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We present the results of an extensive study of the phase diagram and spin-wave excitations for a general spin
model on a hexagonal AB-stacked kagome system. The boundaries of the magnetic phases are determined via
a combination of numerical (Monte Carlo) and analytical (Luttinger-Tisza) methods. Depending on the strength
of the spin-orbit coupling (SOC), some spin and lattice rotations become decoupled, leading to considerably
larger symmetry groups than typical magnetic groups. Thus, we provide a detailed symmetry description of the
magnetic Hamiltonian with negligible, weak, and intermediate strengths of SOC. The spin symmetry in these
three cases has a strong effect on the splittings observed in the spin excitation spectra. We further identify a
number of self-duality transformations that map the Hamiltonian onto itself. These transformations describe the
symmetry of the parameter space and provide an exact mapping between the properties of different magnetic
orders and lead to accidental degeneracies. Finally, we discuss the physical relevance of our findings in the
context of Mn3X compounds.
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I. INTRODUCTION

Magnetic materials on lattices comprised of equilateral
triangles continue to attract attention from both experimental
and theoretical viewpoints due to the richness of physical
properties provided by geometric frustration [1–4]. Frustrated
antiferromagnets are often characterized by noncollinear spin
configurations, since the topology of the lattice forbids a
conventional Néel order. Among the many realizations of
frustrated systems, kagome magnets with antiferromagnetic
nearest-neighbor (NN) interactions have become a staple ex-
ample of systems with macroscopic degeneracy in the ground
state, giving rise to high sensitivity of various symmetry-
breaking perturbations [5–10].

Recently, a family of magnetic materials with AB-stacked
kagome layer structure and a general formula Mn3X have
been experimentally shown to host the anomalous Hall effect
(AHE) as well as anomalous Nernst effect (ANE) [11–16].
These discoveries prompted recent theoretical and experi-
mental studies of the magnetic properties in Mn3X magnets
[17–23].

Over the last decade, magnets with strong SOC have been
under intense investigation, motivated by an ongoing search
for unconventional magnetic phases. On the one hand, these
include strongly correlated disordered states with large de-
generacy in the ground states, such as various types of spin
liquids [24–31]. On the other hand, however, ordered mag-
netic textures such as skyrmion lattices [32,33] and multi-Q
structures consisting of linear superpositions of noncolinear
spin density waves [34,35] have attracted increasing interest

in the literature. These nontrivial magnetic orders often have
nonzero scalar spin chirality, which serves as a source of
the emergent electromagnetic fields, within the Berry phase
formalism [36,37], giving rise to important transport proper-
ties, such as topological Hall effect (THE) [37–41] and spin
Hall effect (SHE) [42,43]. More recently, magnetic frustration
was identified as one of the stabilizing factors for multi-Q
spin configurations, leading to magnetic orders beyond those
typically observed in chiral ferromagnets [34].

In the case of Mn3X compounds, both the THE and SHE
have been observed experimentally, and studies have also
established that both the AHE and ANE, as well as the mag-
netic structure are strongly anisotropic, implying that the spin
couplings beyond isotropic exchange are crucial for under-
standing the magnetic properties of these systems [13,14,44].
Previous studies have also established that different types
of anisotropic interactions compete with each other, leading
to additional frustration [17,21–23]. These facts motivate a
systematic study of the magnetic ground state properties in
an extended parameter space.

In our previous work in Ref. [23] (hereafter referred to
as Ref. I), we derived a magnetic model for these mag-
netic compounds using general symmetry principles. Apart
from the typical exchange couplings, the symmetry-allowed
terms consist of various anisotropic couplings, including
Dzyaloshinskii-Moriya (DM), bond-dependent anisotropic
exchange, and single-ion anisotropy (SIA). These anisotropic
interactions arise from the coupling of spins to the underlying
lattice via SOC. In Ref. I, we have studied the ground-state
properties and spin wave excitations of this model relevant
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to the magnetism of Mn3X systems. In particular, this work
provided a detailed analysis of the interplay between various
anisotropic interactions and their effect on the static and dy-
namic properties of Mn3X compounds. We determined that
both SIA and bond-dependent anisotropy compete with the
DM interactions, leading to an induced magnetic moment
and an excitation spectrum with broken sixfold symmetry.
However, we also found that these properties are extremely
sensitive to both the signs and relative magnitudes of the
anisotropic interactions.

In the present paper, we investigate semiclassical ground-
state properties of hexagonal AB-stacked kagome systems for
an extended range of magnetic interactions using a combina-
tion of analytical Luttinger-Tisza (LT) and numerical Monte
Carlo (MC) techniques. To tackle the large parameter space
of the magnetic model, we group the magnetic interactions
based on the effective spin symmetry imposed by the relative
strength of the SOC. We determine three SOC symmetry
regimes and present the corresponding group structure, along
with the relevant irreducible representations (irreps). Further-
more, for each of these symmetry regimes, we identify a
set of self-duality transformations that reduce the number of
independent points in the parameter space. We find that in
the weak SOC limit, the magnetic Hamiltonian has the largest
number of dualities which comprise a group with non-Abelian
structure. The numerical and analytical calculations reveal a
variety of magnetic phases, including single-Q, multi-Q, as
well as more complicated structures with delocalized structure
factors in the Brillouin zone. We parametrize the magnetic
phases and study the elementary spin-wave excitations. Fi-
nally, we analyze the effects of bond-dependent exchange and
SIA on the magnetic phases stabilized by exchange and DM
interactions and discuss the implications for the case of Mn3X
systems.

The rest of this paper is organized as follows. In Sec. II,
we introduce the magnetic model and briefly outline the an-
alytical and numerical methods. In Sec. III, we identify the
connection between the strength of the SOC and the effec-
tive symmetry of the magnetic system. Next, in Sec. IV, the
self-duality transformations are introduced and derived for
each SOC symmetry case. The magnetic ground state phase
diagrams for models with exchange and DM interactions are
presented in Sec. V.

The distinct types of magnetic order are described in
Sec. VI, and the corresponding spin-wave excitation spectra
are given in Sec. VII. The effects of anisotropic interactions
are discussed in Sec. VIII. Finally, Sec. IX is devoted to
concluding remarks and a summary of the results.

II. MODEL AND METHODS

A. Model

The spin Hamiltonian for Mn3X-type AB-stacked kagome
lattice systems has been derived in Ref. I from symmetry
principles and contains four different types of interactions:

H = HJ + HD + HA + HK ,

HJ = 1

2

∑
rr′

∑
i j

Ji j (r − r′)Si(r) · S j (r′),

FIG. 1. (a) A sketch of the AB-stacked kagome lattice. The con-
ventional unit cell defined by the lattice vectors a1 and a2 is shaded
in blue, while the hexagon formed by the four sublattices is shaded in
pink. (b) The three types of NN and NNN interactions appearing in
(a). Solid black lines indicate the NN in-plane interactions, while the
dashed red and green lines represent the NN and NNN out-of-plane
interactions, respectively (Ai = {Ji, Di, A(z)

i , A(xy)
i }). (c) An enlarged

diagram of the unit cell convention used in this paper. Si labels the
spins on the six sublattices. Spins 1, 2, and 3 reside in layer A, while
spins 4, 5, and 6 are in layer B.

HD = 1

2

∑
rr′

∑
i j

Di j (r − r′)ẑ · (Si(r) × S j (r′)),

HA = 1

2

∑
rr′

∑
i j

∑
α

Ai jα (r − r′)(n̂iα · Si(r))(n̂ jα · S j (r′)),

HK =
∑

r

∑
i

∑
α

Kα (n̂iα · Si(r))2. (1)

Here, HJ is the isotropic Heisenberg exchange, HD is the
DM interaction, HK is the SIA, and HA is the symmetric
anisotropic exchange interaction. Sum indices r, r′ label unit
cells, i, j ∈ {1, ..., 6} label atoms in each unit cell [Fig. 1(c)],
and α ∈ {x, y, z} labels the spin vector components. Vectors
niα represent local anisotropy axes and can be written as

n̂ix =
⎡⎣cos αi

sin αi

0

⎤⎦, n̂iy =
⎡⎣− sin αi

cos αi

0

⎤⎦, n̂iz =
⎡⎣0

0
1

⎤⎦, (2)

where αi give the angle of the anisotropy axes with respect
to the global x direction. In this paper, we will restrict our
attention to in- and out-of-plane NN and out-of-plane next-
nearest-neighbor (NNN) interactions shown in Fig. 1(a). The
interaction labels are based on Mn3X bond distances, with in-
dex 1 labeling out-of-plane NN interactions, 2 and 3 labeling
the in-plane NN, and 4 and 5 labeling the out-of-plane NNN.
In this paper, we will ignore the breathing anisotropy [22] to
simplify the analysis, in which case A2 = A3 and A4 = A5

(Fig. 1).
It has recently been shown that effective spin Hamiltonians

of the form Eqs. (1) can be derived through perturbation
theory from lattice Kondo model with SOC [45–47]. The
isotropic exchange terms in this case correspond to the
Ruderman-Kittel-Kasuya-Yosida interactions while the re-
maining anisotropic spin interactions originate from the SOC.
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However, while the DM interactions depend linearly on the
strength of the SOC, the SIA and anisotropic exchange yield
quadratic dependence [45,48]. Therefore, within the perturba-
tion theory, we generally expect the magnitudes of the latter
two types of the anisotropic interactions to be smaller than
that of the DM interaction.

It is sometimes useful to write the Hamiltonian in the
general quadratic form

H = 1

2

∑
rr′

∑
i j

ST
i (r)Ai j (r − r′)S j (r′), (3)

where the coupling matrix Ai j (δ) between two inequivalent
spins is given by

Ai j (δ) =
⎡⎣V +

i j (δ) W +
i j (δ) 0

W −
i j (δ) V −

i j (δ) 0
0 0 Xi j (δ)

⎤⎦, (4)

with

V ±
i j (δ) = Ji j (δ) ± A(xy)

i j (δ) cos(ᾱi j ),

W ±
i j (δ) = ±Di j (δ) + A(xy)

i j (δ) sin(ᾱi j ),

Xi j (δ) = Ji j (δ) + A(z)
i j (δ).

Here, δ = r − r′, ᾱi j = αi + α j , A(xy)
i j and A(z)

i j are the two
types of anisotropic exchange parameters allowed by symme-
try. The part of the coupling matrix that corresponds to the
SIA is given by

Aii(0) = K+I +
⎡⎣K− cos 2αi K− sin 2αi 0

K− sin 2αi −K− cos 2αi 0
0 0 KZ

⎤⎦, (5)

where I is a 3 × 3 identity matrix, K+ = Kx + Ky, K− =
Kx − Ky, and KZ = 2Kz − K+. Note that the first term in this
expression is just a constant energy shift, and therefore K+
can be ignored in further calculations.

