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When two layers of two-dimensional materials are assembled with a relative twist, moiré patterns arise,
inducing a tremendous wealth of exotic phenomena. In this work, we consider twisting two triangular lattices
hosting Dirac quantum spin liquids. A single decoupled layer is described by compact quantum electrodynamics
in 2+1 dimensions (QED3) with an emergent U(1) gauge field, which is assumed to flow to a strongly interacting
fixed point in the IR with conformal symmetry. We use recent results for the quantum numbers of monopole
operators, which tunnel 2π fluxes of the compact gauge field. It is found that, in the bilayer system, interlayer
monopole tunneling is a symmetry-allowed relevant perturbation which induces an (ordering) instability. We
show using perturbation theory that upon twisting the two layers the system remains unstable under the interlayer
interaction, but any finite twist angle softens this instability compared to the untwisted case. To analyze the
resulting phase induced by the (twisted) interlayer tunneling, we use “conformal mean-field theory”, which
reduces the interacting bilayer system to two copies of QED3 coupled to background fields which are to be
determined self-consistently. In the weak-coupling regime, where the interlayer coupling is weak compared to
the energy scale set by the moiré lattice constant, we solve the self-consistency equations perturbatively. In the
limit of strongly coupled layers, a local scaling approximation is used, and we find that the magnetically ordered
state exhibits a lattice of magnetic vortices, with the lattice constant tunable through the twisting angle.
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I. INTRODUCTION

A. Motivation

Van der Waals materials are two-dimensional atomic crys-
tals with strong in-plane covalent bonds and weak interlayer
van der Waals (vdW) interactions, which can be exfoliated
down to monolayer. In recent years, numerous experiments
have strongly advanced capabilities to prepare and control
these materials with atomic precision, and assemble them like
quantum Legos [1,2].

A particularly fruitful avenue in this regard consists in
exploiting moiré physics, which arises from relative twist-
ing or lattice mismatches between different layers, leading
to quantum interferences which quench the energy scales in
the system, often permitting a strongly coupled, interaction-
dominated regime. One leading example of this manipulation
of electronic properties, or twistronics [3] in vdW heterostruc-
tures, is that of the twisted bilayer graphene [4,5], where
exotic superconductivity and correlated insulating behaviors
have been observed.

Recently, the study of moiré heterostructures has been
extended to systems with magnetic ordering, where interest-
ing noncollinear magnetic ordering, magnon behaviors, and
topological spin textures have been found [6–15]. A natural
followup question is then as follows: What happens when
one twists quantum spin liquids, i.e., strongly correlated spin
systems that intrinsically lack magnetic ordering [16]?

*These authors contributed equally to this work.

In this work, we will focus on the twisted bilayer of U(1)
Dirac spin liquids (DSL) described in the low-energy limit
by N = 4 flavors of Dirac fermions coupled minimally to an
emergent U(1) gauge field. This effective theory is known as
QED3, quantum electrodynamics in 2+1 dimensions. In the
context of U(1) DSL, the Dirac fermions are fractionalized
quasiparticles which carry the spin degrees of freedom of the
electrons, thereby named spinons. In the absence of monopole
and SU(N ) symmetry breaking (which is avoided for a suffi-
ciently large number of fermion flavors N), QED3 is assumed
to be stable and to flow to a strongly coupled conformal fixed
point in the IR [17–22].

Our motivation for focusing on U(1) DSL is twofold: On
the one hand, there is evidence which suggests that such a
state could be the ground state in realistic and experimentally
relevant microscopic spin models, thus constituting a prime
example of an exotic highly entangled strongly correlated
magnetic state of matter. Dirac spin liquids were originally
studied in the context of high-Tc superconductors [23] on the
square lattice, and later examined on other lattices [24–27] as
well. In particular, on the triangular lattice with both nearest
and next nearest neighbor spin couplings, there is consider-
able numerical evidence suggesting the presence of a Dirac
spin liquid [28–31]. Material candidates have been proposed
as well, including Ba8CoNb6O24 [32] and 1T-TaS2 [33], the
latter being a van der Waals material.

On the other hand, U(1) DSLs have commonly been
described as “parent states” of competing orders, as they
offer a unified framework to describe various (seemingly un-
related) magnetic (and valence-bond paramagnetic) ordered
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states [25] by inducing instabilities of the U(1) DSL. Our
present study hence can also be understood as exploring the
viability of the concept of the DSL as a parent state, both in
homogeneous layered systems and upon spatial modulations
of the interlayer coupling as an additional control knob, poten-
tially stabilizing various exotic competing ordered states with
moiré supermodulations.

For the spin liquid on the triangular lattice, recent works
by Song et al. have shown that all monopoles in the ef-
fective QED3 theory carry nontrivial symmetry quantum
numbers [34,35]. The lowest-order symmetry-allowed term is
a triple monopole [34,35], very likely to be irrelevant based
on large-N expansion [36]. There can also be four fermion
terms that break the SU(4) flavor symmetry, which are found
to be irrelevant in ε expansion [20], but relevant in large-N
expansions [37]. While the stability of the U(1) Dirac spin
liquid on the triangular lattice is hence an open question,
any instabilities inherent in a single two-dimensional layer
are relatively weak, if they are present at all. By contrast,
we observe in this work a strong instability (associated with
highly relevant interlayer interactions) of the bilayer system,
which can be tuned through twisting.

B. Summary of results and outline

We briefly summarize the model and our results in this sub-
section. In each layer, the effective low-energy theory is that of
the Nf = 4 QED3, i.e., four flavors of Dirac fermions coupled
to a U(1) gauge field, which we assume to flow to a conformal
fixed point [17–20], facilitating our use of conformal data to
constrain correlation functions and construct effective actions.

We consider the interlayer coupling of fermion bilinear
masses in the two layers as well as interlayer tunneling of
monopoles of the U(1) gauge fields. Guided by latest confor-
mal bootstrap results [38,39], we take the monopole tunneling
terms to be the most relevant. For a relative rigid twist of angle
θ , symmetry analysis predicts monopole tunneling terms to be
of the form

L1 = Jv

3∑
a=1

f a
v (x)�†

1a�2a + Js fs(x)
6∑

a=4

�
†
1a�2a + H.c.,

f a
v (x) = ei �qa·�x/2, and fs(x) =

3∑
i=1

ei �qi ·�x, (1)

where �la is the monopole annihilation operator in layer l
with flavor a. There are altogether six different flavors, which
fall into two classes labeled by the indices v (a = 1, 2, 3) and
s (a = 4, 5, 6) standing for valence bond solid (VBS) and
spin channels, respectively. Proliferating the corresponding
monopoles (or a linear combination thereof) yields a corre-
sponding VBS or magnetic order parameter. The finite twist
angle leads to supermodulations of the interlayer couplings,
i.e., the functions fα (x) are periodic on the moiré scale with
moiré reciprocal vectors �qa = θ ẑ × �Ka, where �Ka is the three
C3-symmetry-related Brillouin zone corner vectors of the par-
ent layers.

We first analyze the interlayer interaction using perturba-
tion theory, using the fact that monopole correlation functions
are strongly constrained by conformal symmetry. For θ = 0,

one can predict simply from the scaling dimension �� that
this perturbation theory is divergent, and the uniform coupling
of layers is a relevant perturbation in the renormalization
group sense. This divergence appears already at quadratic
order in the couplings. For θ > 0, the couplings oscillate
spatially and have zero mean. This immediately eliminates
any divergence arising at quadratic order, which suggests that,
keeping θ fixed and taking Jv, Js arbitrarily small, the coupling
of layers might be irrelevant.

A key result of our analysis is that this is not the case. We
find that even for θ > 0, a perturbative divergence persists,
but appears only at higher order in the couplings. This leads
to a breakdown of perturbation theory which we identify as an
instability. That is, even at nonzero θ (finite am), we find that
the twisted bilayer system is unstable in the thermodynamic
limit (i.e., sample size) L → ∞ for any infinitesimally small
J . The transfer of the instability from quadratic to higher order
with the introduction of a twist leads to the conclusion that the
instability is softened upon introducing a nonzero twist angle
θ ; in this case, the power-law finite-size scaling of the critical
Jc reads as

Jc ∼ (amL)−(3/2−�� ), (2)

compared to Jc ∼ L−(3−2�� ) in the homogeneous case (ab-
sence of any twist angle). Hence, the spatial modulation of
the interlayer coupling due to the twisting effectively renders
the interlayer coupling less relevant.

To study the nature of the phase resulting from the insta-
bility, we make a mean-field approximation by replacing the
interlayer interactions with a mean-field action of the form

�
†
1a�2a + H.c. → 〈�†

1a〉mf�2a + �
†
1a〈�2a〉mf + H.c., (3)

where the mean fields 〈�l,a〉 are to be determined self-
consistently. This approach is in direct analogy to “chain
mean-field theory” [40–42] used very successfully to describe
coupled one-dimensional spin chains.

Crucially, the presence of both an energy and length scale,
namely, the interlayer coupling J and the moiré lattice scale,
allows us to distinguish between weak-coupling J � a2��−3

m
and strong-coupling J 	 a2��−3

m regimes. Here, �� 
 1.02
is the scaling dimension of the monopole operator at the
QED3 fixed point, estimated from large-N and bootstrap
methods [39].

On one hand, considering the mean-field theory in the
weak-coupling limit, one may use conformal perturbation the-
ory to quadratic order to obtain above monopole expectation
values in each layer, and perform a qualitative analysis of
quartic terms to fix accidental degeneracies. We find that in
this perturbative regime, nontrivial solutions to the mean-field
equations emerge when J ∼ (amL)−( 3

2 −�� ), which is precisely
the same scaling as obtained in perturbation theory without
any mean-field approximation [see Eq. (2)].

To determine the form of the order parameter in the or-
dered phase, we first consider spin monopoles {�l4,�l5,�l6},
which are generated by spin-spin interactions in a microscopic
theory and are thus expected to be dominant. At the finite-size
critical point, the spatial dependence of the monopole expec-
tation values (which correspond to the Néel order parameters
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on the two parent triangular lattices) read as

〈�1(�x)〉mf ≈ − A

|Js| h̃(0) − fs(x)

3Js
h̃(0),

〈�2(�x)〉mf ≈ A

Js
h̃(0) + f ∗

s (x)

3|Js| h̃(0). (4)

Here h̃(0) is a constant three-dimensional complex vec-
tor. A ∼ L/am 	 1 is a constant proportional to the ratio
between the IR cutoff (sample size L) and the moiré lat-
tice constant (am ∼ a0/θ ). Therefore, the first uniform terms
in the two equations above dominate, and there are some
corrections with modulations of moiré scale. The cou-
pling of VBS monopoles {�l1,�l2,�l3} can be analyzed
similarly.

On the other hand, in the strong-coupling regime of Ja 	
a2��−3

m , the spatial modulations of the tunneling amplitudes
are slow enough such that locally, the bilayer system can be
well approximated by that of a uniform stacking. This limit
therefore facilitates a scaling ansatz for the mean-field free
energy from which correlation functions can be determined
(the resulting local degeneracy is lifted by symmetry-allowed
gradient terms). Again focusing on the interlayer coupling
of spin monopoles, we find that the monopole expectation
values, and thus the magnetic order parameter, vanish at the
centers of the triangular plaquettes in the moiré triangular
lattice, precisely where the interlayer-coupling function fs(x)

possesses zeros, with |〈�l (x)| ∼ | fs(x)|
��

3−2�� . Around these
zeros, fs(x) possesses a nonzero winding number (by ±2π

going anticlockwise around rightward- and leftward-facing
triangles), which leads to the expectation values of the spin
monopoles in the two layers to differ by a spatially modulating
phase 〈�2〉mf/〈�1〉mf = ei arg fs (x). Note that this implies that
the interlayer exchange symmetry of the system is broken.

We have thus found that, in the limit of strong coupling (to
which the relevant interlayer interaction inevitably flows), the
model realizes an exotic magnetic vortex lattice on the moiré
scale. The latter is experimentally tunable by varying the twist
angle θ . An exemplary configuration for such a moiré vortex
lattice, showing the order parameter configurations in both
layers along with microscopic spin configurations, is depicted
in Fig. 1.

One may argue that one could obtain bilayer ordered states
qualitatively resembling our results by coupling together order
parameters for classically ordered phases, such as the 120◦
Néel antiferromagnetic phases, in the two layers [resulting
bilayer ordered states are expected to be similar to what we
found but with explicitly fixed order parameter magnitudes,
while within our framework they vary with critical exponents
related to operator scaling dimensions of the (conformal)
fixed point theory]. However, we emphasize that it is a priori
unclear if the (twisted) bilayer coupling induces an ordering
instability of the two Dirac spin liquids (which, in a single
layer, are stable phases). The problem of stability of the bi-
layer DSL thus necessitates studying perturbations to the IR
fixed point, which is described by a conformal field theory
specified by scaling dimensions and an operator algebra. In
contrast, a nonlinear sigma model formalism for the inter-
twined order parameters of valence bond solid and magnetic

FIG. 1. Schematic example order parameters 〈�l〉 (on the moiré
lattice, indicated by gray lines) for the two layers in the strong-
coupling limit, where Js 	 a2��−3

m . The length of the plotted arrows
corresponds to the magnitude |〈�l〉|, the direction of the plot-
ted arrows corresponds to Re[〈�l〉/|〈�l〉|], and the angle α ≡
arg Im[〈�l〉/|〈�l〉|] is color coded. The insets depict the spin con-
figurations on the A (blue), B (red), and C (green) sublattices of the
parent layers, determined via Eq. (10). As visible, the magnetic order
parameter in both layers vanishes at the centers of the moiré triangles,
leading to moiré vortices with a nontrivial winding number of the
relative angle of the order parameters between the two layers. Note
that this configuration spontaneously breaks the interlayer exchange
symmetry.

phases would not be able to describe the physics at the fixed
point.

The remainder of this paper is organized as follows. We
review Dirac spin liquids (i.e., the physics of a single layer)
and their conformal low-energy field theory in Sec. II. In
Sec. III, we derive a continuum description for the interlayer
interactions based on symmetry principles. We use pertur-
bation theory to analyze the stability of the system under
the (twisted) interlayer interaction in Sec. IV. In Sec. V, we
develop a mean-field treatment for the interlayer monopole
tunneling term, and solve the resulting mean-field equa-
tions perturbatively in Sec. V, followed by a strong-coupling
analysis in Sec. VII. Finally, in Sec. VIII, we present a
conformal renormalization group analysis for homogeneous
interlayer coupling along with the summary and outlook.

