two contributions to the
photogalvanic effect. The first contribution originates from
the normal-state electron gas in the presence of Coulomb
impurities in the sample. The second contribution stems from
the presence of superconducting fluctuations. In order to lift
the valley degeneracy and thus have a nonzero photogalvanic
electric current in the system, it is sufficient to use a weak out-
of-plane external magnetic field producing a Zeeman effect
and breaking the time-reversal symmetry.

The photogalvanic effect thus possesses an Aslamazov-
Larkin nature since it originates from the presence of
fluctuating Cooper pairs when the ambient temperature ap-
proaches the temperature of the superconducting transition in
the sample. The electric current, as a second-order response of
the system, possesses, first, a more pronounced temperature
divergence (T − Tc)−2, as compared with the Aslamazov-
Larkin correction to the Drude conductivity, and, second, the
current density has no smallness related to the electron-hole
asymmetry of the quasiparticle spectrum, as it takes place in
other second-order response effects [38–40].
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