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Fermionic interpretation of the quantum phase transition in XXZ magnets
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Quantum phase transitions in quantum magnets constitute an important field that has attracted great interests.
Although a variety of analytic and numerical methods have been introduced in this direction, faithful fermionic
descriptions are still desired because they can transform the spin models to a form tractable by conventional
many-body techniques, yielding more transparent physical pictures. We generalize the Chern-Simons fermion-
ization approach and apply it to the XXZ quantum magnets. After fermionzation, the Ising interaction of
the XXZ spin model leads to a fermion-fermion interaction. We show that the additional fermion-fermion
interaction generates an interesting phase transition between two fermionic ordered states, i.e., the Chern-Simons
superconductor and the Chern-Simons exciton insulator. We also demonstrate that this transition in the fermionic
language essentially describes the quantum phase transition between the planar and out-of-plane Néel orders in
the spin picture. The fermionic mean-field theory further leads to a nonlinear σ model that describes the quantum
phase transition, which is further supported by our density matrix renormalization group calculations in the
original spin model. Our work introduces a fermionic interpretation of quantum phase transitions and advances
the existing knowledge of quantum magnets.
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I. INTRODUCTION

Quantum spin systems host a rich variety of strongly cor-
related phenomena, ranging from quantum magnetism [1,2]
to quantum spin liquids (QSLs) [3–7], and they are also re-
lated to many exotic phases, such as the quantum Hall effect
[8–11] and high-Tc superconductivity [12,13]. One interesting
direction under extensive study is the quantum phase transi-
tions (QPTs) in low-dimensional quantum magnets [14]. In
these systems, the strong quantum fluctuations at the critical
point lead to abrupt changes of the many-body ground state,
crossing either a continuous or a first-order transition point.

In quantum magnets, understanding how the many-body
ground state evolves during the quantum phase transition
is a major theoretical challenge. To this end, a number of
efficient numerical methods, such as density matrix renor-
malization group (DMRG) [15,16] and tensor renormalization
group [17], have been developed. On the theoretical side,
analytic approaches mainly focus on the effective field theo-
ries capturing the low-energy and long-wave properties of the
systems. Although the conventional mean-field approaches
can be applied to study the microscopic models, they usu-
ally bring about approximations with bias, thus would fail
in characterizing the nature of the quantum phase transitions.
Hence, to fully understand the quantum phases and transitions
in quantum magnets, it is desirable to find out more mean-
field descriptions beyond the conventional scope, which may
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produce new understandings towards QPTs when combined
with numerical simulations.

A well-known mean-field approach to quantum spin sys-
tems is based on the parton construction [18–20]. For
example, the spin- 1

2 operators in spin-half systems are
fermionized or bosonized with an additional constraint con-
dition of single occupation on each site. These constructions
have the advantage in formulating topological ordered states
such as QSLs because they inherently introduce the gauge
degrees of freedom that are absent in the spin models but
are essential in QSLs [21,22]. However, because of the local
constraint condition, the emergent gauge field is indispensable
and strongly coupled to the partons. Thus, Gutzwiller projec-
tion to the single-site occupation subspace is required, which
is a complication that obscures the nature of the physical spin
wave function.

Another interesting mean-field approach based on the flux
attachment [23–29] originally proposed in the study of frac-
tional quantum Hall states [9] has been applied to frustrated
quantum magnets. Instead of representing the spin operators
by spinful fermions or bosons with constraint, spinless Chern-
Simons (CS) fermions are introduced, which are attached to
the U(1) CS gauge field [30,31]. Such a representation is free
from the single occupation constraint and has been success-
fully generalized to investigate magnetically ordered states
[32,33], certain QSLs [34], and the transitions between them
[35]. It should be emphasized that, in previous studies, the
XY models were intentionally considered [33,35–37] because
they can be cast into a simple form under the CS fermion-
ization, i.e., a fermionic theory coupled to U(1) gauge field.
However, in realistic magnetic materials, the XY interactions
cannot describe the actual spin-spin interactions. Instead, it is

2469-9950/2022/106(14)/144438(13) 144438-1 ©2022 American Physical Society

https://orcid.org/0000-0003-2098-5575
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.144438&domain=pdf&date_stamp=2022-10-31
https://doi.org/10.1103/PhysRevB.106.144438


YANG, WANG, SONG, WANG, AND WANG PHYSICAL REVIEW B 106, 144438 (2022)

the Heisenberg or XXZ interaction with an easy axis or an
easy plane that usually takes place. Therefore, to make the CS
fermionization approach truly applicable to realistic magnetic
materials, its generalizations to the XXZ quantum magnets are
highly desired. Unfortunately, such generalizations are still
lacking.

Compared to the XY models, the XXZ quantum magnets
display richer quantum phenomena, including the QPTs be-
tween different ordered states. Hence, some unanswered but
crucial questions arise, namely, how to describe these ordered
states using the CS mean-field theory, and whether the CS
representation will bring about any different understandings
of the QPTs.

In this work, we generalize the CS mean-field theory to
study the antiferromagnetic (AFM) XXZ quantum magnet,
and obtain results absent in previous works. We fully ex-
plore the physical effects induced by the Ising interaction
and the anisotropy. Using DMRG simulation, we first show
that there occurs a QPT from the in-plane to the out-of-plane
Néel orders after the Ising interaction is tuned to be larger
than the XY interaction. Then, we formulate the mean-field
theory of the XXZ magnet based on the CS fermionization.
In the fermionic picture, we observe an interesting transi-
tion between two effective mean-field orders, i.e., the CS
superconductor state and the CS exciton insulator. The CS
superconductor state is an effective state formed by pairing of
the spinless CS fermions, which has been known to describe
the planar Néel AFM [32,33,36,37]. In comparison, the CS
exciton insulator is formed by the pairing of electron and hole
states of the CS fermions. We clearly show that this phase
exhibits staggered fermion density on different sublattices,
which is translated into the spin language as the out-of-plane
Néel order. Hence, the DMRG results on the QPT, which show
a transition between in-plane and out-of-plane magnetization,
acquire a unique fermionic interpretation in the CS represen-
tation. Furthermore, we show that the CS mean-field theory
provides a natural starting point to construct an effective field
theory that describes the QPT. For the studied XXZ model, we
arrive at an O(3) nonlinear σ model that describes the critical
regime, which is further supported by DMRG calculations.
The fermionic perspective on quantum magnetism, although
derived from XXZ quantum magnets, is generalizable and
may find applications in more complicated systems with vari-
ous QPTs.

II. THE QPT FROM IN-PLANE TO OUT-OF-PLANE NÉEL
AFM ORDER

We start from the AFM spin- 1
2 XXZ model given by

HXXZ =
∑
〈i, j〉

Jx
(
Sx

i Sx
j + Sy

i Sy
j

) + JzS
z
i Sz

j, (1)

where Jx and Jz denote the XY and the Ising interactions,
respectively. This model has been fully investigated, which is
known to support the AFM magnetic orders on nonfrustrated
lattices at zero temperature. Here, we will demonstrate how
to solve the model using the CS fermionic mean-field theory
and aim to uncover the underlying physics exclusive to the CS
representation. Since our main interest lies in QPT between
the ordered states, we assume that Eq. (1) is defined on a bipar-

FIG. 1. The DMRG results of the magnetic orders on honey-
comb lattice with Ly = 8 and Lx = 14. The pinning field β = 10−4

is introduced along the x direction in the calculations. We defined
the staggered magnetization 〈Sx/z〉 to be 〈Sx/z〉 = 〈Sx/z,A〉 = −〈Sx/z,B〉.
The components of the magnetization changes from the case where
〈Sx〉 dominates to the opposite case where 〈Sz〉 dominates as the
strength of the Ising term Jz increases. There is a phase transition
at Jz/Jx = 1. At the critical point, the O(3) symmetry seems to be
violated since 〈Sx〉 �= 0 and 〈Sz〉 = 0. However, this is a numerical
artifact generated by the pinning field β. A close investigation of
the O(3) symmetry at the critical point will be presented below. The
insets show the in-plane and out-of-plane Néel AFM states.

tite lattice. We take the honeycomb lattice as an example, and
generalizations to other bipartite lattices are straightforward.

