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Surface waves and bulk Ruderman mode of a bosonic superfluid vortex
crystal in the lowest Landau level
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We determine and analyze collective normal modes of a finite disk-shaped two-dimensional vortex crystal
formed in a compressible bosonic superfluid in an artificial magnetic field. Using the microscopic Gross-
Pitaevskii theory in the lowest Landau level approximation, we generate vortex crystal ground states and solve the
Bogoliubov–de Gennes equations for small amplitude collective oscillations. We find chiral surface waves that
propagate at frequencies larger than those of the bulk Tkachenko modes. Furthermore, we study low frequency
bulk excitations and identify a Ruderman mode, which we find is well described by a previously developed
low-energy effective field theory.
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I. INTRODUCTION

Quantum vortex crystals, first predicted by Abrikosov for
type II superconductors in an external magnetic field [1],
emerge also in neutral superfluids realized in helium and
cold atom experiments [2–6]. In these cases the background
magnetic field can be mimicked by external rotation or with
other types of artificial gauge fields [7]. As a result of such a
background field, time-reversal symmetry is explicitly broken,
which manifests itself in chiral elliptically polarized collective
oscillations, known as Tkachenko waves [8].

In recent investigations [9,10] we explored an effec-
tive field theory (EFT) of two-dimensional elastic media
with Lorentz-type forces that break time-reversal symmetry.
Within this approach, which provides a suitable description of
skyrmion crystals in thin-film chiral magnets and gyroscopic
metamaterials, we established the existence of Rayleigh sur-
face waves with an unusual property: The chirality of the
Rayleigh waves is fixed not only by the sign of the effec-
tive magnetic field, but is also determined by the elasticity
properties of the crystal. In the simplest case of a crystal with
triangular symmetry, one finds three different regions which
differ by the chirality of the Rayleigh waves when the Poisson
ratio is varied.

As mentioned above, time-reversal symmetry is explicitly
broken in a superfluid vortex crystal. Hence, it is very natural
to ask if this quantum state of matter, where elasticity and
superfluid low-energy degrees of freedom interact with each
other, also supports chiral elastic Rayleigh waves. This ques-
tion can be addressed within the framework of a low-energy
EFT for vortex lattices, developed in [11–14], see also [15–17]
for related preceding works on vortex crystal hydrodynamics.
We find in Appendix A that within the leading order EFT
of two-dimensional superfluid vortex crystals, low-frequency
Rayleigh waves are absent. For this reason, we go beyond the

low-energy realm in this paper and address the question of
chiral edge excitations by analyzing the collective oscillations
of superfluid vortex crystals within the microscopic Gross-
Pitaevskii framework in the geometry illustrated in Fig. 1.

In the two-dimensional setting, studies of rotating super-
fluids with a finite number of vortices have been undertaken
in the past, starting with [18,19], for a recent review see [5].
These studies analyze rotating superfluids in the incompress-
ible regime, where vortices interact with each other through a
logarithmic two-body interaction. In this regime, edge waves
of different types were identified and recently investigated in
[20–23]. Beyond the incompressible limit, the edge collective
modes of arrays of vortices in superfluids have been analyzed
previously in [24].

In the present study we investigate bulk and edge collective
modes of a bosonic superfluid confined in a circular geometry
and stabilized by short-range repulsive interactions between

B

FIG. 1. We consider a droplet of bosons that experience a syn-
thetic magnetic field B and can occupy only the lowest Nv + 1
angular momentum LLL orbitals. The mean-field LLL wave function
is specified by the position of the Nv vortices (blue). The bosons
interact via a short-range repulsive contact interaction, resulting in
a vortex crystal ground state.
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FIG. 2. Density plots of the ground state wave functions of the LLL Gross-Pitaevskii equation for Nv = 40, 100, 200, and 300 vortices.
The plots show the normalized boson density |ψ (x, y)|2/ max

x,y
|ψ (x, y)|2. Length is measured in units of the magnetic length lB = 1/

√
B.

bosons. To incorporate the effects of an artificial magnetic
field, we work in the lowest Landau level (LLL) regime by
expanding the condensate wave function in terms of only the
LLL basis functions. Previously, this approach was employed
for example in [25–28] to determine vortex crystal ground
states of rotating cold atom superfluids under harmonic con-
finement and also in a study of LLL thermodynamics [29].
The interest in the LLL superfluid physics was rekindled by
recent experimental works: In [30] the LLL limit is reached
through a striking use of a synthetic dimension in the form
of atomic spin. Another remarkable work [31] showed that by
a procedure named “geometrical squeezing” by the authors,
a gas of sodium atoms can be brought into a superfluid LLL
state. Spontaneous crystallization of the resulting LLL con-
densate has been observed in [32].

The advantage of studying the finite vortex crystal in the
LLL limit lies in the simplicity of the simulation: In the LLL
regime, the Gross-Pitaevskii equation reduces from a partial
differential equation in two dimensions, Eqs. (1) and (2), to
a coupled nonlinear system of Nv + 1 ordinary differential
equations (ODE) (9) [33], where Nv is the number of quantum
vortices in the superfluid droplet [34].

In this paper we linearize the LLL Gross-Pitaevskii equa-
tions around the vortex crystal ground state and work out
the small-amplitude oscillation spectrum illustrated in Fig. 3.
We find that it is comprised of low-energy bulk excitations
and high-energy chiral surface modes. First, at low ener-
gies we obtain an analytical understanding of the nature of
collective modes by employing the vortex lattice EFT de-
veloped in [11–14]. In the disk geometry, one of the lowest
finite-frequency eigenmodes turns out to be identical to the
Ruderman mode, see Fig. 4, discovered in [35] in an attempt
to explain slow oscillations in the periods of pulsars after
glitches. Next, we find that the high-frequency modes are
localized near the boundary and propagate strictly in one di-
rection around the vortex crystal with the chirality controlled
by the sign of the magnetic field, see Fig. 6. We work out the
dispersion relation of these modes in Fig. 7.

