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We study a three-leg spin-1/2 ladder with geometrically frustrated interleg interactions. We call this model
an anisotropic triangular-strip (ATS) model. We numerically and field-theoretically show that its ground state
belongs to a gapless symmetry-protected topological (SPT) phase. The numerical approach is based on density-
matrix renormalization group analyses of the entanglement entropy and the entanglement spectrum. Whereas
the entanglement entropy exhibits a critical behavior, the entanglement spectrum is nontrivially degenerate.
These entanglement properties imply that the ground state is a gapless topological phase. We investigate the
ATS model using a quantum field theory to support the numerical findings. When the frustrated interchain
interaction is deemed a perturbation acting on the three spin chains, the frustrated interchain interaction almost
isolates the second chain from the other two chains. However, at the same time, the second chain mediates a
ferromagnetic interaction between the first and third chains. Therefore, the ground state of the ATS model is a
gapless Tomonaga-Luttinger liquid weakly coupled to a spin-1 Haldane chain with irrelevant interactions. Last
but not least, we show that the gapless SPT phase of the ATS model is a symmetry-protected critical phase. We
point out that the symmetry protection of criticality is essential in characterization of the gapless SPT phase.
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I. INTRODUCTION

The spin-1 Haldane phase [1–6] is regarded as one of
the best-known examples of symmetry-protected topological
(SPT) phases [4,5,7–9]. The SPT phase is a gapped symmetric
phase that is accompanied by no local order parameter but
is still distinct from the trivial phases. What characterizes
the SPT phase is a nontrivial short-range entanglement ro-
bust to any local disturbance under symmetries. The ground
state in the spin-1 Haldane phase exhibits a characteristic
entanglement spectrum where every eigenvalue is evenfold
degenerate under symmetries [4,5]. This nontrivial degener-
acy distinguishes the spin-1 Haldane phase from the trivial
phases. The degeneracy is protected when at least one of the
following three symmetries is present: (i) the D2

∼= Z2×Z2

spin-rotation symmetry, (ii) the time-reversal symmetry, and
(iii) the bond-centered inversion symmetry [4,5].

Recently, a gapless analog of the SPT phase, called a gap-
less SPT phase, has drawn attention [10–21]. While gapped
SPT phases are well understood, characterization of gapless
SPT phases is underway because of their nontriviality exem-
plified by the coexistence of gapless bulk and edge modes.
The gapped SPT phase hosts gapped excitations in bulk and
gapless excitations on edges. The existence of the finite ex-
citation gap in bulk partly assures the stability of the edge
mode. On the other hand, the gapless SPT phase has gapless
excitations both in bulk and edges. It is highly nontrivial how

these gapless modes in bulk and on edges stably coexist in the
gapless SPT phase.

Scaffidi et al. constructed a gapless SPT state by first
preparing the gapped Z2×Z2 SPT state and then making it
gapless [10,11]. Their argument is based on the concept of
the decorated domain wall. This gapped Z2×Z2 SPT state is
closely related to the spin-1 Haldane state. The Hamiltonian
of Ref. [10] has a minimal structure with the essence of
the spin-1 Haldane state as the Z2×Z2 SPT state. However,
their Hamiltonian contains three-spin interactions challenging
for experimental realizations. Originally, the spin-1 Haldane
phase attracted broad attention for the simple and experimen-
tally feasible parent Hamiltonian [22]. Therefore, it will be
worth pursuing an experimentally feasible antiferromagnetic
model as a gapless-SPT counterpart to the spin-1 Heisenberg
antiferromagnetic chain.

This paper shows that a simple spin-1/2 three-leg spin
ladder with geometrically frustrated interchain interactions
[Fig. 1(a)] exhibits a gapless SPT phase. We call this model
an anisotropic triangular-strip (ATS) model. This model is
relevant to real compounds such as Cu3(OH)4MO4 for M =
S, Mo [23–29]. In the first part of the paper, we show
that the ground state of the ATS model behaves as a
gapless Tomonaga-Luttinger liquid (TLL) [30] with a topo-
logically degenerate entanglement spectrum by using the
density-matrix renormalization group (DMRG) method. Sec-
ond, we give a firm theoretical foundation to the numerical
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FIG. 1. Spin-1/2 ATS XXZ model with intrachain interaction J
and frustrated interchain interaction J×. (a) Infinite chain, (b) finite-
size cluster with V-shaped edges, and (c) finite-size cluster with
parallel edges.

findings [31]. Last but not least, we show that an inver-
sion symmetry protects the criticality and the topological
degeneracy of the entanglement spectrum. In this sense, our
gapless SPT phase qualifies as a symmetry-protected critical
phase [32].

This paper is organized as follows: In Sec. II, we will
introduce the ATS XXZ model and explain its properties. In
Sec. III, we will show the numerical calculation results of the
model. Then, in Sec. IV, we discuss the gapless SPT phase of
the model by a field-theoretical approach. Finally, in Sec. V,
we discuss the symmetries which protect the gapless SPT
phase.

II. MODEL

The ATS model has the following Hamiltonian on a three-
leg ladder:

H = J
L∑

i=1

3∑
n=1

�Si,n ·� �Si+1,n

+ J×
∑

n=1,3

L∑
i=1

�Si,2 ·� (�Si,n + �Si+1,n), (2.1)

where �Si,n denotes the S = 1/2 spin operator at the ith site
along the leg on the nth leg [see Fig. 1(a)], and �Si,m ·� �S j,n

denotes the XXZ interaction:

�Si,m ·� �S j,n = 1
2 (S+

i,mS−
j,n + S−

i,mS+
j,n) + �Sz

i,mSz
j,n. (2.2)

We consider antiferromagnetic exchange couplings J > 0 and
J× > 0. We also limit ourselves to a situation 0 < 1 − � � 1
of the weakly easy-plane anisotropy. We denote the system
length as L and the total number of spins as 3L.