We set Jx = 1 as the energy unit and regard Jz/Jx as the
tuning parameter. For Jz/Jx = 0, the model is reduced to the
XY model, where the ground state at zero temperature is the
planar Néel AFM that spontaneously breaks the planar U(1)
symmetry. The magnetization of this phase is opposite on the
neighboring two sublattices and is completely in plane. With
increasing Jz/Jx from zero, the XY plane remains as the easy
plane for Jz/Jx < 1, and one expects that the system will stay
as the planar Néel AFM state. For Jz/Jx > 1, the Ising term
dominates and generates an easy axis. In this case, the out-
of plane magnetization tends to form along the z direction,
with opposite 〈Sz〉 for the different neighboring sublattices.
Accordingly, the SU(2) symmetric point Jz/Jx = 1 is a critical
point of the QPT. By crossing this critical point, a QPT is
expected to take place separating the in-plane and the out-of-
plane AFM Néel states.

We first perform a DMRG simulation with respect to
Eq. (1) on cylinders of different sizes. The periodic and open
boundary conditions are enforced along the x and y directions,
respectively. To simulate the effect of spontaneous symmetry
breaking on a finite lattice, we assign a very weak pinning field
on the open boundary and calculate the magnitude of spin ex-
pectations in the bulk, i.e., 〈Sx〉 and 〈Sz〉 with varying Jz/Jx. As
shown in Fig. 1, we observe that 〈Sx〉 is generally finite while
〈Sz〉 = 0 for Jz/Jx � 1, displaying an in-plane Néel AFM as
indicated by the inset of Fig. 1. For Jz/Jx � 1, 〈Sz〉 grows
with a vanishing 〈Sx〉, clearly suggesting an out-of-plane Néel
AFM order as shown by the inset to Fig. 1.
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FIG. 2. The magnetization is calculated with varying the system
size. 〈Sx〉 and 〈Sz〉 are plotted against both the length (Lx) and the
circumference (Ly) of the cylinder. In (a) and (b), Lx is fixed to be
Lx = 8, and in (c) and (d) Ly = 8.

The spin expectations with varying system sizes are calcu-
lated and shown by Fig. 2. The calculated 〈Sx〉 with varying Ly

and Lx is shown in Figs. 2(a) and 2(c) for different Jz/Jx. It is
clearly shown that for Jz/Jx � 1, 〈Sx〉 grows with increasing
system size, while it always remains at zero for Jz/Jx � 1,
regardless of the system size. This verifies the spontaneous
symmetry breaking of the planar U(1) symmetry in the ther-
modynamic limit. Figures 2(b) and 2(d) show the calculated
〈Sz〉 with varying Ly and Lx, respectively. 〈Sz〉 remains zero
up to Jz/Jx � 1 and takes a nonzero value for Jz/Jx > 1.
Besides, for Jz/Jx > 1, 〈Sz〉 is found to be nearly saturated
as we enlarge the system size beyond Ly � 8. This confirms
the spontaneous formation of the out-of-plane Néel AFM in
this regime.

The DMRG calculation suggests the emergence of a QPT
from the planar to the out-of-plane Néel AFM state. Although
the physical mechanism is clear in the spin picture, we empha-
size that it is of importance to consider whether the observed
QPT as well as the magnetic orders can be reinterpreted using
fermionic mean-field theories. The latter not only brings about
different understandings to QPTs, but also provides us with a
useful approach to study QSLs when the frustration is further
turned on [34,35].

III. CHERN-SIMONS FERMIONIZATION OF THE
QUANTUM XXZ MAGNET

In previous works, the CS fermionization has been applied
to XY models. We first briefly revisit how to fermionize the
quantum spin model. The spin- 1

2 operators S±
r on a lattice can

be represented using spinless fermions attached to the string
operator, i.e.,

S+
r = f †

r U +
r , S−

r = frU
−
r , (2)

where fr and f †
r denote the annihilation and creation operator

for spinless fermions at site r, and the string operator U ±
r is

given by

U ±
r = e±ie

∑
r �=r′ arg(r−r′ )nr′ , (3)

where e, the CS charge, is an odd integer, so that it reproduces
the SU(2) algebra of spin operators. The phase factor here
involves the sum of the fermion number operator nr′ = f †

r′ fr′

with the weight arg(r − r′). The latter denotes the angle of
the vector r − r′. In addition, we note that Eqs. (2) and (3)
also lead to Sz

r = f †
r fr − 1

2 .
When Jz/Jx = 0, the XY model can be readily mapped to

a fermionic theory coupled to U(1) gauge field using Eqs. (2)
and (3) [32,33,36]. To solve the fermionized model, we first
treat the U(1) gauge field as static fluxes and minimize the
fermion energy with respect to the fluxes. In this step, the half-
filling condition is enforced since the possible ground state for
the XXZ model should enjoy 〈Sz

r〉 = 0 in a magnetic unit cell,
which corresponds to the half-filling condition 〈 f †

r fr〉 = 1
2 .

The above fermionization leads to the flux states that enjoy
low-energy Dirac fermions. On the honeycomb lattice, the
state is described by Dirac fermions with two Dirac valleys
in momentum space [33]. The corresponding low-energy ef-
fective Hamiltonian is derived to be

H0 = vF

∑
k

( f (+)†
k k · σ f (+)

k − f (−)†
k k · σ f (−)

k ), (4)

where σ is the Pauli matrix denoting the sublattice degrees of
freedom and f (±)

k = [ f (±)
k,A , f (±)

k,B ]T is the annihilation operator

of the CS fermions in the ± Dirac valley. vF = √
3/2Jxa, with

a being the lattice constant of the honeycomb lattice.
The full low-energy physics is then described by restoring

the gauge fluctuations of the Dirac fermions in Eq. (4). The
U(1) CS gauge field induces the fermion-fermion interaction,
i.e.,

HXY =
∑

k,k′,q

V αα′β ′β
q f †

kα f †
k′+qα′ fk′β ′ fk+qβ (5)

with the interaction vertex

V αα′β ′β
q = −2π ievF εi j

(
σ i

αβδα′β ′ + σ iT
αβδα′β ′

)
Aj

q, (6)

where α, β are the sublattice indices and Aj
q = q j/|q|2.

The gauge-field-induced interaction has been carefully an-
alyzed by Refs. [33,36], and is found to generate the CS
superconductor state with p + ip pairing symmetry. The CS
superconductor has been shown to be a good fermionic de-
scription of the planar Néel state [33,36]. In particular, these
two states enjoy qualitatively the same collective excitations
as well as the spin orders.

The XXZ model has a key distinction from the above
results after fermionization, namely, an additional fermion-
fermion interaction that arises from the Ising term. Inserting
Sz

r = nr − 1
2 , the nearest-neighbor Ising interaction is cast into

HIsing = 3Jz

∑
r

( f †
A,r fA,r − 1/2)( f †

B,r fB,r − 1/2), (7)

where A and B are indices for the sublattices, and fA,r/ fB,r
is the annihilation operator of the CS fermion at r. This term
describes the density-density interaction between the fermions
on different sublattices, which is distinct in nature from the
gauge-field-induced interaction, as its origin has nothing to
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do with the CS gauge field. Therefore, two fermion-fermion
interaction terms, Eqs. (5) and (7), emerge under CS fermion-
ization for the quantum XXZ model. The interplay between
these interactions remains unstudied. The natural question
then arises that whether the CS fermion theory can faithfully
describe the transition from the planar to the out-of-plane Néel
order found in the original spin picture.