II. U(1) DIRAC SPIN LIQUIDS

In this work, we will be interested in spinons dispersing
on the triangular lattice with a staggered π/0 flux back-
ground, leading to two Dirac cones per spin at momenta �K1 =
2π (1/3,−1/

√
3)�/a0 and �K2 = (−4π/3, 0)�/a0 at zero en-

ergy. In the long-wavelength (continuum) limit, the system
can be described in terms of (2+1)-dimensional quantum
electrodynamics (QED3) with the Euclidean Lagrangian

LQED3
=

N=4∑
i=1

[−ψ̄iγ
μ(∂μ − iaμ)ψi] + 1

4g2
fμν f μν, (5)

where each ψi is a two-component Dirac fermion with N = 4
flavors (2 spin×2 valley degrees of freedom), γ μ are the
gamma matrices, aμ denotes the emergent U(1) gauge field
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with field strength tensor fμν , and g is a coupling constant.
As visible from (5), the SU(2)spin × SU(2)valley symmetry
becomes enhanced to SU(4) at low energies. In contrast to
quantum electrodynamics in 3+1 dimensions, the coupling
constant g2 has unit mass dimension and thus the theory flows
to strong coupling in the IR. In particular, studies of QED3

with N flavors have shown that for sufficiently large N , the IR
fixed point possesses conformal symmetry, while the fate of
the theory for small N is uncertain [43–46].

The Dirac fermions in (5) can become gapped upon
adding (or spontaneously generating) bilinear masses Mμν =
ψ̄σμτμψ , with σμ (τ ν) denoting Pauli matrices acting on spin
(valley) components of the Dirac fermions (note that, as we
work in a flat Euclidean spacetime, we are free to use upper
and lower indices for notational convenience). Note that Mμν

transforms in a reducible representation of SU(4) which splits
as 16 = 1 ⊕ 15 into the singlet and 15-dimensional adjoint ir-
reducible representations. While adding mass terms explicitly
to (5) is forbidden by symmetry, a scenario of spontaneous
chiral symmetry breaking has been suggested for a small
enough flavor number Nc, with the precise nature of the phase
structure and the value of Nc under investigation [43–46].
In the following, we will not consider such scenario and
instead assume that the theory at N = 4 flows to the conformal
IR fixed point, as supported by recent estimates that give
Nc < 4 [18,47].

We further note that in writing the action SQED3
=∫

d3x LQED3
as the (continuum) low-energy theory for the

bilayer U(1) Dirac spin liquid, one implicitly assumes the
presence of a UV cutoff scale given by the (single-layer)
lattice spacing a0 beyond which nonuniversal microscopic
(lattice) details of the interacting spin system are of impor-
tance. In real space, the UV cutoff gives a lower bound
a0 � |x − y| on the separation of two operator insertions at
points x, y.

A. Monopole operators

As written, the theory LQED3
is endowed with a topologi-

cal conserved current jμtop = εμνρ∂νaρ/(2π ) corresponding to
the conservation of the magnetic flux of the emergent U(1)
gauge field. However, this conservation law is an artifact of
the continuum limit, considering that (5) follows from a lat-
tice gauge theory with a compact U(1) gauge field, we may
consider operators which insert a 2π (emergent) magnetic
flux or a multiple thereof. These operators are commonly
referred to as monopole operators M(x), which carry unit
charge under the U(1)top symmetry. As these operators cannot
be written in terms of the fermions ψ (x) or the gauge field
aμ, it is convenient to employ the theory’s conformal sym-
metry. This allows us to characterize these operators through
the state-operator correspondence as scalar primary operators
with some scaling dimension �� which may be evaluated in
a controlled manner by quantizing the theory on S2 × R with
a given monopole configuration, and performing a large-N
expansion [48]. To leading order in 1/N , this amounts to
quantizing the Dirac operator on a sphere which is pierced
by a 2π magnetic flux, yielding N = 4 fermionic zero modes
(one zero mode per flavor). By gauge invariance, the four
zero modes must be half-filled, so that there are

(4
2

) = 6

FIG. 2. (a) Basis vectors and symmetry operations on the trian-
gular lattice. The blue dot is the rotation center for C6, and the red
dashed line is the reflection axis. (b) Hexagonal Brillouin zone on
the triangular lattice with the high-symmetry �, K , and M points and
reciprocal lattice vectors �g1, �g2.

distinct physical states resulting from filling the fermionic
zero modes associated with a monopole operator. Schemat-
ically, these physical monopole operators may be written
as [34,35]

�αβ ∼ f †
α f †

βM†, (6)

where f †
α are fermionic zero-mode creation operators, so

that �αβ must transform in the six-dimensional antisymmet-
ric representation of SU(4). It is convenient to employ the
isomorphism SO(6) = SU(4)/Z2 such that the monopole op-
erators �a with a = 1, . . . , 6 are taken to transform in the
defining (vector) representation of SO(6). This also implies
that the SU(2)spin, SU(2)valley subgroups of SU(4) are iso-
morphic to the respective SO(3)s/v subgroups of SO(6). In
addition, the monopole operator is odd under both the SO(6)
center and a π rotation in U(1)top, so the global symmetry
group of the low-energy theory is SO(6) × U(1)top/Z2, to-
gether with charge conjugation, time reversal T , and Lorentz
symmetries. The discrete microscopic (UV) symmetries are
shown in Fig. 2 and include translations T1,2, reflection R,
sixfold rotation C6, and time reversal T , which act nontriv-
ially on the operators of the continuum (IR) field theory.
While the transformation properties of the singlet and ad-
joint masses straightforwardly follow from the microscopic
implementation of above symmetries, the appropriate trans-
formations of monopole operators are given by combinations
of discrete Lorentz symmetries, SO(6) transformations (due
to the zero modes), and U(1)top rotations resulting from the
microscopic symmetries acting on the filled Dirac sea with
a ±2π background flux. In this spirit, the action of micro-
scopic symmetries on the monopole operator has been found
and tabulated by Song et al. in Refs. [34,35] using both
numerical methods as well as a study of the band topol-
ogy of spinons. For reference, we reproduce their results in
Table I.

We conclude this section by relating the continuum field
theory monopole operators to symmetry-equivalent micro-
scopic observables. From Table I, the first three monopoles
〈�1,2,3〉 are time-reversal invariant. Further imposing spin-
rotational invariance, the corresponding microscopic opera-
tors at lowest order are of the form Si · S j, consistent with the
expectation that these three monopoles describe VBS order.
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TABLE I. Transformation laws of the monopoles under micro-
scopic symmetries. The second and third columns represent the
transformation under translation along �a1/�a2 in Fig. 2, fourth column
the reflection symmetry, fifth column the sixfold rotation symmetry,
and last column the time-reversal symmetry. This table is adapted
from Table 2 in Ref. [34].

T1 T2 R C6 T

�1 ei π
3 �1 e−i π

3 �1 −�3 �†
2 �†

1

�2 e−i 2π
3 �2 e−i π

3 �2 �2 −�†
3 �†

2

�3 ei π
3 �3 ei 2π

3 �3 −�1 −�†
1 �†

3

�4/5/6 e−i 2π
3 �4/5/6 ei 2π

3 �4/5/6 �4/5/6 −�†
4/5/6 −�†

4/5/6

The simplest choice that can recover Table I is

Si · Si+δ1 = Re[ei�k1· �Ri�1( �Ri )],

Si · Si+δ2 = Re[ei�k2· �Ri�2( �Ri )],

Si · Si+δ3 = −Re[ei�k3· �Ri�3( �Ri )], (7)

where Si · Si+δ j with j = 1, 2, 3 labeling the bonds along the
directions �a1, �a2 − �a1 and −�a1 − �a2, respectively, with

�a1 = a0(1, 0)� and �a2 = a0(1/2,
√

3/2)� (8)

being two lattice vectors, and the corresponding reciprocal
lattice vectors are given by �g1 = (2π,−2π/

√
3)�/a0 and

�g2 = (4π/
√

3, 0)�/a0.
The bonds are separated from each other by 120◦ rotations.

The momenta �ki = − �Ki/2 in (7) are given by half of the
Brillouin zone’s K points,

�K1,3 = 4π

3a0

(
1

2
,∓

√
3

2

)�
, �K2 = 4π

3a0
(−1, 0)�. (9)

Here we use the vector symbol �· to label two-dimensional
vectors in space/reciprocal space, and use boldface to denote
SO(3)v/s [or SO(6)] vectors.

The vector �s = (�4,�5,�6) corresponds to the three
components the Néel order parameter which determines the
spin density in the magnetically ordered phase as

Si = Re
[
iei �K1· �Ri�s

]
. (10)

From now on, we will refer to {�1,�2,�3} as “VBS
monopoles” and {�4,�5,�6} as “spin monopoles” as they
can be understood as order parameters for valence bond solid
and magnetically ordered phases, respectively.

B. Conformal data and operator product expansions

In general, a conformal field theory is fully specified by its
conformal data, containing the operator spectrum as well as
the operator product expansion (OPE) coefficients. The two
lowest-lying sets of primaries in the spectrum are given by
the 15 adjoint masses Mi0, M0i, and Mi j (where i, j = 1, 2, 3)
as well as monopole operators �a. Their scaling dimensions
to first subleading order in 1/N are given by �M ≈ 1.46 and
�� ≈ 1.02 [49]. A recent comprehensive conformal bootstrap
study [39] finds a striking match (under certain CFT bootstrap

assumptions), placing the monopole operator scaling dimen-
sion within the range �� ∈ (1.02, 1.04). Assuming �� =
1.02 further yields a fermion adjoint mass scaling dimension
of �M ∈ (1.33, 1.66). Another recent bootstrap work [38]
explicitly accounting for the fate of the UV symmetries of
the Dirac spin liquid on the triangular lattice found that
stability demands �� > 1.046. Note that Monte Carlo sim-
ulations [18] appear to be consistent with the latter study, but
have claimed to be ruled out by the aforementioned bootstrap
study [39].

Note that the precise numerical values of �� and �M

are inconsequential to our study below. However, given the
recent results referenced above, it appears to be justified to
take �� < �M � 1.5 when analyzing scaling behavior and
(ir)relevance of operators.

Crucially, conformal invariance determines the two-point
functions of two primary operators Oi,O j up to a global
constant, which may be absorbed into the normalization of
the operators,

〈Oi(x)O j (y)〉 = δi j

|x − y|2�i
. (11)

Further, CFTs admit operator product expansions: two oper-
ators approaching each other may be expanded in primaries
Ok as

lim
x→y

Oi(x)O j (y) = lim
x→y

∑
k

Ck
i j

|x − y|�i+� j−�k
Ok (y), (12)

where the Ck
i j are the OPE coefficients. Note that, as writ-

ten, (12) corresponds to an asymptotic form of the operator
product expansion as x → y, while in general any OPE for
distinct x, y can be shown to be a convergent series (extending
over primaries and descendants) in a conformal field theory,
implying that all correlation functions are fully determined by
OPE coefficients and scaling dimensions �O [50].

The form of the OPE in (12) is strongly constrained by
symmetry considerations: If the two operators Oi and O j

transform in some irreducible representation of a symmetry
group G, the operators on the right-hand side of (12) can
be classified according to the irreducible representations of
G × G. Using the results by Song et al. [34,35], we can hence
formulate the operator product expansions for the most rel-
evant monopole and mass operators up to global constants
(with ∼ denoting the asymptotic character of the expressions)

�†
a(x)�b(y) ∼ δab

|x − y|2��
+ icM

��Fab
μν

|x − y|2��−�M
Mμν (y) + · · · ,

(13a)

�a(x)Mμν (y) ∼ ic�
�MF̄μν

ab

|x − y|�M
�b(y) + · · · , (13b)

where Fab
μν is a tensor which maps elements of the 15-

dimensional adjoint representation (indexed by μ, ν, with
μ = ν = 0 excluded from any summation) of SU(4) to the
rank-2 antisymmetric representation of SO(6) (indexed by
a, b), and F̄μν

ab is the corresponding inverse tensor satisfying
Fab

μνF̄
ρλ

ab = δρ
μδλ

ν . An explicit construction of F shows that
one can take F̄μν

ab = Fab
μν/2, and we further note the identity
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Fab
μνF cd

μν = δacδbd − δadδbc. We give details on the derivation
of Eqs. (13a) and (13b) in the Appendix. The real OPE co-
efficients cM

�� and c�
�M cannot be determined from symmetry

considerations, but are constrained by consistency relations
encoding the associativity of various four-point functions.
Determining numerical values from these sets of constraints
is a key element of the conformal bootstrap program [51].

III. CONTINUUM THEORY FOR BILAYER
U(1) DIRAC SPIN LIQUIDS

In this section, we derive a continuum model for the bilayer
Dirac spin liquids with arbitrary elastic deformations. We start
by assuming that the two layers are only slightly deformed
with respect to each other, so that the interlayer interaction can
be described as the integral of a local Lagrangian density. To
make the locality manifest, the following Eulerian coordinates
will be used:

�xl = �Rl + �ul (�x) + �zl , (14)

where l ∈ {1, 2} is the layer index, �R describes the coordinates
in the parent triangular lattice, �u is the smooth deformation
satisfying ∂ �u � 1, �x is the actual position in the bilayer sys-
tem, and �z represents the vertical displacement between the
two layers. In the case of a relative rigid twist of angle θ , we
have

�u1/2 = ±θ

2
ẑ × �x. (15)

As usual [52], such a rigid relative twist leads to the for-
mation of a moiré superlattice with reciprocal lattice vectors
�g(m)

i = −θ ẑ × �gi, and the corresponding lattice vectors for the
moiré superlattice read as �a(m)

1 = (0,−1)�a0/θ and �a(m)
2 =

(
√

3/2,−1/2)�a0/θ , which implies that the moiré lattice con-
stant am = a0/θ is inverse proportional to the twist angle θ .

In the following, we will use the physical symmetries to
constrain the possible interlayer interactions. Considering the
scaling dimensions review in Sec. II, two types of interac-
tions are most relevant: (i) interlayer tunneling terms of the
monopoles, which keep the total emergent magnetic flux con-
served in the full bilayer system; and (ii) interlayer couplings
of the bilinear masses from the two layers. We will discuss
these two cases separately in the following two subsections.

A. Interlayer monopole couplings

We have seen in Sec. II A that within each layer, there are
three monopoles �l,a with a ∈ {1, 2, 3} that carry the valley
degrees of freedom and transforms in the defining represen-
tation of SO(3)v, while other three with a ∈ {4, 5, 6} carry
the spin degrees of freedom and transform under SO(3)s.

Assuming locality, Hermiticity, and spin-rotation invariance,
the most general monopole tunneling terms are

L1 = Jv

∑
a,b=1,2,3

f ab
v [�u1, �u2] �

†
1a(x)�2b(x) + H.c.