B. Luttinger-Tisza method

To provide an initial characterization of the classical
ground states, we define lattice Fourier transforms of the spin
vectors as

Si(r) = 1√
N

∑
q

Si(q)e−iq·r, (6)

where q are the wave vectors restricted to the first Brillouin
zone and S(q) are the Fourier amplitudes. From Eqs. (1) and
(3), the total energy of the system is

H = 1

2

∑
q

∑
i j

ST
i (q)Ai j (q)S j (−q), (7)

where the Fourier transform of the magnetic interactions are
given by

Ai j (q) =
∑

δ

Ai j (δ)e−iq·δ. (8)

The true ground state is calculated by minimizing Eq. (7), sub-
ject to local normalization constraints |Si(r)| = 1 for all spins
in the system. This strong constraint significantly complicates

the problem and often makes it impossible to solve. Instead,
the LT method [49] replaces the local constraints by a global
constraint, whereby the sum of all spin magnitudes is set to be
equal to the number of spins. This simplification allows one
to recast the energy minimization in the form of an eigenvalue
problem: ∑

j

Ai j (q)S j (q) = ε(q)Si(q). (9)

Under ideal circumstances, the smallest eigenvalue εLT(q)
and the corresponding eigenvector give the ground state of
the magnetic system. However, this method often produces
unphysical solutions for systems with strong anisotropic in-
teractions and multiple sublattices [50,51]. As a result, we
used the LT method to determine the approximate locations
of the phase boundaries, as well as the lower bounds on the
ground-state energies to guide the numerical calculations.

C. Monte Carlo

To identify the ground-state magnetic configurations, we
utilized classical MC simulations, which were carried out us-
ing standard local heat-bath updates. To resolve the individual
phases, we have used system sizes ranging from 63 to 243 unit
cells (1296 to 82 944 spins, respectively) and between 104 and
106 MC steps. In each simulation, the temperature is reduced
down to T ≈ 10−6 to ensure energy convergence. All phases
presented in this paper have Qz = 0, meaning that every unit
cell along the c axis has exactly the same magnetic structure.
This fact allowed us to determine the phase boundaries using
smaller system sizes (between 6 × 6 × 2 and 18 × 18 × 2 unit
cells). The MC data is Fourier transformed to obtain the spin
structure factor

S(q) = 1

6

∑
i j

〈Si(q) · S j (−q)〉eiq·(ri−r j ), (10)

where ri are the positions of atoms inside of the unit cell.

D. Spin waves

The dynamics of the magnetic system can be described by
the Landau-Lifshitz equation

dSi(r, t )

dt
= Hi(r, t ) × Si(r, t ), (11)

where Hi(r) is the effective field at each site:

Hi(r, t ) =
∑

δ

∑
j

Ai j (δ)S j (r + δ, t ). (12)

In this paper, we will look for solutions of the linearized
form of Eq. (11) which correspond to the low-energy spin
wave excitations. This is done by first changing into a lo-
cal coordinate system where the local z components are
aligned with the ground-state spin configuration. Note that
as long as this coordinate transformation is described by a
local rotation Ui(r), the dynamic evolution of the local spin
components can be written in the same form as Eq. (11), re-
placing Si(r, t ) and Hi(r, t ) with S̃i(r, t ) = Ui(r)Si(r, t ) and
H̃i(r, t ) = Ui(r)Hi(r, t ), respectively.
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III. SPIN SYMMETRY

When studying the properties of a magnetic model, it is
important to take a proper account of the symmetries that
leave the Hamiltonian invariant. Apart from the space-group
transformations imposed by the underlying crystalline lat-
tice, magnetic systems also include symmetries associated
with spin rotations and reflections. The most common spin
symmetry is the time reversal, T , which must be broken to
establish magnetic order. A combination of crystallographic
group operations with the time-reversal operator leads to
magnetic point and space groups. The addition of this one
operator significantly extends the number of symmetrically
distinct systems: in three dimensions, there are 1651 magnetic
space groups compared to 230 “regular” crystal space groups
[52,53]. In materials with large SOC, the spins are typically
pinned to the lattice, meaning that for each lattice trans-
formation there is a corresponding spin transformation. The
symmetry group of the Hamiltonian is then the paramagnetic
group, which is a direct product,

GSOC = GL ⊗ Z (T )
2 , (13)

where GL is the space group and Z (T )
2 = {E , T }. However, in

the limit of decoupled spin and orbital degrees of freedom, one
has a magnetic system with isotropic Heisenberg exchange
interactions which are invariant under all global spin rotations.
In fact, as was noted by Brinkman and Elliott, there are many
instances of magnetic systems where the spins are at least
partially decoupled from the lattice [54–56]. The symmetry
of these systems is then described by the spin point and
space groups [57,58] which are typically much larger than
the corresponding magnetic groups. Although the effects of
the extended spin symmetry operations have previously been
considered almost exclusively in the context of either isotropic
spins or SIA, their importance in the intermediate cases, which
include DM and anisotropic exchange interactions, remains
relatively underrepresented and has only began gaining inter-
est in recent years [59,60]. For more information about the
spin space groups, we refer the reader to Ref. [59], which
provides an excellent review of the subject. In compounds
with Mn3X -like structures, depending on the strength of the
SOC, one can identify three distinct cases for magnetic mod-
els depicted in Fig. 2. Each case corresponds to a different
group of spin symmetries.

In this section, we present the symmetry analysis of these
three cases by deriving the corresponding spin groups and de-
termining the resulting irreps for Q = 0. Note that the analysis
presented here is for classical magnetic moments [rotations
in SO(3)], but could be readily extended to quantum spin
operators [rotations in SU(2)]. The details of some derivations
can be found in the Supplemental Material [61].

A. Decoupled case

As mentioned previously, when the spin and orbital de-
grees of freedom are completely decoupled, the magnetic
interactions correspond to the isotropic exchange, H = HJ ,
meaning that the spin Hamiltonian is invariant with re-
spect to pure space transformations (lattice site permutations)
and global spin rotations by an arbitrary angle. The crystal

symmetries pertaining to this work form a space group
P63/mmc, which we denote as D(L)

6h (indicating also the point
group), and the spin rotations combined with the time-reversal
symmetry form a group SO(S)(3) ⊗ Z (T )

2 . Since the elements
in these two groups commute, the full group of the isotropic
exchange Hamiltonian is simply

GJ = D(L)
6h ⊗ SO(S)(3) ⊗ Z (T )

2 . (14)

As a result, the irreps of GJ are obtained by taking a direct
product of the irreps of spin and lattice degrees of freedom.
The former is related to the set of spherical harmonics with
l = 1 and has dimension 3, while the latter depends on the pe-
riodicity of the magnetic structure. For Q = 0, the symmetries
of D(L)

6h reduce to the point group, and the irrep decompo-
sition becomes A1g ⊕ E2g ⊕ B2u ⊕ E1u. Therefore, there are
four irreps in the decomposition of magnetic states: two of
dimension 3 (Tg, Tu), and two of dimension 6 (Qg, Qu), as il-
lustrated in Fig. 2. The two triplets correspond to the collinear
configurations, while the two six-dimensional irreps are re-
lated to the 120ºconfigurations. The labels g and u are used to
indicate the parity of the irreps under the spatial inversion, as
per usual group-theory notation.

B. Weak coupling case

As discussed in Sec. II, when the SOC is small but nonzero,
it is reasonable to assume that the DM interactions are the
dominant type of anisotropy in the system, giving H ≈ HJ +
HD. The addition of DM coupling to the spin Hamiltonian
significantly complicates the symmetry analysis of the model.
However, it is still possible to determine the structure of the
corresponding spin group as well as all irreps. We also note
that the SIA and bond-dependent interactions that couple the
z components of spins do not change the symmetry of this spin
group.

It can be shown that a spin rotation applied to a DM
coupling between two spins gives

Dẑ · [S′
i(r) × S′

j (r
′)] = Dẑ · [(MSi(r)) × (MS j (r′))]

= D(MT ẑ) · [Si(r) × S j (r′)], (15)

where M is the rotation matrix. Therefore, all rotations that
leave ẑ invariant belong to the symmetry group of DMI. This
constitutes a group of axial rotations in spin space SO(S)(2),
implying XY anisotropy. The complications arise from the
fact that not all lattice permutations leave the DM interac-
tion invariant. In particular, transformations that include C2

rotations around axes parallel to the kagome layers and the
corresponding reflections reverse the direction of the bonds,
which flips the sign of the DM vector. For these to become
proper symmetry operators, they must be combined with the
corresponding spin rotations/reflections. Since the spin and
lattice operations are now coupled and do not necessarily
commute with each other, we can no longer write the total
group of the Hamiltonian as a direct product of spin and lattice
symmetry groups. Nevertheless, the group of DM coupling
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FIG. 2. A diagram illustrating the effects of SOC on the symmetry of the spin Hamiltonian. In Mn3X systems, we identify three SOC limits
resulting in distinct symmetry groups: decoupled, weak SOC, and intermediate SOC. These correspond to, in the same order, the isotropic,
XY anisotropy, and Ising anisotropy (top panel). The total spin group of the Hamiltonian and the corresponding irreps are indicated by the
colored blocks. The positive and negative z components of spins are indicated by the filled circles and pluses, respectively, and the blue and
red colors of the spin components are used to indicate parallel and antiparallel out-of-plane NNN (labels g and u, respectively). There are four
irreps in the decoupled limit, which are first split into ten irreps in the weak SOC limit and then further split into 12 irreps in the intermediate
SOC limit. The irreps with the out-of-plane spin components (bottom row) are unchanged going from the weak to intermediate SOC limit, and
therefore have the same labels. The remaining planar irreps are labeled using two labels corresponding to the weak and intermediate limits.

can then be written as a semidirect product

GD = (
C(L)

6h ⊗ SO(S)(2)
)

� CSL
2 ⊗ Z (T )

2 , (16)

where C(L)
6h is the group of lattice symmetries that leave DM

interaction invariant, and C(SL)
2 has one nontrivial element

CS
2CL

2 that rotates both the lattice and spin components around
the x axis. The derivation of the group structure and irreps of
GD is given in the Supplemental Material [61]. The irreps of
GD include all irreps of a regular D6h ⊗ Z (T )

2 magnetic group,
and an infinite number of two-dimensional irreps, as presented
in Table I.