Before proceeding, we can further transform HIsing into
momentum space and make a projection to the low-energy
window around the two Dirac valleys described by Eq. (4),
leading to

HIsing = 3Jz

∑
k,k′,q,a

f (a)†
A,k f (a)

A,k′ f (a)†
B,k′+q f (a)

B,k+q

+ 3Jz

∑
k,k′,q,a

f (a)†
A,k f (ā)

A,k′ f (ā)†
B,k′+q f (a)

B,k+q

+ 3Jz

∑
k,k′,q,a

f (a)†
A,k f (a)

A,k′ f (ā)†
B,k′+q f (ā)

B,k+q

+
∑
k,a

(
n(a)

A,k + n(a)
B,k

) + const, (8)

where a and ā are the valley indices. This interaction consists
of intervalley and intravalley interactions between the CS
fermions.

To facilitate mean-field studies, we further resort to the
band basis rather than the sublattice basis in the following
calculations. The transformation is achieved via the unitary
transformation f (a)

k = U (a)
k ψ

(a)
k , where f (a)

k = [ f (a)
A,k, f (a)

B,k]T

and ψ
(a)
k = [c(a)

+,k, c(a)
−,k]T are the spinors defined at valley a in

the sublattice and band bases, respectively, and

U (a)
k = 1√

2

(
e−iaθ −e−iaθ

1 1

)
, (9)

with θ being the polar angle of k. In this basis, H0 is in
its diagonalized form. Accordingly, HIsing is also transformed
into the band basis, whose form is shown in Appendix. In
the band basis, it is clear that HIsing involves different terms,
e.g., the intravalley and interband interactions as well as the
intervalley interactions. These interactions affect the Dirac
fermions, and if they are strong enough, they could generate
different fermionic orders. Besides, the gauge interaction HXY

in Eq. (5) competes with HIsing, which could drive the system
towards a QPT. All in all, the quantum XXZ model in Eq. (1)
has been fermionized to a low-energy spinless Dirac fermion
theory with multiple fermion-fermion interactions, i.e., H =
H0 + HXY + HIsing.

IV. EXCITONIC INSTABILITY INDUCED
BY THE ISING TERM

For the pure XY model, the effect of HXY has been studied
in Refs. [32,33,36,37]. To obtain intuition on the ground state
for Jz/Jx � 1, we first analyze the possible effects on the
Dirac fermions from HIsing (which is the dominating interac-
tion for Jz/Jx � 1) in this section.

HIsing involves the interband interactions. It is known that
the strong interband interaction between Dirac fermions can
induce excitonic instabilities [38,39], thus we decouple HIsing

by introducing the mean-field orders in the particle-hole
channel. We first consider the intravalley terms in HIsing,
decoupling which requires the following intravalley mean-
field orders as

χ (a)
n,s = 3Jz

2

∑
k

〈
c(a)†

n,k c(a)
n̄,k

〉
, (10)

λ(a)
n,s = 3Jz

2

∑
k

〈
c(a)†

n,k c(a)
n,k

〉
, (11)

χ(a)
n,p = 3Jz

2

∑
k

k̂
〈
c(a)†

n,k c(a)
n̄,k

〉
, (12)

where χ (a)
n,s and χ(a)

n,p are the s-wave and the p-wave exci-
tonic orders, respectively. Both the s- and p-wave pairings
are allowed by symmetries and are considered here since the
interaction terms with both s- and p-wave symmetry take
place, as is shown in Appendix. From the above definitions,
it is understood that χ (a)∗

n,s = χ
(a)
n̄,s and χ(a)∗

n,p = χ
(a)
n̄,p.

With the introduced mean-field orders, the intravalley
mean-field Hamiltonian can be obtained from H0 + HIsing.
Since in this mean-field channel the two valleys are effectively
decoupled, we can simply consider each valley separately
and make the valley notation a implicit. In the band basis
ψk = (c+,k c−,k )T, one obtains (see Appendix)

H intra
MF

=
∑

k

ψ
†
k

(
vF k + λ−,s −χs − 1√

2
χpe−iθk

−χs − 1√
2
χpeiθk −vF k + λ+,s

)
ψk

+ 2

3Jz
χ2

s − 2

3Jz
λ+,sλ−,s + 2

3Jz
χ2

p , (13)

where we have used χs = χ+,s = χ−,s and χp is the amplitude
of the order parameter χ−,p = χ∗

+,p. The mean-field ground-
state energy can be obtained from Eq. (13) as

EG = −
∑

k

{
λ1 +

[
1

2
χ2

p +
√

2χpχs cos θ

+χ2
s + (λ2 + vF k)2

]}

+ 2

3Jz
χ2

s − 2

3Jz

(
λ2

1 − λ2
2

) + 2

3Jz
χ2

p , (14)

where we have introduced λ1 = 1
2 (λ+,s + λ−s), λ2 =

1
2 (λ+,s − λ−s).

With further introducing λ2 = λ′
2vF �, χp =

χ ′
pvF �, χs = χ ′

svF �, Jz = J ′vF �, k = k′�, and
minimizing the mean-field ground-state energy, we arrive
at the self-consistent equations for the order parameters in the
continuum limit as

λ′
2 = 3J ′

32π2

∫
k′dk′

∫ 2π

0
dθ

λ′
2 + k′
√

A′ ,

χ ′
p = 3J ′

32π2

∫
k′dk′

∫ 2π

0
dθ

χ ′
p + √

2χ ′
s cos θ√

A′ ,

χ ′
s = 3J ′

32π2

∫
k′dk′

∫ 2π

0
dθ

2χ ′
s + √

2χ ′
p cos θ√

A′ , (15)

where A′ = χ ′2
p /2 + √

2χ ′
pχ

′
s cos θ + χ ′2

s + (λ′
2 + k′)2.
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FIG. 3. Competition of the s- and p-wave excitonic orders in
each valley. For large Jz, the s-wave excitonic order dominates, while
the p-wave excitonic order is suppressed.

We self-consistently solve the equations in Eq. (15), and
the results are shown in Fig. 3. λ′

2 only exhibits a trivial
solution and is hence not shown. Besides, as shown in Fig. 3,
we find that no excitonic order can develop for Jz/vF � � 1.
This is because of the vanishing of the density of states at
the Dirac nodes, making the interaction HIsing irrelevant in the
perturbative sense. For Jz/vF � � 1, the s-wave excitonic or-
der is found to dominate over the p-wave excitonic order and
nontrivial solution is developed only in the s-wave channel,
suggesting that a CS s-wave exciton insulator state will be
favored by the large interaction HIsing.

We have considered above the intravalley interaction chan-
nel. We now take into account the intervalley terms and
introduce an additional order parameter (see Appendix)

χ̄(a)
n,p = 3Jz

2

∑
k

k̂
〈
c(a)†

n,k c(ā)
n̄,k

〉
(16)

which describes an intervalley excitonic state. Interestingly,
because of the symmetry of the intervalley interactions, the
p-wave pairing must be considered, which arises from the
decomposition of the intervalley terms in HIsing.