+ Js fs[�u1, �u2]
∑

a=4,5,6

�
†
1a(x)�2a(x) + H.c. (16)

In the above, �ul are spatial vectors while x is a spacetime
3-vector with spatial components �x. We will use this labeling
method throughout the paper. Since the interlayer physics
should not be modified by a simultaneous translation of both
layers by a lattice vector, the complex functions fs and f ab

v can
depend only on the relative displacements between the two
layers �u ≡ �u1 − �u2. One can also observe that f ab

v = f a
v δab

should be diagonal because the translation symmetries act as
diagonal matrices on the monopoles, which can be observed
from the second and third columns of Table I. Only in the case
a = b, the phase factors coming from the two layers that are
gained from translations will cancel each other.

In addition, if the relative displacement field is shifted by
a Bravais lattice vector of the parent triangular lattice, the
interlayer physics should be invariant. For example, under a
shift of the basis vector �ai defined in Fig. 2, �u1 → �u1 + �ai,
one can compensate by �Rl → �Rl − �ai to return to the orig-
inal labeling of fields at the same locations. Consequently,
we should also make the transformations on the monopole
operators as in Table I. Considering this transformation in L1,
we find the periodicity conditions f a

v [�u + �a1] = ei�ka·�a1 f a
v [�u]

and fs[�u + �a1] = ei �K1·�a1 fs[�u], which implies that the interlayer
tunneling functions can be written in terms of a plane wave
multiplied by a (Fourier-expanded) periodic function

f a
v [�u] = ei�ka·�u

∑
�Q

f�ka+ �Qei �Q·�u,

fs[�u] = ei �K1·�u
∑

�Q′

f �K1+ �Q′ei �Q′ ·�u (17)

with �Q and �Q′ being the reciprocal lattice vectors and �ka

the momentum of the monopole operator �
†
la as defined in

Eqs. (9) and (10).
Next, we impose rotation symmetries. The threefold ro-

tation C3 = C2
6 leaves invariant the spin monopoles with

a ∈ {4, 5, 6}, thus relating different Fourier components in
fs(�u). Keeping only the lowest harmonics, we get

fs(�u) = f0,s

3∑
i=1

ei �Ki ·�u, (18)

with �Ki defined in (9) and f0,s an arbitrary complex number for
now. A single sixfold rotation C6 takes �

†
la → −�la, giving

fs(�u)�†
1a(x)�2a(x) → fs(�u′)�1a(x′)�†

2a(x′), with �x′ = R̂π/3�x
and �u′ = R̂−1

π/3�u. (R̂π/3 is the counterclockwise 2D rotation
matrix of angle π/3.) For this to be a symmetry, we need
fs[�u′] = f ∗

s [�u], which, upon plugging in (18), requires a real
f0,s = f ∗

0,s.
As for the VBS monopoles with a ∈ {1, 2, 3}, rotation

symmetry relates different f a
v ’s: Under C3, f a

v [�u]�†
1a�2a →

f a
v [�u′]�†

1,a+2�2,a+2, with a + 2 understood as modulo 3
and �u′ = R̂−1

2π/3�u. This requires f a
v [�u′] = f a+2

v [�u]. Keeping
only the lowest harmonics closed under the symmetry, we
arrive at

f a
v [�u] = f0,v ei�ka·�u. (19)

Similarly, a single C6 rotation constrains f0,v to be real. The re-
flection symmetry does not give rise to additional constraints
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FIG. 3. Left: Spatial dependence of | fs(x)| (on the moiré lattice
scale). At the center of each moiré triangle, the norm of fs vanishes.
Two singular points with positive (x+) and negative (x−) are marked
by a red cross. Right: The phase φs = arg fs(x) which is seen to wind
by 2π when encircling a moiré triangle.

on the hopping amplitudes in both spin and VBS cases. From
now on, we will absorb the real constants f0,s and f0,v into the
coupling constants Jv and Js in Eq. (16).

In the case of a trivial stacking with �u = 0, the monopole
tunneling terms simply reduce to

Ltriv
1 = Jv

∑
a=1,2,3

�
†
1a�2a + Js

∑
a=4,5,6

�
†
1a�2a + H.c. (20)

For a rigid twist of angle θ with �u = θ ẑ × �x, we can
write eiθ �Ki ·(ẑ×�x) = eiθ �x·( �Ki×ẑ) and thus it becomes clear that
the function fs(�x) = fs[�u(x)] is periodic with wave vectors
�qa = −θ ẑ × �Ka which lie on the corners of the lattice’s moiré
Brillouin zone. In particular, we have

�q1,3 = 4πθ

3a0

(
∓

√
3

2
,−1

2

)�
and �q2 = 4πθ

3a0
(0, 1)�. (21)

The �qa are hence reciprocal lattice vectors for a magnetic
moiré Brillouin zone (which is a factor 3 smaller than the
lattice’s moiré Brillouin zone), and the lattice vectors for this
magnetic moiré Brillouin zone read as

�b(m)
1 = (−

√
3, 0)�

a0

θ
and �b(m)

2 =
(

−
√

3

2
,

3

2

)�
a0

θ
. (22)

For a rigid relative twist by angle θ , we thus find that the
interlayer monopole tunneling terms read as

L1 = Jv

3∑
a=1

f a
v (x)�†

1a�2a + Js fs(x)
6∑

a=4

�
†
1a�2a + H.c.,

f a
v (x) = ei �qa·�x/2, fs(x) =

3∑
i=1

ei �qi ·�x. (23)

Note that for convenience of notation, we will define momenta
in Euclidean spacetime as q ≡ (0, �q), i.e., all interactions are
at zero frequency. We emphasize that, while the functions
f a
v (x) are pure phases, the function fs(x) has a spatially vary-

ing magnitude and features zeros at the the centers of the
moiré triangles, as shown in Fig. 3.

TABLE II. Transformation laws of the bilinear masses under
microscopic symmetries. The second and third columns represent
the transformation under translation along �a1/�a2, fourth column the
reflection symmetry, fifth column the sixfold rotation symmetry, and
last column the time-reversal symmetry. This table is adapted from
Table 2 in Ref. [34].

T1 T2 R C6 T

M00 + + − + −
Mi0 + + + − +
M01 − − M03 −M02 +
M02 + − −M02 M03 +
M03 − + M01 M01 +
Mi1 − − −Mi3 Mi2 −
Mi2 + − Mi2 −Mi3 −
Mi3 − + −Mi1 −Mi1 −

B. Interlayer mass couplings

In this part, we use the microscopic symmetries to con-
strain the possible interlayer coupling terms of bilinear masses
Ml,μν = ψ̄lσ

μτνψl , with μ, ν ∈ {0, 1, 2, 3}. The general
Lagrangian is

L2 =
∑

μ,ν,ρ,σ

wμνρσ [�u1, �u2]M1,μν (�x)M2,ρσ (�x). (24)

To avoid potential confusion, we will write out all summa-
tions explicitly. Spin-rotational invariance requires wμνρσ =
δμρwμνρσ and w1μ1ν = w2μ2ν = w3μ3ν , thus splitting the in-
terlayer coupling terms into two sets

∑
i M1,iμ(�x)M2,iν (�x) and

M1,0μ(�x)M2,0ν (�x).
Next, we impose the translation invariance similar as in the

previous section: (1) Translation of the bilayer system by an
arbitrary constant will not affect the interlayer physics, there-
fore, wμνρσ [�u1, �u2] = wμνρσ [�u] with �u = �u1 − �u2. (2) Based
on Table II, under translations Ti, all masses are mapped to
themselves up to a sign. Therefore, we can only combine the
mass terms in the two layers that obtain the same sign under
these translations. Combining with the spin-rotation symme-
try, we get simply wμνρσ = δμρδνσwμνρσ ≡ wμν . (3) We can
translate only the first layer by �a1. We see that, while Mμν with
ν ∈ 2Z transform to itself under T1, the other masses obtain a
minus sign. In other words, wμν[�u] = wμν[�u + �a1] when ν is
even, and wμν[�u] = wμν[�u + 2�a1] when ν is odd. Further, un-
der T2, we have wμν[�u] = wμν[�u + �a2] when ν mod 3 = 0,
and wμν[�u] = wμν[�u + 2�a2] when ν mod 3 = 1, 2. With this
information, one can make a Fourier expansion

wμν[�u] =
∑

�k

′
ei�k·�uwμν (�k), (25)

where the prime is a reminder that the summation over �k
has different meanings for different μ and ν: In the ba-
sis of the reciprocal lattice vectors �k = k1�b1 + k2�b2 with
�b1 = 2π

a0
(1,−1/

√
3) and �b2 = 2π

a0
(0, 2/

√
3), k1 ∈ Z when ν

is even and k1 ∈ (2Z + 1)/2 when ν is odd; k2 ∈ Z when ν

mod 3 = 0 and k2 ∈ (2Z + 1)/2 when ν mod 3 = 1, 2.

We now examine the wμi terms under the remaining
spatial symmetries. Notice that under C6, the quartic terms
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wμ1[�u]M1,μ1M2,μ1 → wμ1[Ô−1
C6

�u]M1,μ2M2,μ2, and we there-
fore expect wμ1[Ô−1

C6
�u] = wμ2[�u]. Here ÔC6 is the rotation

matrix which sends �a1 → �a2, �a2 → �a2 − �a1. Plugging into the
Fourier series (25), we thus arrive at wμ1(�kÔ−1

C6
) = wμ2(�k).

Similarly, one can easily derive that wμ2(�kÔ−1
C6

) = wμ3(�k) and

wμ3(�kÔ−1
C6

) = wμ1(�k). From the discussions of translational

invariance, we know that there is no uniform �k = (0, 0) com-
ponent of wμi. The relations among the Fourier components
of wμi with lowest momenta are thus

wμ1

(
1

2
,

1

2

)
= wμ2

(
0,

1

2

)
= wμ3

(
1

2
, 0

)

= wμ1

(
−1

2
,−1

2

)
= wμ2

(
0,−1

2

)

= wμ3

(
−1

2
, 0

)
. (26)

The reflection symmetry does not add additional constraints.
For the wμ0 terms, we have seen from spin con-

servation and translations that only w00M1,00M2,00 and
w10

∑
i M1,i0M2,i0 are allowed. This is also confirmed by the

fact that Mμ0 can at most change by a sign under all the
remaining symmetry transformations in Table I. Furthermore,
similar to the wμi case, we can derive wμ0[�u] = wμ0[Ô−1�u]
with Ô being the operator for either the C6 rotation or the M
reflection. The Fourier component with the lowest momentum
is simply the uniform piece wμ0(0, 0).

Combining the discussions above and transforming back
to Cartesian coordinates, we arrive at the minimal symmetry-
allowed interlayer mass-mass couplings

L2 = g0M1,00M2,00 + g1

3∑
i=1

M1,i0M2,i0

+ g2

3∑
i=1

ξi[�u]M1,0iM2,0i + g3

3∑
i=1

3∑
j=1

ξ j[�u]M1,i jM2,i j,

(27)

where the functions ξi[�u] are given by

ξi[�u] = cos( �Mi · �u), (28)

with �Mi denoting the �M points of the hexagonal Brillouin zone
with �M1 = (−π,−π/

√
3)�/a0, �M2 = (0, 2π/

√
3)�/a0, and

�M3 = (π,−π/
√

3)�/a0.
The scaling dimension of the scalar mass M00 in large N

is found to be �M00 = 3.08 (to first subleading order) and the
g0 term is thus expected to be irrelevant [49]. As discussed
earlier, the scaling dimension of the adjoint mass in a single
layer is unclear as of now. In large N , the interlayer coupling
of the adjoint mass appears to be (weakly) relevant (i.e.,
�M � 1.5), but the range given in Ref. [39] also allows for
�M � 1.5, potentially rendering the interlayer term irrelevant.
In the following, we thus primarily focus on the effect of the
interlayer monopole tunneling terms, and revisit the effect of
mass couplings in the discussion in Sec. VIII.

IV. CONFORMAL PERTURBATION THEORY

We first consider the homogeneously stacked system (ab-
sent of any twisting). In this case, the interlayer interaction
J is relevant and symmetry allowed, and moreover the only
dimensionful scale of the theory. This implies that the bi-
layer system is unstable in the thermodynamic limit for any
infinitesimal J . Dimensional analysis further provides the
finite-size scaling law

J ∼ L−(3−2�� ), (29)

where L is the linear size of the system.
To study the twisted system’s propensity towards an insta-

bility induced by the interlayer interaction, we perturbatively
compute corrections to the interlayer correlator 〈�†

1(x)�2(y)〉.
At long distances lim|x−y|→∞〈�†

1(x)�2(y)〉 �= 0 can be taken
to imply long-range order. Note that in the decoupled theory
we have 〈�†

1(x)�2(y)〉QED3
= 〈�†

1(x)〉QED3
〈�2(y)〉QED3

≡ 0
by conformal invariance. Upon switching on a finite (but
small) J , this interlayer correlator no longer vanishes but will
receive finite perturbative corrections which can be organized
order by order. If these corrections are small, the physics is
still controlled by the fixed point of two decoupled layers of
QED3. On the other hand, the breakdown of perturbation the-
ory (i.e., corrections are no longer small) signals an instability
to some other phase/fixed point.

For explicit calculations, we find it convenient to em-
ploy a path-integral based formulation, where we de-
note the full action of the interacting bilayer system by
S = S (1)

QED3
+ S (2)

QED3
+ S12, with the associated partition

function Z = ∫
D[{O}] exp(−S ), defining a free energy

F = − logZ . We will not attempt a rigorous definition of
above path-integral measure D[{O}] which implies integrat-
ing over all operators of the conformal field theory describing
the IR fixed point. In the large-N limit, the measure can be
rewritten in terms of the gauge fields aμ

l and fermions ψl in
the background of monopole configurations (which are also
integrated over). Instead, for our purposes it is sufficient to
think of the monopole operators as independent fields.

In the following, we focus on the instability due to
the interlayer tunneling Js of the spin monopoles �a with
a = 4, 5, 6, but an almost identical calculation holds for the
VBS monopoles �a with a = 1, 2, 3. We expand the Boltz-
mann weight in the path integral e−S12 = 1 − S12 + S2

12/2 +
· · · and denote expectation values with respect to the two
copies of QED3, corresponding to the two decoupled layers,
by 〈·〉0. We can then obtain the leading contribution to the
interlayer correlator of the spin monopoles at large distances,

〈�†
1,a(d )�2,a(0)〉 ≈ J

∫
d3x [ f ∗

s (x)

× 〈�†
1,a(d )�2,a(0)�†

2,b(x)�1,b(x)〉0]

|d|→∞≈ J

|d|2��

∫
d3x

1

|x|2��
f ∗
s (x), (30)

where we have used the leading-order term of the monopole-
monopole OPE [which corresponds to the two-point func-
tion (11)] in the two layers. Recalling fs(x) = ∑3

i=1 ei �qi ·�x, the
integral

∫
d3x |x|−2�� f ∗

s (x) ∼ |q|2��−3 converges, where the
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wave vector |q| is proportional to the inverse moiré lattice
constant |q| ∼ a−1

m . Hence, at at leading order we have

〈�†
1,a(d )�2,a(0)〉 |d|→∞∼ J|q|−(3−2�� )

|d|2��
. (31)

Evaluating the next term in the perturbative expansion,
quadratic in S12, necessitates evaluating three-point functions
of the form 〈�†��〉QED3

(and Hermitian conjugates) in each
layer. Given that monopole operators are charged under the
(emergent) U(1)top symmetry of the QED3 fixed-point theory,
it becomes clear that any correlation function of an odd num-

ber of monopole operators needs to vanish identically. The
first (subleading) correction to (31) therefore occurs at third
order and involves four-point correlation functions in each
layer. Four-point correlation functions can be decomposed by
successively applying the OPE. In principle, any choice of
order is equivalent as the OPE is convergent. However, as we
are truncating the OPE beyond leading order, these different
choices become inequivalent. Each OPE channel corresponds
to the most divergent contributions from respective regions of
configuration space where the operators are “close.”