II. GROSS-PITAEVSKII EQUATION AND COLLECTIVE
OSCILLATIONS OF THE VORTEX LATTICE

IN THE LLL REGIME

The system that we study is a droplet of identical bosons
residing in two dimensions and experiencing a constant mag-

netic field B that acts perpendicularly to the plane, see Fig. 1.
Such a magnetic field can also be effectively mimicked by
rotating the bosons inside a harmonic trap [36]. Alternatively,
in recent years advances in the field of ultracold atoms have
made it possible to realize artificial magnetic fields through
the use of synthetic dimensions [30,31].

In the following we consider bosons that interact with each
other by means of a contact repulsive potential. Our starting
point is the Gross-Pitaevskii equation governing the bosonic
condensate, which provides a good description of the Bose gas
at vanishing temperature [37,38],

iψ̇ = δE [ψ, ψ̄]

δψ̄
, (1)

with the energy functional given by

E [ψ, ψ̄] =
∫

d2x

[
1

2m
ψ̄ (−i∇ − A)2ψ + g

2
(ψ̄ψ )2

]
, (2)

where A is the vector potential corresponding to the constant
magnetic field B. We choose to work in the symmetric gauge,
for which A = B/2(−y, x). In this paper we set h̄ = 1 and
absorb the artificial electric charge of the bosons into the
magnetic field. We fix the total number of bosons in the system
to a value N by requiring

N =
∫

d2xψ̄ψ. (3)

The kinetic part of the Gross-Pitaevskii equation has the
Landau level eigenstates as solutions. The spacing between
these levels is fixed by the cyclotron frequency ωc = B/m.
We now take m → 0, implying that the cyclotron frequency
tends to infinity. This is the LLL limit, since higher Landau
levels are infinitely costly and are therefore inaccessible. In
the symmetric gauge the LLL eigenstates have the form

ψLLL
n (z) = Nnzne−|z|2/4l2

B , (4)

with z = x + iy, the magnetic length lB = 1/
√

B and the nor-
malization constant Nn = 1/

√
2n+1πn!ln+1

B .
Given that the bosons reside entirely in the LLL, we can

simplify the Gross-Pitaevskii equation (1) by expanding ψ (z)
in terms of the LLL orbitals ψLLL

n (z). To this end we insert the
ansatz

ψ (z, t ) =
Nv∑

n=0

cn(t )ψLLL
n (z) (5)
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FIG. 3. Frequency spectrum of a crystal with Nv = 40, 200, and 300 vortices obtained by diagonalizing the block matrix in Eq. (18). The
frequencies are labeled, starting with index 0, from smallest to largest frequency. The appearance of the spectrum has two qualitatively distinct
parts. By visualizing the eigenfunctions we find that these two groups are the bulk and surface modes, respectively.

into (3) and (2) and carry out the spatial integration. Notice
that above we restricted the sum to the Nv + 1 lowest angular
momentum LLL orbitals, which fixes the radius of the droplet
roughly to R = √

2NvlB. Physically, this can be achieved by
confining the bosons inside a disk of radius R by means of
an external, radially symmetric potential. If such a potential
is carefully chosen, it will strongly suppress occupation of all
LLL orbitals with n > Nv . In Appendix C we investigate suit-
able potentials. In particular, in Appendix C 1 we show that
a radial step-function potential approximately realizes such a
suppression. In Appendix C 2 we derive an exact real-space
potential that penalizes the occupation of all orbitals with
n > Nv and leaves all orbitals n � Nv untouched.

For the particle number we obtain

N =
Nv∑

n=0

c̄ncn, (6)

while the expression for the energy functional becomes

E [{cn, c̄n}] = g′
2Nv∑
s=0

∣∣∣∣∣∑
m

ps
mcmcs−m

∣∣∣∣∣
2

, (7)

ps
m ≡

√
2−s

(
s

m

)
. (8)

Here we introduced the shorthand g′ = g/4π l2
B. The index m

in the inner sum is to be extended over 0 � m � Nv with
0 � s − m � Nv . Above we have dropped the constant term
ωcN/2 stemming from the kinetic energy operator in (2). This
amounts to measuring the energy from zero at the LLL.

Finally, the Gross-Pitaevskii equations for the LLL ampli-
tudes cn are obtained by taking the functional derivative of the
energy (7) with respect to c̄n(t ),

iċn = δE [{cn, c̄n}]
δc̄n

= 2g′
2Nv∑
s=0

(∑
m

ps
mcmcs−m

)
ps

nc̄s−n. (9)

This coupled set of Nv + 1 nonlinear ODEs is fully equivalent
to Eqs. (1) and (2) in the LLL limit. Since Eq. (1) leads to a
PDE in two dimensions, we gain considerable computational
simplification by working with Eq. (9) instead. It is straight-
forward to check using Eqs. (6) and (9) that particle number
is preserved under time evolution.