Before giving detailed numerical and field-theoretical dis-
cussions, let us briefly explain why we expect the gapless SPT
phase in this ATS model (2.1). The key point is that geomet-
rically frustrated interactions [the second line of Eq. (2.1)]
couple the second (middle) spin-1/2 XXZ chains with the
first (upper) and the third (lower) chains [Fig. 1(a)]. Let us
regard J× as a perturbation to three decoupled spin chains. We
can expect that a second-order process will yield a direct fer-
romagnetic interchain interaction between the first and third
chains of ∼ − J2

×/J (see Sec. IV). On the other hand, the geo-
metrical frustration of the interchain interactions suppresses
the antiferromagnetic correlation between the second chain
and the other two chains. Hence, we expect the spin-1/2 ATS
model to effectively turn into a set of an almost isolated spin-
1/2 XXZ chain and a two-leg spin-1/2 ladder. The former
consists of the second chain, and the latter the first and third
chains. This almost decoupled spin-1/2 XXZ chain behaves as
the gapless TLL at low energies. On the other hand, the first
and third chains effectively form a spin-1/2 two-leg ladder
with the ferromagnetic interchain interaction.

It is well known that this spin ladder can have the spin-1
Haldane state as its ground state [33]. Therefore, we can
naively expect the ground state that may be approximated
as a tensor product state of the TLL from the second chain
and the SPT (spin-1 Haldane) state from the other chains.
In what follows, we demonstrate that the ground state of the
ATS model (2.1) is essentially the tensor product state that
we guessed here. Moreover, we show that even when the
ground state is the product state of the gapless state and the
gapped SPT state, their symmetry protection differs from that
of the gapped SPT phase because the Hamiltonian contents
are not decoupled. We will come back to this point later in
Sec. V.

III. NUMERICAL RESULTS

This section presents the numerical results of the ATS
model (2.1). Throughout this section, we set J = 1, J× = 0.5,
and � = 0.8. We performed the finite-size density-matrix
renormalization group (DMRG) calculation and infinite-size
DMRG (iDMRG) calculation to obtain the ground state and
investigate its properties. We used the ITensor library [34]
for the finite-size DMRG calculations, where we used the
bond dimension m � 2400 and kept the truncation error up
to 10−6. We confirmed the convergence of the ground energy
and entanglement entropy at the center bond within the sweep
count. On the other hand, we used the TeNPy library [35] for
the iDMRG calculations, where we used the bond dimension
m � 1200.

The finite-size DMRG calculations were performed under
the open boundary condition. We consider two kinds of finite-
size clusters, one with V-shaped edges [Fig. 1(b)] and the
other with parallel edges [Fig. 1(c)]. One might expect that
they differ only in the shape of the left and right edges, which
would be insignificant to bulk quantities. This expectation
is mostly the case. However, the difference in the cluster
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shapes becomes vital in, for example, entanglement properties
because of symmetries in the corresponding Hamiltonians.
With the V-shaped edges, the system breaks the inversion
symmetry, while the system with the parallel edges does not.
We will specify the shape of the system when we refer to the
finite-size DMRG results.

SPT phases are characterized by no local order parameters.
In some gapped SPT phases, nonlocal order parameters are
still available. For example, a string order parameter allows
us to distinguish the spin-1 Haldane phase from the trivial
phases [36,37]. A possible string order parameter in our model
is discussed in Appendix A. In general, however, we cannot a
priori expect the existence of the nonlocal order parameter
that characterizes the SPT phase. Instead of relying on an
order parameter, one can characterize the SPT phase with the
entanglement entropy and the entanglement spectrum under
symmetries [4,5]. For example, the evenfold-degenerate en-
tanglement spectrum of the spin-1 Haldane state enables one
to distinguish it from the topologically trivial phase.

We employ the same strategy to characterize the gapless
SPT phase. Namely, in order to conclude that the ATS model
(2.1) has the gapless SPT phase, we confirm the following
two properties of the system. First, we check that the ground
state is gapless by investigating the ground state’s entangle-
ment entropy. Next, we check the evenfold degeneracy in the
entanglement spectrum. Furthermore, we will show that these
properties are protected by symmetries later in Sec. V.

A. Entanglement entropy and central charge

Let us discuss the entanglement entropy and central charge.
We divide the whole system into two subsystems A and B. We
define the reduced density matrix of the subsystem A, by using
the ground state |ψ〉 of the whole system, as

ρA = TrB|ψ〉〈ψ |, (3.1)

where TrB denotes the trace over the other subsystem B. The
entanglement entropy of the subsystem A, S(A), is defined as
the von Neumann entropy of the reduced density matrix ρA

[38,39],

S(A) = TrA[−ρA ln ρA] = −
∑

i=1,2,...

λi ln λi, (3.2)

where {λ1, λ2, . . .} are the eigenvalues of the matrix ρA.
The entanglement entropy can characterize how strongly the
subsystem A is entangled to the rest of the system, B. For
example, if the state is the product state of subsystem A and
B, |A〉 ⊗ |B〉, the entanglement entropy (3.2) vanishes because
{λ1, λ2, . . .} = {1}.

Throughout this paper, we deal with the one-dimensional
model. We can thus take the subsystem A as a one-
dimensional system with the length l from the left edge. Note
that this subsystem A contains the 3l sites. Therefore, we can
represent the entanglement entropy as S(l ). It is reported that
if the system obeys a conformal field theory (CFT) with the
central charge c > 0, the entanglement entropy is given by the

FIG. 2. Subsystem of ATS XXZ model used for calculations of
entanglement entropy and central charge.

following Calabrese-Cardy formula [40,41]:

S(l ) = c

6
ln

[
2L

π
sin

(
π l

L

)]
+ c′

1 + ln g, (3.3)

where c′
1 is a constant, and the ln g term represents bound-

ary effects proportional to ln g ∼ (−1)l/[ L
π

sin( π l
L )] [42]. The

formula (3.3) is generically valid in a one-dimensional system
with the open boundary condition.