In order to investigate the stability of the system at hand,
we should therefore find the OPE channel with the strongest
IR divergence. We find1

δ〈�†
1,a(d )�2,a(0)〉 ∼ J3

∫
d3x d3y d3z[ f ∗

s (x) fs(y) f ∗
s (z)〈�†

1,a(d )�2,a(0)�1,b(x)�†
2,b(x)�†

1,c(y)�2,c(y)�1,d (z)�†
2,d (z)〉0]

∼ J3
∫

d3x d3y d3z

∑
i, j,k e−i(qi ·x−q j ·y+qk ·z)

|d − x|2�� |z|2�� |y − z|2�� |x − y|2��

|d|→∞∼ J3|q|2��−3

|d|2��

∫
d3y′ d3z

∑
i, j,k e−i(qi−q j )·y′

e−i(qi−q j+qk )·z

|y′|2�� |z|2��
. (32)

In the last step, we have substituted x′ = x − y and performed
the x′ integration and similarly substituted y′ = y − z. We note
that for the summands with i = j the y′ integral reduces to∫

d3y′|y′|−2�� ∼ L3−2�� , which has an IR divergence that we
regularize with the system size L. On the other hand, the z
integration is regular (the potential IR divergence is cut off by
the oscillatory exponential for all index combinations i, j, k),
and we therefore arrive at

δ〈�†
1,a(d )�2,a(0)

|d|→∞∼ J3|q|2·(2��−3)L3−2��

|d|2��
. (33)

As discussed above, if this subleading correction is no longer
small compared to the leading-order result (31), perturbation
theory breaks down. We can therefore obtain the scaling re-
lation which determines the critical point by asking when the
ratio of subleading correction to the leading-order term is of
order unity,

δ〈�†
1,a(d )�2,a(0)〉

〈�†
1,a(d )�2,a(0)〉

!∼ 1 ⇒ J2|q|2��−3L3−2�� ∼ 1.

(34)
Importantly, we find that this condition for the instability
still depends on the system size L, which was required to
regularize IR divergence. Rewriting above result as

J ∼ (amL)−( 3
2 −��) (35)

makes clear that in the thermodynamic limit (i.e., L → ∞
with am fixed) an infinitesimal J is sufficient to induce an
instability, implying that the bilayer system is unstable upon

1Note that there is a more divergent term which corresponds
to using the OPE �1(d )†�1(x) ∼ |d − x|−2�� and �2(x)†�2(0) ∼
|x|−2�� , implying that x is simultaneously close to 0 and d , which
contradicts our assumption of |d| → ∞.

twisting, as in the trivially stacked case (recall 3/2 > �� ≈
1.05 as discussed in Sec. II B).

Crucially, however, comparing with the finite-size scaling
law for the homogeneously stacked system in (29), we find
that the critical J in (35) scales slower as a function of L,
which implies that there is a parametrically large region (as a
function of L, compared to the homogeneously stacked case)
in which the twisted system remains stable.

Consequently, our perturbative analysis implies that while
an instability remains at finite twist angles, we find that for any
θ �= 0 the instability is softened in the sense that the interlayer
interaction has effectively become less relevant.

V. VARIATIONAL CONFORMAL MEAN-FIELD THEORY

While the breakdown of perturbation theory at the (finite-
size) critical point (35) suggests that an instability occurs,
the perturbative approach is not capable of describing the
nature of the resulting phase. Given that monopole oper-
ators transform as order parameters for Néel/VBS order
on the triangular lattice, it appears plausible that the in-
terlayer interaction (23) leads to some ordered phase. We
therefore employ mean-field theory, which consists in approx-
imating the monopole-antimonopole interaction by monopole
operators coupling to a mean field which is determined self-
consistently. Physically, the mean fields being finite signals
that monopole operators have condensed and thus the onset of
VBS or magnetic order.

Commonly, the virtue of mean-field theory is that it re-
places the task of solving an interacting problem with the
solution of a noninteracting problem (which can be done
exactly) and finding appropriate self-consistent parameters.
In the model at hand, we emphasize that the mean-field ap-
proximation still requires us to solve QED3 with monopole
operators coupled to some classical background field. As
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mentioned above, even in the absence of such background
field, QED3 is not exactly solvable and believed to be de-
scribed by a strongly interacting fixed point. However, as we
show below, the conformal structure of said fixed point places
strong constraints on correlation functions and scaling behav-
iors, which in turn allow us to evaluate certain observables
in QED3 as functions of the classical background field in
controlled limits.

As defined in the previous section, the system’s free energy
is given by F = − logZ with the partition function Z =∫
D[{O}] exp(−S ) and the action S = S (1)

QED3
+ S (2)

QED3
+ S12.

Using Jensen’s inequality [53], it follows that F obeys the
Bogoliubov-Gibbs-Feynman inequality

F � Fmf + 〈S − Smf〉mf ≡ Fvar, (36)

where Smf[h1, h2] = ∑
l=1,2 S

(l )
QED3

+ S (l )
h [hl ] is the mean-

field action corresponding to two decoupled DSL with
classical fields hl (“mean fields”) coupling to the monopole
operators, S (l )

h [hl ] = ∫
d3x[−ha∗

l (x)�l,a(x) + H.c.]. Fmf is
the corresponding mean-field free energy. The hl are subject
to self-consistency equations upon minimizing Fvar, as shown
below.

We use brackets to indicate that the mean-field partition
functions and expectation values are (via the action Smf in the
Boltzmann factor) functionals of the fields ha

l (x), with l = 1, 2

denoting the layer, and a = 1, . . . , 6 a SO(6) index. Defining
the single-layer partition function

Zmf [hl ] =
∫

D[{O}]e−S (l )
QED3

−Sh[hl ], (37)

the partition function associated with Smf factorizes
and thus the mean-field free energy Fmf = − logZmf ≡
− logZmf [h1] − logZmf[h2]. We thus rewrite (36) as

F � − logZmf[h1] − logZmf [h2] + 〈S12〉mf [h1, h2]

−
∑
l=1,2

〈
S(l )

h

〉
mf[hl ]. (38)

Note that the expectation values of the interlayer inter-
actions factorize due to the linearity of Svar such that
〈�†

1,a�2,b〉mf [h1, h2] = 〈�†
1,a〉[h1]〈�2,b〉mf[h2].

Next, we seek to minimize the right-hand side of (38)
with respect to the functions hl . To this end, we first note
that δ/δha∗

l (x) logZ0[hl ′] = 〈�l,a(x)〉mfδl,l ′ , which embodies
that 〈�〉 and h∗ are conjugate variables by construction, and
further

δ

δhb∗
l ′ (y)

〈�†
l,a(x)〉mf = 〈�†

l,a(x)�l,b(y)〉mfδl,l ′ , (39)

and similarly for 〈�l,a(x)〉mf , which yields the anomalous
monopole correlation function. After some manipulations, the
saddle-point condition δFvar/δhb∗

1 (y) = 0 is rewritten as

0 =
∫

d3x
6∑

a=1

[(Ja fa(x)〈�2,a(x)〉mf + ha
1(x))〈�†

1,a(x)�1,b(y)〉mf + (Ja f ∗
a (x)〈�2,a(x)〉mf + ha∗

1 (x))〈�1,a(x)�1,b(y)〉mf ], (40)

for all x, and b = 1, . . . , 6. A similar equation is obtained
from δFvar/δhb∗

2 (y) = 0. Here, we have employed J1,2,3 ≡ Jv

and J4,5,6 ≡ Js, as well as f1,2,3 = f 1,2,3
v and f4,5,6 ≡ fs.

While (40) is hard to solve directly, a sufficient condition for
the integral to vanish is given by

ha
1(x) = −Jv f a

v (x)〈�2,a〉mf[h2], (41a)

ha
2(x) = −Jv f a∗

v (x)〈�1,a〉mf[h1] (41b)

for a = 1, 2, 3 and

ha
1(x) = −Js fs(x)〈�2,a〉mf [h2], (42a)

ha
2(x) = −Js f ∗

s (x)〈�1,a〉mf[h1] (42b)

for a = 4, 5, 6.
The expectation values 〈·〉mf implicitly depend on h1 and

h2 (note that the dependence on h2 drops out when the ex-
pectation value is taken of operators in layer 1 only, and
vice versa). Hence, Eqs. (41) and (42) constitute a set of
self-consistency equations for the mean fields h1 and h2. We
note that these become a necessary condition for (40) to
vanish iff the normal and anomalous monopole correlation
functions are translationally invariant, 〈�(†)

1,a(x)�1,b(y)〉 ≡
〈�(†)

1,a(x − y)�1,b(0)〉. Then (40) can be rewritten as a convo-
lution which vanishes if either kernel or argument are zero.

VI. WEAK-COUPLING SOLUTION
OF MEAN-FIELD THEORY

We consider a scaling transformation to a length scale
set by the moiré lattice scale am ∼ 1/|q| ∼ a0/θ . Perform-
ing such transformation explicitly in (23), we find that the
interlayer interaction is multiplied by a dimensionless param-
eter J/|q|3−2��. This parameter being small corresponds to
interlayer couplings which are small compared to (fast) mod-
ulations of the interlayer tunneling amplitude due to moiré
modulations J � a2��−3

m . Using (41) and (42), this further
implies that the mean fields can be taken to be small as
|h1,2| ∼ Jq�� � a��−3

m . In this limit, we can evaluate expec-
tation values 〈·〉mf [hl ] perturbatively order by order in the
background field hl , allowing us to write and solve linearized
self-consistency equations.

A. Linearized self-consistency equations

We start by evaluating the expectation value 〈�la〉mf . Ex-
panding e−Smf = e−SQED3 (1 − Sh + S2

h /2 + · · · ), we have

〈�la(x)〉mf = Z−1
mf

∫
D[{O}] �la(x)e−Smf

=
∫

d3y
ha

l (y)

|x − y|2��
+ O(h3), (43)
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where we have used the OPE of the monopoles (12) at lead-
ing order. Note that this result is equivalently obtained by
integrating out all QED3 degrees of freedom perturbatively to
obtain Fmf [h1, h2] at quadratic order in h1, h2, and then using
〈�la〉mf = −δFmf/δha∗

l .
Plugging this into the mean-field equations (41) and (42),

we arrive at the relationship between the effective fields in the
two layers

ha
1(x) = −Ja fa(x)

∫
d3y

ha
2(y)

|x − y|2��
,

ha
2(x) = −Ja f ∗

a (x)
∫

d3y
ha

1(y)

|x − y|2��
, (44)

where again Ja = Jv, fa = f a
v for a ∈ {1, 2, 3} and Ja = Js,

fa = fs for a ∈ {4, 5, 6}. There is no implicit summation over
a. Eliminating ha

2 from above, we arrive at

ha
1(x) = J2

a fa(x)
∫

d3z ha
1(z)

∫
d3y f ∗

a (y)

× 1

|y − z|2��

1

|x − y|2��
. (45)

There is also a similar equation for ha
2(x). In the next two

subsections, we will discuss the cases of spin and VBS
monopoles, separately. From (44) and (45) it is clear that the
perturbative approach employed here does not fix the mag-
nitude of the mean fields ha

1 and ha
2. Rather, they determine

for which critical Js, Jv the self-consistency equations admit
nontrivial solutions with ha

1, ha
2 �= 0 and the symmetry of the

mean fields.

B. Spin monopoles

1. Solution of self-consistency equations

Given the periodicity of the moiré pattern, we Fourier ex-
pand the mean fields as h1(x) = ∑

Q h̃1(Q)eiQ·x on both sides
of (45), with some to-be-determined spacetime momenta Q.
Note that because of instantaneous nature of the interaction
[i.e., qi = (0, �qi )� in fs(x) and fv(x) as given in (23)], we
can immediately write qi · x = �qi · �x. We further expect Q
to be some linear combination of the qi and thus h̃l (Q) ≡

h̃l (0, �Q) ≡ h̃l ( �Q) to denote the Fourier coefficients of hl (x).
We hence find∑

�Q′

h̃1( �Q′)ei �Q′ ·�x = J2
s fs(�x)

∑
i

∫
d3y

e−i �qi ·�y

|y − x|2��

×
∑

�Q
h̃1( �Q)

∫
d3z

ei �Q·�z

|z − y|2��
. (46)

Upon changing of variables y − x → y in the first integral and
z − y → z in the second integral, the equation simplifies to∑

�Q′

h̃1( �Q′)ei �Q′ ·�x = J2
s fs(�x)

∑
�Q

h̃1( �Q)
∑

i

ei( �Q−�qi )·�x

×
∫

d3y
ei( �Q−�qi )·�y

|y|2��

∫
d3z

ei �Q·�z

|z|2��
. (47)

Integrals of the form
∫

d3x ei�k·�x/|x|2�� diverge when �k = 0.
In the equation above, only one of the two integrals can
possibly diverge for any given wave vector �Q, corresponding
to cases (i) �Q = �qi or (ii) �Q = 0, respectively. When ��

is smaller than 3/2, i.e., the monopole tunneling term is a
relevant perturbation to the Js = Jv = 0 fixed point, the diver-
gence is in the infrared (IR) limit. As discussed in Sec. II B,
large-N calculations and a recent conformal bootstrap study
points �� 
 1.02 < 3/2, such that the interlayer term can be
assumed to be strongly relevant, and we have indeed an IR
divergence at hand.

To regulate above divergence, we introduce an IR cut-
off L > |x − y| to bound the maximal separation of two
monopole operators (at coordinates x and y) from above.
We emphasize this is a cutoff for the Euclidean spacetime
integrals. The length scale set by the cutoff L can there-
fore be interpreted the system’s linear size (i.e., its spatial
extent) and simultaneously as an inverse temperature β ∼
1/L (for the imaginary-time direction). The limit L → ∞,
which is ultimately of interest to us, thus corresponds to the
zero-temperature thermodynamic limit of an infinitely large
system.