A. Vortex lattice ground state

As a first step towards studying the collective oscillations
of the quantum system, we find its ground state by minimizing
the total energy (7) subject to the constraint (6). Formally
this corresponds to finding the minimum of E [{cn, c̄n}] −
μ

∑Nv

n=0 c̄ncn, with the Lagrange multiplier μ being the chem-
ical potential. Extremizing with respect to c̄n yields the set of
equations

δE [{cn, c̄n}]
δc̄n

= μcn, (10)

for n = 0, 1, . . . , Nv . By multiplying this equation by c̄n and
summing over n we obtain an explicit expression for the
chemical potential

μ = 2E [{cn, c̄n}]
N

, (11)

where we used Eq. (6) and the fact that E [{cn, c̄n}] is a homo-
geneous polynomial of degree two in the cn’s. The solution
to the system of Eq. (10) is most conveniently found by nu-
merically time evolving the system of ODEs (9) in imaginary
time t → iτ . The right-hand side of (9) being the energy
gradient in the space of the {cn}, this iterative optimization
procedure is a gradient descent algorithm. We start out with
a random seed of {cn}’s and repeat a cycle of thousands of
imaginary time-evolution steps followed by normalization of
the cn to satisfy the constraint (6). We stop the iteration when
the energy decrement �E per cycle is negligible, which we
define as �E/E < 10−12.

This algorithm yields the ground state solution {c(0)
n } that

minimizes the energy for a given coupling strength g′ and has
the boson number N . Then by virtue of Eqs. (9) and (10) the
time evolution of the ground state is given by

c(0)
n (t ) = c(0)

n e−iμt . (12)

Once the ground state solution {c(0)
n } is found, we can vi-

sualize it as follows: Since ψ (z, t ) = ∑Nv

n=0 c(0)
n (t )ψLLL

n (z) =
[
∑Nv

n=0 c(0)
n (t )Nnzn]e−|z|2/4l2

B , the expression in the bracket is a
polynomial in z of degree Nv . The Nv zeros of this polynomial
determine the locations of the superfluid’s vortices. Denoting
the roots of the polynomial by zi, we can write ψ (z, t ) as a

144501-3



JEEVANESAN, BENZONI, AND MOROZ PHYSICAL REVIEW B 106, 144501 (2022)

FIG. 4. Vortex displacement pattern of the low-energy torsional
Ruderman mode for Nv = 60. The blue dots show the undeformed
lattice. The arrows are the displacement vectors to the new vortex
positions (red).

product of linear factors

ψ (z, t ) = c(0)
Nv

(t )
Nv∏

n=1

[z − zi]e
−|z|2/4l2

B . (13)

Carrying out this factorization numerically, we can transform
from the ground state configuration {c(0)

n } to the ground state
configuration of the vortex locations {zi}. The sole time de-
pendence of the solution (12) is contained in the overall phase
factor. Since this factor does not affect the location of the
zeros of ψ (z, t ), we see that the vortices in the ground state
are static. In Fig. 2 we show the normalized bosonic density
|ψ (x, y)|2/ maxx,y |ψ (x, y)|2 obtained by our numerical pro-
cedure for Nv = 40, 100, 300, 400. Clearly the vortices are
arranged into a regular pattern. The vortex lattice in a finite
disk geometry investigated in this paper has some peculiarities
near its edge. For a sufficiently large droplet, deep inside the
bulk the vortex arrangement is a triangular crystal, while close
to the boundary the vortices form a nearly equidistant circular
pattern, which is not compatible with the triangular lattice. As
a consequence, the finite vortex lattice is frustrated. This fact
is particularly important for the study of surface excitations,
since the collective motion in this case takes place almost ex-
clusively on the boundary, where any description that employs
a triangular vortex lattice is inadequate.

We have solved Eq. (10) for a fixed value of N . We can
obtain the solution for any other particle number Ñ = αN ,
where α is a positive constant, by rescaling the solution (12).
It follows from Eqs. (6) and (10) that the set {√αc(0)

n } is the
ground state with Ñ particles at the same value of g′. It is
found from Eq. (11) that the chemical potential changes by the
factor α. Of course one should keep in mind that our analysis
is only valid in the limit of large filling fractions N/Nv , since
our starting point is the Gross-Pitaevskii equation, which can

only account for vortex crystals that reside in the mean-field
regime.

B. Collective small-amplitude oscillations

Having found the ground state, we can now study the
small-amplitude oscillations around this background by fol-
lowing the usual Bogoliubov–de Gennes (BdG) procedure
[38]. We assume now that the vortex crystal is perturbed
slightly such that

cn(t ) = [c(0)
n + δcn(t )]e−iμt , (14)

with small δcn(t ) and work out the equation governing its
dynamics. From here on we use a compact notation by form-
ing the (Nv + 1)-dimensional vector c = (c0, . . . , cNv

). The
equation for δc is found from (9) by linearization

i
d

dt
δc = M1δc + M2δc̄, (15)

with matrices M1 and M2 given by

M1
nl = 4g′

2Nv∑
s=0

ps
l ps

nc(0)
s−l c̄

(0)
s−n − μδnl ,

M2
nl = 2g′ pn+l

n

∑
m

pn+l
m c(0)

m c(0)
n+l−m. (16)

These (Nv + 1) × (Nv + 1) dimensional matrices only depend
on c(0)

n and are therefore entirely determined by the vortex
crystal ground state. The matrix M1 is Hermitian, while M2

is a Hankel matrix. As discussed at the end of the previous
section, the particle number increases by a factor α if we
multiply all the c0

n by
√

α. Thus the entries of the matrices M
are all proportional to the particle number. As a consequence,
all oscillation frequencies scale linearly with N . Therefore, in
the following we plot the frequency spectra after rescaling by
a factor Nv/N .

