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Nonequilibrium dynamics in a spin valve with noncollinear magnetization
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We utilize a hybrid quantum-classical equation of motion approach to investigate the spin dynamics and spin-
transfer torque in a spin valve under bias voltage. We show that the interplay between localized classical magnetic
moments and conduction electrons induces a complex effective exchange coupling between the magnetic layers.
This leads to a declination of magnetizations from layers’ anisotropy axes even in equilibrium. Introducing a
finite bias voltage triggers spin currents and related spin-transfer torques which further tilt the magnetizations and
govern the relaxation processes of the spin dynamics. Analyzing different scenarios of the applied bias voltage,
we show that symmetric and asymmetric voltage drops can lead to relaxation times of the spin dynamics that
differ by several orders of magnitude at comparable charge currents. In both cases, we observe resonant features,
where the relaxation is boosted whenever the chemical potential of the leads matches the maxima in the density
of the states of the spin-valve electrons.
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I. INTRODUCTION

Magnetic multilayer devices, where the exchange coupling
between magnetic layers is suppressed by a nonmagnetic in-
terlayer, e.g., spin valves or magnetic tunnel junctions [1,2],
have attracted a lot of attention from engineers and scientists
working in different fields. Besides their direct applicability
as, e.g., various types of sensors [3], in magnetic recording
systems [3–5] or in the broader context of spintronics [6,7],
they also provide a rich and accessible theoretical as well
as experimental platform for the investigation of important
physical phenomena. For example, in recent years, multilayer
devices played a crucial role in the study of spin-hall effect
[8–10], ultrafast demagnetization [11–14], domain-wall dy-
namics [15,16], various types of spin-transfer torques (STT)
[3,17–21] and the interplay between electronic transport and
dynamics of localized magnetic moments in general [22–24].
In addition, spin-torque oscillators based on magnetic vortices
in spin valves or tunnel junctions became a promising candi-
date for neuromorphic computing systems [25–29].

Because of the diversity of these devices, which spread
from molecular valve systems up to bulk [1,30–32], a mul-
titude of different theoretical methods are used to rationalize
their properties and predict new features. Arguably, the most
popular ones are classical micromagnetic simulations [33] and
atomistic spin dynamics [34] based on the Landau–Lifshitz–
Gilbert (LLG) equation. A clear advantage of these methods is
the large number of highly optimized and versatile computer
codes available [34,35], which allow to address large systems
and to incorporate experimentally measured parameters [33].

However, to model phenomena where transport plays a crucial
role, the LLG equation must be extended by phenomenologi-
cal or approximate torque and damping terms, which describe
the effective influence of spin currents on the magnetization
[36]. Because transport is inherently a quantum phenomenon
and because these terms are in general influenced by the
changing state of the spin valve, such a simplistic treatment
can miss important physics, especially in the case of systems
far away from equilibrium.

On the other hand, fully quantum-mechanical approaches
that are able to capture the quantum nature of these devices
are usually constrained to small systems, static magnetic con-
figurations, short times, or rely on severe approximations
[30,31,37,38].

A natural compromise between completely classical and
fully quantum-mechanical approaches present hybrid meth-
ods which combine both classical and quantum degrees of
freedom [15,39–54]. In the case of magnetic systems, these
methods consider classical localized magnetic moments inter-
acting with quantum conduction electrons. In their simplest
form, a strict separation of time scales is assumed; that is,
the dynamics of the classical spins is considered to be much
slower than the one of electrons. Under this assumption,
electrons respond instantaneously to the slow time-dependent
potential of the classical degrees of freedom and, there-
fore, can be described by steady-state approaches, e.g., via
nonequilibrium Green functions (NEGF) [40,41,46–48,55].
However, several recent studies have shown that this approach
is often invalid [15,43–45,49–53] because the two time-scales
can not be strictly separated in general.
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To take account of this issue, one has to resort to non-
Markovian approaches, in which electrons react in a finite
time to the changes of the classical spins [15,43–45,49–
53,56]. These approaches reveal a time-dependent misalign-
ment between the localized magnetic moments and the local
nonequilibrium spin density of conduction electrons. Its most
important consequences materialize in the form of additional
torques and time-retarded damping effects [15,43–45,49–53].

Nevertheless, there are quantum effects not fully captured
even by these methods. For example, they do not account for
so-called quantum spin-transfer torque resulting due to the
quantum many-body states [57] and Kondo effect [43,58], as
neither is included in the effective single-particle picture of
the hybrid methods. It is also questionable if they can describe
the relaxation of large spins into an excited state due to the
coherent coupling to reservoirs observed in quantum systems
[59–61], although there are some examples of nonthermal
steady states in quantum-classical systems [62]. In the context
of our study, it is also important to note that hybrid methods
tend to underestimate the damping of the magnetic nutations
[45,63].

Despite these differences, the methods that combine clas-
sical localized spins with quantum conduction electrons are
in a rather good qualitative agreement with the full quantum
mechanical treatments [44,45,51,57] and capture most of its
details. As such, these hybrid techniques proved to be ex-
tremely useful in the investigation of various phenomena not
described by classical or adiabatic LLG based approaches,
e.g., geometrical torque [51], magnetic inertia [15], chiral
spin and charge pumping [49], formation of some nontrivial
magnetic textures [53,64] or resonant dependence of the spin
damping on voltage [56,65]. In addition, they are generaliz-
able to realistic band structures [50].

In this paper, we use a quantum-classical equations of mo-
tion (QC-EOM) approach for open quantum systems [15,56],
to study the dynamics of a spin valve system sandwiched
between two metallic leads with finite voltage difference.
QC-EOM is an Ehrenfest-type method [39,66,67] used, e.g.,
to study nuclear dynamics in quantum transport [68,69] or
current-induced bond rupture in single-molecule junctions
[70]. Its advantage is that in the case of noninteracting conduc-
tion electrons the hierarchy is terminated exactly at the second
tier for a general metallic band of the leads or at the first tier
for the wide band limit (WBL) approximation [71–76]. The
method is therefore numerically exact even far away from
equilibrium, allows to reach long simulation times, and avoids
approximate or phenomenological terms not resulting directly
from the Hamiltonian of the model.

Using the QC-EOM method, we argue that the quantum
character of the conduction electrons is crucial in understand-
ing of the nonequilibrium dynamics of a spin valve. We show
that this is true even in a seemingly simple case where the
spin dynamics of the entire magnetic layer can be truthfully
represented by a single aggregated macrospin. Moreover, the
character of the voltage drop crucially affects its magnetic
dynamics. The two commonly used types, namely, a finite
voltage introduced by shifting the chemical potential of one
lead and by an equal opposite shift of chemical potentials in
both leads, show spin relaxation times that differ by several
orders of magnitude at comparable charge currents.

FIG. 1. Schematic of a spin valve modeled on a two-dimensional
square lattice which consists of ferromagnetic (FM) pinned layer (PL
or l, red spheres), nonmagnetic (NM) spacer layer (SL) and magnetic
free layer (FL or r, wine spheres). Arrows depict localized classical
spins {S j} j∈PL,FL. The spin valve is coupled to two noninteracting
metallic leads (gray area).

The rest of the paper is organized as follows. In Sec. II,
we introduce the model and the QC-EOM method. In Results,
Sec. III, we first discuss the isolated spin valve (Sec. III A).
Here we introduce the macrospin approximation and show
that the effective exchange coupling between magnetic layers
is a complicated function of model parameters and system
geometry reflecting the density of states of the conduction
electrons. We then move to the driven system in Sec. III B
where we initially discuss the transient dynamics, showing
the crucial difference between various types of driving. Next,
the relaxation of the magnetizations is analyzed and we show
a staggering difference between symmetric and asymmetric
voltage drop cases. Finally, we address current-driven torques
and their effect on the steady state magnetization of the spin
valve. Some technical aspects and derivations are provided in
Appendices.

II. MODEL AND METHODS

The spin valve heterostructure under consideration is illus-
trated in Fig. 1. It consists of two ferromagnetic (FM) layers
known as pinned (PL) and free layer (FL) separated by a
nonmagnetic (NM) spacer layer (SL) [1,77]. We employ a hy-
brid quantum-classical description where localized spins are
treated within a classical approximation but movable electrons
are quantum particles.