Having introduced above cutoff scheme, the two singular
contributions are

∑
�Q′

h̃1( �Q′)ei �Q′ ·�x = J2
s fs(�x)

∑
i

{
e−i �qi ·�xh̃1(0)

∫
d3y

e−i �qi ·�y

|y|2��

∫
d3z

1

|z|2��
+ h̃1(�qi )

∫
d3y

1

|y|2��

∫
d3z

ei �qi ·�z

|z|2��
+ · · ·

}

= cJ2
s

∣∣∣ q

L

∣∣∣2��−3 ∑
i, j

[h̃1(0)ei(�q j−�qi )·x + h̃1(�qi )e
i �q j ·x] + · · · , (48)

with c = 16π2�(2 − 2��) sin(��π )/(3 − 2��) a constant,
|q| = 4πθ/3a0 from the discussions in Sec. III A, and · · ·
represents the contributions from other Fourier components
that are regular. Comparing the spatial dependence on the two
sides, �Q′ should belong to the set { �qi − �q j, �qi} for arbitrary
i, j. In the following, we are interested in the long-wavelength
modulations of the mean fields and hence drop all oscillatory

terms with wave vectors outside the first moiré Brillouin zone
[note that (�qi − �q j ) ∈ 1st MBZ iff i = j].

Since the equation holds for arbitrary x, we can equate the
Fourier components directly. For both h̃1( �Q = 0) and h̃1( �Q =
�qi ), this leads to

h̃1( �Q) = 3cJ2
s h̃1( �Q)

∣∣∣ q

L

∣∣∣2��−3
. (49)
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Note that h̃1( �Q) = 0 trivially satisfies this equation. A non-
trivial solution exists for 3cJ2

s |q/L|2��−3 ≡ 1, such that (49)
becomes a constraint for Js leading to the critical interlayer
tunneling strength with scaling

Js ∼ (amL)��−3/2, (50)

with am ∼ a0/θ � L the moiré lattice constant. This is
precisely the same critical scaling for the twisted system
as obtained via perturbation theory in the interlayer cou-
pling [without any additional (mean-field) approximation] in
Eq. (35). The fact that our mean-field treatment recovers
the correct critical scaling for the instability is a nontrivial
crosscheck and provides confidence for the reliability of our
mean-field theory.

While the perturbative approach does not fully determine
the order parameter, we can extract its symmetry properties.
Neglecting higher-wave-vector oscillations, Eqs. (48) and (49)
suggest the minimal form of h1(x) as

h1(�x) ≈ h̃1(0) + h̃1(q) fs(�x), (51)

where q = |qi| is independent of the index i, and we em-
phasize that the magnitude of the Fourier coefficients h̃(0),
h̃(q) is arbitrary: Due to the linearity of the self-consistency
equations at weak coupling, any linear superposition of the
two degenerate solutions with finite h̃1(0) �= 0 and h̃1(q) �= 0
is also a solution to the self-consistency equations. Similarly,
if we eliminate h1 from Eq. (44), we would get

h2(�x) ≈ h̃2(0) + h̃2(−q) f ∗
s (�x). (52)

These four Fourier components in the two layers are related to
each other through (44):

h̃1(q) = −Ah̃2(0), h̃2(−q) = −Ah̃1(0),

A ≡ 4πJs

3 − 2��

L3−2�� ∼ (L/am )−��+3/2, (53)

where we have used the critical condition (50) in the sec-
ond line. Therefore, when Js is positive, generically we have
A 	 1, and the spatial modulating pieces in hl (x) dominate.

The relation between h̃1(0) and h̃2(0) can be further ob-
tained by going to quartic order in perturbation theory (see
Appendix B for details), giving rise to h̃1(0) = rh̃2(0) with r
being a constant phase. This r can then be fixed by noticing
that in the trivial stacking limit |q| → 0, when Js < 0 (or
Js > 0), we expect the Néel order parameters to align (or
antialign). We can therefore determine r = −sign(Js).

Combining above results with the mean-field equa-
tions (42), we finally arrive at the following spatial depen-
dence of the spin monopole expectation values:

〈�1(�x)〉mf ≈ − A

|Js| h̃(0) − fs(x)

3Js
h̃(0),

〈�2(�x)〉mf ≈ A

Js
h̃(0) + f ∗

s (x)

3|Js| h̃(0), (54)

where, for consistency, we again only keep wave vectors in the
first moiré Brillouin zone [this implies that f ∗

s (x) fs(x) ≈ 3].
We have added back the flavor degrees of freedom and used
boldface to label the three-dimensional vectors in the SO(3)s

space. Since A 	 1, we observe that the first terms in the

two equations above dominate, and there are some corrections
with modulations of moiré scale.

2. Lifting of global U(3) degeneracy at quartic order

The above weak-coupling analysis determines the order-
ing wave vectors as well as relative phase factors of the
mean fields (or, equivalently, of the order parameter) in the
two layers. However, so far our analysis has not determined
the form of the Fourier coefficients h̃l (0) and h̃l (±q) which
are understood to be three-dimensional vectors. Indeed, the
self-consistency equations at quadratic order (45), or equiv-
alently (48), which lie at the heart of our analysis, show
that there is a global U(3) invariance of rotating h1,2(x) �→
gh1,2(x) with g ∈ U(3) which does not correspond to a physi-
cal symmetry operation. This redundancy is understood to be
an artifact of the quadratic approximation: For a single layer,
the mean-field free energy, after perturbatively integrating out
QED3 degrees of freedom, is given by (note that we omit the
layer index)

Fmf [h] = − logZmf[0] −
∫

d3x d3y
h∗(x) · h(y)

|x − y|2��
+ O(h3),

(55)
which is readily seen to be invariant under global U(6) trans-
formations which reduce to U(3) ⊂ U(6) when considering
the spin sector with h1 = h2 = h3 ≡ 0, where the upper in-
dices are the SO(6) flavor indices. While the form of the
quadratic term (55) is unique and mandated by symmetry,
an analysis of higher-order SO(6)-invariant tensor structures
reveals that at quartic order, this accidental degeneracy is bro-
ken. Note that there are no odd-order terms in the perturbative
expansion of Fmf by U(1)top and SO(6) symmetry.

Expanding perturbatively in h, the mean-field free en-
ergy (for a single layer) is written as Fmf [h] = − logZmf −
〈S2

h 〉0/2 − (〈S4
h 〉0 − 3〈S2

h 〉2
0)/4! + · · · , where 〈·〉0 denotes

evaluating expectation values in the unperturbed compact
QED3 theory. The quartic term necessitates the evaluation of

〈S4
h 〉0 =

∫
d3x1 . . . d3x4

〈
4∏

i=1

(hai∗(xi )�ai (xi ) + H.c.)

〉
0

,

(56)
which requires knowledge of the four-point function of
monopole operators 〈�s1

a (x1)�s2
b (x2)�s3

c (x3)�s4
d (w)〉0 (here

si = ± and �+ ≡ �, �− ≡ �† should be understood as
monopole and antimonopole, respectively). In contrast to two-
and three-point functions, conformal symmetry does not fully
determine four-point functions. Rather, they can be written
in terms of so-called conformal blocks, which are functions
of conformally invariant parameters and obey certain asso-
ciativity relations which are used in the conformal bootstrap
approach [38,39].

In 2+1 dimensions, however, no closed form for the con-
formal blocks exist, and we instead follow an approximate
strategy. First, we use the fact that the finite-wave-vector com-
ponents of hl (x) can be related to the constant components in
the respective other layer, h̃l (0), such that it is sufficient to
consider uniform hl (x) = const in (56). By U(1)top symmetry,
only expectation values with zero net topological charge (i.e.,
containing two monopoles and two antimonopole operators)
can be finite. We then posit that a dominant contribution to
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the integral in (56) is given by configurations where operator
insertions are close to each other. Concretely, we consider
〈�†

a(x1)�b(x2)�†
c (x3)�d (x4)〉0 (the other terms follow by

index permutations) and take x1 → x2 and x3 → x4. The OPEs
in (13a) then yield

〈�†
a(x1)�b(x2)�†

c (x3)�d (x4)〉0

∼ δabδcd

|x1 − x2|2�� |x3 − x4|2��

− (
cM
��

)2 Fμν

ab F
ρλ

cd 〈Mμν (x2)Mρλ(x4)〉0

|x1 − x2|2��−�M |x3 − x4|2��−�M
. (57)

The first term is readily seen to yield a contribution of the
(h∗ · h)2 in Fmf , similar to the 〈S2

h 〉2
0 term stemming from

reexponentiating the expanded e−Sh .
For the second term, we note that using the two-point

function 〈Mμν (x2)Mρλ(x4)〉0 = δμρδνλ|x2 − x4|−2�M , we can
perform the contraction Fμν

ab F
ρλ

cd δμρδνλ = δacδbd − δadδbc.
Since the remaining integrals have integrands which are
strictly positive functions, the second term gives a contribu-
tion of the form〈

S4
h

〉
0 ∼ −(

cM
��

)2
C(L)[(h · h)(h∗ · h∗) − (h∗ · h)2], (58)

where C(L) > 0 is an IR-divergent prefactor which depends
on the cutoff length scale L introduced earlier. Importantly,
this implies that the fourth-order contribution in Fmf for
h(�x) ≡ h = const can be written to be of the form

Fmf [h] ∼ · · · + |h|4(D1 + D2(ĥ
∗ · ĥ

∗
)(ĥ · ĥ)) + · · · , (59)

where (58) implies that the prefactor D2 > 0 (note that the
sign of D1 is left undetermined).

Importantly, the overall sign of the |ĥ · ĥ|2 term being
positive implies that the free energy is minimized for config-
urations where the static components of the mean field satisfy
ĥ · ĥ = 0, i.e., they can be written as ĥ = (û + iv̂)/

√
2, with

the two orthonormal vectors û, v̂ such that û · û = v̂ · v̂ = 1
and û · v̂ = 0. Considering that ĥ ultimately determines the
vectorial nature of the monopole expectation value 〈�〉 in the
ordered phase (which can be identified with the Néel order pa-
rameter), we hence conclude that noncollinear intralayer spin
order is energetically preferred [the generic form ĥ = û + iv̂
is seen to give rise to spin spiral ordering with basis vectors
û, v̂ using Eq. (10)].

C. VBS monopoles

The analyses for the VBS monopoles are in parallel. We
again perform a Fourier expansion on both sides of (45),
yielding

∑
�Q′

ha
1( �Q′)ei �Q′ ·�x = J2

v f a
v (�x)

∫
d3y

e−i �qa·�y/2

|y − x|2��

×
∑

�Q
ha

1( �Q)
∫

d3z
ei �Q·�z

|z − y|2��
. (60)

Taking into account the two possible singular contributions
to the integrals at �Q = �qa/2 and �Q = 0, respectively, we

get∑
�Q′

ha
1( �Q′)ei �Q′ ·�x

= cJ2
v

∣∣∣ q

2L

∣∣∣2��−3
[

ha
1(0) + ha

1

( �qa

2

)
ei �qa·�x/2

]
+ · · · . (61)

For a nontrivial solution to exist, i.e., when ha
1(�x) �= 0, we

must have cJ2
v |q/2L|2��−3 = 1. It immediately follows that

Jv exhibits the same scaling

Jv ∼ (amL)��−3/2 (62)

as Js in (50). Back to real space, the minimal description of
the mean field is thus ha

1(�x) = h̃a
1(0) + h̃a

1( q
2 )ei �qa·�x/2 where q =

|qa| is again independent of a. Similarly, the mean field for the
other layer can be derived using (44):

ha
2(�x) ≈ h̃a

2(0) + h̃2

(
−q

2

)
e−i �qa·�x/2. (63)

These four Fourier components in the two layers are related to
each other through (44):

h̃a
1

(q

2

)
= −Ah̃a

2(0), h̃a
2

(
−q

2

)
= −Ah̃a

1(0), (64)

A 	 1 is the same as defined in (53). Combining with the
mean-field equations (42), we arrive at

〈�a
1(x)〉mf = (

Ah̃a
1(0) − h̃a

2(0)ei �qa·�x/2
)
/Js,

〈�a
2(x)〉mf = (

Ah̃a
2(0) − h̃a

1(0)e−i �qa·�x/2
)
/Js. (65)

Similar to the spin monopole case, we observe that the first
terms in the two equations above dominate, and there are
some corrections with modulations of moiré scale. The rela-
tion between h̃a

1(0) and h̃a
2(0) can also be obtained by going

to quartic order perturbation, giving rise to h̃a
1(0) = sh̃a

2(0)
with s a constant phase factor. More details can be found in
Appendix B.

We would like to comment that, within a microscopic the-
ory, terms which gives rise to a coupling of the VBS order
parameters involve four spin operators. In contrast, the spin
monopole tunneling can be generated from an interlayer spin-
spin interaction. In any setting where interlayer interactions
are weak, we hence expect the interlayer tunneling of the spin
monopoles to be dominant, and therefore instabilities with
VBS order to be less likely.

VII. MEAN-FIELD THEORY AT STRONG COUPLING:
LOCAL DENSITY APPROXIMATION

In the limit of strong interlayer couplings Ja 	
|∇ fa/ fa|2��−3 ∼ (1/am )3−2�� (recall that we take 2�� < 3
which amounts to assuming that interlayer monopole
tunneling term is relevant), the spatial variations of the
interlayer coupling due to twisting are on a much larger scale
compared to the characteristic length scale set by the coupling
strength Jα .

We note that the use of IR conformal field theory in the
strong-coupling limit is justified: this low-energy theory is
expected to apply at energy scales � � 1/a much smaller
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than the inverse lattice constant of the parent triangular lat-
tice. Recall that the moiré lattice constant am 	 a and thus
(1/am)3−2�� � (1/a)3−2�� . We conclude that these inequal-
ities show that there exists a parameter regime such that the
strong-coupling limit holds, but the typical energy scale � ∼
J

1
3−2�

a set by the interlayer coupling is small compared to the
UV cutoff determined by the inverse parent lattice scale 1/a,
allowing us to use the low-energy conformal field theory to
study the strong-coupling limit. We also note that there is also
another parameter regime where Ja 	 (1/a)3−2�� , implying
that Ja is the dominant scale in the problem and larger than the
UV cutoff scale, necessitating the use of microscopic lattice
models to study strong interlayer interactions. However, this
scenario seems less relevant to van der Waals heterostructures,
where the interlayer interactions are generically weaker than
intralayer interactions, both being small compared to the UV
cutoff provided by the inverse lattice constant (we emphasize
that the interlayer interactions being “weak” compared to
intralayer interactions does not contradict the strong-coupling
limit defined earlier, where the interlayer interaction scale is
large compared to moiré lattice modulations).