To find the modes of oscillation, we first note that the
equation of motion (15) connects δc to δc̄, thus a single
frequency ansatz with eiωt cannot solve Eq. (15). Instead,
we make an ansatz that also includes oscillations with the
negative frequency according to

δc = δueiωt + δv̄e−iωt , (17)

with some complex vectors δu and δv. Insertion into the
equation of motion (15) results in an (2Nv + 2) × (2Nv + 2)
eigenvalue problem that we write compactly in a block-matrix
form as (−M1 −M2

M̄2 M̄1

)(
δu
δv

)
= ω

(
δu
δv

)
. (18)

We note that the simplicity of the form of the Bogoliubov–
de Gennes equations (18) stems from making use of the LLL
approximation (5) for the condensate. The eigenvalue spec-
trum yields the oscillation frequencies ω, while δu and δv

describe the eigenmode. As usual, the doubling of the degrees
of freedom by the introduction of the vector (δu, δv)T results
in an apparent doubling of the collective modes. However, as
we prove in Appendix B, for every eigenmode (δu, δv)T with
frequency ω, the vector (δv̄, δū)T is an eigenmode of (18)
with frequency −ω. Since upon insertion in (17) it yields the
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FIG. 5. Comparison of the frequency of the lowest Ruderman
mode obtained from the numerical solution (blue dots) and the ana-
lytical prediction from EFT (red line). For the system sizes encircled
in green the torsional mode frequency agrees to within a factor of 3
with the estimate in Eq. (26).

same δc, from here on we disregard the negative frequency
modes of the spectrum. Below we find numerically that the
block matrix in (18) has only real eigenvalues.

Due to U (1) phase and spatial rotational symmetries,
spontaneously broken by the ground state, the linearized
Gross-Pitaevskii equation (15) has exact zero modes. First,
notice that one can construct an exact zero-frequency mode of
the full nonlinear LLL Gross-Pitaevskii equation that rescales
all the ground state coefficients {c(0)

n } by the same complex
phase. Such rescaling corresponds to a global U (1) symme-
try transformation of the condensate wave function and thus
leaves the vortex positions unmodified. The corresponding
linearized eigenvector of this mode is δcn = iαc(0)

n , where α is
a real constant, see Appendix B for the proof. Another exact
zero mode follows from the global rotation symmetry of our
geometry. Any global rotation of the ground state around the
center of the condensate yields another valid ground state. In
Appendix B we work out that an infinitesimal rotation by an-
gle θ gives rise to a zero mode of the linearized equation (15)
with δcn = iθnc(0)

n . In a recent publication [39] the presence of
these two exact zero modes has been rigorously demonstrated
under more general conditions (in particular, the LLL limit
is not required for their presence). Our results are consistent
with the findings of [39] and in Appendix B we provide an
explicit proof of the existence of the two zero modes in the
LLL formalism.

Curiously, for certain vortex numbers, we observe extra
modes with nearly zero frequency. First, we checked numer-
ically that for all ground states with Nv = 3, 4, . . . , 9, there
are only two zero modes, as expected. Starting with Nv = 10,
however, we found an additional soft mode. For some values
of vortices, such as Nv = 38, there are even two extra soft
modes. However, for the larger lattices Nv > 80 that we stud-
ied, we find that these extra soft modes occur less frequently.
We therefore suspect that the occasional appearance of addi-
tional soft modes is tied to the presence of frustration effects
that are quite pronounced for small lattice sizes. We defer

a detailed investigation of these unexpected low-frequency
modes to future work.

III. FROM THE BULK RUDERMAN MODE
TO SURFACE WAVES

By diagonalizing the BdG matrix in Eq. (18) we obtain the
frequency spectrum for different values of Nv . Examples are
shown in Fig. 3, where we have numbered the modes from
smallest (with index 0) to the largest frequency. By applying
the procedure outlined at the end of Sec. II A, we can visualize
the eigenmodes (14). We observe that the lower frequency
modes are bulk excitations, where all the vortices in the crystal
move to an appreciable degree. On the other hand, we find
that the high-frequency modes in Fig. 3 are in fact surface
waves, because the motion of the vortices takes place almost
exclusively in the outermost layer of the crystal.

We start our discussion with the investigation of the low-
frequency bulk waves. In Fig. 4 the vortex deformation pattern
of a low frequency mode with index 3 is illustrated for Nv =
60 vortices. This is a torsional mode, in which the vortices
are moving predominantly azimuthally, see [40] for a video
of this type of motion. A mathematical treatment of torsional
waves in vortex crystals of incompressible superfluids was
first developed by Ruderman [35] who attempted to explain
slow oscillations in the period of pulsars after glitches, see
reviews [5,41]. Here we adapt his line of reasoning to our
model in order to understand the mode shown in Fig. 4. Our
starting point is an EFT for two-dimensional superfluid vortex
crystals valid at small frequencies and long wavelengths that
some of us have worked out in [12–14], see Appendix A
for a brief summary. Within the lowest-order derivative ap-
proximation, the vortex crystal is treated as an incompressible
elastic medium, i.e., the displacement field ui can be written
as the skew derivative εi j∂ jϕ of the potential function ϕ. In
Appendix A we derive that within the leading order EFT ϕ

satisfies the following equation:

∂2
t ϕ − 2C2ε

′′

B2
0

∇4ϕ = 0. (19)

Here C2 denotes the shear modulus of the vortex lattice, B0

is the magnetic field, and ε′′ is the second derivative of the
equation of state with respect to the density of bosons, see
Appendix A for details. The equation of motion (19) entails
a quadratic dispersion relation ω ∼ k2 valid at low momenta.
We can readily solve this equation in the disk geometry using
polar coordinates by noting that Jn(kr)einθ is an eigenfunction
of the Laplacian with eigenvalue −k2. We make an ansatz