The tight-binding Hamiltonian describing the interaction
of quantum electrons with local time-dependent fields result-
ing from the interactions with localized spins on a lattice reads

H (t ) = − γ
∑
〈 j, j′〉

(c†
j c j′ + H.c.) + μ

∑
j

c†
j c j

+ Jsd

2

∑
j∈PL,FL

c†
jσ · S j (t ) c j , (1)

where spinors c j = (c j↑, c j↓)T and c†
j = (c†

j↑, c†
j↓) consist of

annihilation or creation operators of the conduction electrons
with spins ↑,↓ at site j. Their kinetic energy is described
by the first term of the Hamiltonian. For simplicity, we set
the electron nearest neighbor hopping parameter γ constant
in the whole spin valve. We use γ as the energy scale, i.e.,
all energies presented in the text or figures are in the units
of γ and time is in units of γ −1 (the typical range of γ is
0.1–2 eV [15,49,52]). The second term of the Hamiltonian
describes the influence of a constant electrochemical potential
μ which governs the electron occupation of the isolated spin
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valve. Here we assume that the system is small enough that its
equilibrium electrochemical potential can be set and manipu-
lated externally, e.g., by an auxiliary gate lead, which does not
contribute to the charge and spin transport. If not stated oth-
erwise, the electrochemical potential μ is taken zero which in
equilibrium or for isolated valve sets the half-filling condition.
The last term describes a local sd-like interaction between the
electrons and classical spins with exchange coupling Jsd. Here
σ is the Pauli vector and S j (t ) is the magnetic moment vector
localized at site j.

The localized magnetic moments in the particular magnetic
layer � = PL, FL ≡ l, r are described by the classical Hamil-
tonian

H �
C(t ) = Jex

∑
〈 j, j′〉

S j (t ) · S j′ (t ) −
∑
j∈�

B · S j

− K�

∑
j∈�

(S j (t ) · e�)2 + Jsd

∑
j∈�

s j (t ) · S j (t ), (2)

where Jex is the intralayer exchange coupling between the
neighboring localized magnetic moments, B is the vector
of external magnetic field, K� is the layer-dependent mag-
netic anisotropy constant, while e� is a unit vector aligned
with the local anisotropy easy axis. The last term cou-
ples the classical magnetic system to the quantum electrons.
Here, vector s j (t ) = 1

2 Trρ j (t )σ is the time-dependent elec-
tron spin-density, where ρ j (t ) is the reduced nonequilibrium
single-particle density matrix of electrons on site j. All
relevant physical constants have been absorbed into the pa-
rameters of the model and the magnitude of the localized
magnetic moments (spins) is fixed to one. For simplicity, we
address the structure described by the coupled Hamiltonians
(1) and (2) as the spin valve.

When considering an isolated system, that is, in the ab-
sence of fermionic reservoirs, the time evolution of the
quantum part of the spin valve described by Hamiltonian (1)
is governed by the Liouville-von Neumann equation for the
single-particle electron density matrix ρ(t )

∂ρ(t )

∂t
= −i[H (t ), ρ(t )]. (3)

In the presence of fermionic reservoirs, a system of equa-
tions of motion for the reduced density matrix ρ(t ) is obtained
by tracing out the reservoir degrees of freedom from the whole
density matrix. In particular, to describe the dynamics of the
magnetic junction, we use a hierarchical equations of motion
approach [78,79]. For the case of noninteracting fermions,
studied in the present paper, the hierarchy of equations of
motion for the auxiliary density matrices terminates at the
second tier exactly [71–76].

The equation of motion for the reduced single-particle den-
sity matrix reads

∂

∂t
ρ(t ) = −i[H (t ), ρ(t )] +

∑
�

(�†
�(t ) + ��(t )), (4)

where the second term on the right hand side of Eq. (4)
generates dissipation, a nonunitary time evolution due to the
coupling of the central system to the fermionic reservoirs. The
current matrices ��(t ) are expressed using the nonequilibrium

single-particle greater/lesser Green functions

��(t ) =
∫ t

−∞
dτ [G>(t, τ )�<

� (τ, t ) − G<(t, τ )�>
� (τ, t )].

(5)
Here, �

≶
� is the lesser/greater self-energy matrix due to the

coupling between the reservoir � and the spin valve. Assuming
a constant density of states (WBL) in the reservoirs (leads)
with constant broadening function �� (the matrix �� has com-
ponents �� at the interface � and is zero otherwise), chemical
potential μ�, and temperature T = 1/β, we get

�<
� (t, τ ) = i

∫ ∞

−∞

dε

2π
f�(ε, μ�, β )e−iε(t−τ )��,

�>
� (t, τ ) = −i

∫ ∞

−∞

dε

2π
[1 − f�(ε, μ�, β )]e−iε(t−τ )��. (6)

Here, f�(ε, μ�, β ) is the Fermi function of reservoir � which
can be approximated by a sum over Np poles using the Padé
representation [80]

f (ε) ≈ 1

2
− 1

β

Np∑
p=1

ηp

(
1

ε − χ−
p�

+ 1

ε − χ+
p�

)
, (7)

where χ±
p� = μ� ± iξpβ

−1 and ηp are Padé coefficients. Em-
ploying the residue theorem, the above expansion allows to
write the current matrices in an explicit form

��(t ) = 1

4
(1 − 2ρ)�� +

Np∑
p=1

��,p(t ), (8)

where the Padé-resolved auxiliary matrices ��,p follow the
equations of motion

∂

∂t
��,p(t ) = − iηp

β�

�� − i
(

H − i

2
� − χ+

p 1
)
��,p(t ), (9)

with � = ∑
� ��. Hence, within the wide band approximation

used here, we get a closed (exact) system of EOM already at
Eq. (9). Note that the formalism is gauge invariant in the sense
that the results for transport do not change if all three of the
chemical potentials (μl , μr , and μ) are shifted by the same
value.

Finally, using the extension of classical Poisson brackets to
spin systems [81,82], the classical spin equation of motion for
the magnetic moment at position j reads

∂S j (t )

∂t
= {S j (t ), HC(t )} = −S j (t ) × ∇S j (t )HC. (10)

To obtain the overall time-dependence, we evolve the set
of Eqs. (10) together with Eq. (3) for an isolated spin valve or,
in the case of heterostructure, together with Eqs. (4) and (9)
supplied by Eq. (8). In both cases, we evolve the system using
the fourth-order (3/8-rule) Runge-Kutta method with equal
time steps for the quantum and classical subsystem.

The current matrices ��(t ) can be used to calculate the
charge and spin currents between the spin valve and the leads
� = l, r

I�(t ) = ±Re Tr(��(t )), (11)

J α
� (t ) = ±Re Tr([1N ⊗ σα]��(t )), (12)
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where the plus sign is for currents from the left (l) reservoir
into the spin valve and minus for currents from the spin valve
into the right (r) reservoir, σα is the Pauli matrix and N is
the total system size (number of lattice points). Similarly, the
nonequilibrium single-particle density matrix can be used to
calculate the local charge and spin currents between particular
monolayers [50,83]. We pay special attention to the charge
and spin resolved current at the SL-FL interface

IF(t ) = i

2

∑
〈 j, j′〉∈IF

Tr[H j, j′ρ j′, j − ρ j, j′H j′, j], (13)

J α
F (t ) = i

2

∑
〈 j, j′〉∈IF

Tr[σα (H j, j′ρ j′, j − ρ j, j′H j′, j )], (14)

where the sum runs over coupled pairs of nearest neighbors
〈 j, j′〉 with j taken from the last monolayer of SL and j′
from of the first monolayer of the FL. H j, j′ and ρ j, j′ are the
respective 2 × 2 submatrices of the quantum Hamiltonian and
the nonequilibrium density matrix. The difference between
the SL-FL interface spin currents J α

F (t ) and FL-lead interface
spin current J α

� (t ) can be used to enumerate the aggregated
current-driven STT [84]. However, because there can be a
finite torque acting on the localized spins even in equilibrium,
one has to subtract from the net torque equilibrium contribu-
tions to obtain the current-driven part of the STT

T cd(t ) = J F(t ) − J r (t ) − J eq
F . (15)

To analyze nonequilibrium results, we also make use of the
Landauer-Büttiker approach for the transmission function �,
its spin-resolved polarization P, and the density of states of
the heterostructure DOSh [55,85] for a fixed configuration of
classical spins S (typically the equilibrium one)

�(ε, S) = Tr{�lGR(ε)�rGA(ε)}, (16)

P(ε, S) = Tr{�lGR(ε)(�↑
r − �↓

r )GA(ε)}, (17)

DOSh(ε, S) = Tr i{GR(ε) − GA(ε)}/2πN, (18)

where GR(A) is the retarded (advanced) Green function of the
coupled system and �σ

l,r are the spin-resolved coupling matrix
between the system and the left (l) or right lead (r).