In the ATS XXZ model, we take the subsystem as shown
in Fig. 2. For the calculations of the entanglement entropy, we
adopt the finite-size system with the parallel edges [Fig. 1(c)]
because the system is then symmetric under an inversion,

S j,n → SL+1− j,4−n. (3.4)

We calculate the entanglement entropy for each value of l
and fit the data using the Calabrese-Cardy formula (3.3). As
a typical example of the calculation results, Fig. 3 shows the
entanglement entropy of the ATS XXZ model with � = 0.8,
J× = 0.5, and the system length L = 146. In the data shown
in Fig. 3, we subtracted the edge term from the numerically
calculated entanglement entropy for better visibility. As a
result, the numerical data in Fig. 3 are well fitted with Eq. (3.3)

FIG. 3. Entanglement entropy for � = 0.8, J× = 0.5, with L =
146. The horizontal axis is the length of the subspace l (cf. Fig. 2),
and the vertical axis is the values of the entanglement entropy. The
solid line represents the fitting result by the Calabrese-Cardy formula
(3.3), where we have subtracted the edge term for better visibility.
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FIG. 4. Central charge c derived from the entanglement entropy.
The horizontal axis is 1/L, and the vertical axis is the value of the
central charges. The calculated value of central charge approaches
c ≈ 1 as the system length L increases.

with the central charge c ≈ 1.90. This agreement with the
Calabrese-Cardy formula (3.3) means that the system is in-
deed gapless and described by a CFT at low energies.

To evaluate the central charge in the infinite-size limit
L → +∞, we calculated the system-size dependence of the
central charge. Figure 4 shows the numerically evaluated cen-
tral charges (the filled circles) for various system lengths L.
Each value of the central charge is derived in the same way
as written above. The central charge exhibits an interesting
system-size dependence. When the system length L is short,
the central charge looks almost constant. Still, it seems that the
central charge with long enough L decreases as L increases.
Here, we simply fit the data points for the five largest system
lengths with a straight dashed line in Fig. 4. The fitted line
implies that the central charge c is close to 1, c = 1.02 ± 0.06,
in the L → +∞ limit, and correspondingly the ground state is
a c = 1 TLL. We find the similar value c ∼ 0.93 when fitting
the data by 1/(L ln L), considering the logarithmic correction
in the vicinity of the SU(2) point.

Note that we would overestimate the central charge c in the
L → +∞ limit if we used the data with a small L only. This
behavior of the central charge will be attributed to the possible
presence of nontrivial edge states in the gapless SPT state. As
we show in the next subsection, the ground state of this system
belongs to the gapless SPT phase whose topological property
is akin to the spin-1 Haldane state. As is well known, the spin-
1 Haldane state is accompanied by a spin-1/2 state on each
edge of the system. In bulk, magnetic excitations cost a finite
excitation energy whose minimum value is called the Haldane
gap [43]. The presence of the bulk gap makes the edge state
well localized around the edges. On the other hand, the bulk
gap is infinitesimal in the gapless SPT phase. In particular,
the bulk spin gap is infinitesimal in our case. Therefore, the
edge spins can be extended deep inside the bulk [10]. When
the system size is too small, we would overcount the number
of gapless bulk modes. Since the central charge reflects the
number of gapless modes, it will be overestimated for small
systems. Note that such an effect was also reported by Nataf
et al. [44] in a critical SU(3) spin chain.

B. Entanglement spectrum

Now that we confirmed that the criticality of the ground
state, we investigate topological properties of the system
based on the entanglement spectrum. To calculate the en-
tanglement spectrum, we divide the whole system into 2
subsystems A and B, as in Sec. III A. The reduced density
matrix of the subsystem A has been defined in Eq. (3.1).
By using the reduced density matrix ρA, we can define the
entanglement spectrum {μi}i=1,2,... as μi = − ln λi, where λi

are the eigenvalues of the reduced density matrix ρA [4,45].
Let us recall the relation of μi to the ground state |ψ〉 of

the system. In general, |ψ〉 is written as

|ψ〉 =
∑
i, j

Mi j |i〉A| j〉B, (3.5)

where Mi j is an NA×NB matrix, where NA is the dimension
of the Hilbert space of the subsystem A, and NB is that of the
subsystem B. By using the singular value decomposition, we
can diagonalize the matrix Mi j and obtain

|ψ〉 =
∑

I=1,2,...

�I |I〉A|I〉B, (3.6)

with �I � 0. Then, the entanglement spectrum {μi}i is de-
fined as

�2
i = e−μi . (3.7)

It was reported that the spin-1 Haldane state shows
the evenfold degeneracy of the entanglement spectrum [4].
Hence, we can naively expect the same evenfold-degenerate
entanglement spectrum in our gapless SPT phase, as briefly
explained below. Generally, for a simple tensor product of a
gapped SPT ground state |ψ1〉 and a gapless ground state |ψ2〉,
the entanglement spectrum is calculated as {μ1,i + μ2, j}i, j ,
where {μ1,i} is the entanglement spectrum of |ψ1〉 and {μ2,i} is
that of |ψ2〉. Since every μ1,i has its partner μ1,i′ so that μ1,i =
μ1,i′ with i �= i′, the entanglement spectrum {μ1,i + μ2, j}i, j

of the tensor-product state is evenfold degenerate. Therefore,
we can expect that an essentially same evenfold-degenerate
entanglement spectrum is found in our gapless SPT state, if
we regard it as the effective product state.

Figure 5 shows a DMRG result of the entanglement spec-
trum of the ATS XXZ model with � = 0.8, J× = 0.5 with the
system length L = 100. We use the system with the parallel
edges [Fig. 1(c)] and impose the open boundary condition.
To calculate the entanglement spectrum, we cut the system at
a center bond (l = L/2) invariant under the inversion (3.4).
As Fig. 5 shows, we observe the evenfold degeneracy for
every eigenvalue μi. Note that the inversion symmetry is
critical to protect the evenfold degeneracy. In the entangle-
ment spectrum of the model with the V-shaped edges, we
did not observe clear evenfold degeneracy because the model
breaks the inversion symmetry in the finite-size system, and
the calculation results suffer from rather significant finite-size
effects.