ϕ = ϕ0Jn(kr)einθ eiωt , (20)

which is indeed a solution of Eq. (19) with the dispersion
relation

ω2 = 2C2ε
′′

B2
0

k4. (21)

The corresponding displacement field is given by

un(k) =
(

ur

uθ

)
= ϕ0

(
in
r Jn(kr)

−kJ ′
n(kr)

)
einθ eiωt . (22)
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FIG. 6. Vortex displacement patterns (a)–(d) for the four largest frequency surface modes 40, 39, 38, 37 in a crystal with Nv = 40 vortices.
The blue points show the undistorted lattice, the yellow arrows are the displacement vectors pointing to the displaced vortices (red). The
number n of modulations in the displacement field of the outermost ring increases from 1 to 4. The oscillation pattern rotates here in the
clockwise direction demonstrating the chiral nature of the surface waves.

In general, the allowed values of the momentum k are fixed
by boundary conditions. Given the rotational symmetry of our
geometry, we will impose that the mixed component of the
stress tensor Trθ vanishes at the boundary located at radius
R. This implies the absence of any radial flux of azimuthal
momentum through the boundary and thus the conservation of
total angular momentum. As explained in Appendix A, within
the leading order EFT, the stress tensor is simply Ti j = 4C2ui j ,
where ui j denotes the strain tensor. Thus we end up with the
Ruderman boundary condition expressed in polar coordinates
as (∂uθ

∂r
− uθ

r
+ 1

r

∂ur

∂θ

)∣∣∣
r=R

= 0. (23)

Substituting now the expressions (22) with n = 0 into this
equation, we obtain the condition J2(kR) = 0. This gives rise
to the following quantization of momenta:

ks = j2,s

R
, (24)

where j2,s is the sth root of the Bessel function J2(x). The
lowest Ruderman mode has a wave number that is determined
by the first root j2,1 ≈ 5.136,

kR = 5.136

R
, (25)

with frequency (21)

ωR =
√

2C2ε′′

B0
k2 ∼ 13

√
β

N

N2
v

g′. (26)

In the last step we used ε′′ = βg, where β is the Abrikosov
parameter [1] of the vortex lattice. In the case of the infinite
triangular lattice, this value is known to be β = 1.1596. In our
case the ground state is triangular at the center and becomes
circular near the boundary. Thus in the present problem β

should be strictly speaking position dependent. However, for
the purpose of our order-of-magnitude estimate in Eq. (26),
we treat it as a constant and set β = 1 throughout. In Eq. (26)
we also used the LLL expression for the shear modulus C2

derived for the vortex lattice in [42,43]:

C2 = 0.119gn2, (27)

where n is the coarse-grained boson density.

In Fig. 5 we compare the analytical estimate Eq. (26)
to the frequency of the Ruderman mode for various vortex
numbers Nv . We obtained these frequencies by visualizing
for each Nv the numerically obtained displacement fields and
identifying a low-lying mode that has close agreement with
the displacement pattern found in Eq. (22). An example of
such a visualization is shown in Fig. 4 for the case of Nv = 60.

We observe that for many vortex numbers Nv (those cir-
cled in green) there is a reasonable agreement, to within a
factor 3, with the estimated frequency Eq. (26). Yet there are
also systems, particularly at smaller values of Nv , where this
estimate fails dramatically. In these systems we observe that
the Ruderman mode becomes a soft mode, already mentioned
in the previous section, with a frequency that is smaller than
the estimate (26) by up to factors of 900. We suspect that the
underlying cause of this disagreement is closely tied to lattice
frustration effects that are particularly pronounced for small
systems, which are not captured by the EFT. We defer the
detailed investigation of these special system sizes to future
work.

Next, we turn to a discussion of the surface waves. Using
the leading order version of the same EFT that we analyzed
above, we prove in Appendix A that the crystal cannot support
Rayleigh waves in the low-frequency and large-wavelength
realm. The basic reason for this is the incompressible nature
of the vortex crystal in this regime.

While low-frequency surface modes are absent, the numer-
ical diagonalization of the microscopic BdG equations in the
disk geometry reveals the presence of surface waves near the
top of the frequency spectrum, see Fig. 6 for snapshots and
[40] for videos. We found that for these modes the bulk of
the vortex crystal is almost at rest, while only the outermost
layer of the crystal is in motion. The vortices in that layer
move on nearly elliptical orbits around their resting positions.
The shape of the displacement field rotates as a whole in a
clockwise direction. The latter is determined solely by the
sign of the underlying external magnetic field. A switch of the
sign reverses the propagation direction of the surface waves
by converting the holomorphic solutions (4) into antiholomor-
phic LLL functions.

The frequency of the surface waves is fixed by the coupling
g′, which is the only energy scale in the LLL approxima-
tion. More precisely, the near-identical form of the spectra
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FIG. 7. Dispersion of the surface modes for Nv = 40. The hori-
zontal axis is the wave number in units of k0 = 1/R, where R is the
radius of the circular droplet.

for Nv � 100, clearly seen in Fig. 3, implies that the sur-
face wave frequencies scale with N and Nv as ω ∼ 4g′N/Nv .
The wavelength of the highest mode excitation is equal to
the circumference C = 2πR of the droplet. The wavelength
decreases to C/2, C/3, etc. as we consider eigenmodes with
progressively decreasing index, see Fig. 6. The edge-wave
dispersion is shown in Fig. 7. It has a peculiar feature that
the frequency decreases with the increasing wave number.