With the intervalley terms taking into account, the effective
mean-field Hamiltonian is now given by

HMF =
∑

k


†
kHk + 2

3Jz
(χ (+)

s + χ (−)
s )2 + 4

3Jz
χ̄(+)

p · χ̄(−)
p ,

(17)

where k = (c(+)
+,k c(+)

−,k c(−)
+,k c(−)

−,k )
T
, and

H =

⎛
⎜⎜⎝

vF k −∑
a χ (a)

s 0 −χ̄(+)
p · k̂

−∑
a χ (a)

s −vF k −χ̄(+)
p · k̂ 0

0 −χ̄(−)
p · k̂ −vF k

∑
a χ (a)

s

−χ̄(−)
p · k̂ 0

∑
a χ (a)

s vF k

⎞
⎟⎟⎠,

(18)
where we have used χ

(a)
±,s = χ (a)

s and χ̄
(a)
±,p = χ̄(a)

p . The entries
±∑

a χ (a)
s in the above matrix involve the sum of the s-wave

excitonic orders at both valleys. The two terms in the sum

come from the contributions of the intervalley and intravalley
interaction terms in HIsing, respectively (see Appendix). To
simplify notation, we introduce χ̄s = χ (+)

s + χ (−)
s , which in

general describes the intravalley excitonic order.
Again by minimizing the ground-state energy, we can ob-

tain the self-consistent equations with respect to χ̄s and χ̄p,
with the latter being the amplitude of the intervalley excitonic
order χ̄p, namely,

χ̄s = 3Jz

4

∑
k

(
χ̄s

χ̄2
s + (χ̄p + k)2

+ χ̄s

χ̄2
s + (χ̄p − k)2

)
,

χ̄p = −3Jz

8

∑
k

(
χ̄p + k

χ̄2
s + (χ̄p + k)2

+ χ̄p − k

χ̄2
s + (χ̄p − k)2

)
.

(19)

Solving the above self-consistency equations, we can readily
prove that the intervalley p-wave excitonic order is also dom-
inated by the intravalley s-wave order for large Jz, similar to
results shown in Fig. 3.

So far, we have found that by considering H0 + HIsing, the
most favorable instability of the Dirac CS fermions is the
intravalley s-wave excitonic pairing, giving rise to an exci-
tonic insulator state with a s-wave gap. Since the pairing is
mainly dominated by intravalley processes, the two valleys
are essentially separable from each other because the χ̄p terms
vanish in Eq. (18). The mean-field Hamiltonian for such a
state is therefore derived as

Heff = vF kxτzσx + vF kyτ0σy + χ̄sτ0σz, (20)

where we have transformed the mean-field Hamiltonian from
the band basis back to the sublattice basis. τα and σβ are
the Pauli matrices acting on the valley and sublattice spaces,
respectively.

It is important to discuss the topology and symmetry of
Eq. (20). First, the CS exciton insulator has two gapped Dirac
nodes in low energy. Each of the gapped Dirac nodes carries
an effective ± 1

2 Chern number due to the parity anomaly in
2D, where the sign in front is determined by the sign of the
Dirac mass. Besides, it is readily seen that Heff respects the
time-reversal symmetry (TRS). Thus, the Chern number from
the two gapped Dirac fermions cancels each other, leading to
C = 1

2 − 1
2 = 0, namely, a topologically trivial CS excitonic

insulator. This is expected since the original spin system re-
mains topologically trivial as we enlarge the Ising interaction
HIsing.

Here, we mention in passing that Ref. [35] studies the
J1-J2 XY model on the honeycomb lattice with a flux per-
turbation. A similar excitonic insulator phase is found in the
CS fermion representation but with nonzero Chern number
C = 1. However, our case here is different from that consid-
ered in Ref. [35] in two senses. First, the physical origins
of the excitonic pairing are different. The excitonic state in
our case is induced by the Ising interaction rather than by
the next-nearest-neighbor XY term in Ref. [35]. Second, our
case is further complicated by more intervalley interaction
terms, which can be decoupled into both an intervalley p-wave
and an intravalley s-wave excitonic order. Interestingly, the
intravalley interaction terms also favor the s-wave excitonic
order, finally resulting in the term χ̄s = ∑

a χ (a)
s in Eq. (18).
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This particular structure in terms of the order parameter χ̄s is
a key feature of the Ising interaction HIsing, which is in stark
contrast with that of the J1-J2 XY model. This structure en-
sures that the CS excitonic insulator found in our case enjoys
Dirac masses of the same sign at the two valleys, which in turn
guarantees C = 0. Therefore, C = 0 is a direct consequence
of HIsing, which essentially reflects the fact that no topological
nontrivial states can arise in the nonfrustrated XXZ model on
bipartite lattices. This also confirms the crucial role of frus-
tration in generating topological states in the Chern-Simons
mean-field theories.

V. PHASE TRANSITIONS CAUSED BY VARYING
THE STRENGTH OF THE ISING TERM

So far, we have investigated the effects of the Ising term,
i.e., H0 + HIsing, in the language of CS fermions, and we have
found that it induces the s-wave excitonic order of the Dirac
CS fermions. This phase should only apply to the region
where Jz/Jx � 1. To examine whether there are any QPTs in
the intermediate Jz/Jx regime, one has to fully consider the
total Hamiltonian H = H0 + HIsing + HXY.

H0 + HXY has been studied by Refs. [32,33,36,37], where
it is shown that the CS superconductor state is stabilized,
which serves as a description of the planar Néel AFM state
in the CS fermion representation. From these previous re-
sults, we can readily derive the full mean-field Hamiltonian
describing the XXZ quantum magnets in the full parame-
ter range. We resort to the sublattice⊗Nambu basis �k =
( f (+)

k,A f (+)
k,B f (−)†

−k,A
(−)†
k,B )

T
, in which we can deduce the

following Bogoliubov–de Gennes Hamiltonian:

HBdG =

⎛
⎜⎜⎝

χ̄s vF ke−iθ �3 �0ke−iθ

vF keiθ −χ̄s −�0keiθ �3

�3 −�0ke−iθ −χ̄s −vF ke−iθ

�0keiθ �3 −vF keiθ χ̄s

⎞
⎟⎟⎠,

(21)
that not only involves the CS superconductor mean-field state
but also the CS excitonic order derived above. The lowest two
eigenvalues of HBdG are readily obtained as

E±,k = −
√[√

χ̄2
s + (vF k)2 ± �0k

]2 + �2
3. (22)

Three order parameters emerge in the above effective theory,
i.e., �0k , �3, and χ̄s, where �0k (�3) is the off-diagonal (diag-
onal) component of the superconducting gap in the sublattice,
and χ̄s is the intravalley s-wave excitonic order, which has
been shown to be the most relevant instability favored by
HIsing. These order parameters are governed by the coupled
self-consistent equations in the continuum limit as

χ̄s = −3Jz

2

∑
k,a=±

χ̄s
[
1 + a�0k/

√
χ̄2

s + (vF k)2
]

Ea,k
,

�3 = − e

2

∑
k,a=±

�0k + a
√

χ̄2
s + (vF k)2

Ea,k
,

�0k = 1

4
evF k

�3√
χ̄2

s + �2
3

. (23)

FIG. 4. A phase transition takes place as Jz is increased. When Jz

is relatively small, the p + ip CS superconductor state coexists with
the excitonic order, with the former dominating over the latter. When
Jz is large enough, the excitonic insulator state dominates, and the CS
superconductor state is totally suppressed. The inset shows the order
parameters in the zoom-in region near the transition point.

We self-consistently solve the above equations with vary-
ing Jz and plotted the order parameters against Jz in Fig. 4. Be-
cause �0k is completely determined by �3 and χ̄s, and it van-
ishes as k → 0, only �3 and χ̄s need to be plotted. As shown
in Fig. 4, when Jz is small, the CS superconductor state dom-
inates. Interestingly, for large Jz/vF �, the CS superconductor
state is suppressed by the excitonic state, and the CS excitonic
insulator state becomes stable after crossing the transition
point. Since it is known that CS superconductors can describe
the planar Néel state in the spin language, this indicates that
the planar spin ordering should be destabilized for large HIsing,
in accordance with the DMRG calculation in Fig. 1.