To avoid this ambiguity about the finite-size cluster shape,
we adopt the iDMRG method to further investigate the entan-
glement spectrum in the thermodynamic limit. To calculate
the entanglement spectrum with the iDMRG method, we can
consider two types of cuts, as shown in Fig. 6. Note that
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FIG. 5. Entanglement spectrum of ATS XXZ model for � = 0.8,
J× = 0.5, L = 100 at center bond. This result is calculated with the
finite DMRG method, and we took the lowest-energy state in the
sector where the total magnetization is 1.

both cuts respect the inversion symmetry in the infinite-size
system in contrast to the finite-size cases. Figure 7 shows
the iDMRG result of the entanglement spectrum of the ATS
XXZ model with the V-shaped cut, and that for the straight
cut is given in Fig. 8. Both types of cuts lead to the evenfold-
degenerate entanglement spectra. Moreover, the entanglement
spectrum of the model with the straight cut resembles the
one we obtained in the finite-size system with the parallel
edges in Fig. 5, as naively expected. The evenfold degeneracy
is entirely consistent with the simple physical picture that
our gapless SPT state can be regarded essentially as a tensor
product of the gapped Haldane state and gapless TLL. The
evenfold-degenerate entanglement spectrum implies the emer-
gence of the spin-1/2 edge states akin to those in the spin-1
Haldane phase. However, we cannot observe the edge state
in the iDMRG calculations by construction or in the finite-
size DMRG calculations because of the significant finite-size
effects. We also note that no spontaneous symmetry breaking
is found in the iDMRG calculations of the ground state of the
ATS model.

Let us conclude this section. The numerical result of the
entanglement entropy implies that the ground state is the criti-
cal TLL state with c = 1. In addition, because of the evenfold
degeneracy in the entanglement spectrum, the ground state
simultaneously belongs to an SPT phase. Therefore, we can
conclude that the ATS XXZ model with the parameters � =
0.8, J× = 0.5 has the gapless SPT state as its ground state. The

FIG. 6. Cut section of ATS model when calculating entangle-
ment spectrum with iDMRG method. There are two types of cuts.
One is V shaped (shown in the left panel), and the other is straight
(shown in the right panel).

FIG. 7. The entanglement spectrum of ATS XXZ model for
� = 0.8, J× = 0.5 with V-shaped cutting. The horizontal axis is
the numbering of the entanglement spectrum, and the vertical axis
represents their values.

following section gives a quantum field theoretical support to
this claim.

IV. EFFECTIVE FIELD THEORY

This section develops a low-energy effective field theory
of the ATS model. This effective field theory explains how
the geometrically frustrated interchain interaction enables the
gapless SPT phase in the ATS model. The effective field
theory also uncovers that this gapless SPT phase qualifies as a
symmetry-protected critical phase [32,46].

A. Effective nearest-neighbor decoupling and ferromagnetic
next-nearest-neighbor coupling

To derive the effective field theory, we regard the interchain
exchange J× as a perturbation and set � = 1 for a while in this
section. We incorporate the intrachain easy-plane anisotropy
into the effective field theory after taking the frustrated inter-

FIG. 8. The entanglement spectrum of ATS XXZ model for
� = 0.8, J× = 0.5 with parallelogram-type cutting. The horizontal
axis is the numbering of the entanglement spectrum, and the vertical
axis represents their values.
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chain interaction into account. The ATS Heisenberg model’s
Hamiltonian consists of two parts:

H = H0 + V, (4.1)

H0 = J
∑

j

3∑
n=1

�S j,n · �S j+1,n, (4.2)

V = J×
∑

j

∑
n=1,3

�S j,2 · (�S j,n + �S j+1,n). (4.3)

The unperturbed model with the Hamiltonian H0 is made of
three decoupled spin-1/2 Heisenberg chains. Each Heisenberg
chain has the TLL ground state [30].

Let us deal with the single spin-1/2 Heisenberg chain
based on a non-Abelian bosonization approach [31]. The spin
operator �S j,n at low energies is represented in terms of two
slowly varying fields,

�S j,n ≈ �Jn(x) + (−1) j �Nn(x), (4.4)

where �Jn(x) and �Nn(x) are the uniform and staggered parts of
the spin operator. As well as �Jn and �Nn, a dimer operator,

(−1) j �S j,n · �S j+1,n ≈ εn(x), (4.5)

plays fundamental roles in the bosonized theory. The uniform
part �Jn is further split into two, �Jn = �JR,n + �JL,n. Here, R and L
denote the right and left directions along which the boson field
of the TLL propagates. In particular, Jz

R,n and Jz
L,n are simply

represented as

Jz
R,n = 1√

2π
∂xϕR,n, Jz

L,n = 1√
2π

∂xϕL,n, (4.6)

where ϕR,n (ϕL,n) is the right-moving (left-moving) chiral
boson of the TLL. The unperturbed Hamiltonian is written as

H0 =
3∑

n=1

∫
dx

[
2πv

3
( �JR,n · �JR,n + �JL,n · �JL,n)

+ γbs �JR,n · �JL,n

]
, (4.7)

where v = πJa0/2 is the velocity of the bosonic excitation
of the TLL and γbs = O(J ) > 0 represents the strength of
the backscattering. a0 is the lattice spacing and hereafter
set as unity unless otherwise stated. The SU(2) spin rota-
tional symmetry allows us to rewrite �JR,n · �JR,n = 3(Jz

R,n)2 =
3(∂xϕR,n)2/2π and �JL,n · �JL,n = 3(∂xϕL,n)2. The two chiral
bosons ϕR,n and ϕL,n for each n build two (nonchiral) boson
fields φn and θn,

φn = ϕL,n + ϕR,n, (4.8)

θn = ϕL,n − ϕR,n. (4.9)

The unperturbed Hamiltonian H0 is thus given by

H0 =
3∑

n=1

∫
dx

[
v

2
{(∂xθn)2 + (∂xφn)2} + γbs �JR,n · �JL,n

]
.

(4.10)

The backscattering term is marginally irrelevant and mostly
negligible in the TLL phase. The backscattering term affects

neither the excitation spectrum nor the entanglement spec-
trum. In the TLL phase, the backscattering term only adds
quantitative corrections to physical quantities [47–49].