IV. SUMMARY AND OUTLOOK

After demonstrating that a two-dimensional superfluid vor-
tex crystal does not support low-frequency Rayleigh edge
waves, we have undertaken a microscopic study based on
the investigation of normal modes of the Gross-Pitaevskii
equation in the disk geometry in the LLL approximation.
Numerically, we revealed that chiral surface waves with a
peculiar dispersion relation emerge in vortex crystals at high
frequencies. Moreover, we investigated carefully the low-
frequency torsional Ruderman bulk excitation. It is reassuring
that for many values of Nv our numerical microscopic re-
sults have reasonable agreement with the predictions of the
leading-order low-energy effective theory of quadratically
dispersing Tkachenko waves [11,12]. As noticed above, for
certain values of Nv , especially those smaller than 80, the
torsional modes become soft. The origin of these additional
soft modes presents a puzzle, which may have its origin in
the competition between the triangular-lattice bulk and the
circular boundary of the finite vortex crystal. We leave this
as an open question for future investigations.

The physics of the high-frequency chiral surface waves
deserves further study. Can one write down an effective edge
theory of the outer layer that captures the essential features
of the waves? How sensitive are these modes to the imposed
boundary conditions? What happens to them as one goes
beyond the LLL regime? We believe that these questions are
fruitful directions for future investigations.
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APPENDIX A: ABSENCE OF RAYLEIGH WAVES
IN LEADING ORDER LOW-ENERGY EFFECTIVE

THEORY OF VORTEX LATTICES

Here we investigate the Rayleigh problem within the
leading order vortex lattice effective theory developed in
[12,13]. At low frequencies and long wavelengths the emer-
gent physics is governed by the intertwined dynamics of
coarse-grained elasticity and superfluidity. The effective the-
ory can be systematically organized in a derivative expansion,
whose leading order quadratic Lagrangian reads

L(2) = − B0n0

2
εi ju

iu̇ j − E (2)
el (∂u)︸ ︷︷ ︸

L(2)
el

+B0eiu
i − ε′′

2
δb2. (A1)

Here the physical degrees of freedom are elastic lattice dis-
placement vectors ui and emergent u(1) electric and magnetic
fields ei and δb. The dual magnetic field δb is measured with
respect to a finite background which is fixed by the superfluid
background density n0. Via the boson-vortex duality [44,45],
the dual gauge fields encode two-dimensional coarse-grained
superfluid degrees of freedom. The parameter B0 denotes the
strength of a background effective magnetic field experienced
by bosons, in neutral superfluids under rotation with the an-
gular frequency �, one has B0 = 2m�, where m is the mass
of the elementary boson. Triangular symmetry of the vortex
crystal fixes the form of the elastic energy density to take a
simple form

Eel(ui j ) = 2C1u2
kk + 2C2ũ2

i j, (A2)

with ũi j ≡ ui j − (ukkδi j )/2 being the traceless part of the sym-
metric strain tensor ui j = (∂iu j + ∂ jui )/2; C1 and C2 are the
compressional and shear elastic moduli, respectively. Notably,
at leading order the electromagnetic part contains only the
magnetic term ∼δb2 with a prefactor fixed by the curvature
ε′′ = d2ε/db2 evaluated at the minimum of the superfluid
equation of state ε(b). In contrast to a nonrotating superfluid,
the leading order theory does not contain the dynamical elec-
tric term ∼e2

i because it is of the next-to-leading order in the
derivative expansion [12].

In the first step we express the dual electric and magnetic
fields in terms of the gauge potentials, namely δb = εi j∂ia j

and ei = ∂t ai − ∂iat , and perform the quadratic functional in-
tegral over dual gauge fluctuations aμ. Since the electric term
∼e2

i is absent in the leading order theory, only the spatial part
of the gauge field appears quadratically in the Lagrangian. If
one fixes the gauge as L(2) → L(2) − (∂ iai )2/(2ξ ), the Gaus-
sian integration over ai results in a nonlocal elastic action that
most conveniently can be written in momentum space [46].
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The complete action is

Seff [u
i, at ] =

∫
dtdx

(
L(2)

el + B0at∂iu
i
)

+ B2
0

2ε′′

∫
dtdk
(2π )2

(
u̇i

−ku̇i
k

k2
− u̇i

−k
(1−ξ )kik j

k4
u̇ j

k

)
,

(A3)

where overdot denotes the temporal derivative. Since the
emergent Newtonian term ∼(u̇i )2 has a momentum-dependent
prefactor that diverges at low momenta as 1/k2, within the
derivative expansion it is as relevant as the Lorentz term
(hidden in L(2)

el ) that contains only one temporal derivative.
The temporal gauge field at appears only linearly in the

theory (A3) and functional integration over at results in the
Gauss constraint ∂iui = 0. We thus observe that at leading or-
der the vortex crystal is incompressible! The constraint can be
solved by introducing a potential field ϕ, namely ui = εi j∂ jϕ.
In terms of ϕ, the theory becomes local with the following
Lagrangian [11]:

Lϕ = B2
0

2ε′′

[
(∂tϕ)2 − 2C2ε

′′

B2
0

(�ϕ)2

]
. (A4)

The leading-order theory encodes purely transverse oscilla-
tions with the quadratic dispersion ω2 = 2C2ε

′′k4/B2
0. One

must emphasize that the apparent time-reversal symmetry of
the Lagrangian (A4) is completely accidental. It is known
that next-to-leading order terms modify the polarization of
the low-frequency Tkachenko wave by generating a small
out-of-phase longitudinal component. The resulting elliptical
chiral polarization of the Tkachenko wave explicitly indicates
time-reversal symmetry breaking in vortex crystals.