III. RESULTS

A. Isolated spin valve

Before investigating the spin dynamics in an externally
driven spin valve, it is instructive to first discuss the dynamics
of an isolated spin valve. We use a one-dimensional case
to discuss the effect of the electronic spectrum on the spin
dynamics and the role of the nonmagnetic layer in the relax-
ation process, which both play an important role in the driven
system.

1. Electronic spectrum

We first show that the details of the electronic spectrum
significantly influence the magnetization dynamics of the spin
valve. In general, the spectrum is sensitive to the orientation of
the classical spins and acquires time dependence through their

FIG. 2. Electronic spectrum for a static one-dimensional layer
with Nl (PL) = 5, NNM = 10, Nr(FL) = 5 as a function of electron-spin
coupling Jsd. The two cases represent settings with ferromagnetic
configuration within the layer and total normalized magnetization
components within the layers being (a) parallel: Mz

l = 1 and Mz
r = 1

where the two colors represent states with up (red) and down (blue)
magnetic polarization, (b) perpendicular Mx

l = 1 and Mz
r = 1. Panels

on right show the details of the spectrum in the vicinity of the Fermi
level.

dynamics [56,65]. Already a simple system of just two local-
ized spins coupled through spin-dependent currents can have
very complicated dynamics, including some chaotic regimes
[42,82]. Therefore, to make our argument more comprehensi-
ble, we address here a case in which the electronic spectrum
can be assumed to be mostly static and the dynamics of a
particular spin in a spin valve is not too complicated with
respect to its neighbors.

We investigate a one-dimensional chain where the mag-
netic layers consist of one to ten sites each. We set the
ferromagnetic Heisenberg exchange coupling Jex = −1 and
switch off the anisotropies Kl = Kr = 0. This stabilizes a
nearly ideal ferromagnetic ordering in both magnetic layers
and significantly simplifies the dynamics.

Before addressing the time evolution, it is useful to briefly
discuss the electronic spectrum for some relevant static con-
figurations of localized spins. Figure 2 shows the dependence
of the spectrum on Jsd for a linear system of total length N =
20 (NNM = 10) and two static configurations of the localized
spins (Nl (PL) = Nr(FL) = 5), a parallel one (a) and perpendicu-
lar one (b). Both spectra display a similar band splitting from
one mixed band at small coupling (Jsd < 3) to three distinct
bands in the strong coupling (Jsd > 7) regime. Here, the top
and bottom bands reflect the states predominately localized
in the ferromagnetic layers (note their spin polarizations in
Fig. 2(a1) and the discussion in Appendix B). Therefore, even
when the presence of the central band can lead to seemingly
finite DOS (under suitable broadening) at the Fermi-level
for arbitrary Jsd, the transport characteristics in the strong
coupling regime can be still insulating-like. The reason is
that the local DOS calculated for magnetic layers typically
shows a large gap around the Fermi level. However, even
in that case, the central band has an important influence on
the spin dynamics, because the conduction electrons mediate
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an effective exchange interaction (Jeff ) between the magnetic
layers. As we discussed below, Jeff is governed by the states in
the vicinity of the Fermi-level. The real challenge is that even
such a simple case as presented here shows a complicated Jsd

dependence, including a rather complex avoided level cross-
ing for weak coupling [Fig. 2(b2)].

2. Macrospin approximation

The magnetic layers are coupled by an effective exchange
interaction Jeff due to the presence of spin-polarized conduc-
tion electrons in the valve. Because of the strong exchange
coupling Jex which stabilizes the relative dynamics of spins
within one layer, we can extract Jeff from the spin evolution
by analyzing the dynamics of the net layer magnetizations.
To this goal, we introduce a simple macrospin approximation
with an effective Hamiltonian described by a bilinear form

HMS = −Jeff Ml (t ) · Mr (t ), (19)

where each magnetic layer is characterized by a local magne-
tization Ml,r = ∑NS

j S j , with NS = Nl = Nr being the number
of spins in a layer. The validity of this approximate model
is discussed in Appendix C. The time evolution of one
macrospin described by this form is given by the equations of
motion

∂M�

∂t
= Jeff M� × M�, (20)

where �, � ∈ {l, r} and � = �. Under some simple assump-
tions (e.g., that |M�|/NS = 1), these nonlinear coupled
ordinary differential equations can be solved analytically by
rotating the system to the plane of the limit cycle and then
back. In accordance with the later investigated case of an open
system we set the initial condition to a parallel formation
of classical spins within a layer but perpendicular between
the magnetic layers (as illustrated in Fig. 1). In particular,
initially Ml (t = 0) points to x direction and Mr (t = 0) to z
direction. The initial condition of the electrons is set by exact
diagonalization under the half-filling condition (μ = 0). The
solution of Eq. (20) with the above initial state reads (for
details see Appendix C):

M�(t ) =
⎛
⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠

⎛
⎜⎝

NS√
2

cos(ωt + φ�)
NS√

2
sin(ωt + φ�)

NS/
√

2

⎞
⎟⎠. (21)

Here, the right vector represents the solution in the frame
of the limit cycle and the left matrix is the reverse rotation
around the y axis to the original frame of the spin valve, where
θ = π/4, φl = 0, and φr = π . The characteristic frequency
is given by ω = √

2NSJeff . To quantify the influence of the
electronic spectrum on spin dynamics, we use a least-squares
fitting of this analytical solution to the numerical data (ob-
tained within the QC-EOM approach). This also allows us to
test the validity of the macrospin approximation and, in some
limiting cases, the precision of our numerical integration.
Note that there are parameter regimes where we also need a
second fitting parameter ϕ which shifts the phases to φl = ϕ

and φr = π + ϕ in cases where the limit cycle is reached only
after some significant time.

FIG. 3. Dynamics of the normalized layer magnetizations (solid
lines) and their approximate analytical macrospin solution (dashed
lines) with fitted ω. The plotted data are for the first ferromagnetic
layer calculated for a one dimensional spin valve of total length
N = 20 (NS ≡ NFM1 = NFM2 = 5) and couplings Jsd = 1 (a), 3.3 (b),
and 5 (c).

3. Spin valve dynamics

We first demonstrate the validity of the macrospin ap-
proximation by comparing it with the numerical simulations.
Figure 3 depicts the dynamics of the magnetization in the
first layer (solid lines) and its macrospin fit (dashed lines)
for system size N = 20 (NS = 5) and three Jsd values. The
macrospin approximation fits the exact dynamics almost per-
fectly for Jsd = 1 because here the single-spin fluctuations are
effectively suppressed already at small times. If we neglect
the small fluctuations and oscillations imposed on top of the
main dynamics, which are not visible on the scale presented in
Figs. 3(c), a similar conclusion can be drawn also for Jsd = 5.
Interestingly, it is the case of intermediate coupling Jsd = 3.3
where the full dynamics becomes rather complicated, for ex-
ample, it takes some transient time (t ≈ 500) until the limit
cycle is reached. Although the dominant precession frequency
can be still extracted for this case, there is some modulation
and the fit is far from perfect.