Naively, the geometrically frustrated interchain interaction
V is composed of marginal or irrelevant interactions only,

Vnaive =
∫

dx[γJ �J2 · ( �J1 + �J3) + γtw(∂x �N2) · ( �N1 + �N3)],

(4.11)

with γJ = J× and γtw = J×. All the terms in Eq. (4.11)
have the scaling dimension 2 and are marginally irrele-
vant. The naive representation (4.11) is inaccurate because
it misses relevant interactions generated in the course of
the renormalization-group (RG) transformation [50]. We can
show that the perturbation expansion about V contains more
interactions [50,51] (see also Appendix B),

Veff =
∫

dx[γJ �J2 · ( �J1 + �J3) + γtw(∂x �N2) · ( �N1 + �N3)]

+
∫

dx(γ ′
J
�J1 · �J3 + γN �N1 · �N3 + γεε1ε3). (4.12)

The additional terms �J1 · �J3, �N1 · �N3, and ε1ε3 have the scaling
dimensions 2 and 1, and 1, respectively. The latter two thus
can generate an excitation gap. As we derive in Appendix B,
the coupling constants γ ′

J and γN are second order of J×/J:

γ ′
J = − J2

×
2π3J

, (4.13)

γN = − J2
×

4π3J
. (4.14)

Note that γN is the second order of J×/J . A previous study
[50] concluded that γN is O(J (J×/J )4). We obtained quali-
tatively the same relevant interactions �J1 · �J3 and �N1 · �N3 as
those derived in Ref. [50] [see Eq. (5) therein]. However,
we found γN is actually O(J (J×/J )2) (see Appendix B). The
fourth-order correction to Veff also includes another relevant
interaction ε1ε3. Since �N1 · �N3 and ε1ε3 have the same scaling
dimension and γN � γε, the ground state is governed by the
strong-coupling limit of γN .

Note that γN < 0 is ferromagnetic. The frustrated in-
terchain interaction V ≈ Veff develops the ferromagnetic
interaction between the first and third legs. The geometri-
cal frustration makes the interchain interactions between the
nearest-neighbor legs much weaker than those between the
next-nearest-neighbor ones. In particular, the interactions be-
tween the nearest-neighbor chains are marginally irrelevant
in the RG sense. Whereas the first and third legs are fer-
romagnetically coupled, the second leg is almost decoupled
from the other legs. Since the two-leg spin-1/2 ladder with a
ferromagnetic interleg interaction has a SPT ground state that
belongs to the spin-1 Haldane phase, the ground state of our
system is approximately a product state of the TLL within the
second leg and the gapped SPT state. The present physical
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picture within the perturbation theory is expected to hold to
some extent in an extended parameter region and can provide
a basis for understanding the numerical results in the previous
section.

V. SYMMETRY PROTECTION

In the previous sections, we showed that the ground state
of the ATS XXZ model has simultaneously the gapless nature
and the gapped SPT feature, which provides a naive defini-
tion of a gapless SPT state. However, a genuine gapless SPT
state should be characterized by symmetries which protect
the entire state including gapless and gapped sectors from
symmetry-preserving perturbations. In this section, we clarify
the symmetry protection of our ground state and argue that
it can indeed be understood as a genuine gapless SPT state
but not just as a merely decoupled pair of a gapless TLL
and a gapped SPT state. We first point out that the gapless
SPT phase hitherto investigated in this paper is a symmetry-
protected critical (SPC) phase [32,46]. The SPC phase is
characterized by “ingappability” [52] under symmetries, that
is, the impossibility of opening an excitation gap with keeping
the imposed symmetries. According to Ref. [32], the ground
state of the spin-1/2 ATS model (4.1) belongs to the SPC
phase protected by the SU(2) spin-rotation symmetry, the
one-site translation symmetry along the legs, and the emergent
Lorentz symmetry [32].

As our numerical results imply, we can relax the condi-
tion of the SU(2) spin-rotation symmetry to the U(1)×Z2

symmetry without opening an excitation gap. The U(1)×Z2

group refers to the continuous spin rotation around the z
axis [53]. This symmetry reduction is possible because,
as we showed in the previous section, the criticality of
the ATS Heisenberg model is basically attributed to the
TLL of the Heisenberg antiferromagnetic model on the sec-
ond leg. The TLL is robust against the introduction of
the easy-plane anisotropy. However, the symmetries for the
SPC state alone do not fully characterize the gapless SPT
state. We need an additional symmetry to protect the topo-
logical nontriviality of the gapless SPT phase besides the
symmetry protected criticality. Although one may naively
expect that the symmetries protecting the spin-1 Haldane
state will play the role, they are not enough as will be
shown below. Here, we provide a field-theoretical argu-
ment on the symmetries required to simultaneously protect
the ingappability and the topological nontriviality in our
system.

A. D2 and time-reversal symmetric modification

First, to see that the symmetries for the spin-1 Haldane
state do not protect our gapless SPT state, we consider the fol-
lowing modification of the ATS XXZ model (see Fig. 9). We
introduce a real parameter t ∈ [0, 1] and modify the Hamilto-
nian (2.1) to

H(t ) = H + tH ′, (5.1)

with an interchain interaction,

H ′ = −J×
∑

j

∑
n=1,3

�S j,2 ·� �S j+1,n. (5.2)

FIG. 9. The ATS XXZ model with the inversion-symmetry-
breaking interchain interaction, represented by the Hamiltonian
(5.1). The green bonds represent the XXZ interaction with exchange
coupling (1 − t )J×. The red line is the cut for the calculation of the
entanglement spectrum.

H(t = 0) gives the original spin-1/2 ATS XXZ Hamiltonian
(2.1) but H(t = 1) gives the Hamiltonian of a spin-1/2 un-
frustrated three-leg XXZ ladder:

H(1) = J
∑

j

3∑
n=1

�S j,n ·� �S j+1,n + J×
∑

j

∑
n=1,3

�S j,2 ·� �S j,n.

(5.3)

For J > 0 and J× > 0, the unfrustrated spin ladder (5.3) has
the SPC phase for � ≈ 1. However, this SPC phase is topo-
logically trivial. This can be clearly seen in degeneracy lifting
of the entanglement spectrum. Figure 10 shows the iDMRG
calculation results of the entanglement spectrum of model
(5.1). They indicate that the degeneracy of entanglement spec-
trum disappears as soon as we add the interaction (5.2) to the
original ATS XXZ model.