To understand the physical nature of the transition in Fig. 4,
we notice that the s-wave excitonic insulator has a clear phys-
ical counterpart in the spin picture. This CS exciton insulator
is described by Eq. (20), which enjoys a mass term χ̄sτ0σz.
The Pauli matrix σz introduces opposite onsite potentials for
the CS fermions on the A and B sublattices, namely, a charge
density wave order of the CS fermions. With χ̄s = 0, the
fermion system is half-filled with averaged density 〈n〉 = 1

2 .
The nonzero χ̄s therefore brings about sublattice-dependent
fluctuations of the charge density around 〈n〉 = 1

2 . Noting that
the fermion density is related to Sz via Sz

i = ni − 1
2 , the charge

order is directly translated into an out-of-plane Néel Ising
ordering in the spin picture, as shown by the inset of Fig. 1.

Given the above observations, we conclude that the CS
fermion mean-field theory also reveals a QPT from the in-
plane to the out-of-plane Néel AFM order, in agreement with
the numerical results. Interestingly, the fermionic theory en-
dows such a QPT with a fermionic mean-field interpretation,
i.e., from a CS superconductor state to a CS excitonic insulator
state.

VI. GENERALIZATIONS TO OTHER LATTICES

So far, we have demonstrated how the CS mean-field the-
ory is applied to the XXZ model on the honeycomb lattice.
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FIG. 5. The flux states on (a) honeycomb, (b) square, and (c) tri-
angular lattices. As shown in (d), at low energy, the Dirac nodes
take place for all three lattices, which is further subjected to gauge-
mediated interactions after restoring the gauge fluctuations.

However, we emphasize that the applicability of our method
is not only limited to the honeycomb lattice. In this section,
we will discuss generalizations of our method to other lattices,
taking the square and triangular lattices as examples.

As demonstrated above, CS fermionization maps spin- 1
2

operators to spinless fermions coupled to emergent CS gauge
field. Here, a good starting point is to ignore the gauge fluctua-
tions and regard the gauge field as static fluxes coupled to the
fermions. Then, by minimizing the energy of the fermions,
one can arrive at flux states on two-dimensional (2D) lat-
tices. Taking the honeycomb, square, and triangular lattices
as examples, the most energetically favorable flux states are
plotted in Figs. 5(a)–5(c), respectively. On the honeycomb
lattice, the flux in each plaquette is zero; on the square lattice,
staggered π flux are known to be most favorable [40], while
on the triangular lattice, the staggered 0-π flux state has been
found in Ref. [29] to be most favorable. For all the above flux
states, low-energy Dirac fermions take place, as indicated by
Fig. 5(d). Thus, it is clear that the low-energy Dirac fermions
are not merely associated to the honeycomb lattice geometry.
Instead, they essentially originate from the CS fluxes, which
modify the kinetic energies of the fermions. Here, we note that
the triangular lattice case is a bit more complicated, as the 0-π
flux state in Fig. 5(c) generates two Dirac nodes in the first
Brillouin zone, which further enjoy threefold degeneracy. Al-
though this brings about some complications, the procedures
remain the same as those for the honeycomb and square lattice
cases.

Then, we go beyond the above mean-field treatment of
fluxes and further consider gauge fluctuations. This leads to
gauge-mediated interactions shown in Eq. (5), as well as the
Ising interactions shown in Eq. (7). The mean-field approach
we have demonstrated for the honeycomb lattice then applies

naturally to the square and triangular lattices. Taking the
square lattice as an example, the flux states in Fig. 5(b) are
reduced to the following low-energy description:

H0 = vF

∑
k

( f (+)†
k k · σ f (+)

k + f (−)†
k k · σT f (−)

k ), (24)

where f (±)
k denotes the fermionic annihilation operator in the

± valley, and vF = 2Ja with a being the lattice spacing of
the square lattice. This is in the same form as Eq. (4) for the
honeycomb case.

The CS gauge-field-mediated interaction term is also found
to enjoy a similar form as Eq. (5), which also has the vertex
with p + ip symmetry, i.e.,

V αα′β ′β
q = −π ievF εi j

(
σ i

αβδα′β ′ − δαβσ i
α′β ′

)
Aj

q. (25)

Furthermore, the Ising term is transformed accordingly into

HIsing = 2Jz

∑
r

( f †
A,r fA,r − 1/2)( f †

B,r fB,r − 1/2). (26)

Comparing the fermionized XXZ models for the square and
honeycomb lattices, we find that they only exhibit slight
differences in coefficients, such as those in HIsing and the
effective Fermi velocity vF . Therefore, all the derivations and
the resulting mean-field theories remain the same. The analy-
sis above shows that the presented theory is generalizable to
other lattices, and thus could provide a guidance to QPTs in
quantum magnets, at least for a certain class of spin models.

Lastly, we mention that the CS fermion mean-field ap-
proach is also applicable to cases with further neighbor
exchange interactions. For example, the CS fermionzation has
been carried out for J1-J2 XY model on the honeycomb lattice
[35]. Despite the presence of the HXY interaction in Eq. (5),
another gauge-mediated interaction takes place, which was
found to generate a topological phase transition towards pos-
sible chiral spin liquids under proper perturbations.

VII. NATURE OF THE TRANSITION

In the above section, we have applied the Chern-Simons
mean-field theory of XXZ models to several different lattices.
The fermionic mean-field orders were proposed for both the
planar and out-of-plane Néel AFM orders on the two sides of
the transition. In the following, we discuss how the fermion-
ized theory enhances our understanding of the nature of the
QPT, with additional support from numerical simulations.

A. CS fermion-indicated O(3) nonlinear σ model

We take the honeycomb lattice as an example. As the first
step, we solve the mean-field equations, i.e., Eq. (23), in the
vicinity of the critical point. As shown by the inset to Fig. 4,
we observe that the CS superconductor order parameter is
gradually replaced by the excitonic insulator order parameter.
The slow evolution of the order parameters near the transition
point Jz/Jx ∼ 1 indicates that the symmetries of effective field
theories on the two sides can be smoothly “rotated” into each
other.

Then, we revisit the CS superconductor state for Jz/Jx < 1,
from the perspective of effective field theories. By turning off
the excitonic order χ in Eq. (22) in the long-wave regime,
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the mean-field ground state is described by Bogoliubov quasi-
particles with the energy gap �3. Following the standard way
of deriving the Ginzberg-Landau theory of superconductors,
the Bogoliubov fields can be integrated out, leading to the
effective free energy as

F =
∫

d2x
1

2
|∇(x)|2 + m

2
|(x)|2 + g

4
|(x)|4, (27)

where (x) is the complex order parameter field describing
the CS superconductor and m and g are Ginzberg parameters
that are determined from those of the original CS fermions.
Inserting  = �3eiθ , where �3 and θ are the modulus and
phase of , respectively, |∇|2 can be approximately written
as (∂μnsc)2, where nsc = (n1, n2), with n1 = �3 and n2 =
�3θ , namely, n1 = Re[] and n2 = Im[] for θ ∼ 0. We
note that in the CS superconductor state, the order parameter
(x) ∼ �3 is formed with real gauge. Thus, (∂μnsc)2 actually
describes the fluctuations around the mean-field order param-
eter (x) ∼ �3, leading to the collective modes which have
been studied in Refs. [33,36]. Thus, Eq. (27) is cast into

F =
∫

d2x

(
1

2
∇nsc

)2

+ m

2
n2

sc + g

4
n4

sc, (28)

where nsc = nμnμ, μ = 1, 2, and repeated indices are
summed. Equation (28) describes a φ4-type theory with O(2)
symmetry. Since the superconductor state is developed, the
initially degenerate fluctuations decompose into a massive
Higgs mode, i.e., the radial fluctuations of nsc, as well as a
Glodstone mode in terms of the fluctuations of the unit vector
n̂sc ≡ nsc/nsc. This symmetry breaking is achieved by taking
the large negative m in Eq. (28), which leads to the following
effective theory:

Feff = βHeff =
∫

d2x
K

2
(∇n̂sc)2 + const, (29)

where β = 1/T , and K = n2
sc is the effective coupling con-

stant. Clearly, this is a nonlinear sigma model (NLσM) with
O(2) symmetry.