To understand how the coupling Jsd affects the magneti-
zation dynamics, we analyze a system with the spacer layer
of length NNM = 10 and three different sizes of magnetic lay-
ers. The Jsd dependence of the simplest NS = 1 case, plotted
with the red dashed line in Fig. 4(a), shows a single broad
maximum at Jsd ≈ 2.5. With increasing number of spins, the
dependence becomes rather complicated. It exhibits several
local maxima and minima for NS = 5 (black bullets) and 10
(blue circles) and becomes monotonous only for Jsd � 4.5
where all Jeff × N2

S curves approach each other.
This complicated behavior reflects the (static) electronic

spectrum shown for the NS = 5 case in Fig. 4(c). Both the
weak coupling Jsd � 3 and strong coupling Jsd � 4.5 cases
can be qualitatively understood by following the energy dif-
ference �ε [Fig. 4(b)] between the two highest occupied
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FIG. 4. (a) Effective coupling Jeff (multiplied by N2
S ) extracted

from least-square fit analysis of the numerical spin dynamics. The
shadowed area indicates a regime with high fitting uncertainty, i.e.,
where the analytical macrospin solution significantly departs from
the full numerical one. (b) Energy difference �ε between the two
highest occupied energy levels [marked by dashed line in (c)] for
NS = 1, 5, and 10. (c) Detail of the static density of states DOS(ε)
for NS = 5. All presented Jsd dependencies were calculated for a one-
dimensional chain with spacer layer size NNM = 12 and exchange
coupling Jex = −1.

energy states in the static spectrum marked by the dashed
line in Fig. 4(c). Here, the energy difference �ε signalizes
the magnitude of magnetic splitting [see the blue and red lines
in Fig. 2(a) for illustration]. The effective coupling Jeff takes
local minima when �ε approaches zero. The reason is that
the nonmagnetic states do not couple to the classical spin
and can not mediate the effective exchange coupling [56].
Consequently, the largest Jeff reflects the maximum in �ε and
vice versa. In the case of large spin-electron coupling Jsd the
spectrum is divided into three bands and the states that are
mostly localized to the ferromagnetic layers are far away from
the Fermi level. Because we do not change the size of the
spacer layer, the splittings �ε for various NS approach each
other and the same pattern is followed by Jeff .

The only regime where the fitted Jeff departs qualitatively
from �ε [gray area in Fig. 4(a) for NS = 5] coincides with
the splitting of the three bands illustrated in Fig. 2. Here we
observe the transition from metallic to insulating character of
the valve (see also discussion in Appendix B). This is accom-
panied by strong electron-induced spin fluctuations on a time
scale much shorter than the main precession. These spin fluc-
tuations lead to a deviation from the initial FM ordering which
significantly modifies the electronic spectrum, and therefore
also �ε(t ), which can not be considered static anymore. This
is clearly reflected in the Jeff in this regime which does not
follow the �ε(t = 0) (for details see Sec. D). Nevertheless,
we can conclude that the sensitivity of Jeff on the details
of the electronic spectrum, in all above discussed regimes,

FIG. 5. (a,b) Fitted effective coupling Jeff , respective its mag-
nitude |Jeff |, as a function of the size of the nonmagnetic spacer
layer. (c) Normalized layer magnetization for left (Mx

l , Mz
l ) and

right magnetic layer (Mx
r ) in spin valve with long nonmagnetic layer

NNM = 400, Jsd = 3.3 in homogeneous magnetic field Bz = 1.

underlines the importance of treating electrons as quantum
particles instead of using effective classical approximations.

Outside the regime 3 � Jsd � 4.5, the macrospin approx-
imation works well also in the case of varying width of the
spacer layer. Figures 5(a) and 5(b) show the dependencies
of Jeff on NNM for weak Jsd = 1 and strong spin-electron
coupling Jsd = 5. The alternation of Jeff between ferromag-
netic and antiferromagnetic character (a) as well as the
algebraic decay with increasing NNM (b) are in qualitative
compliance with previous results [86–88]. These features are
captured already by perturbation approaches, e.g., the the-
ory of Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[89–91] which for a one dimensional electron gas predicts
Jeff ∝ J2

sd[Si(πNNM) − π/2], where Si(x) is the sine integral
function [91]. The large difference in magnitude between the
odd and even NNM shown in Fig. 5(b), results from the differ-
ence between the polarizations of states at the Fermi level for
chains of odd and even point numbers.

Although useful, the above fitting to the macrospin dynam-
ics is bound to fail in a more realistic setup. The reason is
that the above mean-field theory cannot capture some impor-
tant features of the whole dynamics. For example, it actually
takes a finite time for electrons to react to a new position
of the classical spins [43–45] and carry the excitation from
one magnetic layer to the other. For a long spacer layer, this
can lead to a significant delay between the dynamics of the
two magnetic layers. In addition, the microscopic dynamics of
electrons generates a time-retarded damping in the dynamics
of classical spins [43,49]. We illustrate this in Fig. 5(c) using
a long nonmagnetic layer NNM = 400 with the same initial
condition as before, however, we also introduce an external
magnetic field in the z direction, Bz = 1, which triggers Lar-
mor oscillations in the first magnetic layer. It is clear that it
takes a finite time (t ≈ NNM/2γ ) before the excitation from
the first magnetic layer (red curve) reaches the second one
(blue curve). What is even more important in the context of
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our work is that the presence of a long spacer layer leads to a
relaxation of the spin oscillations.

A similar relaxation effect can be obtained even for a short
spacer layer by coupling the spin valve to semi-infinite metal-
lic leads [56,92]. In addition, coupling to the leads allows us to
address a system influenced by an external voltage drop [56].

B. Voltage driven spin valve

To investigate the influence of nonequlibrium charge and
spin currents, resulting as a consequence of an external volt-
age drop, on the magnetization dynamics, we now turn our
attention to a two-dimensional spin valve (N = 12 × 4, NS =
4 × 4) with noncollinear magnetization sandwiched between
two semi-infinite metallic leads (Fig. 1). As before, we set the
model parameters with the aim to make the analysis tractable
by simplifying the spin dynamics. We set an intermediate
coupling � ≡ �l = �r = 1 and use a fixed temperature in the
leads T = 0.025. The intermediate � reduces reflection of the
conducting electrons at the valve-lead interface [56] (typical
for weak �), provides sufficient broadening [55] but does not
dominate over other energy scales of the model. In addition,
because � � T , finite temperature effects are suppressed and,
therefore, not discussed in detail here. The exchange coupling
is set to Jex = −1 which is strong enough to allow us to
represent the dynamics of a magnetic layer by its normalized
net magnetization M�/NS (macrospins).1 The anisotropy in
the left layer is set to be large, Kl = 0.4 (therefore pinned layer
PL) and points to x direction. The anisotropy in the second
ferromagnetic layer is set to Kr = 0.02 (therefore free layer
FL) and points to z direction.

We work within a partition-free approach [74,93] where
the system-reservoir coupling � is assumed to be finite at all
times. To investigate the effect of a finite bias voltage on the
magnetization dynamics, we employ a three-stage switching
protocol which leads to the net layer magnetization dynamics
illustrated in Fig. 6.

Stage 0. We assume that at t < t ′, the classical spins in
each layer are perfectly parallel to the direction of the layer
anisotropy: Mx

PL = NS and Mz
FL = NS . The spin valve is in

equilibrium with the electronic reservoirs with V = 0. This
is ensured by solving Eq. (4) and Eq. (9) for d

dt ρ = 0 and
d
dt ��,p(t ) = 0.

Stage 1. At t = t ′ � 0, we ease the condition of perfect
alignment of the spins with the anisotropy fields. Therefore
the effective coupling between the magnetic layers, alike the
one discussed for the isolated spin valve, triggers spin dynam-
ics. Because of the damping driven mainly by the dissipation
of polarized electrons, the subsystem of localized spins re-
laxes towards a new (static) configuration (this stage is marked
by the yellow background in Fig. 6).

Stage 2. At t = t0 = 0, when the system has already
relaxed into the equilibrium state, we induce again a nonequi-
librium situation by suddenly switching on a finite bias
voltage V = 0. However, as we argue below, the way how

1The size of the resulting normalized macrospin is not fixed to one,
however, for the chosen parameters it is very close to one especially
at longer times.