The modification (5.1) keeps the D2 spin-rotation sym-
metry and the time-reversal symmetry. Let us recall that the
spin-1 Haldane phase is protected by one of the D2

∼= Z2×Z2

spin-rotation symmetry, the time-reversal symmetry, and the
bond-centered inversion symmetry. Though the Hamiltonian
(5.1) keeps the D2 spin-rotation and time-reversal symmetries

FIG. 10. Entanglement spectrum of the ATS XXZ model with
additional unfrustrated interchain interaction (5.2). The horizontal
axis is the value of t , and the vertical axis is the entanglement
spectrum.
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for the entire range 0 � t � 1, this modification ruins the
topological nontriviality. The difference in symmetry protec-
tion from the spin-1 Haldane phase implies that we need to
discuss the symmetry protection of topological nontriviality
and the criticality at the same time to characterize the gapless
SPT phase.

B. Inversion symmetry

Here, we show that an inversion symmetry along the leg
direction protects the topological nontriviality of the gapless
SPT phase. The infinite-size ATS [Fig. 1(a)] with the periodic
boundary condition has a symmetry under the following in-
version I:

I

⎛
⎜⎝

�S j,1

�S j,2

�S j,3

⎞
⎟⎠I−1 :=

⎛
⎜⎝

�SL+1− j,1

�SL− j,2

�SL+1− j,3

⎞
⎟⎠. (5.4)

This I inversion works as a site-centered inversion on the
second leg but as a bond-centered one on the first and third
legs. In the perturbation theory in Sec. IV, the subsystem
made of the first and third legs effectively forms the spin-1/2
ladder with the ferromagnetic rung interaction whose ground
state is the spin-1 Haldane state. Within this subsystem, the
I symmetry turns into the bond-centered inversion symme-
try that protects the spin-1 Haldane phase. Now we recall
the modification (5.1) that respects the D2 spin-rotation and
time-reversal symmetries. The infinitesimal t �= 0 breaks the
evenfold degeneracy of the entanglement spectrum because
the added interaction (5.2) breaks the I symmetry. Therefore,
the I symmetry imposes t = 0 in the Hamiltonian (5.1).

In the gapless SPT phase of the ATS XXZ model, the
topological nontriviality is protected by the inversion sym-
metry and by neither the D2 spin-rotation symmetry nor
time-reversal symmetry, different from the gapped SPT phase
(the spin-1 Haldane phase). The geometrical frustration of
interchain interactions make the I inversion symmetry special
and different from the D2 and time-reversal symmetries. As
we saw, the ground state becomes topologically trivial as soon
as the geometrical frustration is resolved (Fig. 10).

Furthermore, we point out that the I symmetry also pro-
tects the effective decoupling of the total system into the
gapless TLL sector and gapped SPT sector at low energy. In
terms of the effective field theory, the geometrical frustration
forbids the relevant interchain interactions in the sense of
the renormalization group. A complete list of such relevant
interchain interactions is available. The list is given by

{ �N2 · �Nn, ε2εn, Na
2 εn, ε2Na

n

}
, (5.5)

for n = 1, 3 and a = x, y, z. The last two interactions Na
2 εn

and ε2Na
n are forbidden by the U(1) spin-rotation symmetry.

The I inversion symmetry excludes the remaining two in-
teractions, �N2 · �Nn and ε2εn for n = 1, 3, from the effective
field-theoretical Hamiltonian.

We can directly show that the I symmetry forbids both
�N2 · �Nn and ε2εn. The interchain interaction (5.2) introduces

relevant interactions such as

V ′ = γ ′
∫

dx �N2 · ( �N1 + �N3), (5.6)

with γ ′ ∝ J×. The relevant interaction (5.6) violates the gap-
less second leg from the topological subsystem of the first and
third legs. The I symmetry indeed forbids the interaction (5.6)
to enter into the Hamiltonian. I acts on �Nn and εn as

I

⎛
⎝ �N1(x)

�N2(x)
�N3(x)

⎞
⎠I−1 =

⎛
⎝− �N1(−x)

�N2(−x)
− �N3(−x)

⎞
⎠ (5.7)

and

I

⎛
⎝ε1(x)

ε2(x)
ε3(x)

⎞
⎠I−1 =

⎛
⎝ ε1(−x)

−ε2(−x)
ε3(−x)

⎞
⎠. (5.8)

Equations (5.7) and (5.8) indicate that the I symmetry forbids
both �N2 · �Nn and ε2εn for n = 1 and 3.

Therefore, we conclude that the U(1) spin symmetry,
the translation symmetry, and the I inversion symmetry si-
multaneously protect the ingappability and the topological
nontriviality of the gapless SPT phase of the ATS XXZ model
(2.1). The former two symmetries protect the ingappability
and the last one protects both the effective decoupling and the
topological nontriviality. The symmetry protection clearly dis-
tinguishes the present gapless SPT state from an independent
pair of a gapless TLL and a gapped SPT state.

VI. SUMMARY AND DISCUSSION

In this work, we introduced the ATS XXZ model and
showed that this model exhibits the gapless SPT state. From
our DMRG calculations of the entanglement entropy, we
found that the ground state is the critical TLL with the central
charge c = 1. We also calculated the entanglement spectrum
with the finite-size DMRG and iDMRG methods. We con-
firmed the evenfold degeneracy of the entanglement spectrum.

We also analyzed the ATS XXZ model with the quantum
field theory. The geometrically frustrated interchain interac-
tion effectively decouples the second leg from the first and
third legs. Nevertheless, the second leg mediates the ferro-
magnetic interaction between the first and third legs. At low
energies, the effectively decoupled second leg behaves as the
TLL, whereas the spin ladder formed by the first and third
chains behaves as the spin-1 Haldane state. As a whole, the
ATS XXZ model forms the gapless SPT phase. This gapless
SPT phase is protected by the U(1) spin-rotation, translation,
and the I inversion symmetry.

In this work, we considered the parameter region with
small J×/J in order to compare the numerical result with the
effective field theory. We have numerically checked that our
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gapless SPT phase is stable to changes of J×/J and � to
a certain extent. Showing a detailed J×-� phase diagram is
beyond the scope of this paper and left for a future study [54].
It will be interesting to investigate the ATS XXZ model in a
wide parameter region, in particular, with large J×/J . When
J = 0, the ATS XXZ model is reduced to an experimentally
feasible model, a spin-1/2 diamond chain [55,56]. Since the
diamond chain does not show the gapless SPT phase, we
expect that there will be a phase transition from the gapless
SPT phase as we increase J×/J .