In this strong-coupling limit, we may perform a local
approximation where we first obtain monopole expectation
values as a function of the background fields from a local
scaling form of the compact QED3 free energy in the presence
of (large) background fields. Within this local approximation,
the self-consistency equations for distinct points in spacetime
decouple and can be solved straightforwardly.

To this end, we first note from Sh[hl ] that the mean
fields hl have the scaling dimension [hl ] = 3 − ��, such
that a symmetry-allowed ansatz for the mean-field free en-
ergy F loc

mf [hl ] (for each layer l) in the local approximation
reads as

F loc
mf [hl ] = −

∫
d3x

2cloc

χ
|hl (x)|χ , (66)

where cloc is some real constant and χ = 3/(3 − ��) from
scaling arguments, with the form of the prefactor chosen for
later convenience.

Using that 〈�la〉mf = −δFmf/δha∗
l = clocĥa

l |hl |χ−1 (with ĥa
l

denoting the a component of the complex unit vector ĥl =
hl/|hl |), the self-consistency equations (42) can be written as

ha
1(x) = −Ja fa(x)clocĥa

2(x)|h2(x)|χ−1, (67a)

ha
2(x) = −Ja f ∗

a (x)clocĥa
1(x)|h1(x)|χ−1, (67b)

with no implicit summation over a, and recall that J1,2,3 ≡ Jv,
J4,5,6 ≡ Js, and f1,2,3(x) ≡ f 1,2,3

v (x) and f4,5,6 ≡ fs.

A. Spin monopoles

We first focus on order in the spin sector (i.e., Js �= 0,

Jv = 0) such that h in each layer can be replaced by a three-
dimensional complex vector (h4, h5, h6)�. First focusing on
magnitudes |hl | and substituting (67) into each other yields

|hl (x)| = |Jscloc f (x)|
3−��

3−2�� (68)

for l = 1, 2. Using this in Eq. (67), we find that the relative
phase factor of the two unit vectors ĥl is fixed by

ĥ1 = exp [i(π + arg Js + ϕs(x) + arg cloc)]ĥ2, (69)

where we have introduced ϕs,v(x) ≡ arg fs,v(x). Note that,
considering the case of a homogeneous bilayer [i.e.,
fs(x) ≡ 1] with a ferromagnetic interlayer coupling Js < 0,
we expect the two Néel vectors (and so the mean fields h)
in the two layers to be aligned, which allows us to a posteriori
fix the sign of the constant cloc > 0. Above result is also
readily understood when considering the expectation value of
the interlayer tunneling term and rewriting using (42),

〈L1〉mf ∼ Js f (x)〈�†
1〉mf · 〈�2〉mf

∼ 1

Js f (x)
|h(x)|2ĥ1 · ĥ

∗
2 + H.c., (70)

such that all phase fluctuations cancel out upon substitut-
ing (69).

While we have thus fixed the magnitude of the mean fields
(and thus of the magnetic order parameters, identified with
the monopole operators) and their relative phase factor, we
note that the self-consistency equations in the local approxi-
mation have a local U(3) redundancy: Given a configuration
{h1(x), h2(x)} which satisfies Eqs. (67), the configuration
{G(x)h1(x), G(x)h2(x)} with an arbitrary matrix field G(x) ∈
U(3) is a solution as well. This local redundancy is unphysical
as it does not correspond to a symmetry of the system and thus
will be lifted by corrections to the purely local approximation
made above.

In particular, we posit that there is an intrinsic stiffness to
the system which energetically favors order parameter tex-
tures with small gradients. Using SO(6) symmetry and the
above-derived scaling of hl , a corresponding mean-field stiff-
ness term in the free energy may be written as a sum over the
two individual stiffness terms in each layer,

F∇2

mf [h1, h2] =
∑
l=1,2

ρ

∫
d3x|∂μha∗

l ∂μha
l |γ , (71)

where ρ > 0 is some dimensionless constant and γ = 3/(8 −
2��) from scaling (note summation over a = 1, . . . , 6 is
implied). Clearly, (71) does not support the local U(3) redun-
dancy found earlier, and is minimized in a single layer through
a uniform h(x) = const; however, choosing both h1(x) and
h2(x) constant is no longer a self-consistent solution as is
readily verified using Eqs. (67). We here assume that the
stiffness is parametrically small compared to the density term
ρ � cloc, such that the gradient terms can be treated as a
perturbation which selects a favorable configuration out of
the U(3) locally degenerate manifold, without qualitatively
altering the nature of the thus selected configuration. Hence,
we plug in the solution to the self-consistency equations,
given by Eqs. (68) and (69), to rewrite the gradient term as
a functional F∇2

mf [h1, h2] ≡ F∇2

mf [ĥ2] of the to-be-determined
unit-vector-valued field ĥ2(x). We find the resulting form dif-
ficult to extremize analytically due to the non-analyticity of
the gradient term.

Instead, we note that γ = 3/(8 − 2��) < 1 and thus the
modulus | . . . |γ is concave, such that Jensen’s inequality
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|X |γ + |Y |γ � 21−γ |X + Y |γ holds. Hence, we resort to ex-
tremizing an upper bound for F∇2

mf ,

F∇2

mf

21−γ ρ
�

∫
d3x[||h(x)|2(2∂μĥ

∗
2 · ∂μĥ2 − i(∂μϕs)(ĥ

∗
2 · ∂μĥ2

− H.c.) + ∂μϕs∂
μϕs) + 2∂μ|h|∂μ|h||χ

+ λ(x)(ĥ
∗
2 · ĥ2 − 1)], (72)

where the short form |h| ≡ |hl | as in (68), and we use “the cen-
ter dot” to denote the dot product of SO(3)spin vectors. Note
that ĥ

∗
2 · ∂μĥ2 = −ĥ2 · ∂μĥ

∗
2 holds due to normalization, the

latter being enforced by introducing a real Lagrange multiplier
field λ(x). Here we have chosen to write (72) in a manifestly
Hermitian form.

Considering the right-hand side of (72), we note that due to
the chain rule, it is sufficient to only consider the term in the
square brackets when extremizing (by varying with respect
to ĥ2, ĥ

∗
2 independently). Using a redefined (real) Lagrange

multiplier field λ̃, one thus obtains the differential equation

0 = −2∂μ∂μĥ2 − 2i∂μϕs∂
μĥ2 − i∂μ∂μϕsĥ2 + λ̃ĥ2, (73)

and similarly for ĥ
∗
2. Making the ansatz ĥ2(x) = ûeig(x) for

some constant complex unit vector û such that the normal-
ization constraint (retrieved by varying with respect to the
Lagrange multiplier) is satisfied, the real function g(x) is
determined via

0 = −2i∂μ∂μg + 2∂μg∂μg + 2∂μϕs∂
μg − i∂μ∂μϕs + λ̃.

(74)
Adding and subtracting (74) and its complex conjugate, we
find the partial differential equations

0 = 2∂μg∂μg + 2∂ϕs∂
μg + λ̃, (75a)

0 = 2∂μ∂μg + ∂μ∂μϕs. (75b)

While the first equation can be solved to determine the
Lagrange multiplier λ̃, the latter can be used to determine
g(x). One particular solution consists in choosing gp(x) =
−ϕs(x)/2 and λ̃ = −∂μϕs∂

μϕs/2.2

However, we note that ϕs(x) = arg fs(x) has branch cuts
that connect pairs of zeros x± of fs at which fs(x±) = 0 and
upon encircling fs has a positive (negative) winding number
Ind fs (x

±) = ±1. Note that here, we use conventions such that
arg fs ∈ [−π, π ]. Here, we may take x+ = (1/

√
3, 0)am and

x− = (2/
√

3, 0)am, as marked by a red cross in Fig. 3, and
by spatial periodicity of fs(x), all further zeros of positive
(negative) winding number are obtained through translations
by lattice vectors of the magnetic Brillouin zone

While the branch cut above leaves eiϕs (x) single valued,
the function gp(x) = −ϕs(x)/2 features a discontinuity across
these branch cuts and hence the eigp(x) is multivalued at
these branch cuts (i.e., there is a jump π/2 → −π/2 when

2One may worry that the choice of p = −1/2 implicitly depends
on using the manifestly Hermitian form of (72), however, writing
ĥ∗

2 · ∂μĥ2 − H.c. ≡ (1 + α)ĥ∗
2 · ∂μĥ2 − (1 − α)ĥ2 · ∂μĥ∗

2 and repeat-
ing the calculation for a generic α shows that p = −1/2 independent
of α.

encircling a zero of fs with positive chirality, x+). Since
the phase of ĥl (x) = ûe±ig(x) determines the phase of 〈�l〉,
which in turn determines the local orientation of the ordered
spins via Eq. (10). This is an unphysical discontinuity, and
hence the choice of gp(x) = −ϕs(x)/2 is not admissible. To
remedy this, we recall that above choice corresponds to a
particular solution, and in fact any g(x) = gh(x) + gp(x) is
a solution to (75b), where gh is a solution to Laplace’s equa-
tion ∂μ∂μgh(x) = 0. A boundary condition for gh consists in
demanding that it has the same spatial symmetries as gp(x).

One can make progress by noting that arg(x, y) ≡ arg(x +
iy) = Im log(x + iy) is a solution to Laplace’s equation and
features a branch cut on the negative half of the x axis
(note that other conventions may be chosen), such that
limy→±0 arg(x, y) = ±π for x < 0. Hence, by superposing
two such solutions to define a vortex-pair function

G(3)
vp (x, y) ≡ arg

(
−x + am√

3
, y

)
− arg

(
−x + 2am√

3
, y

)
,

(76)
one obtains a branch cut between the points (1/

√
3, 0)am and

(2/
√

3, 0)am where G(3)
vp (x, y) winds by −2π (clockwise di-

rection) around the former point and by +2π around the latter.
One may form similar functions G(1)

vp (x, y) and G(2)
vp (x, y) with

branch cuts connecting the singular points am(1/(2
√

3), 1/2)
and am(1/

√
3, 1) [am( − 1/(2

√
3), 1/2) and am(−1/

√
3, 1),

respectively].
We may then take the homogeneous solution as a linear

superposition of the vortex-pair functions translated by the
lattice vectors of the magnetic moiré Brillouin as given in (22),

gh(�x) = 1

2

∑
m,n∈Z

q(α)
mn G(α)

vp

(
�x + n�b(m)

1 + m�b(m)
2

)
, (77)

where the coefficients q(α)
mn = ±1 and should not be confused

with the moiré reciprocal lattice vectors �qi. The prefactor of
1/2 is chosen such that at the discontinuity gh(�x) changes
±π/2 → ∓π/2.

Considering the full function g(x) = gh(x) + gp(x), one
thus finds that by choosing the value of q(α)

mn = ±1, one may
remove the half branch cut due to the −ϕs/2 in one layer (such
that the phase of eig(x) does not wind around a vortex pair)
and obtain a full branch cut (associated with ±2π winding
around two paired zeros) in the other layer such that eiϕs (x)+g(x)

is single valued and thus physical. Note that reversing the sign
of q(α)

mn then corresponds to placing the (physical) vortex pair in
the opposite layer. Within this approach, each choice of q(α)

mn is
an allowed solution, i.e., for each pair of zeros of arg fs(x) we
have the choice of placing a vortex pair in the upper or lower
layer. While these are all local extrema of the free energy [as
they solve Eqs. (75a) and (75b)], the total energy of these
configurations may differ.

Considering (71), it is reasonable to expect that the energet-
ically favored configurations consist in placing all vortex pairs
in either the top or bottom layer such that the gradient term for
the other layer is minimized (i.e., q(α)

mn ≡ +1 or q(α)
mn ≡ −1 for

all m, n, α). Consequently, we expect the interlayer exchange
symmetry to be spontaneously broken in this scenario.

To summarize this section, when the tunnelings of
spin monopoles are present, in this strong-coupling, local
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approximation, we have found a magnetic vortex lattice of
tunable moiré scale. The expectation values of the spin
monopoles in the two layers differ by a spatially modulating
phase 〈�2〉mf/〈�1〉mf = ei arg fs , which winds by ±2π around
the moiré downward and upward triangles, as depicted in
Fig. 1.

B. VBS monopoles

In the VBS sector (Jv �= 0), we can proceed similarly to
the spin sector. Now, we consider the first three components
of the (vectorial) mean fields h1, h2. Recalling that all f a

v ’s
are different, we take the magnitude of each component of ha

l
in Eqs. (67) and (42). Using that | fa(x)| = 1 we hence find
that the magnitude of the mean fields is constant,

|ha
l (x)| = |Jvcloc|

3−��
3−2�� (78)

for l = 1, 2 and a = 1, 2, 3, and the constant cloc > 0 as
argued earlier. Performing a polar decomposition of each
mean-field component, ha

l = |ha
l |eiϑa

l , we find that the phases
in the two layers must satisfy

ϑa
1 (x) = π + arg Jv + arg cloc + ϕa(x) + ϑa

2 (x), (79)

where ϕa(x) ≡ arg f a
v (x) = �ka · �x. Similar to the case of

spin monopoles discussed in the previous section, the self-
consistency equations admit a local redundancy in the VBS
sector. However, due to flavor dependence of the interlayer
monopole tunneling function, the space of locally degenerate
solutions is smaller compared to spin case: In the VBS sector,
the self-consistency equations (and their solutions) remain
invariant under three independent U(1) rotations ha

l �→ eiξ a
ha

l
with some real field ξ a(x). This unphysical local redundancy
is again lifted in first order by a gradient-type term as given
in (71). We again consider an upper bound for the gradient
term using Jensen’s inequality (also taking h4,5,6 = 0). In-
serting ha

l = |ha
l |eiϑa

l the problem reduces to minimizing the
right-hand side of

F∇2

mf

21−γ ρ
�

∫
d3x

∣∣∣∣∣ ∑
a=1,2,3

|h|2(2∂μϑa
2 ∂μϑa

2 + 2∂μϕa∂μϑa
2

+∂μϕa∂μϕa
)∣∣∣∣∣

γ

(80)

with respect to ϑa
2 , and |h| = |ha

l (x)| given in (78). Note that
no Lagrange multiplier is required as the polar decomposition
ensures normalization of ha

l /|ha
l |. Again, by the chain rule, it

is sufficient to consider the expression in parentheses. Varying
with respect to ϑa

2 , one obtains

0 = −2∂μ∂μϕa(x) − 4∂μ∂μϑa
2 (x). (81)

Note that since ∂μ∂μϕa(x) = ∂μ∂μ(�ka · �x) ≡ 0, Eq. (81) re-
duces to Laplace’s equation ∂μ∂μϑa

2 (x) = 0. Aiming to find
a global minimum of the right-hand side in (80), we find
that choosing ϑa

2 (x) = −ϕa(x)/2 gives a lower bound than the
constant solution θa

2 = const.