FIG. 6. Examples of dynamics of normalized magnetization in
the free layer calculated for two-dimensional spin valve with size
N = 12 × 4, NS = NPL = NFL = 4 × 4 and model parameters: Jsd =
1 (a), Jsd = 5 (b), and � = 1, Kl = 0.4, Kr = 0.02. Yellow back-
ground marks stage one with V = 0. At t = t ′{≡ 0}, a quench to
finite symmetric voltage drop V = 1 is introduced.

the drop is introduced plays a crucial role in the transient
dynamics as well as in the steady state. Therefore we intro-
duce the voltage in two distinct ways. Either by shifting the
chemical potential of both leads around the equilibrium state
(μl = μr = μ = 0): V = μl − μr with μl = −μr which we
call the symmetric case (in the sense of |μl | = |μr |), or by
moving only the chemical potential of the left reservoir cou-
pled to the pinned layer: V ′ = μl with μr = μ = 0 addressed
in the text as the asymmetric case. Note that these two ways
mimic different physical realizations. For example in the case
of small system, the symmetric voltage drop can model a
gate-tunable junction or a bridge and the asymmetric one a
scanning tunneling microscope (STM) like geometry where
the chemical potential of the surface electrode is aligned with
the gate induced electrochemical potential.

In our model, the difference between these two scenarios
lies in the position of the chemical potential of the right lead
with respect to the equilibrium electrochemical potential μ

fixed by an auxiliary gate. This difference is important for
understanding the results. Basically, the drop of the chemical
potential in the leads changes the electron occupation in the
valve, however, the nonequilibrium distribution of the charge
does not modify μ fixed by the auxiliary gate and, therefore,
does not shift the spectrum of the valve. A self-consistent
calculation adjusting μ after introducing the leads, which
might be necessary for systems without a gate, is not part of
the presented model calculations. A detailed recipe on how
to address the problem of gauge-invariant density matrix in
steady state nonequilibrium linear response calculations for
systems without a gate can be found in Ref. [94]. We show in
Appendix G that for the method used here the two discussed
voltage-drop scenarios, although different in general, lead to
the same charge current in the linear response regime.
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In practice, we calculate the stages zero and one only once
for all required voltage drops for the same system param-
eters. At t = t0 ≡ 0, we then store the state of the system,
meaning the orientation of localized spins, the equilibrium
single-particle density matrix ρeq(t = 0) and all auxiliary cur-
rent matrices, and use it as the initial condition for the second
stage. This gives us a well-defined initial equilibrium state
for the coupled system at V = 0 which differs from the stage
zero result. This is crucial, not only because it enables us
to calculate the actual change of measured quantities due to
the finite voltage, e.g., the magnetization change �M(t ) =
M(t ) − Meq or current-driven torques, but it also allows us
to investigate a well defined relaxation.

1. Transient dynamics

There are various relevant time scales associated with the
dynamics of the coupled system. Some are related to two
distinct anisotropies and lead to different spin oscillations in
the pinned and free layer. Others are demonstrated already by
the examples of time evolution of the magnetization in the
free layer shown in Fig. 6. The difference between the time at
which the system reaches the steady-state magnetization and
the relaxation time of the magnetization oscillations depends
on the parameters of the model and the voltage drop. For ex-
ample, for Jsd = 2 and V = 1 in Fig. 6(a) the oscillations are
centered around the steady state values of Mx,z

r quite early on
(t ∼ 500), but the relaxation time of the oscillations themself
is much longer. On the other hand, in the case Jsd = 6 and
V = 1 magnetization Mx

r decreases to its steady state value
only very slowly and it is here the longer of the two mentioned
timescales. Nevertheless, these are not the only relevant time
scales of the transient dynamics.

Figure 7 shows examples of the time evolution of charge
and spin currents in the second stage for the same model
parameters as in Fig. 6. The voltage in Figs. 7(a) and 7(b)
was introduced by a symmetric voltage drop (V = 1) and in
panels (c) and (d) by an asymmetric one (V ′ = 0.5). The solid
lines represent currents at the FL-lead interface, namely, green
for the total charge current [Eq. (11)], red, blue, and black
for the x, y, z components of the spin current, respectively
[Eq. (12)]. The dashed lines of the same colors are local
currents measured at the interface of the spacer and free layer
[Eqs. (13) and (14)].

Almost all currents are zero or negligible at t = 0 (not
shown because of the logarithmic scale). The only exception
is the equilibrium local spin current J y

F (t = 0) = 0. This is re-
lated to the effective exchange interaction between PL and FL
and torque resulting from it that tilts the spins of the magnetic
layers away from the direction of the anisotropy even in equi-
librium (see yellow stage in Fig. 6). In Fig. 7, we subtracted
this equilibrium component from the nonequilibrium value
J y

F (t ) = J y
F (t ) − J y

F (0) because here we want to investigate
the influence of the finite bias voltage. In accordance with
other components, we address this difference simply as the
local current for brevity.

Application of a symmetric bias voltage induces transient
currents simultaneously through both system-lead interfaces.
Therefore, as shown in Figs. 7(a) and 7(b), there are signifi-
cant currents flowing through the right system-lead interface

FIG. 7. Second stage of the time evolution of charge (I) and spin
currents (J ) calculated for symmetric voltage drop V = 1 with Jsd =
2 (a) and Jsd = 6 (b) and asymmetric voltage drop V ′ = 0.5 with
Jsd = 2 (c) and Jsd = 6 (d). The solid lines show currents measured
at the FL-lead interface and dashed lines represent respective currents
at SL-FL interface. The color key is the same for all panels.

already after a very short time. Approximately at t ≈ 2 the
excitation from the right spin valve interface arrives to the
SL-FL interface leading to the formation of local currents
there. Next, at t ≈ 4, the excitation from the left system edge
reaches the SL-FL interface, which marks sudden changes
in the profile of the currents. Considering longer times, be-
cause the voltage drop is symmetric, the spin currents at the
system-lead interface vanish in the steady state. Qualitatively
this can be understood following the profile of the equilib-
rium transmission function polarization (see the discussion in
Appendix E) which is antisymmetric around the Fermi level.
Therefore the relevant Fermi window contains compensating
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spin-resolved transmission channels and the steady-state spin
current vanishes.

The only non-negligible long-time nonequilibrium spin
current is J y

F , which is therefore the sole component of the
current-driven torque in Eq. (15). This means that the spin
currents are fully absorbed by the magnetic layers. As we will
discuss in the next section, this has important consequences
for the relaxation and for the steady-state magnetization. It
also means that the difference in magnetization (�Ml,r) is
driven primarily by the effective exchange interaction be-
tween the magnetic layers. However, contrary to the isolated
system discussed in Sec. III A, this effective coupling might
be strongly affected by the electronic states which are far
away from the Fermi level of the spin valve. In addition,
the nonequilibrium system density of states depends on the
voltage drop and the orientation of the spins and is therefore
time dependent. The slow change of J y

F (t ) in Fig. 7(b) for
Jsd = 6 can be attributed to the time evolution of DOSh, which
is expected to change more for the strongly interacting case
(Jsd = 6) than weakly coupled electrons and localized spins
(Jsd = 2).

The asymmetric voltage-drop examples shown in Figs. 7(c)
and 7(d) differ from the symmetric case. Because the voltage
drop is introduced only at the side of the pinned layer, the free
layer stays for a while in equilibrium with the right lead. Finite
local currents appear around t ≈ 4 when the excitation from
the left edge of the spin valve reaches the SL-FL interface
and only later we observe finite currents at the right system
interface. Because the voltage drop probes the spin-dependent
transmission function asymmetrically, the spin currents at
negative and positive energies do not compensate each other
and saturate to finite values. Consequently, there are finite
current-driven torques in both x and y directions even at long
times.

2. Relaxation

The quantity that clearly demonstrates the qualitative dif-
ference between the symmetric and asymmetric voltage drop
is the relaxation time tR of the magnetization oscillations
(Fig. 8). We estimate tR by fitting the envelope of Mx

r oscil-
lations in the second stage of the evolution by the exponential
formula

EM (t ) = A exp[−t/tR] + Mx
r (t → ∞), (22)

where the amplitude A and the relaxation time tR are the fitting
parameters and Mx

r (t → ∞) is the extrapolated steady-state
magnetization component. We disregard in the fitting proce-
dure the initial evolution in the second stage(typically up to
t ≈ 100–300) to avoid the distortions from the complicated
short-time dynamics discussed above. We focus on the weakly
coupled cases Jsd = 2 and 3 to avoid the long time scales
typical for strong sd coupling.