The ATS XXZ model is simple but turns out to be highly
nontrivial. It hosts the gapless SPT phase where the ground
state is approximately a product state of the critical TLL and
the spin-1 Haldane state, in which the effective decoupling
is constrained by the inversion symmetry. At the same time,
the simple structure of the ATS XXZ model helped us to
foster a better understanding of the symmetry protection of
the gapless SPT phase. We believe that the ATS XXZ model
plays a fundamental role in future studies on the classification
of gapless phases.

It is noteworthy briefly mentioning the feasibility of the
ATS model. Natural minerals Cu3(OH)4MO4 (M = S, Mo)
are known as spin-1/2 triple-chain magnets composed of three
spin-1/2 chains with zigzag interchain interactions just like
our ATS model [23–29]. However, unfortunately, these com-
pounds consist of complex exchange interactions that break
the one-site translation symmetry. Still, we hope that our study
will stimulate further experimental studies about such triple-
chain systems.
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APPENDIX A: STRING ORDER

In this section, we briefly discuss a string order of the ATS
model. Let us define the string order between ith and jth
column of the ATS model with length L as follows:

Ostring(i, j; L)

= −
〈
ψL | T z

i exp

[
iπ

j−1∑
k=i+1

T z
k

]
T z

j | ψL

〉
. (A1)

We have introduced T z
i = Sz

i,1 + Sz
i,3, since the ground state

contains the ferromagnetic ladder of the first and third legs as
discussed in Sec. IV. The accurate definition of string order (in

FIG. 11. L dependence of string order Ostring(L/4, 3L/4; L).
When J = 1.0, � = 0.8, and J× = 0.5, the small string order
emerges (blue circles). For J = 0.0, the string order becomes com-
pletely zero (green circles).

infinite length) is Ostring = lim|i− j|→∞ limL→∞ Ostring(i, j; L).
However, instead of calculating the infinite-size string or-
der, we calculated Ostring(L/4, 3L/4; L) with the finite-size
DMRG method and investigate its size dependence. The nu-
merical results are shown in Fig. 11. The effective ferromag-
netic interchain interaction between the first and third chains
is expected to be small. The string order Ostring(L/4, 3L/4; L)
will also become small. We numerically confirmed that the
string order takes a finite value in the finite-size system. In
contrast, the string order for J = 0 is completely zero irre-
spective of the system size. For J = 1, J× = 0.5, and � = 0.8,
the string order is decreasing as the system size increases.
Unfortunately, extrapolation to L → ∞ is difficult and we
cannot draw a definite conclusion for the string order pa-
rameter in the thermodynamic limit. On the other hand, our
characterization of the topological state in the main text is
based on the entanglement spectrum, which turned out to be
more robust to the finite-size effects than the string order
parameter.

APPENDIX B: PERTURBATIVE ANALYSES
OF INTERCHAIN INTERACTIONS

This section supplements the perturbative expression
(4.12) of the interchain interaction. Our arguments are similar
to those in Refs. [50,51,57]. The present effective field theory
stands on three copies of the level-1 SU(2) Wess-Zumino-
Witten (WZW) theories weakly coupled to each other. Using
the operator product expansion of the level-1 SU(2) WZW
theory, we derive an effective Euclidean action of the low-
energy effective field theory.

1. Operator product expansions

Let us introduce the operator product expansion of �JR,n,
�JL,n, �Nn, and their derivatives. Since the operator product ex-
pansion works for operators that share the leg index n, we omit
the index n in this subsection for simplicity. We can represent
�JR, �JL, �N , and ε in terms of free chiral Dirac fermions ψR,s and
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ψL,s with spin s =↑,↓:

�JR =: ψ
†
R,s

�σs,s′

2
ψR,s′ :, (B1)

�JL =: ψ
†
L,s

�σs,s′

2
ψL,s′ :, (B2)

�N =: ψ
†
R,s

�σs,s′

2
ψL,s′ : + : ψ

†
L,s

�σs,s′

2
ψR,s′ :, (B3)

ε = i

2
(: ψ

†
R,sψL,s : − : ψ

†
L,sψR,s :), (B4)

where �σ = (σ x σ y σ z )� is the set of the Pauli matrices and : · :
denotes the normal ordering. These chiral fermions satisfy the
following correlation functions at zero temperature,

〈T ψR,s(x, τ )ψ†
R,s′ (0, 0)〉 = δs,s′

2π [vτ − ix + a0σ (τ )]
, (B5)

〈T ψL,s(x, τ )ψ†
L,s′ (0, 0)〉 = δs,s′

2π [vτ + ix + a0σ (τ )]
, (B6)

where τ is the imaginary time, T denotes the imaginary-time
ordering, and σ (τ ) denotes the sign of τ ,

σ (τ ) =
⎧⎨
⎩

1 (τ > 0),
0 (τ = 0),

−1 (τ < 0).
(B7)

Here, we explicitly introduced the lattice spacing a0 that was
set as unity in the main text.

It is convenient to introduce two complex coordinates, zL =
vτ + ix and zR = vτ − ix, that denote the space–(imaginary)
time position of the right-moving and left-moving particles.
Note that �JR(zR) and �JL(zL ) are independent of the coordinate
that corresponds to the opposite chirality. Nonchiral operators
�N (zR, zL ) and ε(zR, zL ) depend on both coordinates. Hereafter,
we omit the normal and imaginary-time orderings following
the convention.