The above shows that the effective field theory describing
the CS superconductor phase can be described by a O(2)
NLσM, where the O(2) vector is defined by the CS supercon-
ductor order parameter nsc = (n1, n2) = (Re[], Im[]). We
then recall that, on the other side of the transition, an excitonic
insulator is obtained in the CS fermionic mean-field theory,
which only exhibits a single scalar order parameter χ . Since
±χ describe degenerate excitonic states in accord with ±〈Sz〉
Ising configuration, the effective theory of the excitonic insu-
lator in terms of χ should only enjoy O(1) symmetry, whose
fundamental representations are real numbers ±1. Besides,
we have previously observed that the symmetries of the CS
superconductor and the excitonic insulator can be smoothly
“rotated” into each other near Jz/Jx ∼ 1, thus it is natural
to construct a O(3) NLσM, which describes the QPT in the
fermionic language.

We thus introduce the vector n = (n1, n2, n3) =
(Re[], Im[], χ ), which consists of both the order
parameters of the CS superconductor and the excitonic
insulator. Accordingly, the “superspin” [41,42] is defined
as n̂ = n/n, where n = √

nμnμ with μ = 1, 2, 3. Then, the

O(3) NLσM emerges naturally in the CS fermion mean-field
theory as

βHtot
eff = K

2

∫
d2x(∇n̂)2 + λ

∫
d2x

[
n2

sc − n2
3

]/
n2, (30)

where the λ term is introduced as the tuning parameter that
drives the phase transition. For λ = 0, Eq. (30) describes
the transition point, which enjoys the O(3) symmetry corre-
sponding to the original Heisenberg Hamiltonian at Jz/Jx = 1.
One notes that the time variation of superspin is negligible
since the model enters the renormalized classical regime for
the ordered states [43]. For λ > 0, n2

3, thus the CS excitonic
insulator order is more favorable, which breaks the O(3)
symmetry down to O(1). For λ < 0, n2

sc, thus the CS super-
conductor is more favorable and the O(3) symmetry is broken
down to O(2).

Equation (30) sheds light on the nature of the transition at
Jz/Jx = 1. We perform a perturbative renormalization group
(RG) analysis of the O(N) model while turning off λ, which
generates the RG flow dK

dl = (2 − N )/2π . For the Heisen-
berg point where λ = 0, the model has O(3) symmetry with
N = 3. In this case, the stiffness K is irrelevant. The system
thus stays at the weak coupling (or high-temperature) fixed
point and remains disordered. In comparison, for λ > 0, the
symmetry is effectively reduced to O(1), thus K becomes
relevant, flowing to the ordered state corresponding the ex-
citonic insulator with nonzero χ . For λ < 0, the remaining
symmetry is O(2). With N = 2, K becomes marginal. This
reflects the Kosterlitz-Thouless nature of the ordering of the
2D XY model. Interestingly, the vortex and antivortex in the
original spin picture are equivalently interpreted to be the
vortex excitations of CS superconductors.

As shown above, starting from the CS fermion mean-field
theory, one can systematically solve the mean-field orders,
which further serve as the building blocks to construct the field
theory describing the QPTs. For the XXZ model, the theory
indicates a continuous transition at Jz/Jx = 1 where the O(3)
symmetry is restored. In the following, we present DMRG
calculations to further confirm the above analytic conclusion.

B. Numerical study of the nature of the QPT

We now numerically study the phase transition at Jz/Jx = 1
using DMRG. The nature of the transition is determined by
how the ground-state wave function is changed across the
critical point. This can be numerically probed by calculating
the fidelity [44–62]. In general, considering a Hamiltonian
consisting of a tuning parameter λ, the quantum fidelity is
defined as the overlap of ground states at neighboring param-
eters, i.e.,

F (λ, δλ) = |〈0(λ)|0(λ + δλ)〉|. (31)

F (λ, δλ) displays singular behaviors in the vicinity of the
critical point. Due to the discrepancy of ground states on
different sides of transition point, the fidelity usually exhibits
a steep drop around the critical point. In the limit of δλ → 0,
the fidelity can be further expanded as

F (λ, δλ → 0) � 1 − 1
2χF (λ)δλ2, (32)
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FIG. 6. (a) Calculated fidelity susceptibility per site as a function
of Jz for nearest-neighbor spin- 1

2 XXZ model on honeycomb lattice.
Results for different system sizes are shown. The red circles highlight
the maxima of χF /N , which gradually approach the exact critical
point Jz/Jx = 1 with increasing system sizes. (b) The scaling of
fidelity susceptibility at the critical point [determined by the max-
ima of χF /N in (a)] with respect to the number of lattice sites N .
(c), (d) The fidelity susceptibility and its scaling obtained for the
nearest-neighbor spin- 1

2 XXZ model on square lattice, respectively.
The results in (d) lead to the critical exponent 1/ν = ln χ c

F / ln N =
2.675.

where the coefficient of the δλ2-order term, i.e., χF (λ), is
termed as the fidelity susceptibility (FS). χF (λ) describes the
rate of change of the fidelity under infinitesimal variations of
λ. Clearly, the drop in the fidelity near the critical point is man-
ifested by the divergent behavior of χF (λ). From the peaks
of FS obtained in numerical simulations, one can determine
the location of the transition point. We mention in passing
that, although the transition point obtained in this way usually
exhibits some deviations from its exact value due to finite-size
effects, such deviations decrease gradually and we approach
the exact critical point as the system size increases.

Importantly, scaling theory in terms of FS has been studied
in [56–59]. For all second-order QPTs, the FS per site near the
critical point obeys the scaling law

χF /N ∼ L2/ν−d , (33)

where N is the number of lattice sites, L is the system size,
d is the spatial dimension of the system, and ν is the critical
exponent of the correlation length. Thus, for N ∼ L2, a linear
relationship between ln χF and ln N is expected to take place
near the critical point. In particular, for N ∼ L2 and d = 2,
χF ∼ L2/ν , thus ln χF ∼ 1

ν
ln N . The linear dependence can be

used as a criterion for second-order QPTs, and this criterion
has been used in different correlated systems [56–59].

We perform the DMRG calculations of the FSs for both the
honeycomb and the square lattices with different system sizes.
As shown by Figs. 6(a) and 6(c), χF /N exhibits significant
peaks for both the honeycomb and the square lattices, which

FIG. 7. (a), (b) Show 〈Sx,z〉 for different Ly with Lx = 4, for the
honeycomb and the square models, respectively. The same pinning
field β = 10−4 is introduced along both the x and the z directions.
The inset to (a) shows the changes of 〈Sx,z〉 with increasing pinning
field β. (c) The DMRG results of the correlation function Cx,z(r) =
〈Sx,z(0)Sx,z(r)〉 for the honeycomb model, where r is taken as 3,6,9
lattice spacings along the Lx direction as indicated by the inset to (c).
The system size is Ly = 4, Lx = 8.

approaches Jz/Jx = 1 with increasing system sizes. Moreover,
we observe the linear dependence between ln χF and ln N for
both lattices, as shown in Figs. 6(b) and 6(d). This clearly
demonstrates that the phase transition at Jz/Jx = 1 between
the planar Néel AFM and the out-of-plane AFM order to be
a continuous QPT, in accordance with the field-theoretical
result. Here, we also mention in passing that, from Fig. 6(d),
the critical exponent is extracted to be 1/ν = 2.675 for the
square lattice case. This is in accurate agreement with the
quantum Monte Carlo simulations of the model [57], which
obtains 1/ν = 2.68(6).