Intuitively, one can expect that the continuous axial ro-
tational symmetry would separate the z components of the
spins from the planar components, while leaving the latter
degenerate. The decomposition of a Q = 0 magnetic struc-
ture consists of ten irreps, four of which involve only the z
components of spins (A2g ⊕ E2g ⊕ B1u ⊕ E1u) and six two-
dimensional planar irreps (E (10)

g ⊕ E (12)
g ⊕ E (14)

g ⊕ E (11)
u ⊕

E (13)
u ⊕ E (15)

u ), as shown in Fig. 2. Note that the order pa-
rameters corresponding to the two-dimensional out-of-plane
irreps (E2g and E1u) do not have fixed norms and therefore
by themselves cannot be observed in a classical system [62].
The labels E (nm)

a provide information about the parity of the
magnetic order parameters (label a), transformation properties
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TABLE I. Characters of the two-dimensional irreps of group GD that do not also appear in group D6h ⊗ Z (T )
2 . For simplicity, the elements

with time-reversal operator are not included in the table. Here, the classes Ck (φ) have two elements, {Cz(±φ,±φk )}, which corresponds to a
rotation around z axis of spin by an angle φ and lattice by angle φk = 2π

k . C′
2 and C′′

2 include simultaneous 180ºrotations of lattice (same as
in the D6h point group) and spin with axes in the xy plane. The second half of classes is obtained by combining the first half with the spatial
inversion operator. The nonzero characters are defined as c(m)

n = 2 cos(nφ + mπ

3 ), where n ∈ Z \ {0}, m ∈ Z6.

GD C1(φ) C6(φ) C3(φ) C2(φ) C′
2 C′′

2 I (φ) IC6(φ) IC3(φ) IC2(φ) IC′
2 IC′′

2

E (nm)
g c(0)

n c(m)
n c(2m)

n c(3m)
n 0 0 c(0)

n c(m)
n c(2m)

n c(3m)
n 0 0

E (nm)
u c(0)

n c(m)
n c(2m)

n c(3m)
n 0 0 -c(0)

n -c(m)
n -c(2m)

n -c(3m)
n 0 0

under spin rotations (subscript n), and the coupling between
the spin and spatial transformations (subscript m). In the case
of the planar irreps, the m subscript can also be viewed as the
“winding” of the spins around the hexagon.

C. Intermediate coupling case

Finally, when the SOC is sufficiently strong, the SIA
and bond-dependent anisotropies become important, effec-
tively reducing the symmetry of the spin Hamiltonian to
the magnetic group D6h ⊗ Z (T )

2 . As noted before, only those
anisotropic interactions involving the planar spin components
explicitly break the global axial rotation symmetry, forcing the
spins to align with the local anisotropy axes n̂iα . Therefore,
these interactions are inherently Ising-like. This anisotropy
splits the E (14)

g and E (11)
u configurations each into two sin-

glets, while leaving the degeneracy of the remaining irreps
unchanged (Fig. 2). We note that no further reduction in sym-
metry of the spin Hamiltonian occurs for strong SOC, and the
only change in the irrep splitting would be due to accidental
degeneracy.

IV. SELF-DUALITY TRANSFORMATIONS

To systematically describe the classical ground-state prop-
erties of a magnetic model, one must address the problem
of the dimensionality of the parameter space. In the general
case considered in this paper, there are more than a dozen
independent parameters, making the complete computational
analysis of the phase diagram forbiddingly expensive. As a
result, it is necessary to determine the means of reducing the
parameter space. The most common approach is to focus on
a particular physical example (e.g., a family of compounds)
where the ranges of the coupling constants are approximately
known from either the experimental data or from ab initio
calculations. This approach allows one to bound the values
of the parameters, and potentially even ignore some of them.
Although this method is of extreme utility for explaining the
properties of the known compounds, it may provide very
limited information for describing the functionality of novel
compounds, since the relevant parts of the parameter space
may fall far beyond the explored subspace. Moreover, even
after the relevant parameter ranges are identified, the dimen-
sionality of the search space may be quite large and still
require extensive computations. For example, in the weak
SOC limit, the magnetic model considered in this paper still
contains four to five independent interactions.

Another approach, often neglected in the literature, is to
determine hidden relationships between the models with dif-

ferent coupling constants. It is often true that the parameters
in a given model are not completely independent, and one can
determine a set of transformations that map the Hamiltonian
onto itself while changing the values of the coupling con-
stants. Such transformations are referred to as the self-duality
transformations and are the subject of this section. We note
that while the two methods described here are different in
nature, one can and should use them together to achieve a sys-
tematic yet physically relevant description of a spin model. In
this paper, we constrain the values of the coupling constants,
in particular, those originating from the SOC, by referring to
the experimental and numerical results for the Mn3X com-
pounds [18,21,22].

Self-duality transformations have played an important role
in statistical physics, an important example being a Kramers-
Wannier duality that relates the ordered and paramagnetic
phases in the two-dimensional Ising model on a square lattice
[63–68]. Self-duality maps provide a natural formulation of a
renormalization flow and have therefore been used in studies
of critical phenomena. More recently, a different class of self-
dual transformations has been derived for Heisenberg-Kitaev
models on honeycomb and triangular lattices [51,69,70].
These transformations have been referred to in the literature
as the Klein duality, since they form a group isomorphic to
the Klein group. The main interest in the self-duality maps
has been the search of accidental degeneracy points, where
strongly anisotropic systems at times display full rotational
symmetry [51,69]. Self-duality in two-dimensional kagome
layers has been considered before in Refs. [62,71]. There, it
was used to draw connections between different models that
support spin liquid phases.

In this section, we determine the relevant self-duality trans-
formations for Hamiltonian Eqs. (1). Since the number of
possible self-dualities depends on the types of magnetic in-
teractions in the model, we separate the discussion into three
parts corresponding to the three types of spin Hamiltonians
discussed in Sec. III (see Fig. 2).

A. Self-duality as a permutation of spin invariants

For the purposes of this paper, we define a self-duality
transformation as a simultaneous transformation of the spin
variables and model parameters that leaves the Hamiltonian
unchanged:

μ : {Si(r);Ai j (δ)} −→ {̃Si; ˜Ai j (δ)},
H({Si;Ai j (δ)}) = H({̃Si; ˜Ai j (δ)}). (17)
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The transformation in Eq. (17) is implied to include all
spins in the system, as well as all symmetry-allowed
coupling constants. We assume that the spin transformations
can be expressed as a site-dependent linear operation S̃i(r) =
MT

i (r)Si(r), where Mi(r) is an orthogonal matrix. Then,

˜Ai j (r − r′) = MT
i (r)Ai j (r − r′)M j (r′). (18)

We require that the matrices Ai j (δ) and ˜Ai j (δ) only differ
in the values of the coupling parameters. Note that matrices
Mi(r) are not necessarily unique: we can define M̃i(r) =
RMi(r), where R is a symmetry operation that leaves Ai j (δ)
invariant.

To demonstrate the relationship between the symmetry of
the system and the number of self-duality transformations,
we first note that any quadratic spin Hamiltonian of the form
Eq. (3) can be written as a sum of bilinear spin invariants,

H =
∑

λ

A(λ)B(λ), (19)

where B(λ) are the invariants and A(λ) are the correspond-
ing coupling constants. One can show [61] that the bilinear
spin invariants can be calculated by squaring the symmetry-
adapted order parameters corresponding to the irreps in the
decomposition of the spin structure (see Sec. III). The result
can be written as

B(λ) = B(�)
kl = S(�)

k · S(�)
l , (20)

where S(�)
k is the symmetry-adapted order parameter corre-

sponding to irrep �, and k, l label different order parameters
belonging to �. The number of components in this vector is
equal to the dimensionality of the �.

It can be shown that a transformation of the spins that
results in a permutation of the invariants,

μ(B(λ) ) =
∑

λ

Pλμ(λ)B
(λ) = B(μ(λ)), (21)

satisfies our definition of self-duality since

μ(H) =
∑

λ

A(λ)B(μ(λ)) =
∑

λ

Ã(λ)B(λ). (22)

Here, Pλμ(λ) permutes indices λ and μ(λ), and

Ã(λ) = μ−1(A(λ) ). (23)

At the same time, a permutation of invariants occurs when we
permute the order parameters, and possibly change the sign of
some of the components:

μ : S(�)
kα

−→ ±S(�′ )
k′α , (24)

where α labels the components of the order parameters,
Therefore, we look for the spin transformations Mi(r) that cor-
respond to permutations between order parameters. Although
this is by no means a rigorous derivation, the self-dualities
determined this way are sufficient to describe most interesting
properties observed in this paper [72]. In the remainder of this
section, we present the relevant duality transformations in the
context of the three SOC cases discussed in the last section.

As a final note, we point out that the set of all self-duality
maps resulting from the permutations of the symmetry-
adapted order parameters forms a group. This can be deduced

from the fact that we only allow orthogonal matrices as the lo-
cal transformations of spins. This fact significantly simplifies
our search, since the new transformations can be obtained by
combining together those already identified in the analysis.

B. Decoupled case

In the decoupled limit, the coupling matrices are diagonal
in the spin components,

Ai j (δ) = Ji j (δ)I, (25)

where I is an identity matrix. As a result, there is a single
self-duality transformation, which corresponds to transforma-
tions between order parameters symmetric and antisymmetric
under inversion operation:

γ (−1) :

{
Tg ←→ Tu

Qg ←→ Qu.
(26)

The corresponding group of spin transformations can be writ-
ten as

M(g)
i =

{
gI if i ∈ {1, 2, 3}
I if i ∈ {4, 5, 6}, (27)

where g = ±1. M(+1)
i (r) is the identity and M(−1)

i (r) flips all
spins in layer A, while keeping layer B unchanged. While this
transformation does not affect the in-plane interactions, the
out-of-plane couplings change signs:

γ (−1) :

⎧⎨⎩J1 −→ −J1

J2 −→ J2

J4 −→ −J4.

(28)

Thus, γ (−1) provides a map between models with ferro- and
antiferromagnetic out-of-plane interactions.

C. Weak coupling case

Next, consider a model with weak SOC. The coupling
matrix between two spins Eq. (4) can then be simply written
as

Ai j (δ) =
⎡⎣ Ji j (δ) Di j (δ) 0

−Di j (δ) Ji j (δ) 0
0 0 Ji j (δ) + A(z)

i j (δ)

⎤⎦. (29)

We must formally include A(z)
i j (δ) anisotropic interactions

in some cases to define proper self-duality transformations.
However, as will become clear in the next sections, this for-
mality is not too significant in practice, since the majority of
the observed phases in this paper are restricted to the xy plane.
Therefore, many useful properties of self-duality relating to
the spin structures and phase diagrams remain exact even if
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we ignore A(z)
i j (δ), since the z components of the spins are

decoupled from the planar components (Fig. 2), and so the
duality transformations are also decoupled.

We first focus on the permutations of the four out-of-plane
order parameters. There is a single nontrivial duality transfor-
mation corresponding to flipping the z components in the A
layer. The group of transformations is then written as

M(η)
i =

⎡⎣1 0 0
0 1 0
0 0 ηi

⎤⎦, (30)

where

ηi =
{
η if i ∈ {1, 2, 3}
1 if i ∈ {4, 5, 6} (31)

and η = ±1. The parameters are mapped according to

μ(−1) :

⎧⎪⎪⎨⎪⎪⎩
Ji −→ Ji

A(z)
1 −→ −A(z)

1 − 2J1

A(z)
2 −→ A(z)

2
A(z)

4 −→ −A(z)
4 − 2J4.