After this brief discussion of the salient properties of the
leading-order effective theory of vortex crystals in two di-
mensions, we consider within this framework the surface
elastic problem of Rayleigh [47]. In ordinary crystals, as-
suming no-stress boundary condition, he discovered linearly
dispersing surface waves localized close to an infinite straight
boundary. Given that in the leading order theory the vortex
crystal is incompressible and supports quadratically dispers-
ing transverse waves, one can anticipate that at this level of
approximation one cannot verbatim repeat the arguments of
Rayleigh who satisfied the no-stress boundary condition by
superposing the longitudinal and transverse solutions of the
elastic equations of motions.

We now investigate in detail the Rayleigh problem for the
theory (A4). Assuming the vortex crystal occupies the lower
half-plane with a boundary at y = 0, we start from the ansatz
ϕ(t, x, y) = ei(kx−ωt )+κy. We look for solutions oscillating in
time and x direction, moreover, we are interested in waves that
are exponentially localized close to the boundary implying
κ > 0. By substituting this ansatz into the equations of motion
that follow from the Lagrangian (A4), we express the inverse
of the decay length in terms of ω and k,

κ±(ω, k) =
√

k2 ± B0√
2C2ε′′ ω. (A5)

The general solution with fixed ω and k is a superposition of
the two branches

ϕ = ei(kx−ωt )(ϕ+eκ+(ω,k)y + ϕ−eκ−(ω,k)y). (A6)

Now, can one satisfy the stress-free boundary conditions Txy =
Tyy = 0 by choosing appropriately ϕ+ and ϕ−? For the incom-
pressible crystal, the Cauchy stress tensor is given by Ti j =
4C2ũi j = 4C2ui j = 4C2∂(iε j)k∂kϕ, where simple parentheses
denote symmetrization of indices. As a result, the no-stress
boundary conditions simplify to the conditions ∂x∂yϕ = 0 and
(∂2

x − ∂2
y )ϕ = 0 imposed on the boundary. Substituting the

solution (A6) into these equations, one ends up with a homo-
geneous matrix equation for the coefficients ϕ+ and ϕ−,(

ikκ+ ikκ−
−k2 − κ2

+ −k2 − κ2
−

)(
ϕ+
ϕ−

)
= 0. (A7)

By evaluating the determinant, we find that the linear sys-
tem has a solution only for ω(k) = 0. Since, however, that
implies κ+ = κ− and ϕ+ = −ϕ−, we find that the potential
ϕ in Eq. (A6) vanishes and ω(k) = 0 is thus not a physical
solution.

In conclusion, as verified above within the leading or-
der effective theory (A1), two-dimensional superfluid vortex
crystals do not support low-frequency and long-wavelength
Rayleigh elastic surface waves.

APPENDIX B: PROPERTIES OF THE BDG SPECTRUM
AND ITS EXACT ZERO-FREQUENCY MODES

IN THE LLL REGIME

We begin by showing that nonzero eigenfrequencies of
the Bogoliubov–de Gennes matrix always come in ±ω pairs.
Let (δu, δv)T be a solution of the eigenvalue problem with
frequency ω, then(−M1 −M2

M̄2 M̄1

)(
δu
δv

)
= ω

(
δu
δv

)
.

Taking the complex conjugate and switching the rows, we
obtain: (−M1 −M2

M̄2 M̄1

)(
δv̄

δū

)
= −ω

(
δv̄

δū

)
,

where we used that ω is a real frequency. Thus we have
proved that for an eigenvector (δu, δv)T with eigenfrequency
ω, there is another eigenstate (δv̄, δū)T with eigenfrequency
−ω. However, the latter is not a new physical solution, since
it gives the same solution δc if inserted into Eq. (17).

In a rotation-invariant geometry, the Bogoliubov–de
Gennes equations (15) always have two exact zero-frequency
solutions. In complete generality this has been noticed and
proved by Polkinghorne and Simula in a recent paper [39].
Here we show how this emerges within the LLL formalism.

We first consider the global U (1) transformation of the
condensate. When we rescale the condensate ψ by a phase
exp(iα), where α is a real constant, we obtain another valid
ground state of the Gross-Pitaevskii equation. For small α

this translates via Eq. (5) into δcn = iαc(0)
n . We now explicitly

show that this δcn satisfies Eq. (15) with eigenvalue zero.
Upon insertion of δcn into Eq. (15) and cancellation of iα it
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remains to be shown that

Nv∑
l=0

M1
nlc

(0)
l −

Nv∑
l=0

M2
nl c̄l

(0) = 0 (B1)

holds for all n. To prove this, we introduce the function

φ(k) =
∑

m

pk
mc(0)

m c(0)
k−m,

then the two terms in (B1) can be compactly written as

Nv∑
l=0

M1
nlc

(0)
l = 4g′

2Nv∑
s=0

φ(s)ps
nc̄(0)

s−n − μc(0)
n

and

Nv∑
l=0

M2
nl c̄l

(0) = 2g′
Nv∑

l=0

φ(n + l )pn+l
n c̄l

(0).

Since the c(0)
n satisfy Eqs. (9) and (10), we have

μc(0)
n = 2g′

2Nv∑
s=0

φ(s)ps
nc̄s−n.

Combining all of these expressions, we see that Eq. (B1)
holds and δcn = iαc(0)

n is in fact a solution of the Bogoliubov–
de Gennes equations with zero frequency. Comparing with
Eq. (13), we see that this mode leaves the vortex positions
unchanged and only modifies the overall phase factor of the
Gross-Pitaevskii wave function.