Our CS fermion-indicated NLσM suggests a restored O(3)
symmetry at Jz/Jx = 1. This can also be verified numerically.
First, we note that the order parameters 〈Sx〉, 〈Sz〉 in Fig. 1 are
obtained by applying a weak pinning field β ∼ 10−4 along the
x direction, which favors the planar Néel order. This leads to
the numerical artifact that the order 〈Sx〉 dominates at Jz/Jx =
1. Thus, we refine the calculations of the order parameters at
Jz/Jx = 1, by applying equal pinning fields (β ∼ 10−4) along
both the x and z directions. As shown by Figs. 7(a) and 7(b),
for both the honeycomb and the square lattices with different
system sizes, 〈Sx〉 and 〈Sz〉 are found to be exactly equal
to each other at Jz/Jx = 1. Besides, their values are small
and depend only on the pinning field. This is clear from the
linear growth of 〈Sx,z〉 with β shown in the inset to Fig. 7(a).
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Thus, the system has an equal preference in terms of 〈Sx〉
and 〈Sz〉 at the Heisenberg point, in agreement with the O(3)
NLσM. Besides, we also calculate the correlation function
〈Sx,z(0)Sx,z(r)〉 for different distances |r| = 3a, 6a, 9a, where
a is the lattice spacing. As shown by Fig. 7(c), we find that
〈Sx(0)Sx(r)〉 = 〈Sz(0)Sz(r)〉 is exactly satisfied at Jz/Jx = 1.
This also clearly demonstrates the O(3) symmetry at the criti-
cal point.

VIII. SUMMARY AND DISCUSSION

We have generalized the CS fermionization method to
study the quantum XXZ model. Previously, this fermioniza-
tion approach has only been used to explore the ideal XY
models [32,33,36]. In comparison, the XXZ models differ
from the XY models after fermionization, mainly because
of the complications brought about by the additional Ising
interaction. The Ising interaction generates an additional local
fermion-fermion interaction, which in turn leads to multiple
possible instability channels that are allowed by symmetries.
Through careful analysis, we found that it is the intravalley
s-wave excitonic channel that is most energetically favorable.
Accordingly, an interesting phase transition from the CS su-
perconductor state to the CS s-wave excitonic insulator state
is discovered. We propose that this phase transition provides
a fermionic interpretation of the QPT from the planar Néel
AFM to the out-of-plane Néel order.

The CS fermion approach also suggests a systematic way
to obtain field-theoretical understandings of the nature of
the QPTs. Using the order parameters obtained in the CS
fermion mean-field theory, we propose a NLσM in terms of
the O(3) superspin that describes the QPT in the XXZ model.
Numerical simulations are also performed, which clearly
demonstrates the continuous nature of the QPT as well as the
O(3) symmetry at the Heisenberg point. Lastly, the method
proposed here is generalizable to different lattices. Although
we show analytic and numerical results for the square and the
honeycomb lattices as examples, we note that generalizations
to other cases, such as the triangular lattice, are also possible.
The latter has in fact been proved to display Dirac nodes in
terms of CS fermions after CS fermionization [33], which
already paves the way for further studies on the QPTs driven
by other interactions.

Last, it should be further mentioned that the CS fermion
approach is technically different from the parton approaches.
The latter has been used to understand ordered state starting
from a parent spin-liquid state [21,22]. In analogy, here we
show that the Dirac CS fermions state as indicated by Fig. 5(d)
can be used as a parent state to generate the magnetically
ordered states. Despite the similarities between the two ap-
proaches, the CS representation does not require additional
constraint conditions on local Hilbert space. Thus, it may
yield more straightforward mean-field descriptions of ordered
states, without the need of further Gutzwiller projections.
Therefore, purely fermionic theories in faithful representation
of the microscopic spin models become likely, which, as illus-
trated above, provide a systematic way to understand QPTs in
quantum magnets.

In summary, our generalized CS fermionization method
has produced results absent in previous CS mean-field theo-
ries. It provides different understandings of QPTs in quantum

XXZ magnets from perspective of fermions. The generaliza-
tion from the XY models to the XXZ models made here could
have far-reaching consequences, as it is an indispensable step
essential for the CS fermion mean-field theories to be appli-
cable to realistic magnetic materials. Based on the results in
this work, and with further neighbor interactions being taken
into account, the CS fermion theory could enjoy many versa-
tile applications and provide useful descriptions for frustrated
quantum magnets that are of experimental relevance.
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APPENDIX: TECHNICAL DETAILS IN THE DERIVATION
OF THE EFFECTIVE HAMILTONIAN

In the main text, upon CS fermionization and the projec-
tion to the low-energy window around the two Dirac valleys,
HIsing can be expressed by CS fermions as Eq. (8). We then
transform it to the band basis, and after appropriate rearrange-
ments, we obtain four kinds of interactions:

V (1) = −3Jz

4

∑
a,n,k,k′

c(a)†
n,k c(a)

n̄,kc(a)†
n̄,k′ c

(a)
n,k′

+ 3Jz

4

∑
a,n,k,k′

c(a)†
n,k c(a)

n,kc(a)†
n̄,k′ c

(a)
n̄,k′ ,

V (2) = −3Jz

4

∑
a,n,k,k′

k · k′c(a)†
n,k c(a)

n̄,kc(a)†
n̄,k′ c

(a)
n,k′

+ 3Jz

4

∑
a,n,k,k′

k · k′c(a)†
n,k c(a)

n,kc(a)†
n̄,k′ c

(a)
n̄,k′ ,

V̄ (1) = −3Jz

4

∑
a,n,k,k′

c(a)†
n,k c(a)

n̄,kc(ā)†
n̄,k′ c

(ā)
n,k′

+ 3Jz

4

∑
a,n,k,k′

c(a)†
n,k c(a)

n,kc(ā)†
n̄,k′ c

(ā)
n̄,k′ ,

V̄ (2) = −3Jz

4

∑
a,n,k,k′

k · k′c(a)†
n,k c(ā)

n̄,kc(ā)†
n̄,k′ c

(a)
n,k′

+ 3Jz

4

∑
a,n,k,k′

k · k′c(a)†
n,k c(ā)

n,kc(ā)†
n̄,k′ c

(a)
n̄,k′ . (A1)

The first two are intravalley interactions, which are only as-
sociated with the interactions between different bands at one
single valley. The latter two are interactions between different
valleys. To investigate the effect of the interaction from the
Ising term on the original Dirac cones, we treat these interac-
tions with mean-field approximations [38].