(32)

Next, we identify the transformations that permute the six
planar order parameters. As discussed in the previous section,
these are labeled by an integer m which represents the sixfold
winding number. Therefore, the first natural choice for a spin
transformation is a local rotation written as

M(m)
i =

⎡⎣cos θ
(m)
i − sin θ

(m)
i 0

sin θ
(m)
i cos θ

(m)
i 0

0 0 1

⎤⎦, (33)

where

θ
(m)
i = πmli

3
, (34)

m ∈ Z6 and li label the positions of atoms on the hexagon of
the unit cell in the counter clockwise direction:

{l1, l2, l3, l4, l5, l6} = {3, 1, 5, 0, 4, 2}. (35)

However, there is another group of global transformations that
leads to a distinct duality:

M(ε) =
⎡⎣ε 0 0

0 1 0
0 0 1

⎤⎦, (36)

with ε = ±1. Note that the elements of M(m)
i and M(ε) in

general do not commute. We use elements M(ε)M(m)
i to de-

fine the self-duality transformations μ(ε)
m , which transform the

coupling constants according to

μ(ε)
m :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
J1 −→ J1 cos

(
πm
3

) − D1ε sin
(

πm
3

)
D1 −→ J1 sin

(
πm
3

) + D1ε cos
(

πm
3

)
J2 −→ J2 cos

(
2πm

3

) − D2ε sin
(

2πm
3

)
D2 −→ J2 sin

(
2πm

3

) + D2ε cos
(

2πm
3

)
J4 −→ J4(−1)m.

(37)

In addition, if J̃i is the new exchange coupling constant, then

μ(ε)
m : A(z)

i −→ A(z)
i + Ji − J̃i. (38)

One can then prove the following relations:

μ
(−1)
0 μ(+1)

m μ
(−1)
0 = μ

(+1)
−m , (39)

μ(+1)
m μ(+1)

n = μ
(+1)
m+n, (40)

μ(−1)
m μ(−1)

m = μ
(+1)
0 , (41)

where m is implied to be a cyclic integer variable. These
relations define the structure of a dihedral group D6 with μ

(+1)
0

serving as the identity element. The μ(+1)
m transformations in

this case are equivalent to rotations and μ
(−1)
0 is the reflec-

tion operation. Since μη and μ(ε)
m commute, the most general

duality transformation is written as μ(η)μ(ε)
m leading to group

structure equivalent to D6h. Thus, we obtain a very interesting
situation where the group of self-dualities is non-Abelian and
is isomorphic to the point group of the underlying lattice.

D. Intermediate coupling case

When the SOC is sufficiently strong, the coupling matrix
Ai j (δ) takes the form of Eqs. (4) and (5). The symmetries
of the Hamiltonian are reduced down to the paramagnetic
group as seen in Fig. 2. This has no affect on the out-of-
plane order parameters, and μ(η) are still valid self-duality
maps. However, the two-dimensional E (14)

g and E (11)
u planar

irreps each split into two one-dimensional irreps ({B1g, B2g}
and {A1u, A2u} respectively). As a result, the dualities obtained
from permutations of these irreps with other two-dimensional
irreps are no longer exact. Out of the 12 elements of μ(ε)

m ,
only four remain: μ

(+1)
0 , μ

(−1)
1 , μ

(+1)
3 , and μ

(−1)
4 . It is straight-

forward to check that μ
(+1)
0 and μ

(−1)
4 leave the anisotropic

parameters unchanged,

μ
(+1)
0 , μ

(−1)
4 :

⎧⎪⎪⎨⎪⎪⎩
Kα −→ Kα

A(xy)
1 −→ A(xy)

1

A(xy)
2 −→ A(xy)

2

A(xy)
4 −→ A(xy)

4 ,

(42)

while μ
(+1)
3 and μ

(−1)
1 change the sign of the out-of-plane

bond-dependent interactions:

μ
(+1)
3 , μ

(−1)
1 :

⎧⎪⎪⎨⎪⎪⎩
Kα −→ Kα

A(xy)
1 −→ −A(xy)

1

A(xy)
2 −→ A(xy)

2

A(xy)
4 −→ −A(xy)

4 .

(43)

It can be shown from the commutation of these four maps that
the resulting group is isomorphic to Z2 ⊗ Z2. In addition to
these transformations, global C4 rotations around the z axis
now lead to a valid self-duality map ζ , since they effectively
interchange the local x and y spin components, and conse-
quently interchange the one-dimensional planar irreps, thus
flipping the sign of the anisotropic interactions:

ζ :

⎧⎪⎪⎨⎪⎪⎩
Kα −→ −Kα

A(xy)
1 −→ −A(xy)

1

A(xy)
2 −→ −A(xy)

2

A(xy)
4 −→ −A(xy)

4 .

(44)

The map ζ therefore forms a group of two elements, Z2 =
{ζ , ζ 2}. The elements {μ(+1)

0 , μ
(+1)
3 , μ

(−1)
1 , μ

(−1)
4 } and ζ
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TABLE II. Points of accidental GJ symmetry obtained via self-
duality maps μ(ε)

m . Note that the value of ε does not change the
number of points.

m J̃1 D̃1 Ã(z)
1 J̃2 D̃2 Ã(z)

2 J̃4 Ã(z)
4

0 J1 0 0 J2 0 0 J4 0
1 1

2 J1

√
3

2 J1 − 1
2 J1 − 1

2 J2

√
3

2 J2 − 3
2 J2 −J4 −2J4

2 − 1
2 J1

√
3

2 J1 − 3
2 J1 − 1

2 J2 −
√

3
2 J2 − 3

2 J2 J4 0
3 −J1 0 −2J1 J2 0 0 −J4 −2J2

4 − 1
2 J1 −

√
3

2 J1 − 3
2 J1 − 1

2 J2

√
3

2 J2 − 3
2 J2 J4 0

5 1
2 J1 −

√
3

2 J1 − 1
2 J1 − 1

2 J2 −
√

3
2 J2 − 3

2 J2 −J4 −2J4

commute (even though the corresponding spin transforma-
tion matrices generally do not), and all together they form
the so-called Burnside group B(3, 2) = Z2 ⊗ Z2 ⊗ Z2, which
is Abelian. Combining it with the μ(η), the group of the
self-duality transformations in the intermediate SOC limit
becomes the Burnside group: B(4, 2) = Z2 ⊗ Z2 ⊗ Z2 ⊗ Z2.

E. Consequences of self-duality

The consequences of self-duality are far-reaching. In gen-
eral, self-dual transformations can be thought of as the
symmetries of the parameter space that do not change the en-
ergy of the system. As a result, the dual points in the parameter
space (self-dual images) will have a lot of the same physical
properties. These include the ground-state energy and most
thermodynamic properties, since the self-duality also applies
to the partition function. These results are also not limited
to classical systems either: the self-dual images must have
mostly the same quantum properties, within redefinition of
quantization axes. Therefore, given a description of a single
phase, one can immediately describe all phases that relate to it
via self-duality transformations. In the following, we discuss a
few important properties of self-duality relevant to this paper.

From the properties of the duality relations, it follows that
to prove that a certain spin structure is stable for some choice
of physical parameters, it is sufficient to show that one of its
images is stable somewhere in the parameter space. Given
that even in the simple case of weak SOC limit the parameter
space is four-dimensional, the self-duality maps can signifi-
cantly reduce the time of computations since for every phase
boundary f (A), an image f (μ(A)) must also correspond
to a phase boundary. At the phase boundaries, self-dualities
become symmetry operations, and the Hamiltonian remains
invariant after the transformation.

Self-dualities also allow one to quickly find the points of
accidental degeneracy. Consider, for example, Eq. (37) where
the original DM parameters are set to zero D1 = D2 = 0. We
get a set of new parameters, where D̃1 and D̃2 are gener-
ally nonzero. However, since the self-duality preserves the
transformation properties and therefore the symmetry group
of the Hamiltonian, all self-dual images in this case must
be completely isotropic in spin space (i.e., have spin group
GJ ). Note that as stated before, in addition to the J̃k and
D̃k , one must also specify Ã(z)

k = J̃k − Jk to ensure that the
full rotational symmetry is exact. With this, we get a set of
points with accidental GJ degeneracy, listed in Table II. At

these points, we expect the spin-wave dispersion to obtain
additional zero-energy pseudo-Goldstone modes.

It is important to note, however, that the properties which
depend directly on the spin structure (e.g., average magneti-
zation) are not always the same, since the self-duality maps
generally do not conserve the order parameter. An important
consequence of this is that the self-dual images will have the
same spin-wave excitation spectra only when the correspond-
ing spin transformations produce proper local axes (i.e., when
the local transformations are rotations). This will be discussed
in more detail in Sec. VII.

V. CLASSICAL PHASE DIAGRAMS FOR DECOUPLED
AND WEAKLY COUPLED CASES

A. Brief overview of the results

In this section, we present the classical magnetic phases
for models with either negligible or weak SOC. The effects of
intermediate SOC are discussed in Sec. VIII. Before starting a
detailed discussion of magnetic ground states, we summarize
the main results of this section. Based on our findings, we
group the magnetic structures into three categories: single-
Q configurations, multi-Q structures, and incommensurate
phases with Ising-like ordering. We label these as �(Q)

m , �(M)
m ,

and �m respectively. The integer label m here refers to the
different self-dual images produced by the μ(ε)

m elements in
the weak SOC limit, as discussed in the previous section. In
addition to these states, in the decoupled limit, some phase
boundaries correspond to structures with degenerate wave
vectors in the Brillouin zone.

The magnetic ordering wave vectors of all observed states
are shown in Fig. 4.

LT calculations were found to give correct spin configura-
tions and energies for the single-Q phases. For the remaining
types of phases, the analytical results gave non-normalized
spin configurations and, as a result, lower energies compared
to the MC simulations. However, in most cases, LT provided
a decent estimation of the locations of the phase bound-
aries, allowing us to optimize our numerical boundary search.
Therefore, the exact phase boundaries between �(Q)

m -type
states were calculated using the LT method, and the locations
of the remaining boundaries were determined via numerical
MC simulations.

We show that Heisenberg exchange interactions are suf-
ficient to stabilize both single- and multi-Q phases. The
inclusion of DM interactions lifts the degeneracy of the
noncollinear phases by stabilizing configurations with par-
ticular chirality, which further enriches the magnetic phases.
For most values of exchange constants, the D1 − D2 phase
diagrams display multiple nontrivial (Q �= 0) structures, in-
cluding unconventional states with Ising-like ordering.