The fitted relaxation time tR shows a qualitatively dif-
ferent dependence on voltage for the symmetric [Fig. 8(a)]
and asymmetric [Fig. 8(b)] cases. The relaxation time calcu-
lated for the symmetric case is changing by several orders of
magnitude with increasing voltage V . It grows to very large
values tR ≈ 105 at high voltages (see also the discussion on
the numerical precision in Appendix A). On the other hand,

FIG. 8. Relaxation time estimated from the decay of the oscil-
lations of the x component in the FL magnetization. (a) shows the
symmetric voltage case (note the logarithmic y scale) and (b) the
asymmetric one.

the relaxation time in Fig. 8(b) is relatively stable. It changes
within five hundred time units and saturates for high voltage
V ′, where tR is several orders of magnitude smaller than for
the symmetric case.

This significant discrepancy in relaxation time can be
attributed to the differences in the spin currents at the
system-lead interface and related torques. The damping of the
localized spin dynamics comes from the interaction with the
leads, which act as reservoirs that carry away spin excitations
from the system. However, this is possible only when they
couple to the spin-resolved electronic states, i.e., when there
are significant spin currents flowing between the system and
the leads. This is not the case for the symmetric voltage drop
as it is illustrated in Fig. 9(a) where we show the charge
currents and current-driven torques for V = 8 and Jsd = 2.
Both currents and relevant torques are quickly diminishing,
and hence do not exert any significant torque on the localized
spins. Therefore the magnetization shows a Larmor-like pre-
cession due to the effective fields as illustrated in Fig. 10(a).
All this is in clear contrast with the respective asymmetric case
(V ′ = 4) illustrated in Figs. 9(b) and 10(b).

However, the dependence of the relaxation time on the
voltage drop is far from monotonous. The origin of the com-
plicated profile can be traced to the density of states. In
Fig. 11(a), we show the relaxation rates R = 1/tR at Jsd = 2
calculated for symmetric (red) and asymmetric (blue) voltage
drop. The sharp maxima in both R curves follow the profile
of DOSh in Fig. 11(b) calculated for the equilibrium spin
configuration at V = 0. This can be attributed to the boost
of relaxation whenever the chemical potential of the leads is
aligned with the (polarized) states in the system. Such a boost
is in compliance with single spin studies [56,65,95,96] and
shows the importance of the correct treatment of the electronic
spectrum. Interestingly, for the symmetric voltage drop, the
boost happens even for states with energies close to the edge
of the spectrum. These are localized predominately on the
ferromagnetic layers and as such practically do not contribute
to the steady-state transport (see discussion in Appendix E).
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FIG. 9. Detail of the time evolution of spin currents (J ) and
current-driven torques (Tcd) calculated for symmetric voltage drop
V = 8 with Jsd = 2 (a) and asymmetric voltage drop V ′ = 4 with
Jsd = 2 (b).

However, these states can contribute to the relaxation if they
are aligned with the chemical potential of the neighboring
lead. In the asymmetric case, this contribution is overshad-
owed by the damping regulated by the finite spin currents.

3. Steady state

Figure 12 shows (up to a constant factor) the steady-state
magnetization difference �M as a function of the symmetric
voltage drop (circles and crosses in the figures). The depen-

FIG. 10. Detail of the time evolution of nonequilibrium magne-
tization difference (�M/NS) calculated for symmetric voltage drop
V = 8 with Jsd = 2 (a) and asymmetric voltage drop V ′ = 4 with
Jsd = 2 (b).

FIG. 11. (a) Relaxation rates calculated for symmetric (red) and
asymmetric (blue) voltage drop at Jsd = 2. The x scale for the sym-
metric voltage is scaled by factor 0.5 to align voltages with the same
chemical potential μl probing energies ε. (b) Equilibrium density of
states of the heterostructure.

dence is rather complicated and does not straightforwardly
follow the equilibrium DOSh even for small Jsd [compare
Figs. 12(a) and 11(b)]. Nevertheless, it can be fully explained
by considering the current-driven torques acting on the mag-
netic layers.

In the steady state, the net sum of all torques in the system
is zero. In our case, the dominant contribution to the effective
local fields acting on the localized spin, and counteracting the
current-driven torques, should come from the misalignment
of the spin with the anisotropy field and from the interaction
with neighboring localized spins through Jex [see Eq. (10)].
However, assuming that the classical spins are aligned with
each other, we can approximate the net effective torque acting
on the right magnetic layer by T eff ≈ 2(Krer ) × �Mr .

Because in the symmetric case the only significant tilt of
the spins due to the finite voltage is in the x direction and there
are no steady-state spin currents at the system-lead interfaces,
the effective local torques can be further approximated by
T y

eff = 2Kr�Mx
r (blue circles in Fig. 12) for free layer and

2Kl�Mz
l (black crosses in Fig. 12) for pinned layer and com-

pared directly to the T cd (red lines in Fig. 12). There is almost
a perfect agreement between these three quantities plotted in
Fig. 12 for various Jsd.

Considering the asymmetric case, the magnetization �Mx
r

shown in Fig. 13(b) differs from the symmetric one in Fig. 12
mostly in its magnitude. However, the asymmetric case also
shows a significant steady-state declination for the y compo-
nent of the magnetization �My

r . This difference can be again
explained by the current-driven torques. There are finite spin
currents flowing between the system and leads. Using the
same assumptions as for the symmetric case, we can estimate
the effective local torques in the FL to be T x

eff = 2Kr�My
r

and T y
eff = 2Kr�Mx

r . The comparison with the current-driven
torque for various Jsd (green line in Fig. 12) shows again
a very good agreement. We can therefore conclude that the
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FIG. 12. Comparison of the steady-state current-driven torques
Tcd and effective local torques T eff = 2K�e� × �M calculated as
function of V for symmetric voltage drop.

finite spin-polarized currents tilt the spins of the free layer
not only to the direction of the magnetization in the pinned
layer (respective opposite to it), but also perpendicular to both
anisotropy fields.

This, however, opens an interesting question considering
the steady state of the symmetric case. There are no spin-
polarized steady-state currents flowing between the system
and the leads. Yet, the orientation of the classical spins can
not be affected by the nonpolarized currents. Therefore the
steady-state magnetization seems to be fully dictated by the
intravalve spin-polarized current J F . Following the analysis
of the transient dynamics, one can conclude that J F reflects
the polarization of the density of states probed by the chem-
ical potential of the leads. Considering the symmetry of the
spectrum as well as the system symmetry and the fact that the
charge current plays no role in current-driven torque, there
arises a question, if a similar effect can be achieved also in
equilibrium.

This is indeed the case as shown in Fig. 14. Here we com-
pare the steady-state FL magnetization plotted as a function of
voltage (line) with its equilibrium counterpart calculated for a
fixed μl = μr = 0 as a function of the electrochemical poten-
tial μ for Jsd = 3 (circle). They are in perfect agreement. For
the symmetric voltage drop the effective exchange coupling
between the magnetic leads is defined by the polarization
of the steady-state DOSh. However, it is not dictated by the

FIG. 13. Comparison of the steady-state current-driven torques
Tcd and effective local torques T eff = 2K�e� × �M calculated as
function of V ′ for asymmetric voltage drop.

Fermi-level of the isolated valve, but by the states probed by
the chemical potential of the leads.

IV. SUMMARY

Magnetic multilayer devices are, besides being important
components in a multitude of industrial applications, an ideal
tool to investigate various physical concepts. In this paper, we
examined the spin-transfer torque and related relaxation pro-
cesses in a spin-valve system under external voltage bias. To
this goal we have adapted a QC-EOM method, which bridges
the classical and quantum mechanical approaches by treating
the localized spins as classical degrees of freedom that interact
with conduction electrons treated as quantum particles. We
intentionally focused on regimes where the dynamics of the
localized spins can be, to a high degree, represented by the
net magnetization in the magnetic layer (macrospin). This
allowed us to analyze the numerical results using intuitive

FIG. 14. Dependence of steady-state orientation of the mag-
netization Mx

r on symmetric voltage drop V (red line) and the
dependence of equilibrium magnetization Mx

r on the spin-valve elec-
trochemical potential μ (circles) for Jsd = 3. The x axis for the later
case is scaled by factor of 2 to account for V = 2μl = 2|μr |.
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approximations. We have shown that even in such idealized
cases the dynamics is rather complicated because it reflects a
complex relation between the localized spins and conduction
electrons.