Another zero frequency mode in the spectrum is generated
by globally rotating all the vortices by a finite angle θ . The
new state remains a valid ground state of the Gross-Pitaevskii
equation. In the language of vortices this amounts to rotating
all of their positions zi by the factor exp(iθ ). In terms of cn

such transformation corresponds, according to Eqs. (5) and
(13), to the transformation

c(0)
n → einθ c(0)

n . (B2)

One can now explicitly check that the full equation of motion
(9) is satisfied for the transformed {c(0)

n }. For small θ the
linearized transformation (B2) becomes

δcn = inθc(0)
n , (B3)

which must satisfy the linearized equation (15) by con-
struction. An explicit proof along the lines of the previous
demonstration can be straightforwardly constructed.

APPENDIX C: EXTERNAL TRAPPING POTENTIALS

In the main text we assumed the presence of a real-space
trapping potential that limits the occupied orbitals to n � Nv .
Here we discuss potentials that realize this cutoff at Nv in
a soft and a hard manner. The idea is to let the number of
included LLL orbitals be infinite and to introduce an external
trapping potential that suppresses occupation of all orbitals
with n > Nv .

FIG. 8. Plot of V (n)
pot (100) together with a sigmoid approximation

(red), discussed in the text.

1. Soft cutoff for LLL orbitals

We consider a step-function radial potential with potential
strength V0 that confines the bosons

Vpot(r) = V0θ (r − R) =
{

0, r � R,

V0, r > R,

where θ is the Heaviside function. In the Gross-Pitaevskii
energy functional this contributes a term

Epot =
∫

d2r ψ∗(r)V (r)ψ (r).

Employing the LLL limit we have

ψ (z, t ) =
∞∑

n=0

cn(t )ψLLL
n (z), (C1)

where we now include all LLL orbitals. Inserting this expan-
sion into the expression for the potential energy, we obtain

Epot = 2πV0

∞∑
n=0

N 2
n c̄n(t )cn(t )

∫ ∞

R
dr r2n+1e−r2/2l2

B ,

where we carried out the angular integration. Next we change
the integration variable to u = r2/2l2

B and obtain

Epot = V0

n!

∞∑
n=0

c̄n(t )cn(t )
∫ ∞

R2/2l2
B

du une−u

=
∞∑

n=0

V n
pot

(
R2/2l2

B

)
c̄n(t )cn(t ).

Here

V n
pot(x) = V0

n!

∫ ∞

x
du une−u

and the integral is the upper incomplete gamma function. The
form of the V n

pot(x) is shown in Fig. 8 for x = 100. Clearly
only orbitals with n � x are appreciably suppressed. In fact,
this sigmoid function is well approximated by the hyperbolic
tangent

V n
pot(x) ≈ V0

2

[
1 + tanh

(
n − x

1.2
√

x

)]
,
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FIG. 9. Real-space form of the potential V (r) for NV = 10 as a
function of r/lB.

shown in red. Note that the crossover happens within a region
of width of order

√
x.

Thus if we want to cut off n at around Nv , then we just have
to set R2/2l2

B = Nv , i.e., R = √
2NvlB. This radius agrees with

the estimate for the radius of the crystal in the main text. If we
now tune V0 to be large compared with the interaction energy
scale g′, but still much smaller than the cyclotron frequency
(in order to remain within the LLL approximation), this po-
tential will strongly penalize terms with n � Nv . The range of
orbitals n in which the transition from zero to strong penalty
happens is roughly from Nv − 1.2

√
Nv to Nv + 1.2

√
Nv .

2. Hard cutoff for LLL orbitals

The previous calculation showed that a step-function po-
tential in real space results in a soft cutoff for the LLL
potential V n

pot. Here we engineer a class of potentials that
exactly realize a hard cutoff for V n

pot.
We saw above that within the LLL subspace a potential

V (r) leads to a contribution∑
n

V n
potc̄ncn,

with

V n
pot = 2π

2n+1πn!l2n+2
B

∫ ∞

0
dr V (r)r2n+1e−r2/2lB2 .

Using the same substitution u = r2/2l2
B and defining

W (r2/2l2
B) ≡ V (r), we can rewrite V n

pot as

V n
pot = 1

n!

∫ ∞

0
du W (u)une−u.

Now we make an ansatz for W (u) in terms of Laguerre poly-
nomials, because they have the useful property∫ ∞

0
du Lk (u)une−u = (−1)kn!

(
n

k

)
.

Thus if n < k this integral will vanish exactly. If we now pick

W (u) =
∑
k>Nv

αkLk (u),

with real coefficients αk , then automatically

V n
pot = 0 for n � Nv.

And for n > Nv we have

V n
pot =

∑
k>Nv

αk (−1)k

(
n

k

)
.

Clearly any choice of αk with correctly alternating signs re-
sults in a positive V n

pot. We now specialize to the simple choice

αk = (−1)k

k!
V0,

such that

Vn =
{

0, n � Nv,

V0
∑n

k=Nv

1
k!

(n
k

)
, n > Nv.

(C2)

Thus for large V0 the LLL orbitals with n > Nv are penalized
and therefore will remain vacant at low energies. The real-
space form is given by

W (u) = V0

∑
k>Nv

(−1)k

k!
Lk (u). (C3)

The potential converges to finite values for all x, since, up to
a polynomial of degree Nv , it is equal to

∞∑
k=0

(−1)k

k!
Lk (u) = e−1I0(2

√
u),

where I0 is the zeroth-order modified Bessel function of the
first kind. For Nv = 10, the real-space form V (r) is shown
in Fig. 9. As expected, it sharply rises around R = √

2NvlB.
Moreover, it exhibits oscillations for r < R which are needed
to ensure that V n

pot strictly vanishes for n < Nv .
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