We stress that, in contrast to the case of spin monopoles
discussed in the previous subsection, the phase ϕa(x) ≡ �ka ·
�x does not lead to zeros in e±iϕa (x)/2, but rather doubles the
wavelength of the spatial periodicity of the modulation of the
phase of the VBS order parameter.

Note that there is a freedom to pick a global U(1) phase φa
0

per flavor (analogous to the choice of û in the spin case). The
mean fields can hence be written as

ha
1(x) = |Jvcloc|

3−��
3−2�� ei[π+arg Jv+ϕa (x)/2+φa

0 ] (82a)

ha
2(x) = |Jvcloc|

3−��
3−2�� ei[−ϕa (x)/2+φa

0 ]. (82b)

Consequently, the VBS order parameters, obtained from
inserting above result in (41), remain constant in magnitude
throughout the moiré lattice, but feature oscillating phases
with wave vectors �ka = − �Ka/2 corresponding to half of the
moiré lattice’s reciprocal lattice vectors. This further leads to
modulating phase difference between the monopole expecta-
tion values in the two layers 〈�1a〉mf/〈�2a〉mf = exp{i(−π −
arg Jv + ϕa(x))}. Namely, on the one hand, in certain regions
where the phase difference is small, the singlets in the two
layers almost lie on top of each other; on the other hand, where
the phase difference is near π , the singlets in the two layers
avoid each other.

VIII. DISCUSSION AND CONCLUSION

We conclude the paper with a summary of our results, a
discussion pertinent to underlying assumptions of our study,
and an outlook.

A. Summary

In this work, we have shown that in bilayer systems of
U(1) Dirac spin liquids, interlayer monopole-monopole and
mass-mass interactions are present in the low-energy field
theory. These terms constitute as relevant perturbations to
the strongly coupled conformal fixed point described by two
copies of QED3. Employing a perturbative calculation in-
formed by the low-energy CFT data, we find that an instability
due to interlayer interactions persists in the twisted system,
but its relevance is effectively reduced [i.e., Jc ∼ (amL)( 3

2 −�� ),
compared with Jc ∼ L−(3−2�� ) in the homogeneous case].

Motivated by the identification of monopole operators with
antiferromagnetic Néel and VBS order parameters on the
triangular lattice, we have focused on monopole-monopole
interactions (likely the most relevant interlayer term) and
developed a conformal mean-field theory framework which
allows us to study ordered phases described by the prolif-
eration of corresponding monopoles. Solving the mean-field
equations at weak coupling, we recover the modified criti-
cal scaling for finite twist angles, and find that the induced
spin/VBS order are mostly uniform, with small twist-induced
modulations. We expect this weak-coupling approach to be
justified when the interlayer coupling is weak compared to the
moiré modulations due to the twisting (red regime in Fig. 4).
In the limit of strong interlayer couplings (or, equivalently,
large moiré unit cells achieved at small twist angles), J 	
a2��−3

m , we employ a local approximation to show that the
magnetic order parameter forms a moiré vortex lattice.
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FIG. 4. Illustration of the relation between the weak-coupling
(red shading) and the strong-coupling limits (blue shading), and
scaling of the critical Jc, as a function of (1/am )3−2�� and J ≡ Jα .
Note that increasing values on the ordinate corresponds to decreas-
ing the size of the moiré unit cell. The dashed lines indicate the
parameter regime for which the finite-size weak-coupling instability
at Jc ∼ (amL)��−3/2 implies that L � am, which is deemed unphys-
ical and vanishes in the thermodynamic L → ∞ limit. Here, we
use a0 to denote the bare lattice constant of single-layer triangular
lattice.

A qualitative overview of the two limits and result-
ing scaling laws is presented in Fig. 4. We remark that
the mean-field solutions in the two regimes cannot be
continuously connected to each other: in the weak-coupling
case, the solutions (4) exhibit a Z2 symmetry of �1 ↔ −�†

2,
while at strong coupling, this symmetry is broken. This
suggests the presence of an additional transition, or even in-
tervening phases, in the intermediate regime, constituting an
interesting (albeit challenging) task for further study.

B. Other studies of twisted spin liquids

There have been a few prior studies of twisted spin liquids.
Reference [54] studied the twisted bilayer of the staggered
flux state on the square lattice, which is also a candidate
mean-field state of a U(1) Dirac spin liquid, but the ef-
fect of monopoles was not taken into account. In a similar
vein, Ref. [55] explored mean-field spinon band structures
of twisted van der Waals magnets hosting U(1) Dirac quan-
tum spin liquids, finding a twist-induced gap opening and
arguing that resulting band structures can be tuned upon
magnetic encapsulation and applied magnetic fields. Moving
away from U(1) Dirac spin liquids, we further mention that
in Refs. [56,57] twisted versions of the bilayer Kitaev hon-
eycomb Z2 spin liquid [58] were studied. While all these
prior works are interesting, they differ fundamentally from
our results as in our case we account fully for the na-
ture of the Dirac spin liquid as a nontrivial conformal field
theory.

C. Conformal renormalization group flow
for homogeneous interlayer couplings

In the study at hand, we have primarily focused on in-
stabilities towards ordered phases due to a (simultaneous)

proliferation of monopoles in both layers driven by the
monopole interlayer tunneling terms. However, as discussed
in Sec. III B, interlayer mass-mass couplings are also sym-
metry allowed and thought to be relevant. A key question
thus pertains if (additional) instabilities can occur due to
these additional couplings. To this end, we have performed
a perturbative renormalization group calculation to quadratic
order, utilizing the operator product expansions admitted by
the conformal nature of the QED3 fixed point [59]. Here,
we consider the case of �q ≡ 0, i.e., homogeneous interlayer
couplings which occur for trivial (AA) stacking, such that
combining Eqs. (23) and (27) leads to the full Lagrangian,
given by

L = L(1)
QED3

+ L(2)
QED3

+ L(12)
int , (83a)

L(12)
int =

3∑
a=1

Jv(�†
1,a�2,a + H.c.) +

6∑
a=4

Js(�
†
1,a�2,a + H.c.)

+ g1

3∑
i=1

M1,i0M2,i0 + g2

3∑
j=1

M1,0 jM2,0 j

+ g3

3∑
i, j=1

M1,i jM2,i j . (83b)

As mentioned in Sec. II, the low-energy theory S =∫
d3x L is naturally endowed with a UV cutoff (the lattice

spacing a0 which bounds the separation of two (low-energy)
operator insertions from below. The conformal renormaliza-
tion group (RG) is most naturally formulated in real space
and proceeds by changing the the UV cutoff a0 → ba0 with
b = (1 + δl ) > 1 (with δl being infinitesimal) and subse-
quently integrating out operator insertion pairs (at coordinates
x, y) with relative separations in the spherical shell defined
by ba0 � |x − y| � a0. We relegate a more detailed discus-
sion to Appendix C and give the RG flow equations in
terms of the dimensionless variables J̃s,v = Js,va3−2��

0 and
g̃i = gia

3−2�M
0 .

We thus find the perturbative RG equations (up to quadratic
order in J̃s,v and g̃1,2,3) to be of the form

dJ̃s

dl
= (3 − 2��)J̃s − c1(2J̃sg̃1 + 3J̃sg̃3),

dJ̃v

dl
= (3 − 2��)J̃v − c1(2J̃sg̃2 + 3J̃sg̃3),

dg̃1

dl
= (3 − 2�M )g̃1 − 2c2|J̃s|2,

dg̃2

dl
= (3 − 2�M )g̃2 − 2c2|J̃v|2,

dg̃3

dl
= (3 − 2�M )g̃3 − c2(J̃sJ̃

∗
v + J̃vJ̃∗

s ). (84)

Here, the constants c1 = π (c�
�M )2 > 0 and c2 = 4π

(cM
��)2 > 0 are given in terms of the OPE coefficients as

defined in (13a) and (13b) and are left undetermined at
this point. We find several nontrivial fixed points to the RG
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FIG. 5. RG diagram for J̃v = 0 = g̃2 = g̃3. See main text for
discussions.

equations,

(i) J̃s = ± 1√
4c̃1c̃2

, J̃v = 0, g̃1 = 1

2c̃1
, g̃2 = g̃3 = 0,

(ii) J̃v = ± 1√
4c̃1c̃2

, J̃s = 0, g̃2 = 1

2c̃1
, g̃1 = g̃3 = 0,

(iii) J̃s = J̃v = ± 1√
10c̃1c̃2

, g̃1 = g̃2 = 1

5c̃1
= g̃3,

(iv) J̃s = −J̃v = ± 1√
10c̃1c̃2

, g̃1 = g̃2 = 1

5c̃1
= −g̃3, (85)

where we have defined c̃1 = c1/(3 − 2��) and c̃2 = c2/(3 −
2�M ). Motivated by the expectation that on a microscopic
(lattice) level, spin-spin interactions lead to bare interlayer
couplings in the spin sector which are dominant compared
to those in VBS sectors, we consider the example of J̃v =
0 = g̃2 = g̃3. A schematic resulting RG diagram is shown in
Fig. 5. The blue dot corresponds to the unstable fixed point
of two decoupled copies of QED3, while the two red dots
indicate the two critical fixed points (i) as given in (85). We
observe that there are four distinct regimes of strong coupling,
corresponding to (a1) g1 → −∞, Js → −∞; (a2) g1 → −∞,
Js → ∞; (b1) g1 → ∞, Js → 0−; (b2) g1 → ∞, Js → 0+.

In the cases (b1) and (b2), the interlayer mass-mass cou-
plings flow to strong coupling. In this regime, it can therefore
be expected that the two masses are spontaneously generated
(this simultaneous mass condensation in each layer would
correspond to the fermion adjoint operators in each layer ac-
quiring a finite expectation value, 〈M1,i0〉, 〈M2,i0〉 �= 0), with
g̃1 > 0 indicating that the signs of the generated masses are
opposite. As discussed in Ref. [34] using a Gross-Neveu type
model, in a single layer, the generation of a spontaneous
mass opens up a channel for a corresponding monopole to
be proliferated, thus constituting a mechanism for a transition
from the DSL to ordered phases. In particular, the mass term
±Mc0 will proliferate different �a ± i�b monopoles, where
(a − 3, b − 3, c) form an even permutation of (1,2,3), and
�a ± i�b implies noncollinear, but coplanar, magnetic order.
Note that while the perturbative RG flow with respect to the
decoupled DSL fixed point appears to indicate that Js → 0±

in (b1) and (b2), it is to be expected that Js (and potentially
further monopole-monopole interactions) become relevant at
the strong-coupling fixed point (i.e., they are dangerously
irrelevant couplings) and are crucial to the description of the
confinement transition in the strong-coupling regimes (b1)
and (b2) without referencing a Gross-Neveu theory as in
Ref. [34].

For the cases (a1) and (a2), a similar scenario as above
(spontaneous mass generation which leads to the proliferation
of the two monopoles) is conceivable. However, the fact that
Js → ±∞ could also be taken to suggest that the physics in
this regime is dominantly controlled by the monopole tun-
neling Js growing strong, implying a direct instability due
to monopole tunneling. As to the nature of the phase that is
induced, two scenarios appear likely.

On the one hand, the interlayer monopole-monopole in-
teraction can induce simultaneous monopole proliferation in
both layers, thus realizing a (confined) long-range ordered
phase. This is the underlying assumption of our work at
hand, justifying the use of mean-field theory (see Sec. V) in
which the monopole operators acquire finite expectation val-
ues 〈�1〉, 〈�2〉 �= 0 which are in one-to-one correspondence
with the Néel/VBS order parameters of the thus obtained
ordered phases.

On the other hand, we note that the monopole-monopole
tunneling term still preserves the total U(1)top magnetic flux
of the system. Thinking about parton constructions [or the
low-energy field theory (5)], this could be taken to suggest that
excitations coupled to the relative gauge field aμ

− ≡ aμ
1 − aμ

2
between the two layers (the flux of which is not conserved
by the monopole tunneling term) become confined (the as-
sociated flux is no longer conserved), but the total gauge
field aμ

+ ≡ aμ
1 + aμ

2 remains in a deconfined state as the total
U(1)top flux conservation prohibits monopole proliferation.
The resulting state, obtained after such a “partial confine-
ment” transition, would still support deconfined excitations.
However, as of now, it is unclear if (1) such a phase, which
one might refer to as a “bilayer spin liquid,” is stable [single-
fermion interlayer tunneling may lead to a gap opening in
the spinon dispersion, and the resulting pure deconfined U(1)
gauge theory is unstable by Polyakov’s mechanism [60]] and
if (2) this phase is energetically competitive compared with
conventional (fully confined) ordered states. A study of this
intriguing scenario, necessary and plausible intermediate tran-
sitions involved, and the nature of resulting phases is left for
future study.

The fixed points (2), (3), and (4) in Eq. (85) can be analyzed
analogously with identical RG diagrams looking the same
upon appropriate reparametrizations. Finally, a conformal RG
study involving moiré modulations in the interlayer couplings
is more involved and will be left for future research.

D. Applications and outlook

Potential material realizations include the van der Waals
material 1T-TaS2, which has been proposed to be either a U(1)
Dirac or Z2 spin liquid [33].

We remark that generally in mean-field treatments, the ten-
dency to order might be overestimated. However, experience
with the analogous calculations in one lower dimension has
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shown them to be often very accurate. In the future, a study of
fluctuations above mean-field level is nevertheless important
to consider, though it is beyond the scope of this paper. We
do want to mention one possible way to study new disordered
phases: Consider the couplings of bilayer masses as discussed
in Sec. III B and take an appropriate mean-field ansatz such
that the moiré low-energy spinon bands are flat (similar to
what was found in the twisted bilayer staggered flux state
on square lattice [54]). The high density of low-energy states
might help to suppress the monopoles and favor a spin liquid
phase again. As alluded in the previous subsection, one can
conceive spin liquid phases that are intrinsic to the bilayer
system, but it is unclear how stable those might be and if they
can be energetically favored.

Further, we note that the CFT as a low-energy theory for
the coupled U(1) Dirac spin liquids is applicable in the regime
of small twist angles and thus large moiré lattice constants
am 	 a. If the twist angle is large (in the most extreme case
θ = π/6 since a twist by 0 � θ � 2π/6 is equivalent to a
twist by 2π/6 − θ due to the C6 lattice symmetry), there is
no clear separation of scales am ∼ a which would justify the
use of the low-energy (continuum) theory and our results be-
come uncontrolled. Instead, microscopic (lattice) details will
become important, an analysis of which we leave for further
study.

On the methodological side, we have established explicit
operator-product expansions for the low-energy QED3 theory
of the Dirac spin liquid on the triangular lattice (similar ex-
pansions are readily obtained for, e.g., the kagome lattice),
and developed a mean-field framework exploiting the con-
formal symmetry of the SU(4) DSL. Offering up a unique
avenue for analytical treatments beyond large-N calculations,
our framework can be applied to the study of a wide array of
perturbations to the Dirac spin liquid.