In the case of an isolated spin valve, the interplay of clas-
sical and quantum degrees of freedom induces a complicated
effective exchange interaction Jeff between the ferromagnetic
layers. Although Jeff is affected mostly by electron states near
the Fermi level, it shows a complex nonmonotonous depen-
dence on the spin-electron coupling Jsd.

Coupling the spin valve to metallic leads and introducing
a finite bias voltage by shifting their chemical potentials trig-
gers nonequilibrium spin currents, and therefrom spin-transfer
torques in the system. Besides influencing the magnetizations
in the spin valve, the spin currents also control the relaxation
processes of the spin dynamics. We have observed a resonant
character of the relaxation, which is boosted whenever the
chemical potential of at least one of the leads matches the
maxima in the electronic density of the states of the spin-valve
electrons.

However, there is a qualitative difference in the transient
dynamics, spin relaxation, and even steady-state character-
istics between the system under symmetric or asymmetric
voltage drop with respect to the electrochemical potential of
the valve. For example, the relaxation time at high voltages
can be of several orders of magnitude longer for the symmetric
case than for the asymmetric one. This is a consequence of the
fact that there is no long-time spin-polarized current flowing
between the system and the leads in the symmetric case.
Interestingly, the steady-state magnetization governed by the
symmetric voltage drop V can be mapped to a magnetization
of the spin valve in equilibrium (V = 0) with the electro-
chemical potential adjusted to μ = V/2 (where V reflects the
voltage drop in the nonequilibrium case).
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APPENDIX A: PADÉ REPRESENTATION

Besides the integration step the only convergence parame-
ter of the here used QC-EOM is the number of Padé poles in
the representation of the Fermi function.

A rather low temperature of T = 0.025 (β = 40) used in
our study requires a relatively high number of Padé poles.
The comparison of exact Fermi function and the approxi-
mated one, Eq. (7), with various number of Padé poles is
shown in Fig. 15. We have found, that a sufficient precision
was obtained in our calculations for NP = 30, which we use
throughout the paper.

FIG. 15. Comparison of exact Fermi function with its approxi-
mation Eq. (7) calculated for NP = 10, 20, 30, and 50.

APPENDIX B: LOCALIZATION IN ONE-DIMENSIONAL
VALVE

It is important to note that the regimes of weak (Jsd � 3)
and strong coupling (4.5 � Jsd) differ significantly. In the
transient regime 3 � Jsd � 4.5, we observe the opening of
the gap in the local DOS of the magnetic layers and with it
related transition from metallic to insulating like character. In
addition, here, the localization of electronic eigenstates starts
to change significantly. In Fig. 16, we show the spatial distri-
bution Pn

� = ∑
j∈� |φn(r j )|2, where energy eigenstate φn(r j )

is the space resolved eigenstate and the sum is restricted
to positions within the layer � = FL/PL,SL. We focus on
the two eigenstates (n = 0, 1) with the lowest eigenenergies,
which exhibit the most pronounced localization effects upon
increasing Jsd. For Jsd < 3, it is not possible to infer the typical
localization properties of eigenstates from the local probabil-
ities Pn

L. However, there is a significant changes for Jsd > 4,
where a clear localization of eigenstates can be observed. The
point at which this change occurs, coincides precisely with
the point at which spin fluctuations discussed in Sec. III A 3
are the strongest.

APPENDIX C: RATIONALIZATION OF THE
MACROSPIN MODEL

The macrospin approximation, used in the analysis of the
dynamics of the closed spin valve system, can be justified by
the scheme illustrated in Fig. 17.

FIG. 16. Spatial distribution (local probability) Pn
� of energy-

eigenstate φn in layer �, with Pn
PL/FL summed over all sites j ∈ PL/FL

(black for n = 0 and gray for n = 1), and Pn
SL over all j ∈ SL (red for

n = 0 and orange for n = 1). Red vertical lines denote Jsd for which
�ε has a local maximum, black vertical lines those Jsd where �ε has
a local minimum, and gray shaded area denotes the parameter regime
in which side bands split of the main band, as in Fig. 4.
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FIG. 17. Schematic illustration of the macro-spin approximation.
Spin-electron coupled hybrid multi-spin system (left) is reduced to
two-spin system coupled to the electronic spectrum (middle). After
integrating out the electronic degrees of freedom, the system is fur-
ther reduced to a two-spin problem coupled via an effective exchange
interaction JR (right).

In the first step of this approximation, we split S j (t ) =
S j (0) + �S j (t ) and diagonalize the single-particle Hamilto-
nian from Eq. (1) at t = 0 resulting in a transformed system

H =
∑

α

εαc†
αcα + Jsd

∑
α,α′∈PL,FL

c†
αSα,α′ (t ) cα′ ,

Sα,α′ (t ) =
∑

j∈PL,FL

∑
σσ ′

U j,σ,α (σ · �S j (t ))σσ ′U j,σ ′,α′ , (C1)

where U j,σ ′,α′ are components of the eigenvectors of H (t =
0). Next, a coarse-grained description of the localized spins
is applied, where each magnetic layer is characterized by a
local magnetization Ml,r = ∑NS

j S j , where NS is the number
of spins in a layer (Nl (PL) = Nr(FL) = NS). We can interpret
the simplified system as two macrospins coupled through a
spectrum of single-particle energies εα via complex time-
dependent couplings. Note that using this interpretation one
can argue that for low enough temperatures only a few states
near the Fermi level will play an important role in the dynam-
ics.

As a last step in the macrospin approximation, the cen-
tral part is approximated by an effective direct exchange
coupling Jeff between the spins, which we assume to be
time-independent. Under these assumptions, the problem is
reduced to two spins coupled by Jeff .

The exact solution of Eq. (20) used in the extraction of
the effective exchange interaction Jeff between the magnetic
layers of the closed spin valve system can be derived by the
following steps. By recognizing that the cross-product Ml (r) ×
Mr(l ) can be rewritten as a matrix vector multiplication A ×
B = [A]×B. Here, A, B ∈ R3 and [A]× = ∑3

α=1 AαLα , with
Lα being the basis of the Lie-algebra SO(3). These elements
generate infinitesimally rotations in R3. and the cross-product
in R3 can be expressed using infinitesimal rotations around
axis A

d

dθ

∣∣∣∣
θ=0

R(θ, A)B = A × B. (C2)

Thus, information about the trajectories of the macrospins can
be obtained from infinitesimal rotations.

Each of the macrospins is tracing out a trajectory around
the instantaneous position of the other macrospin. Due to
the antisymmetry of the cross product, the center of spins is
conserved M l + Mr ≡ M = const. Without loss of generality,
we assume M = γ êz with γ = Mz

l (t0) + Mz
r (t0) determined

by the initial condition of both macrospins because ∂t M =

0. This assumption is equivalent to a change of the basis
into a frame of reference by a rotation of θ = −π/4 around
the Cartesian y axis in the original frame. The trajectory of
M l , Mr is an intersection between the unit sphere S2 and a
straight plane at z = γ . These constraints are fulfilled by a cir-

cle Cr
∼= S1 with radius r� =

√
M2

� − γ 2, where M� = |M�|2.
Under these considerations, the general solution is of the form
in the rotated frame is

M�(t ) =
⎛
⎝r� cos(ωt + φ�)

r� sin(ωt + φ�)
γ

⎞
⎠, ω = 2γ Jeff. (C3)

and thus Eq. (21) is obtained by rotating Eq. (C3) into the
original frame of reference by applying the rotation matrix
Ry(θ ) as given in Eq. (21). Due to the symmetry of the
system of equations ωl = ωr = ω, where ω originates directly
from solving Eq. (20), and the phase difference is exactly
φl − φr = π .