B. Decoupled case

First, we present phase diagrams for the model in Eqs. (1)
with H = HJ in Fig. 3. Both diagrams (J2 > 0 and J2 < 0)
display a clear inversion symmetry corresponding to flipping
the signs of both J1 and J4, as a consequence of the self-duality
map γ (−1), discussed in Sec. IV B. The results yield eight dis-
tinct phases, including single- and multi-Q structures. When
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FIG. 3. Ground-state phase diagram for exchange-coupled spins on AB-stacked kagome lattice. Here, the dashed and dash-dotted
boundaries correspond to the M� and M[qq0] manifold states. Since the exchange interactions do not differentiate between the different
chirality values, the m = 1, 5 (m = 2, 4) states are written as linear combinations.

J1 and J4 have the same sign and sufficiently large magnitudes,
the ground-state spin configurations become collinear, with
spins in the A and B layers either parallel (J1 < 0, J4 < 0)
or antiparallel (J1 > 0, J4 > 0) to each other. On the other
hand, opposing signs of the interactions introduce frustration,
which for large magnitudes of the couplings lead to uniform
120ºstates. Notably, the exchange interactions alone do not
differentiate between states with different chirality, leaving
the structures with m = 1, 5 (m = 2, 4) degenerate. Interest-
ingly enough, for sufficiently large magnitudes of J1 there is
a range of J4 values that stabilize commensurate cycloidal

M[qq0] MΣ Φ(Γ)
m

Φ(K)
m Ψ(M)

m Λm

FIG. 4. Magnetic ordering wave vectors corresponding to phases
studied in this paper shown in the first Brillouin zone of an
AB-stacked kagome lattice. M[qq0] and M� represent degenerate
ground-state manifolds. �(Q)

m and �(M)
m label the single- and multi-Q

states, and �m labels the incommensurate phases with Ising-type
order, as described in the main text.

configurations regardless of the sign of J2. These structures
are characterized by a period-three modulation (Q = K) with
collinear spins in each unit cell (Fig. 7). The stability of these
phases extends indefinitely for large magnitudes of J1. In the
case of antiferromagnetic NN in-plane interactions, one can
also stabilize multi-Q configurations for intermediate values
of J1 and J4. Similar to the uniform 120º phases, the �(M)

m
structures in Fig. 3 correspond to degenerate configurations
with opposite chiralities.

We also note that at certain phase boundaries, structures
with degenerate wave vectors can be stabilized. In particular,
the boundaries between �

(�)
0 (�(�)

3 ) and �
(K)
0 (�(K)

3 ) states
stabilize structures where all wave vectors with Qz = 0 are
degenerate, leading to a two-dimensional ground-state mani-
fold M[qq0] (dash-dotted lines in Fig. 3). Also, the boundaries
between �(�)

m and �(M)
m are degenerate along the � lines in the

Brillouin zone and are labeled as M� (dashed lines in Fig. 3).
In this paper, we will focus more on the ordered states and
leave the description of the degenerate manifold states outside
of the scope of this paper.

C. Weak coupling case

Next, we consider the effects of DM interactions. To re-
duce the number of independent parameters, we focus on
the case where J4 = 0 and present the diagrams that display
the majority of the magnetic phases observed in this paper.
The remaining phases can be obtained from the self-duality
operations με

m presented in Sec. IV C [61].
The phase diagrams are shown in Fig. 5. We see that DM

interactions break the degeneracy associated with the different
chirality values of the noncollinear spin structures. For large
magnitudes of both D1 and D2, the ground state eventually
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FIG. 5. Ground-state phase diagrams on AB-stacked kagome lattice for selected values of exchange and a range of DM values. In the
middle diagram, the brightened strips between the �2(4) and �

(�)
2(4) phases are coexistence regions with many stable multi-Q configurations.

becomes one of the Q = � 120ºstructures. For the interme-
diate values of these constants, the competition between the
exchange and DM interactions introduces a plethora of un-
conventional magnetic phases. These include single-Q phases
and multi-Q configurations already discussed, as well as in-
commensurate phases that manifest themselves as Ising-like
stripes. The latter are stable for a wide range of the DM param-
eters and extend far beyond the ranges shown in Fig. 5. These
states were found to be hard to resolve in the simulations and
required a careful choice of parameters, as well as many MC
steps to obtain ordered stripe configurations. Furthermore, for
the J2 > 0 J1/|J2| > 3

2 diagram, we identified thin coexistence
regions between the �2(4) and �

(�)
2(4) phases where various

multi-Q configurations are stable.

VI. STRUCTURE OF THE MAGNETIC PHASES

A. Single-Q phases

In this paper, we encounter two types of single-Q
phases: those with Q = � and Q = K , which we label
as �(�)

m and �(K)
m , respectively. The spin configurations

of these phases are shown in Figs. 6 and 7. Note that
for exchange-only interactions, the spins generally also
possess out-of-plane components, since the order param-
eters in this case belong to one of the four irreps in
Sec. III A.

When a weak SOC is turned on in the system, the in-
plane and out-of-plane components are no longer equivalent
and correspond to different irreps (Sec. III B). Thus, in the
decoupled limit, these structures can be parameterized as
Si(r) = R(φz, φ)R(Q)(r)M (m)

i Ŝ, where Ŝ is an arbitrary in-
plane unit vector, M (m)

i is defined in Eq. (33), and the
remaining two rotation matrices are defined as

R(φz, φ) =
⎡⎣ cos(φ) − sin(φ) 0

cos(φz ) sin(φ) cos(φz ) cos(φ) − sin(φz )
sin(φz ) sin(φ) sin(φz ) cos(φ) cos(φz )

⎤⎦,

(45)

R(Q)(r) =
⎡⎣cos(Q · r) − sin(Q · r) 0

sin(Q · r) cos(Q · r) 0
0 0 1

⎤⎦. (46)

Matrix R(φz, φ) is used to define the globally phase of
the spin configurations. In the weakly coupled limit, the
parametrization is changed to Si(r) = R(0, φ)R(Q)(r)M (m)

i Ŝ.
The corresponding classical energies of these spin configura-
tions are presented in Table III.

We note that while formally the z components of spins
are decoupled from the planar ones in the weak SOC limit,
the energy of the �

(Q)
0 and �

(Q)
3 structures is independent

of the DM parameters, leading to a full rotational degener-
acy at the classical level. This degeneracy originates from
the collinear sublattice structure in these phases. As will be
discussed in Sec. VII, thermal fluctuations break this classical
degeneracy and orient the structures in the out-of-plane
direction.

Φ(Γ)
0 Φ(Γ)

1 Φ(Γ)
2

Φ(Γ)
3 Φ(Γ)

4 Φ(Γ)
5

FIG. 6. The �(�)
m spin configurations. Blue and red arrows are

used to differentiate the structures that are symmetric and antisym-
metric under the spatial inversion.
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Φ
(K)
0 Φ

(K)
3

Φ
(K)
1 Φ

(K)
4

Φ
(K)
2 Φ

(K)
5

FIG. 7. The �(K)
m spin configurations.

B. Multi-Q phases

The most prominent type of multi-Q states in the phase
diagrams in Figs. 3 and 5 is �(M)

m . The structure factor of
these structures displays one peak at the � point, as well as
three peaks at the M points in the first Brillouin zone (forming
the star of M), as shown in Fig. 4. The spin configurations are
shown in Fig. 8. The parametrization of these structures is
not trivial. To make some further progress, we must consider
the symmetry of these configurations to reduce the number
of independent variables. The analysis below is performed
assuming the weak coupling case and then generalized to also
describe the decoupled case.

We first note that the peaks of the structure factor in Fig. 4
are completely symmetric with respect to the D6h point group
operations. Therefore, even though these spin structures break
planar translations by a single unit cell, the point-group lattice
transformations around the (0,0) site are preserved, provided
that we combine them with the necessary spin rotations. Thus,
we can still express the �(M)

m configurations in terms of the
two-dimensional E (1m)

g and E (1m)
u irreps of GD in Table I.

The general representation of the spin structures in Fig. 8

TABLE III. Classical energies of the single-Q configurations.

m H0(�(�)
m ) H0(�(K)

m )

0 2J1 + 2J2 + 3J4 2J1 + J2
2

1 J1 − J2 − 3J4 − √
3(D1 + D2) J1 − J2

4 − √
3(D1 + D2

4 )
2 −J1 − J2 + 3J4 − √

3(D1 − D2) −J1 − J2
4 − √

3(D1 − D2
4 )

3 −2J1 + 2J2 − 3J4 −2J1 + J2
2

4 −J1 − J2 + 3J4 + √
3(D1 − D2) −J1 − J2

4 + √
3(D1 − D2

4 )
5 J1 − J2 − 3J4 + √

3(D1 + D2) J1 − J2
4 + √

3(D1 + D2
4 )

Ψ
(M)
0 Ψ

(M)
3

Ψ
(M)
1 Ψ

(M)
4

Ψ
(M)
2 Ψ

(M)
5

FIG. 8. Magnetic unit cells of the �(M)
m configurations. Colors

indicate spins that belong to the same orbit (see main text).

decomposes as

�(M) =
⊕

m

4E (1m)
am

, (47)

where am = g if m is even and am = u otherwise. Because
all of the symmetry operations transform spins globally (i.e.,
no site-dependent transformations), it is impossible to have
spin configurations described by irreps with more than one
value of the winding m, without inevitably breaking the D6h

lattice symmetry. Therefore, a given spin configuration must
decompose into four irreps with the same winding number m,
�(M)

m = 4E (1m)
1 . As a result, the parametrization of �(M)

m can
be written in terms of four planar vectors, which describe the
spins belonging to the same orbit. Here, we define an orbit as
a set of all spin components related to each other via lattice
point group transformations (Fig. 8). The four orbits are given
below:

O(1)
i : {S1(0, 0), S2(0, 0), S3(0, 0),

S4(0, 0), S5(0, 0), S6(0, 0)}, (48)

O(2)
i : {S1(1, 0), S2(1, 1), S3(0, 1),

S4(1, 0), S5(1, 1), S6(0, 1)}, (49)

O(3)
i , O(4)

i : {{S1(1, 1), S2(0, 1), S3(1, 0),

S4(1, 1), S5(0, 1), S6(1, 0)},
{S1(0, 1), S2(1, 0), S3(1, 1),

S4(0, 1), S5(1, 0), S6(0, 1)}}. (50)

The positions of the spins inside the magnetic unit cell
are given by two integers (k, l ), which correspond to dis-
placement vector r = ka1 + la2. The last two orbits include
different components of spins on the same sites. Thus, the
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FIG. 9. (a) A snapshot of the low-temperature �4 spin configuration on a lattice with 183 × 6 spins. This state was obtained using J1 = 1,
J2 = 1, D1 = −1, and D2 = −0.5. The order parameters that define the Ising variables are shown in the top right corner. (b) Structure
factor calculated for a system with 30 × 30 × 2 × 6 spins. The values were normalized with respect to the maxima. The parameters used
in the simulation are the same as in (a). (c) Fourier transform of the effective Ising Hamiltonian in Eq. (60) obtained using the LT
approximation.