The Wick’s theorem leads to the following operator prod-
uct expansions [57–59]:

Ja
R (zR)Jb

R(0) = δab

8π2[zR + a0σ (τ )]2
+ iεabc

2π [zR + a0σ (τ )]
Jc

R(0), (B8)

Ja
L (zL )Jb

L (0) = δab

8π2[zL + a0σ (τ )]2
+ iεabc

2π [zL + a0σ (τ )]
Jc

L (0), (B9)

Ja
R (zR)Nb(0, 0) = 1

4π [zR + a0σ (τ )]
[iεabcNc(0, 0) − iδabε(0, 0)], (B10)

Ja
L (zR)Nb(0, 0) = 1

4π [zL + a0σ (τ )]
[iεabcNc(0, 0) + iδabε(0, 0)], (B11)

Ja
R (zR)∂xNb(0, 0) = 1

4π [zR + a0σ (τ )]2
[εabcNc(0, 0) − δabε(0, 0)] + · · · , (B12)

Ja
L (zL )∂xNb(0, 0) = 1

4π [zL + a0σ (τ )]2
[−εabcNc(0, 0) − δabε(0, 0)] + · · · , (B13)

Na(zR, zL )Nb(0, 0) =
√

[zR + a0σ (τ )][zL + a0σ (τ )]

[
δab

4π2[zR + a0σ (τ )][zL + a0σ (τ )]

+ iεabc

(
Jc

R(0)

2π [zL + a0σ (τ )]
+ Jc

L (0)

2π [zR + a0σ (τ )]

)
+ · · ·

]
, (B14)

Na(zR, zL )∂xNb(0, 0) =
√

[zR + a0σ (τ )][zL + a0σ (τ )]

[ −iδab

8π2[zR + a0σ (τ )]2[zL + a0σ (τ )]

+ iδab

8π2[zR + a0σ (τ )][zL + a0σ (τ )]2
+ iεabc

(
iJc

R(0)

4π [zL + a0σ (τ )]2
+ −iJc

L (0)

4π [zR + a0σ (τ )]2

)

+ iεabc iJc
R(0) − iJc

L (0)

4π [zR + a0σ (τ )][zL + a0σ (τ )]
+ · · ·

]
, (B15)

[∂xNa(zR, zL )][∂xNb(0, 0)] =
√

[zR + a0σ (τ )][zL + a0σ (τ )]

[
3δab

16π2[zR + a0σ (τ )]3[zL + a0σ (τ )]

+ −δab

8π2[zR + a0σ (τ )]2[zL + a0σ (τ )]2
+ 3δab

16π2[zR + a0σ (τ )][zL + a0σ (τ )]3

+ iεabc

(
3Jc

R(0)

8π [zL + a0σ (τ )]3
+ 3Jc

L (0)

8π [zR + a0σ (τ )]3

)

+ iεabc

(
Jc

R(0) − Jc
L (0)

8π [zR + a0σ (τ )][zL + a0σ (τ )]2
+ −Jc

R(0) + Jc
L (0)

[zR + a0σ (τ )]2[zL + a0σ (τ )]

)
+ · · ·

]
, (B16)
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where δab is the Kronecker’s delta, εabc is the completely
antisymmetric tensor with εxyz = 1, and the terms denoted by
· · · are omitted above because they are irrelevant in the RG
sense. We emphasize two points about these operator prod-
uct expansions. First, the operator product expansions hold
when |zR| � 1 and |zL| � 1. Second, the right-hand sides
contain much more relevant operators than the left-hand sides
[e.g., Eqs. (B10) and (B12)].

2. Effective Euclidean action

Let S be the Euclidean action of the low-energy effective
field theory. We can represent S as an imaginary-time integral
of the following Hamiltonian:

S = S0 + S×, (B17)

S0 =
∫ ∞

−∞
dτ H0(τ ), (B18)

S× =
∫ ∞

−∞
dτ Vnaive(τ ). (B19)

The naive expression (4.11) is correct here because we obtain
it by replacing the spin operator with �Jn and �N [Eq. (4.4)].
The full partition function Z and the unperturbed one Z0 are
symbolically represented in terms of path integrals as

Z =
∫ 3∏

n=1

D �JnD �Nn exp(−S ), (B20)

Z0 =
∫ 3∏

n=1

D �JnD �Nn exp(−S0). (B21)

We perform the perturbation expansion,

exp(−S×) = 1 − S× + 1
2S

2
× + · · · , (B22)

up to the second order of Vnaive. The second-order term S2
× =∫ ∞

−∞ dτ ′ ∫ ∞
−∞ dτVnaive(τ )Vnaive(τ ′) contains many nonlocal in-

teractions such as [ �J2(x, τ ) · �J1(x, τ )][ �J2(x′, τ ′) · �J3(x′, τ ′)].
We already saw that RG relevant interactions emerge when
the operator product expansion works, namely for x ≈ x′ and

τ ≈ τ ′. Following Ref. [51], we keep the relevant interaction
with x = x′ and τ ≈ τ ′ in Vnaive(τ )Vnaive(τ ′). The operator
product expansions given above lead to

[ �J2(x, τ ) · �J1(x, τ )][ �J2(x, τ ′) · �J3(x, τ ′)]

= 1

4π2[v(τ − τ ′) + a0σ (τ − τ ′)]2
�J1(x, τ ′) · �J3(x, τ ′)

+ · · · , (B23)

[∂x �N2(x, τ ) · �N1(x, τ )][∂x �N2(x, τ ) · �N3(x, τ ′)]

= 1

4π2|v(τ − τ ′) + a0σ (τ − τ ′)|3 �N1(x, τ ′) · �N3(x, τ ′)

+ · · · . (B24)

S2
× generates interactions between the first and third legs

through operator product expansions. We thus obtain

1

2
S2

× ≈
∫ ∞

−∞
dτ

∫
dx

[
γ 2

J

4π2va0

�J1 · �J3 + γ 2
tw

8π2va2
0

�N1 · �N3

]
.

(B25)

These interactions turns into the effective ferromagnetic in-
teraction between the first and third legs because we may
approximate exp(−S×) as

exp(−S×) ≈ 1 − S× + 1

2
(S×)2

≈ 1 − S ′
×

≈ exp(−S ′
×), (B26)

where S ′
× is given by

S ′
× ≈

∫
dτ Vnaive(τ )

−
∫

dτdx

[
γ 2

J

4π2v
�J1 · �J3 + γ 2

tw

8π2v
�N1 · �N3

]
. (B27)

Note that we obtained qualitatively the same result as
Ref. [50] [see Eq. (5) therein]. However, we comment that the
coupling constant γ 2

tw/8π2v ∼ J2
×/J is the second order of J2

×
while it is fourth in Ref. [50].
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