APPENDIX D: SPIN FLUCTUATIONS IN THE
INTERMEDIATE COUPLING REGIME

In the main text, we argue that the Jsd dependence of the ef-
fective coupling Jeff follows the equilibrium energy difference
�ε between the two highest occupied energy states (Figure 4).
However, this correspondence is invalid in the regime 3 �
Jsd � 4.5. The purpose of this section is to elucidate the origin
of this discrepancy.

In Fig. 18(a), we show the details of the dynamics of a sin-
gle classical spin in a FM spin valve with the same parameters
as in Sec. III A 3 for Jsd = 0.45, 3.5, and 5. We diagonalize
the Hamiltonian H (t ) ≡ H ({Si(t )}) for each time t to obtain
the respective spectrum {εn} for the spin configuration {Si(t )},
and compute therefrom the magnetic splitting �ε(t ) shown
in Fig. 18(b) and the gap [Fig. 18(c)]. It is obvious that in
contrast to the weak and strong coupling regime, both �ε(t )
and the gap show strong fluctuations. In addition, the gap

FIG. 18. Dynamics of representative classical spin Sx
1 at site 1 in

the PL (a) and time-dependence of energy-difference �ε for the same
parameter (b) for Jsd = 0.45 (blue) and Jsd = 3.5 (black) in a spin
valve with the same system parameters as discussed in Sec. III A 3.

144435-13



SMORKA, BALÁŽ, THOSS, AND ŽONDA PHYSICAL REVIEW B 106, 144435 (2022)

FIG. 19. Examples of equilibrium density of states (a), transmis-
sion function (b) and spin polarization (c) calculated for the same
cases as shown in Fig. 6.

significantly departures from its initial value [dotted black line
in (c)]. Note that neither �ε(t ) nor the gap shown in Fig. 18
present the actual nonequilibrium values. Nevertheless, they
both imply that in contrast to the two other regimes, the static
spectrum is insufficient for the analysis of the intermediate
regime and so is the macroscopic approximation which as-
sumes |Ml,r |/NS = 1.

APPENDIX E: EQUILIBRIUM SPECTRAL PROPERTIES

The equilibrium spin configuration gives access to the
equilibrium DOSh, charge and spin-resolved transmission
functions (16)–(18) calculated using the equilibrium orienta-
tions of the localized spins. In cases where the introduction of
the finite voltage leads only to a relatively small reorientation
of the classical spins, and therefore a small change of DOSh
(e.g., weak interaction Jsd), these equilibrium functions of
energy are helpful in the interpretation of some nonequilib-
rium results. Figure 19 illustrates the equilibrium DOSh and
transmission functions calculated for the two cases shown in
Fig. 6. The sharp states in DOSh for J = 6 in Fig. 6(a) reflect
the fast vanishing broadening of the states, originating from
the coupling to the leads, in the central part of the system for
strong interaction Jsd [55,97–99]. Related to the strong Jsd is
also the significant drop of transmission when compared with
Jsd = 2 in Fig. 6(b). This drop reflects the opening of the gap
in the magnetic layers and the related change of the character
of the spin valve from metallic-like to insulating-like. Note
that the states far away from the Fermi level, belonging mostly
to the magnetic layers (see Fig. 2), are less relevant for the
charge transport from left to right lead than the central ones.

FIG. 20. Local electron spin polarization Pz
jl

in each monolayer
for a valve extended by finite metallic interface with Jsd = 2. The
vertical lines show the edges of the bare valve. All other parameters
are identical to the system studied in Sec. III B. (a) and (b) show the
evolution of Pz

jl
with Asymmetric (a) and symmetric (b) voltage drop.

(c) and (d) compare Pz
jl

of bare and extended valve at V = V ′ = 4 an
V = V ′ = 2.

Nevertheless, as we discuss later on, they play a role in the
relaxation. The spin-polarization of the transmission function
measured at the right system interface in Fig. 6(c) shows
a rather complicated energy dependence, however, what is
important for our analysis is that it is antisymmetric around
the Fermi level.

APPENDIX F: SYSTEM WITH VALVE-LEAD INTERFACES

In the main text, we focus on a simple model where the
valve was coupled directly to the semi-infinite leads whose
influence on the system is modeled by the current matrices.
However, in real systems the surface of the leads can get

144435-14
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FIG. 21. Comparison of the spin (a),(b) and charge (c) currents
calculated for a valve without metallic interfaces (N = 12 × 4, NS =
4 × 4) and with finite metallic interface (N = 24 × 4, NS = 4 × 4)
for both symmetric and asymmetric voltage drops and Jsd = 2. All
other parameters are identical to the system discussed in Sec. III B.

spin polarized due to the proximity of the magnetic layer and
related spin-currents. Therefore there arises a question if the
differences between the symmetric and asymmetric voltage
drop survive such an effect. To partially address this problem
we introduce metallic interfaces between the valve and the
leads. Basically, the valve is prolonged by six monolayers
before the pinned layer and by six metallic monolayers after
the free magnetic layer. That way we investigate a valve with
24 × 4 points where PL starts at Nl = 7 and FL at Nl = 15
where Nl counts the monolayers from the left edge of the
system. In Fig. 20, we show the local steady-state electron
spin polarization in z-direction Pz

jl
, i.e., the normalized elec-

tron spin-density calculated by summing and normalizing all
steady-state contributions in a vertical monolayer

Pz
jl

=
∑

jv

Tr σzρ{ jl , jv}

/∑
jv

Trρ{ jl , jv}, (F1)

where { jl , jv} are longitudinal and vertical coordinates of lat-
tice point j. The top two panels show the evolution of Pz

jl
with

voltage for asymmetric (a) and symmetric (b) voltage drop.
The bottom two panels present a comparison of Pz

jl
for systems

with and without the finite metallic interface at V = 4 and 2.
The dashed vertical lines mark the edges of the original valve
without the finite metallic interface. The tendency towards the
polarization of the metallic interface is most visible for the
asymmetric voltage drop case at high V ′ [note the yellow area
in panel (a) and the elevation of the black curve at Nl > 18 in

panel (c)]. The effect is most pronounced at the edge of the FL,
where it opposes the strong polarization observed within the
FL, and vanishes with increasing distance from the FL edge.
This effect is, naturally, not captured by the simple model
without the interface.

However, when comparing the spin and charge currents
measured at the right system-lead interface (Fig. 21) we see
the same qualitative behavior for the system without finite
metallic interface (red and blue lines) and with it (orange
and black lines). Note that differences in the course of the
current functions are expected. As discussed in the main text,
the system is small enough for currents to be sensitive to the
energy spectrum of the valve. This is significantly modified
by adding the interface which doubles the number of sites of
the lattice. Nevertheless, in both cases (with and without the
finite interface) there are finite steady-state spin currents for
the asymmetric voltage drop and none for the symmetric one.
As discussed in the main text this difference is the main reason
for the dramatic difference in the spin relaxation of these two
cases.

On the other hand, the enlargement of the valve by metal-
lic interfaces seems to broaden the range of voltages at
which is the I − V characteristic approximately linear. As a

FIG. 22. I-V characteristics at small voltages illustrating that
both symmetric and asymmetric voltage drops lead to the same
results in the linear response regime observed for V � 1. The orange
and black points in panel (a) show the result for a valve extended by
an finite metallic interface discussed in Appendix F. The red and blue
data points were calculated for the same parameters as discussed in
Sec. III B.
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consequence, for the extended valve there is a better agree-
ment between the symmetric and asymmetric charge currents
for 0.1 < V < 2 than for the bare valve. We discuss the linear
regime in more detail in the next Appendix.

APPENDIX G: LINEAR RESPONSE REGIME

In this Appendix, we focus on the regime of small voltage.
In Fig. 22, we show the details of I-V characteristics calcu-
lated for the case of a bare valve with different Jsd as well
as for a valve extended by the metallic interface discussed

in Appendix F. In all presented cases (and also for various
one-dimensional geometries not shown here) the asymmetric
and symmetric voltage drops give the same charge current for
small voltages if I depends approximately linearly on V as
expected [94]. For larger voltages, a clear difference appears
between symmetric and asymmetric voltage drop. Here we are
entering a nonlinear regime where the system is more similar
to a resonant level model. The transport is sensitive to the
complex density of states of the heterostructure. For example,
the current is significantly enhanced whenever the chemical
potential of a lead is aligned with a maximum in DOSh.
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