�(M)
m order parameters can generally be written in terms of

the four vectors O(k)
i . However, due to the constraint on the

norm of the spin vectors, the orbits O(3)
i and O(4)

i are no longer
independent and will share the parametrization parameters.
We can therefore write

�(M)
m = min

φk

4∑
k=1

R(0, φk )M (m)
i O(k)

i , (51)

where M (m)
i is given in Eq. (33), R(φz, φ) is defined in Eq. (45)

and φk are the angles that parametrize the spin structure. The
exact spin configurations are then obtained by minimizing the
energy with respect to the φk . To simplify the minimization,
we can remove the in-plane rotations that do not change the
energy by fixing the value of φ1 and also use the equivalence
of O(3)

i and O(4)
i to deduce that φ3 = −φ4. This leaves us with

two independent variables which can be determined using
numerical minimization.

Finally, we note that in the decoupled limit the above
analysis still holds, although the spin configurations may also
possess out-of-plane components, which can be parameter-
ized by introducing a nonzero angle φz.

C. Ising-like phases

Lastly, we consider the �m phases. The complete descrip-
tion of these structures is complicated by the fact that there
appears to be a large number of local minima that are very
close in energy to the ground-state configuration. Further-

more, the spin configurations depend strongly on the size
of the system, indicating an incommensurate nature of the
magnetic order. As a result, to resolve a single structure, it
is necessary to perform long (∼105 MC steps) simulations
on large (>3 × 104 spins) systems. The resulting �m spin
configurations often manifest in nontrivial patterns, where
in each unit cell the order parameter is approximately equal
to ±�(�)

m . The sign of this effective order parameter alter-
nates rapidly throughout the system, giving rise to discrete
domains. For this reason, we refer to these states as Ising
like.

In the following, we will focus our attention on the de-
scription of this Ising behavior by considering the �4 phase,
although the discussion equally applies to all �m states by
the virtue of the self-duality transformations (Sec. IV). Since
these phases do not appear in the decoupled limit, the discus-
sion below assumes weak SOC. Figure 9(a) shows a typical
low-temperature �4 spin configuration. It is important to note
that each kagome layer is identical, corresponding to Qz = 0,
but within the plane the pattern can often appear seemingly
random. The structure factor [Fig. 9(b)] displays a character-
istic ring in the Brillouin zone with a relatively well-defined
radius. We note in this ring there are typically a couple of
peaks with larger intensity, corresponding to the dominant
orientations of the stripy domains. In our simulations, the
spin deviations from the �

(�)
4 state in each unit cell were

found to be restricted to the plane of the kagome (the out-
of-plane deviations are typically four orders of magnitude
smaller). Therefore, for simplicity, we express the spins as
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two-dimensional vectors

Si(r) =
[

cos
(
θ

(4)
i + δθ̃i(r)

)
sin

(
θ

(4)
i + δθ̃i(r)

)], (52)

where θ
(m)
i are the angles in Eq. (34) that correspond to the

�
(�)
4 order parameter, and δθ̃i(r) are the deviations from the

order parameter. To account for the alternating sign of the �
(�)
4

order parameter, we further rewrite these deviations as

δθ̃i(r) = −v(r) − 1

2
π + δθi(r), (53)

where v(r) are Ising variables that take values ±1, and 0 �
δθi(r) < π are the residual angle deviations. Substituting this
parametrization into the Hamiltonian with exchange and DM
interactions is equivalent to performing a μ

(+1)
4 gauge trans-

formation, from which we obtain

H =
∑
rr′

[ ∑
〈i j〉

J̃i j (r − r′) cos(δθi j (r, r′))

+ D̃i j (r − r′) sin(δθi j (r, r′))

]
v(r)v(r′), (54)

where J̃i j (δ) and D̃i j (δ) are given in Eq. (37) (m = 4 and ε =
+1) and δθi j (r, r′) = δθi(r) − δθ j (r′). Equation (54) can be
recast into an Ising model on a triangular lattice with nonlocal
NN interactions:

H =
∑
rr′

J (r, r′)v(r)v(r′) + B(r, r′). (55)

Here, both the Ising exchange coupling J (r, r′) and constant
B(r, r′) depend on δθi(r).

It is worth discussing the values of J̃i j (δ) and D̃i j (δ) for
which the �4 is stable. In Fig. 9, the parameters are J1 =
J2 = 1, D1 = −1, and D2 = −0.5, which corresponds to J̃1 ≈
−1.37, J̃2 ≈ −0.07, D̃1 ≈ −0.37, and D̃2 ≈ 1.12. Therefore,
in the local coordinate frame, the interplane interactions are
dominated by the ferromagnetic exchange, whereas the in-
plane interactions almost exclusively come from the DM term.
Notably, �4 phase in this case (Fig. 5) appears to be stable for
arbitrarily large values of D1, which leads to large negative
values of J̃1.

Using this information, we can expand Eq. (54) to second
order in δθi(r), while assuming that J̃2 is of the same order of
magnitude as the deviations. We also impose ferromagnetic
order along the z direction by setting δθi(r ± a3) = δθi(r) and
v(r ± a3) = v(r). Under these assumptions, Eq. (54) simpli-
fies to the following quadratic equation:

H ≈ H(0) +
∑

r

∑
i

gi(r)δθi(r) + 1

2

∑
r

∑
i j

Hi jδθi(r)δθ j (r),

(56)
where H(0) is independent of δθi(r),

H(0) =
∑

r

6J̃1[1 + v(r)v(r + a3)]

+ 2J̃2[3 + v(r)v(r + a1) + v(r)v(r + a2)

+ v(r)v(r + a1 + a2)], (57)

and gi(r) and Hi j are the gradient vector and Hessian matrix,
respectively:

gi(r) = −D̃2v(r)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v(r − a2) − v(r − a1 − a2)
v(r − a1) − v(r + a2)

v(r + a1 + a2) − v(r + a1)
v(r + a2) − v(r + a1 + a2)

v(r + a1) − v(r − a2)
v(r − a1 − a2) − v(r − a1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

[2pt]Hi j = 2J̃1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0 1 1
0 −2 0 1 0 1
0 0 −2 1 1 0
0 1 1 −2 0 0
1 0 1 0 −2 0
1 1 0 0 0 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (58)

The Hessian matrix in Eq. (58) is positive semidefinite, with a
single zero in the eigenvalue spectrum corresponding to global
rotations. After this mode is integrated out by fixing the planar
orientations of the spins, a straightforward minimization of the
quadratic equation gives

δφmin
i (r) = −

∑
j

H−1
i j g j (r). (59)

Thus, the minimized energy can be written as

Hmin = H(0) + dE , (60)

where the energy contribution of the spin deviations is given
by

dE = − 1

2

∑
r

∑
i j

H−1
i j μi(r)μ j (r)

=K
∑

r

v(r)[2v(r + a1) + 2v(r + a2)

+ 2v(r + a1 + a2) + v(r + 2a1) + v(r + 2a2)

+ v(r + 2a1 + 2a2) + 2v(r + a1 − a2)

+ 2v(r + 2a1 + a2) + 2v(r + a1 + 2a2) − 15], (61)

and the constant K is defined as

K = − D̃2
2

12J̃1
. (62)

Note that the positions of the Ising variables in Eq. (61)
have been shifted to better indicate the nature of the effec-
tive interactions. We see that the spin deviations renormalize
NN interactions between Ising variables and also induce
second- and third-neighbor in-plane antiferromagnetic inter-
actions (since J̃1 is negative). These values of the coupling
constants stabilize incommensurate phases in the triangular
Ising antiferromagnets [73].

Qualitatively [74], we can understand the nature of these
unusual phases in the following way. The J̃1 interactions es-
tablish ferromagnetic ordering along the z axis, ensuring Qz =
0. D̃2 interactions couple small spin deviations to stabilize
incommensurate in-plane wave vectors with a fixed magnitude
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QI . LT analysis of Eq. (60) gives a dispersion with a degen-
erate ring with radius Qc, in agreement with the MC results
[Fig. 9(c)]. However, due to the Ising nature of the ordering,
we expect there to be a larger degeneracy in the ground state
than what is predicted by the LT method. Although it is not
evident from the analysis above, the phase diagrams in Fig. 5
indicate that the larger values of J̃2 serve to tune Qc, until it
either becomes zero (Q = �) or reaches the zone boundary
(Q = K, M).

VII. SPIN WAVES

A. Dynamical matrix

In this section, we consider the elementary spin excitations
in certain magnetic phases presented in Sec. V. To do this, we
solve the linearized torque Eq. (11), as described in Sec. II D.
Once the appropriate local coordinates are selected, the equa-
tions of motion can be generally written in the matrix form
as

d

dt

[
S̃ix(r, t )
S̃iy(r, t )

]
=

∑
r′

∑
j

[
Ãyxi j (r − r′ )̃S jx(r′, t ) + Ãyyi j (r − r′ )̃S jy(r′, t ) − Ãzzi j (r − r′ )̃Siy(r, t )
Ãzzi j (r − r′)Six(r) − Ãxyi j (r − r′ )̃S jy(r′, t ) − Ãxxi j (r − r′ )̃S jx(r′, t )

]
, (63)

where Ãαβi j (r − r′) are the elements of the coupling matrix
in the local coordinates, r and r′ determine the positions
of the magnetic unit cells, and i and j generally label the
nonequivalent magnetic sublattices. Equation (63) is solved
by first defining the spatial Fourier transforms of the spin
components as in Eq. (6), and then Fourier transforming in
the time domain (Si(q, t ) = ∑

ω Si(q, ω)e−iωt ). The result is
written as an eigenvalue equation

−iω(q)

[
Sx

Sy

]
=

[
u(xx)(q) u(xy)(q)
u(yx)(q) u(yy)(q)

][
Sx

Sy

]
, (64)

where

u(xx)
i j (q) = Ãyxi j (q), (65)

u(xy)
i j (q) = Ãyyi j (q) −

∑
k

Ãyy jk (q)�i j, (66)

u(yx)
i j (q) =

∑
k

Ãzz jk (q)�i j − Ãxxi j (q), (67)

u(yy)
i j (q) = −Ãxyi j (q). (68)

Here, �i j is a Kronecker delta function and u(ab)
i j (q) are

the elements of the dynamical spin-wave matrix. For planar
spin configurations, it is possible to choose local coordi-
nates such that u(xx)

i j (q) = u(yy)
i j (q) = 0. The frequencies ω(q)

must generally be calculated numerically. However, for some
high-symmetry points in the Brillouin zone, the dynamical
matrix can be diagonalized analytically.

B. Symmetry properties in the decoupled and weak SOC limit

Before discussing the spin-wave dispersions for the single-
Q structures, it is useful to analyze the symmetry properties
of the spin configurations. We are interested in determining
the groups of symmetries that leave the magnetic structures
unchanged, i.e., the stabilizer subgroups. The stabilizers al-
low one to quickly determine the number and degeneracy of
modes at a given wave vector q in the Brillouin zone.