First, we only consider the intravalley interactions. Apply-
ing mean-field treatment, the order parameters are chosen as
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follows:

χ (a)
n,s = 3Jz

2

∑
k

〈
c(a)†

n,k c(a)
n̄,k

〉
,

λ(a)
n,s = 3Jz

2

∑
k

〈
c(a)†

n,k c(a)
n,k

〉
,

χ(a)
n,p = 3Jz

2

∑
k

k̂
〈
c(a)†

n,k c(a)
n̄,k

〉
,

λ(a)
n,p = 3Jz

2

∑
k

k̂
〈
c(a)†

n,k c(a)
n,k

〉
. (A2)

By definition, χ (a)∗
n,s = χ

(a)
n̄,s and χ(a)∗

n,p = χ
(a)
n̄,p. Thus, the mean-

field Hamiltonian is given by

H intra
MF =

∑
n,k

(
nvF kc(+)†

n,k c(+)
n,k − nvF kc(−)†

n,k c(−)
n,k

)

+ 1

2

∑
n,a,k

(
λ(a)

n,sc
(a)†
n̄,k c(a)

n̄,k + λ
(a)∗
n̄,s c(a)†

n,k c(a)
n,k

)

− 1

2

∑
n,a,k

(
χ (a)

n,s c(a)†
n̄,k c(a)

n,k + χ (a)∗
n,s c(a)†

n,k c(a)
n̄,k

)

+ 1

2

∑
n,a,k

(
k̂ · λ(a)

n,pc(a)†
n̄,k c(a)

n̄,k + k̂ · λ
(a)
n̄,pc(a)†

n,k c(a)
n,k

)

− 1

2

∑
n,a,k

(
k̂ · χ

(a)
n̄,pc(a)†

n,k c(a)
n̄,k + k̂ · χ(a)

n,pc(a)†
n̄,k c(a)

n,k

)

+ 1

3Jz

∑
n,a

χ (a)
n,s χ

(a)
n̄,s − 1

3Jz

∑
n,a

λ(a)
n,sλ

(a)
n̄,s

+ 1

3Jz

∑
n,a

χ(a)
n,p · χ

(a)
n̄,p − 1

3Jz

∑
n,a

λ(a)
n,p · λ

(a)
n̄,p. (A3)

The two valleys in the Hamiltonian above are uncoupled, so
we only consider the “+” valley here. For convenience, we
ignore the “+” index, and the Hamiltonian reads as

H intra
MF =

∑
k,n

vF kc†
n,kcn,k

+
∑
k,n

(λn,sc
†
n̄,kcn̄,k − χn,sc

†
n̄,kcn,k )

+
∑
k,n

(k̂ · λn,pc†
n̄,kcn̄,k − k̂ · χn,pc†

n̄,kcn,k )

+ 2

3Jz
χ+,sχ−,s − 2

3Jz
λ+,sλ−,s

+ 2

3Jz
χ+,p · χ−,p − 2

3Jz
λ+,p · λ−,p. (A4)

Choose a gauge to constrain the order parameters to be real
and we get the “+” valley Hamiltonian,

H intra
MF

=
∑

k

ψ
†
k

(
vF k + λ−,s −χs − 1√

2
χpe−iθk

−χs − 1√
2
χpeiθk −vF k + λ+,s

)
ψk

+ 2

3Jz
χ2

s − 2

3Jz
λ+,sλ−,s + 2

3Jz
χ2

p , (A5)

where ψk = (c+,k c−,k )T, χp is the amplitude of p-wave
excitonic order, and we have used χ+,s = χ−,s := χs, χ−,p =
χ∗

+,p. The k̂ · λ−,p term does not satisfy the Hermitian condi-
tion, so it is discarded. The ground-state energy is obtained to
be

EG = −
∑

k

{
λ1 +

[
1

2
χ2

p +
√

2χpχs cos θ

+χ2
s + (λ2 + vF k)2

]}

+ 2

3Jz
χ2

s − 2

3Jz

(
λ2

1 − λ2
2

) + 2

3Jz
χ2

p , (A6)

where we have defined λ1 = 1
2 (λ+,s + λ−s), λ2 = 1

2 (λ+,s −
λ−s).

Only λ2, χp, and χs determine the ground state energy in
a nontrivial way, while λ1 just shifts the ground state energy
by a constant term. Taking the continuum limit, we get their
self-consistent equations,

λ2 = 3Jz

8

∫
kdk

2π

∫ 2π

0

dθ

2π

λ2 + vF k√
A

,

χp = 3Jz

8

∫
kdk

2π

∫ 2π

0

dθ

2π

χp + √
2χs cos θ√
A

,

χs = 3Jz

8

∫
kdk

2π

∫ 2π

0

dθ

2π

2χs + √
2χp cos θ√
A

, (A7)

where A = χ2
p/2 + √

2χpχs cos θ + χ2
s + (λ2 + vF k)2.

Rescale these equations by substituting λ2 = λ′
2vF �, χp =

χ ′
pvF �, χs = χ ′

svF �, Jz = J ′vF �, k = k′�, we get

λ′
2 = 3J ′

32π2

∫
k′dk′

∫ 2π

0
dθ

λ′
2 + k′
√

A′ ,

χ ′
p = 3J ′

32π2

∫
k′dk′

∫ 2π

0
dθ

χ ′
p + √

2χ ′
s cos θ√

A′ ,

χ ′
s = 3J ′

32π2

∫
k′dk′

∫ 2π

0
dθ

2χ ′
s + √

2χ ′
p cos θ√

A′ , (A8)

where A′ = χ ′2
p /2 + √

2χ ′
pχ

′
s cos θ + χ ′2

s + (λ′
2 + k′)2.

As shown in the main text, after self-consistency calcula-
tions, we find that only s-wave excitonic orders dominate, so
we will only consider this order in the following discussions.
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Now consider the inter-valley interactions. After applying
the mean-field approximation, we have

H inter
MF = −1

2

∑
k,n,a

(
χ (a)

n,s c(ā)†
n̄,k c(ā)

n,k + χ
(ā)
n̄,s c(a)†

n,k c(a)
n̄,k

)

+ 1

2

∑
k,n,a

(
λ(a)

n,sc
(ā)†
n̄,k c(ā)

n̄,k + λ
(ā)
n̄,sc

(a)†
n,k c(a)

n,k

)

− 1

2

∑
k,n,a

k̂ · (
χ̄(a)

n,pc(ā)†
n̄,k c(a)

n,k + χ̄
(ā)
n̄,pc(a)†

n,k c(ā)
n̄,k

)

+ 1

2

∑
k,n,a

k̂ · (
ξ(a)

n,pc(ā)†
n̄,k c(a)

n̄,k + ξ
(ā)
n̄,pc(a)†

n,k c(ā)
n,k

)

− 1

3Jz

∑
a,n

(
ξ(a)

n,p · ξ
(ā)
n̄,p − χ̄(a)

n,p · χ̄
(ā)
n̄,p

)

− 1

3Jz

∑
a,n

(
λ(a)

n,sλ
(ā)
n̄,s − χ (a)

n,s χ
(ā)
n̄,s

)
,

(A9)

where the newly decoupled order parameters are defined as
follows:

χ̄(a)
n,p = 3Jz

2

∑
k

k̂
〈
c(a)†

n,k c(ā)
n̄,k

〉
, (A10)

ξ(a)
n,p = 3Jz

2

∑
k

k̂
〈
c(a)†

n,k c(ā)
n,k

〉
. (A11)

χ̄(a)
n,p is the intervalley p-wave excitonic order. We only con-

sider the excitonic orders since only the excitonic orders are
relevant to the original spin picture. After adding the excitonic
orders from the intravalley interactions to the Hamiltonian, we
arrive at a simplified Hamiltonian containing all Ising terms

HMF =
∑

k


†
kHk + 2

3Jz
(χ (+)

s + χ (−)
s )2 + 4

3Jz
χ̄(+)

p · χ̄(−)
p ,

(A12)

with k = (c(+)
+,k c(+)

−,k c(−)
+,k c(−)

−,k )
T
, and

H =

⎛
⎜⎜⎝

vF k −∑
a χ (a)

s 0 −χ̄(+)
p · k̂

−∑
a χ (a)

s −vF k −χ̄(+)
p · k̂ 0

0 −χ̄(−)
p · k̂ −vF k

∑
a χ (a)

s

−χ̄(−)
p · k̂ 0

∑
a χ (a)

s vF k

⎞
⎟⎟⎠, (A13)

where we have used χ
(a)
±,s = χ (a)

s , χ̄
(a)
±,p = χ̄(a)

p . Thus, we obtain the effective Hamiltonian which contains the XY term and the
Ising term.
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