ACKNOWLEDGMENTS

We thank K. Hejazi for collaborations on previous related
works, C. Xu for helpful discussions, and X.-Y. Song for
correspondence on earlier work. We further gratefully ac-
knowledge discussions with M. Metlitski as well as Y.-C. He
and C. Wang (Z.X.L.), D. Simmons-Duffin and G. Remmen
(U.F.P.S.). This work is supported in part by the Simons
Collaborations on Ultra-Quantum Matter, Grant No. 651440
(Z.X.L.) from the Simons Foundation. U.F.P.S. is supported
by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) through a Walter Benjamin fellowship
(Project ID 449890867). L.B. is supported by the NSF CMMT
program under Grant No. DMR-2116515.

APPENDIX A: DERIVATION OF OPERATOR
PRODUCT EXPANSIONS

In order to constrain terms in the operator product ex-
pansion (12), we first consider the allowed U(1)top quantum
numbers (i.e., the topological charges). In particular, the op-
erator product �†

a�b has 0 net topological charge so that it
is expanded in U(1)top singlets. Next, we consider the SO(6)
tensorial structure. A first step to decomposing the product of
two SO(6) tensor representations is to consider correspond-

ing Young tableaux. However, we note that Young diagrams
for the orthogonal groups are in general not irreducible, as
(partial) traces can be subtracted.

1. Monopole OPE

It is easily seen that the monopole-monopole operator
product �a�b possesses a topological charge of 2, such that
its expansion may only contain higher-order monopole oper-
ators which are notably less relevant and thus excluded from
our study.

For the monopole-antimonopole OPE, both transforming
as SO(6) vectors, we find

(A1)

where further splits into the rank-2 traceless symmetric
tensor (20-dimensional) and trivial irreps. The 15-dimensional
antisymmetric representation is isomorphic to the 15
SU(4) adjoint masses. An explicit isomorphism is constructed
by writing

�†
a�b ∼ i

2
�†

αLab
αβ�β + · · · , (A2)

where Lab
αβ = −i(δa

αδb
β − δa

βδb
α ) are SO(6) generators in the

defining representation. We can identify two mutually com-
muting subalgebras {L23, L31, L12} and {L56, L64, L45} which
generate two copies of SO(3). Explicitly comparing the sym-
metry transformations of �†Lab� (recall that the bold font
denotes the six-component vector such that Lab acts as a
matrix, with summation over α, β is implied) and the adjoint
masses Mμν , we find that the first set may be identified with
the SO(3)valley generators M0i (where i = 1, 2, 3) and the lat-
ter with Mi0 which generate SO(3)spin. We further find that
each set {Li,4}i=1,2,3, {Li,5}i=1,2,3, {Li,6}i=1,2,3 furnish a vector
representation of SO(3)valley and {L1, j} j=4,5,6, etc., transform
as vectors under SO(3)spin, such that the mixed generators
�†Li j� transform as Mj−3,i where i = 1, 2, 3 and j = 4, 5, 6.
Note that the C6 and T symmetries which reverse the U(1)top
charges of monopole operators further imply that this identifi-
cation holds up to a real constant, implying cM

�� ∈ R in (13a).
This mapping of SO(6) fundamental generators to SU(4)

adjoints can be conveniently expressed in terms of a tensor F
(and its inverse F̄ defined via Fab

μνF̄
ρλ

ab = δρ
μδλ

ν ) which allows
us to write Lab = Fab

μνMμν and Mμν = F̄μν

ab Lab [note that all
sums over SU(4) adjoint indices (μ, ν) are taken to imply
μ = ν = 0 is excluded]. Matrix elements of F can be read
off explicitly given the above mapping, and we find that the
nonzero components are of the form

Fab
0i = εab j for a, b � 3,

Fab
i0 = εa−3,b−3,i for a, b � 4,

and Fab
i j = δa

j δ
b
i+3 − δa

i+3δ
b
j , (A3)

where the latin indices take values i, j = 1, 2, 3. An explicit
calculation shows that one may take F̄μν

ab = Fab
μν/2.
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2. Monopole-mass OPE

Next, we consider the monopole-mass operator product
�aMμν which has unit topological charge, suggesting that
unit-flux monopole operators appear in the expansion. In or-
der to decompose the product under SO(6) 
 SU(4), it is
convenient to use the previously established mapping Mμν =
F̄μν

ab Lab and decompose the product �aLbc instead, with
Young tableaux

(A4)

where the 70-dim. is further decomposed by subtracting

a trace over the horizontal boxes in the second diagram, such
that 70 → 64 + 6. Note that this result is corroborated by the
SU(4) Young tableaux (which are irreducible)

(A5)

with the last diagram on the right-hand side corresponding
to the six-dimensional rank-2 antisymmetric representation of
SU(4). Explicitly, one can decompose

�aLbc = 1
3

(
�aLbc + cyclic

)
+ 1

3

(
2�aLbc + �bLac − �cLab − 3

5 T abc
)

+ 1
5

(
δac�mLbm − δab�kLck

)︸ ︷︷ ︸
=:T abc

. (A6)

Using the explicit transformations in Table I, we find that
�mLbm transforms as ∼i�b with a real constant of proportion-
ality (note that the complex phase is constrained by C6 and T
symmetries). The additional Kronecker deltas in (A6) keep
the antisymmetry in b, c manifest. Using above introduced
F symbols, we thus find �aMμν = F̄μν

bc �aLbc ∼ F̄μν

ba i�b −
F̄μν

ac i�c. Using the antisymmetry of F̄μν
ac = −F̄μν

ca , Eq. (13b)
with some c�

�M ∈ R follows.

APPENDIX B: QUARTIC TERMS IN
PERTURBATION THEORY

In this Appendix, we extend the line of thought sketched in
Sec. V and determine how the perturbative effective action at
quartic order lifts the degeneracy of linearly combining ha

1(0)
and ha

2(0) at the mean-field saddle point (found at quadratic
order). Note that while the effective free energy Fmf [h1, h2] =
Fmf [h1] + Fmf [h2] is linear in the layer index, Fmf [h1] depends
on h2 (or vice versa) once we plug in (53) which holds as
a solution of the self-consistency equations at the mean-field
saddle point.

The free energy up to quartic order is

Fmf [h] = − logZ0 −
〈
S2

h

〉
0

2
+

〈
S2

h

〉2
0

8
−

〈
S4

h

〉
0

24
+ · · · , (B1)

where as usual, 〈·〉0 denotes evaluating expectation values
in the unperturbed compact QED3. The first two terms on
the right-hand side have no preference on the relationship
between ha

1(0) and ha
2(0) because of the linearity of the self-

consistency equations at weak coupling.

The expression for 〈S2
h 〉0 is relatively straightforward, with〈

S2
h

〉
0 = 2

∑
l,a

∫
d3x d3y

ha
l (x)ha∗

l (y)

|x − y|2��
, (B2)

where we have omitted the OPE coefficients for convenience.
Plugging in the expressions that we found,

a � 3 :

{
ha

1(�x) = h̃a
1(0) − Ah̃a

2(0) fs(�x),

ha
2(�x) = h̃a

2(0) − Ah̃a
1(0) f ∗

s (�x),

a � 4 :

{
ha

1(�x) = h̃a
1(0) − Ah̃a

2(0) f a
v (�x),

ha
2(�x) = h̃a

2(0) − Ah̃a
1(0) f a∗

v (�x),
(B3)

and upon evaluating the integrals, one easily observes that the
leading terms in (B2) scale as〈

S2
h

〉
0 ∼ L6−2�� [|h̃1(0)|2 + |h̃2(0)|2], (B4)

where we define the norm of the (complex) SO(6) vectors
|h̃l (0)|2 = ∑

a h̃a
l (0)h̃a∗

l (0). From (B4), it is clear that the
〈S2

h 〉0 and 〈S2
h 〉2

0 (and any higher powers of 〈S2
h 〉0) together

pin down the total magnitude [|h̃1(0)|2 + |h̃2(0)|2], but will
not determine the relative ratio |h̃1(0)|2/|h̃2(0)|2.

Hence, we now turn to the contribution 〈S4
h 〉0. Using the

OPEs (13a) and (13b), the leading terms come from the fusion
channels (�† × �) × (�† × �) → M × M → 1:

〈S4
h 〉0 = −

∑
l

∑
a �=b

∫
d3x d3y d3z d3w

× 1

|x − y|2��−�M

1

|y − z|2�M

1

|z − w|2��−�M

× [
ha∗

l (x)hb
l (y)ha∗

l (z)hb
l (w)

− ha∗
l (x)hb

l (y)hb∗
l (z)ha

l (w)
] + H.c. (B5)

The expression above contains various combinations of quar-
tic terms h̃∗

l (Q1)h̃l (Q2)h̃∗
l (Q3)h̃l (Q4), with Qi being either

zero or some finite momentum wave vector appearing in fs(x)
or f a

v (x). Naively, one would expect the contributions from
the uniform piece h̃∗

l (0)h̃l (0)h̃∗
l (0)h̃l (0) to dominate, as the

corresponding integrals contain the biggest power of the IR
cutoff L, and scales as J4

αL12−4�� . However, the factor A
which appears in (B3) defined in (53) contributes nontrivial
scaling A ∼ (L/am )3/2−�� . Carefully taking this into con-
sideration, we find the dominating terms to be ones of the
form h̃∗

l (0)h̃l (Q1)h̃∗
l (Q2)h̃l (0) with Q1, Q2 �= 0. They scale

like A2L6−4��+2�M |q|2�M−3 ∼ L12−4�� (L/aM )2�M−��, which
is more divergent than L12−4�� as 2�M > ��, such that
we expect this term to dominate in the thermodynamic limit
L → ∞. Combining with (B3), the leading terms can thus be
derived:

−〈S4
h 〉0 ∼ L12−4�

(
L

aM

)2�M−2��

× [|h1(0) · h2(0)|2 − |h1(0)|2 · |h2(0)|2]. (B6)

The first term can be minimized by taking h̃1(0) = sh̃2(0),
with s ∈ C being a complex number. In order to fix the
relative magnitudes, it is convenient to employ a more sym-
metric parametrization that keeps the total magnitude fixed,
h̃1(0) = h cos α and h̃2(0) = rh sin α, where r ∈ C is a com-
plex phase, |r|2 = 1, and h is some complex vector whose
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magnitude is renormalized by higher-order terms. Above
parametrization in terms of α hence keeps the U(1) degen-
eracy in [|h̃1(0)|2 + |h̃2(0)|2] = const manifest. Maximizing
the second term (B6) amounts to taking cos2 α sin2 α =
1/4, implying that |h̃1(0)|2 = |h̃2(0)|2. Consequently, we find
h̃1(0) = rh̃2(0) where r is a complex phase.

APPENDIX C: PERTURBATIVE CONFORMAL
RENORMALIZATION GROUP

In this Appendix, we briefly review the conformal renor-
malization group [59] and describe its application to the
homogeneous bilayer system, which serves as a preparation
for the discussions in Sec. VIII C.

The procedure, formulated in real space, consists in (1)
raising the UV cutoff a → ba which sets a minimal sep-
aration a � |x − y| of two operator insertions at points x,
y, where b > 1, and (2) a subsequent scale transforma-
tion which restores the action, but with modified couplings
g′. Explicitly, we may consider the partition function Z =∫
D[{O}] e−S0−Sg , where S0 is the action at the conformal

fixed point, Sg = ∑
i a�i−3

∫
d3x giOi(x) is the perturbing ac-

tion with some operator Oi(x) with scaling dimension �i.
Expanding perturbatively in g, one may write Z = Z0〈1 −
Sg + S2

g + · · · 〉0, with the expectation value to be taken with
respect to the fixed-point action and over configurations obey-
ing the UV cutoff a.

We now consider the effective action S ′
g obtained by in-

troducing a new cutoff ba with b > 1, integrating over those
configurations with operator insertion separations below the
new cutoff, and rescaling coordinates (and operators) x = bx′
such that the effective action has again cutoff a. As the linear
term 〈Sg〉0 only features single operator insertions, it is unaf-
fected from raising the cutoff and contributes the “bare” scale
transformation of the coupling at the fixed point,

a�i−3
∫

d3x giOi(x) = a�i−3
∫

d3x′ gib
3−�iOi(x

′). (C1)

At quadratic order, one has

〈Sg〉0 =
∑

i j

a�i+� j−6gig j

[∫
|x−y|>ba

d3x d3y 〈Oi(x)O j (y)〉0

+
∫

ba>|x−y|>a
d3x d3y 〈Oi(x)O j (y)〉0

]
. (C2)

Upon rescaling, the first term in (C2) reproduces the “bare”
scaling behavior of the quadratic term. For the second term,

however, Oi(x) and O j (y) are close (in the sense that their
separation lies below the raised cutoff) and thus their product
is replaced using their OPE (12), which contains (at leading
order) a primary operator Ok , and thus contributes to the scal-
ing of the linear term in the expansion of e−S ′

g . Considering
b = 1 + δl with infinitesimal δl , the occurring integral over
an infinitesimal shell is evaluated as

∫
a<|x−y|<(1+δl )a d3x |x −

y|−�i−� j+�k = 4πa3+�k−�i−� j δl and one arrives at the dif-
ferential RG equations

dgk

dl
= (3 − �k )gk − 2π

∑
i, j

gig jC
k
i j, (C3)

where Ck
i j are the OPE coefficients as defined in (12). Turning

to the homogeneous bilayer system with Lagrangian (83a),
one proceeds analogously. In practice, we find it more con-
venient to explicitly expand exp[− ∫

d3x L(12)
int ] to quadratic

order and then read off the respective contributions to the
renormalized couplings. Here, we note the identities

3∑
a,i=1

Fab
0i Fac

0i = 2δbc for b, c � 3, (C4)

6∑
a=4

3∑
i=1

Fab
i0 Fac

i0 = 2δbc for b, c � 4, (C5)

3∑
a=1

3∑
i, j=1

Fab
i j Fac

i j = 3δbc for b, c � 4, (C6)

6∑
a=4

3∑
i, j=1

Fab
i j Fac

i j = 3δbc for b, c � 3, (C7)

3∑
a,b=1

Fab
μνFab

ρλ = 2δμ,0δρ,0δν,iδλ, jδi, j, (C8)

3∑
a=1

6∑
b=4

Fab
μνFba

ρλ =
6∑

a=4

3∑
b=1

Fab
i j Fba

mn = −2δimδ jn, (C9)

where latin indices i, j, . . . ∈ {1, 2, 3} as usual, which follow
straightforwardly from the explicit form of the F symbol
given in (A3). With these results, the flow equations given
in (84) follow.
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