In the decoupled limit, the stabilizers are subgroups of GJ ,
which was derived in Sec. III A. Out of all structures listed in
Sec. VI A, �

(�)
0 (ferromagnetic) and �

(�)
3 (collinear antiferro-

magnetic) configurations deserve special attention, since any
spin rotation around an axis collinear to the spins leaves the
spin configurations unchanged. Although these configurations

are very similar, their symmetry properties turn out to be
fundamentally different. The stabilizer group of the ferromag-
netic state contains all lattice symmetries and can therefore be
written as a direct product:

S
(
�

(�)
0

) = D(L)
6h ⊗ SO(S)(2). (69)

On the other hand, the collinear antiferromagnetic state is not
invariant under lattice transformations that interchange A and
B layers. The remaining symmetry elements form a group
D(L)

3h , and the stabilizer can therefore be written as a semidirect
product,

S
(
�

(�)
3

) = D(L)
3h ⊗ [

SO(S)(2) � C(SL)
2

]
, (70)

where C(SL)
2 contains a simultaneous C2 rotation of the lattice

around the z axis and spins around an axis perpendicular to the
spins. This subtle difference in the structure of the stabilizers
leads to significant differences in the corresponding spin-wave
dispersion spectra. Figure 10(a) demonstrates the differences
between the dynamics of these two spin configurations. The
most notable difference is that in the case of �

(�)
3 , all branches

are at least doubly degenerate, leading to three distinct modes.
However, as seen in the figure, in the case of a ferromagnetic
state, there are generally six nondegenerate modes. The ex-
istence of the twofold degeneracy in the antiferromagnetic
case can be attributed to the fact that at an arbitrary wave
vector q the dynamical matrix in Eq. (64) is invariant under
a simultaneous lattice inversion and reversal of the spin direc-
tion. This situation is equivalent to the spin waves on a linear
antiferromagnetic chain where two linearly polarized magnon
modes have the same dispersion. As a result, the collinear
antiferromagnetic state has two linear Goldstone modes at the
� point, corresponding to the in- and out-of-phase fluctuations
of spins on A and B sublattices. In contrast, the ferromagnetic
state only has one (quadratic) Goldstone mode.

In the case of the noncollinear single-Q configurations,
the symmetry analysis is simplified by the fact that the sta-
bilizer subgroups are now finite groups, since there are no
spin rotations that leave these structures invariant. One can
see from Fig. 6 that for each noncollinear �(�)

m configuration
there is exactly one spin rotation that can be combined with
a given lattice symmetry transformation to leave the spin
configuration unchanged. Therefore, the stabilizer subgroups
for Q = � noncollinear phases are all isomorphic to D6h. The
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(a) (b) (c)

FIG. 10. Spin-wave dispersions for (a) collinear Q = �, (b) noncollinear Q = �, and (c) Q = K single-Q structures stabilized in the
decoupled limit. In (b), the labels �

(�)
1,5 and �

(�)
2,4 are used to indicate that the phases with m = 1, 5 (2,4) are degenerate and therefore have the

same spectra. The parameters used to calculate the dispersions are J2 < 0, J1/|J2| = −1, J4/|J2| = −0.1 (�(�)
0 ), J2 < 0, J1/|J2| = 1, J4/|J2| =

0.1 (�(�)
3 ), J2 > 0, J1/|J2| = −1, J4/|J2| = 0.1 (�(�)

1,5), J2 > 0, J1/|J2| = 1, J4/|J2| = −0.1 (�(�)
2,4), J2 < 0, J1/|J2| = −1.5, J4/|J2| = 1 (�(K)

0 ),

and J2 < 0, J1/|J2| = 1.5, J4/|J2| = −1 (�(K)
3 ).

situation is similar in the case of �(K)
m structures. However,

because certain lattice symmetries are broken as a result of the
cycloidal spin order, we are left with the symmetry operations
that belong to the group of the ordering wave vector Q = K .
Thus, the stabilizers of �(K)

m are all isomorphic to group
D3h. Figures 10(b) and 10(c) show the dispersions for the
noncollinear single-Q spin configurations in phase diagrams
in Fig. 3. Note that the noncollinear nature of these phases
implies that the Goldstone modes are threefold degenerate,
since there are now three nonequivalent fluctuation axes.

In the weakly coupled limit, the stabilizers must be the
subgroups of GD. This does not change the symmetry of
the noncollinear single-Q states, although DM interactions
lift the threefold degeneracy of the Goldstone modes, leaving
only one zero-energy mode. Since the out-of-plane spin rota-
tions are no longer valid symmetry operations, the stabilizers
of the two collinear phases discussed above formally become
isomorphic to D6h, similar to the rest of the �(�)

m configura-
tions. We note that when one considers the symmetry of the
local spin components used for spin-wave calculations, the
stabilizer groups become the same (i.e., not just isomorphic).
Therefore, the spin-wave eigenvectors in the local frame are
exactly the same for all six �(�)

m (�(K)
m ) phases. This important

property holds true for all magnetic structures in the weak
SOC limit and is one of the consequence of the self-duality
discussed in Sec. IV.

C. Order by disorder and non-reciprocity

As discussed in Sec. VI A, the classical energy of the
collinear phases does not depend on the DM constants, mean-
ing that these spin configurations can be rotated out of plane
without any energy cost. Nevertheless, the energy of the spin
waves does, in fact, depend on the DM interactions. As a re-
sult, we expect that the fluctuations would break the effective
rotational symmetry by selecting a particular orientation of
the collinear structures via the order-by-disorder mechanism

[5,75]. To prove demonstrate predictions, we calculate the
magnon free energy as function of the out-of-plane angle θ :

F (θ ) = 1

β

∑
q

ln(1 − e−βω(q,θ ) ). (71)

The calculations of the frequencies ω(q, θ ) were performed
numerically using a 50 × 50 × 50 discretized reciprocal lat-
tice grid. The result is shown in Fig. 11(a). We can see that
in both cases, thermal fluctuations rotate the spins perpen-
dicular to the kagome layers, thus preserving the continuous
rotational symmetry in these phases.

We note that in the case of the collinear antiferromagnet,
the stabilization of the out-of-plane order through thermal
fluctuations introduces an interesting new property in the

(a) (b)

FIG. 11. (a) Magnon free energy as function of the out-of-plane
angle θ calculated numerically for the two collinear phases (�(�)

0,3)
with J2 < 0, J1/|J2| = 0.5, D1 = D2 = 0.5. The minima of the free
energy occur at θ = π

2 , indicating order by disorder. (b) Nonreciproc-
ity in the spin-wave spectrum of the antiferromagnetic collinear state
in the weak SOC limit.
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FIG. 12. Spin-wave dispersion for the four out of six �(M)
m con-

figurations. The parameters used for the calculation are J2 > 0,
J1/|J2| = 1, D1/|J2| = ∓0.5, D2/|J2| = ∓0.5 for �

(M)
2,4 , and J2 > 0,

J1/|J2| = −1, D1/|J2| = ±0.5, D2/|J2| = ∓0.5 for �
(M)
1,5 .

spin-wave spectrum, namely, nonreciprocity [76–81]. Nonre-
ciprocity implies that there is no unitary transformation that
could make the dynamical matrix Eq. (64) Hermitian. As a
result, the spectrum is no longer symmetric at ω(±q), as seen
in Fig. 11(b).

Finally, we note that the �
(K)
0,3 configurations also possess

the same accidental rotational degeneracy. This is evidenced
from the fact that the classical energy of these configurations
is independent of the DM constants. However, because the
stabilizer groups of these phases are significantly smaller than
those of the collinear phases, the out-of-plane rotations in this
case generally lower the symmetry of the spin configurations.
Instead, the breaking of the continuous degeneracy occurs
as a result of small spin deviations that establish finite DM
coupling.

D. Excitations in the multi-Q phases

Next, we calculate the excitation spectra for the �(M)
m

phases. Unlike in the case of the Q = K single-Q states,
it is not possible to obtain all of the spin-wave modes by
simply shifting the branches by ±K , and one has to construct
a dynamical matrix where each of the four elements u(ab)

i j is
a 24 × 24 matrix (as the magnetic unit cell consists of four
crystallographic unit cells). As a result, the excitation spectra
for these states consist of 24 modes. Figure 12 shows the
dispersions for the �(M)

m phases stabilized for J2 > 0, |J1| =
|J2| in the weak SOC limit. As in the case of the single-Q
states, the DM interactions lead to a single Goldstone mode,
which in this case occurs at � and M points, since the period
of the magnetic texture is double that of the lattice. Certain
branches in the spectra also exhibit other interesting features
such as flat bands. However, further studies are needed for a
full description of band topology in these phases.

VIII. EFFECTS OF ANISOTROPIC INTERACTIONS

A. Phase stability

Having described the important properties of the magnetic
phases in the decoupled and weak SOC limits, we now con-
sider the case of the intermediate SOC. We assume that in this

limit, the SIA and bond-dependent anisotropy are small but
non-negligible.

As discussed in Sec. III, the anisotropic interactions break
the axial rotational symmetry, reducing the symmetry group
of the Hamiltonian to the paramagnetic group. As a result, the
�

(�)
0 (�(�)

3 ) and �
(�)
2 (�(�)

5 ) states now belong to the same
two-dimensional irreps, while the remaining �

(�)
1 and �

(�)
4

split into one-dimensional irreps (see Fig. 2). In general, the
anisotropic interactions stabilize the spin configurations that
belong to the one-dimensional planar irreps, since in these
structures the spins are aligned collinear to the anisotropy
axes. At the same time, the configurations belonging to the
same two-dimensional planar irreps remain almost degenerate
for small values of the anisotropy constants. This is illustrated
in Fig. 13(a). We select the exchange and DM parameters us-
ing self-duality relations in Sec. IV C such that in the absence
of anisotropy the energies of the six planar �(�)

m configura-
tions are the same. The SIA and the in-plane bond-dependent
interactions split the energies by stabilizing �

(�)
1 and �

(�)
4 (the

sign of K− and A(xy)
2 determines the orientations of spins). The

out-of-plane bond anisotropy further splits the energies based
on the parity of the configurations (in the figure, we choose
A(xy)

1 > 0, which stabilizes the structures that are antisymmet-
ric under space inversion).

Apart from the energy of the spin configurations,
anisotropic interactions have a significant impact on the spin
structures themselves. Since some of the planar phases now
belong to the same two-dimensional irreps, the anisotropic
interactions couple these states, introducing small deviations
from the irreps in the weak SOC limit, as shown in Fig. 13(b).
This has been shown to play an important effect on the phys-
ical properties of Mn3X compounds, where the anisotropic
interactions couple the �

(�)
2 120ºstate and the ferromagnetic

state, inducing a small magnetic moment at zero field [21–23].
Our previous work in Ref. I has established that the relative
strengths of the SIA and the in-plane bond anisotropy fix the
overall orientation of the spins as well as the direction of the
spin deviations, consequently determining both the magni-
tude and direction of the induced magnetic moment in Mn3X
magnets. We note that the distortions of the spin structures
introduced by the anisotropic couplings may also provide a
way for the experimental quantification of these interactions.
Techniques, such as elastic neutron scattering, would allow
one to determine the canting angles, which could in turn be
related to the values of the anisotropic parameters. Moreover,
in the case of the coupling between the ferromagnetic �

(�)
0

state and �
(�)
2 , the induced magnetic moment would serve as

an excellent probe of the anisotropy in the system.
Although the discussion in this section so far has been

in the context of the Q = � phases, the general trends in
the stabilization energy and spin configurations mostly apply
to the remaining types of phases, since every spin structure
discussed in this paper can be approximately constructed
from the rotated �(�)

m states. As the deviations from the �(�)
m

local order parameters are small, we are still able to make
qualitative predictions about the stability of different phases
under small anisotropy. Therefore, we expect the anisotropic
interactions to stabilize those magnetic phases character-
ized by m = 1, 4, thus extending their stability regions as
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compared to the weak SOC limit. This is clearly demonstrated
in Fig. 13(c), where the phase boundaries are calculated using
J2 > 0, J1/|J2| = 1, K−/|J2| = 0.05. The symmetry of the
phase diagram is broken, since μ

(−1)
0 is no longer a valid self-

duality transformation. Notably, the in-plane bond-dependent
anisotropy with A(xy)

2 = 0.05 produces a nearly identical shift
of the phase boundaries. The only exception to the established
stability trend appears to be the �4 phase which shrinks under
the applied anisotropy. However, this is not surprising given
the result of Sec. VI C where the spin deviations were shown
to be the primary stabilizing factor of the Ising patterns.

B. Spin-wave spectra

The effects of anisotropic interactions are strongly mani-
fested in the excitations of the magnetic structures. Broken
rotational symmetry implies that the spin-wave spectra are
now completely gapped. Since the symmetry group of the
Hamiltonian is reduced down to the paramagnetic group, the
stabilizer subgroups of the spin configurations in the interme-
diate SOC limit are typically small. In the case of the six
Q = � phases, the stabilizer groups and the corresponding
irrep decompositions at the � point are presented in Table IV.
We see that the stabilizers of states with m = 0, 2 (C2h) and
m = 3, 5 (D2) contain only one-dimensional irreps, meaning
that apart from the accidental mode crossings, the spin-wave
spectra will generally only contain nondegenerate modes.
However, the remaining two configurations retain most of
their symmetry from the weak SOC limit and therefore have
doubly degenerate modes.

TABLE IV. Stabilizer groups and irrep decomposition at the �

point for the six �(�)
m states in the intermediate anisotropy limit.

m Stabilizer irrep decomposition at �

0 C(SL)
2h Ag ⊕ Au ⊕ 2Bg ⊕ 2Bu

1 D(SL)
6 A2 ⊕ B1 ⊕ E1 ⊕ E2

2 C(SL)
2h Ag ⊕ Au ⊕ 2Bg ⊕ 2Bu

3 D(SL)
2 A1 ⊕ 2B1 ⊕ B2 ⊕ 2B3

4 D(SL)
3d 2A′′

2 ⊕ 2E ′′

5 D(SL)
2 A1 ⊕ 2B1 ⊕ B2 ⊕ 2B3

We now briefly summarize the effects of the SOC strength
on the spin wave spectra. Figure 14(a) demonstrates the evo-
lution of the � point splitting of excitations in the six �(�)

m
phases. The transitions between the different SOC limits are
accompanied by a qualitative change in the spectra, associ-
ated with either a change in the splitting or an opening of a
gap. In addition, since the spin structures break most of the
symmetries of the Hamiltonian, the spectra in general will
not be symmetric in the Brillouin zone. This is demonstrated
in Figs. 14(b) and 14(c), where two different paths in the
Brillouin zone, related by a reflection yield different values
of ω(q).

These qualitative changes in the spin-wave spectra pro-
vide a good probe for the SOC strength in the AB-stacked
kagome magnets. By comparing these results to, for example,
the inelastic neutron scattering or Raman scattering data, one
would be able to determine the appropriate SOC limit, and
thus identify the relevant spin interactions.

FIG. 13. (a) A diagram illustrating the splitting of the classical energies of the six planar irreps in the weak SOC limit. Here, the values of
the exchange and DM constants are chosen using the self-duality relations to give the same energies in the zero anisotropy limit. Note that the
energy scales are not exact. (b) Distortion of the spin structures as a result of small SIA (orange arrows) and bond-dependent anisotropy (grey
arrows). The �

(�)
1,4 remain unchanged since the spins are collinear with the anisotropy axes. (c) Phase diagram in Fig. 5 (left) with shifted phase

boundaries (grey dashed lines) introduced by a small SIA (K−/|J2| = 0.05).
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FIG. 14. (a) Diagram demonstrating the �-point splitting of the spin wave modes in �(�)
m phases in the three SOC limits. Examples of

broken symmetry in the excitations of (b) �
(�)
2 and (c) �

(�)
5 . The solid blue and dashed red lines correspond to dispersions along the two paths

illustrated in the inset of (b). In both cases, we set K−/|J2| = 0.1, J2 > 0, J1/|J2| = 1, D2/|J2| = −0.8, and set D1/|J2| = 0.8 for �
(�)
2 , and

D1/|J2| = −0.8 for �
(�)
5 .

IX. SUMMARY AND CONCLUSIONS

In this paper, we provide an extensive overview of the
properties of the general magnetic Hamiltonian Eq. (1) on
hexagonal AB-stacked lattices. By studying the symmetry of
the model, we have determined the connection between the
strength of the SOC and the allowed spin symmetries in the
system. We have further identified three cases corresponding
to decoupled, weak, and intermediate SOC limits that yield
different Hamiltonian symmetry groups. In addition to the
symmetries, we found a large number of self-duality trans-
formations that define the structure of the parameter space of
the model. Since these transformations directly depend on the
symmetry of the physical system, we identify three sets of
duality transformations corresponding to the three SOC limits.

The fundamental properties of the Hamiltonian allowed us
to devise a strategy for efficient exploration of the parameter
space. We studied the ordered phases in the decoupled and
weak SOC limits by constructing parameter-space phase dia-
grams, using a combination of analytical LT and numerical
MC methods. We analyzed the structures of the resulting
spin configurations, including single- and multi-Q phases, and
gave exact or nearly exact parametrizations. Among the most
interesting structures identified in this paper are the Ising-like
patterns found in large pockets of the parameter space in the
weak and intermediate SOC limits. We determine that these
states are stabilized by small deviations from the idealized
order parameters and derive the second-order solution for the
optimal spin canting, as well as the stabilization energy.

Next, we calculated the spin-wave spectra of some of the
single- and multi-Q phases and analyzed the symmetry of
the spin fluctuations. We found that in the weak SOC limit
the fluctuations drive the collinear configurations out of the
kagome plane, signifying order by disorder. As a consequence
of this rotation, the DM interactions make the excitations in
the collinear antiferromagnet phase nonreciprocal.

Finally, we study the effects of the intermediate SOC,
manifested by the additional SIA and bond-dependent

interactions. We find that small amounts of anisotropy can
produce traceable changes in the structure and excitations of
the spin configurations, which opens the doors for potential
experimental quantification of these interactions.

As discussed throughout the paper, the results of this paper
are of direct relevance to the Mn3X family of compounds.
For example, the interplay of the anisotropic interactions has
already been shown in our previous work Ref. I to produce de-
tectable changes in the static and dynamic properties of these
compounds. Our paper also sheds light on the stabilization
of the coplanar spin structure in AB-stacked kagome lattices.
Our results show that in all phases with nonzero SOC the mag-
netic moments are constrained by the anisotropic interactions
to lie parallel to the kagome layers. This has important conse-
quences to the possible compatibility of these spin orders with
AHE, as discussed in Ref. [11]. In fact, our study suggests that
to obtain a noncoplanar structure, one would expect to have a
very large SIA or exchange anisotropy acting on the z com-
ponents of the spins. Alternatively, noncoplanarity could be
achieved by an out-of-plane applied magnetic field. However,
the effects of an applied field require further investigation
and will be considered in the future studies. Fe3Sn2 [85] and
related compounds also have magnetic atoms that form AB-
stacked kagome lattices with ferromagnetic spin structure. An
important difference comes from the fact that the correspond-
ing space group R3̄m is smaller than P63/mmc considered in
this paper. Therefore, we expect the Hamiltonian to be slightly
different from the one in Eq. (1). Nevertheless, we expect
most of our arguments about symmetry and duality to straight-
forwardly translate to the properties of Fe3Sn2-type systems.
Another promising magnetic compound with the AB-layered
structure is the Gd3Ru4Al12 [82–84]. In this case, the space
group and site symmetry are the same as in Mn3X , and we
expect our results to be relevant to the properties of these
systems.

Although the magnetic parameters for these materials may
not fall in any of the nontrivial phases (such as multi-Q struc-
tures), one may still be able to realize these states in systems
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where the SOC can be tuned experimentally. For example, in
thin-layer systems, the SOC close to the surface can be en-
hanced by an addition of a heavy-metal capping layer [86,87].
Importantly, this paper has shown that the unconventional
phases often lie within the typical physical range of magnetic
parameters, including the DM and anisotropic couplings. In
addition, the existence of self-duality maps significantly in-
creases the chances that a compound with AB-layered kagome
structure would exhibit nontrivial magnetic phenomena. The
last statement can be justified by recalling that in Sec. VI C
the � phase was related via duality to a model with large fer-
romagnetic out-of-plane exchange (J1 � 0), strong in-plane
DM interactions (D2 �= 0) and negligible in-plane exchange
(J2 ≈ 0). Under normal circumstances, this situation would be
extremely difficult to realize, rendering the model as unphys-
ical. However, the duality provides us with a dual images that
lie within a reasonable range of parameters.

In conclusion, we would like to point out that some of
the assumptions made in the beginning of this paper could
have an important impact on some of the magnetic properties
of Mn3X systems. Since the interactions are predominantly
governed by the itinerant electrons, long-range interactions
may actually play an important role in stabilizing certain
experimentally observed phases. For example, further neigh-

bor interactions along the ẑ direction would be required to
stabilize out-of-plane spatial modulations through competi-
tion with the NN couplings [88]. This also means that the
breathing anisotropy may also affect certain properties of
the magnetic phases. Furthermore, some recent works have
been dedicated to the importance of the coupling between
the elastic and magnetic degrees of freedom [89–92]. These
are known to introduce effective biquadratic spin interactions,
which would further complicate the theoretical analysis. As it
stands, however, this paper provides an invitation for further
investigations of the rich magnetic phenomena offered by the
AB-stacked kagome compounds.
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