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When a conduction electron couples with a non-coplanar localized magnetic moment, the real-space Berry
curvature is exerted to cause the geometrical Hall effect, which is not simply proportional to the magnetization.
So far, it has been identified in the case mostly where the non-coplanar magnetic order is present on the sublattice
of conduction electrons. Here, we demonstrate that the geometrical Hall effect shows up even without long-range
magnetic order of conduction electrons, as induced by non-coplanar exchange fields from the localized magnetic
moments, in hole-doped pyrochlore molybdates (Tb1−xCax )2Mo2O7. We find that the geometrical Hall effect
is markedly anisotropic with respect to the applied magnetic field direction, which is in good accordance with
the field-dependent magnitude and sign change of the real-space scalar spin chirality of local Tb moments.
These results may facilitate the understanding of emergent electromagnetic responses induced by the Kondo-like
coupling between conduction electrons and local spins in a broad material class.
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I. INTRODUCTION

Noncollinear or non-coplanar complex magnetic structures
in solids are proven to play a fundamentally important role in
their spin-related quantum transport and multiferroic proper-
ties [1,2]. A representative example is the scalar spin chirality
(SSC), which is defined by χi jk = Si · (S j × Sk ) for three
neighboring-site spins: Si, S j , and Sk . As a conduction elec-
tron moves over a non-coplanar spin texture with finite SSC,
it is endowed with the nontrivial quantum phase (Berry phase)
and hence experiences the emergent magnetic field, which can
be far beyond a real magnetic field [3–5]. One of the most
common outcomes of the SSC is the unconventional Hall
effect, termed the geometrical Hall effect (GHE) [5]. In the
case where the mean free path is sufficiently longer than the
magnetic period, both the anomalous Hall effect and the GHE
are appropriately captured by the momentum space picture
where the anticrossing points (e.g., Weyl nodes) are associ-
ated with the Berry curvature due to the spin-orbit coupling
(Karplus-Luttinger intrinsic mechanism) and the SSC [6,7].
In contrast, as the magnetic period is longer than the mean
free path, electrons hop around the spin triad in the real space
and feel the emergent field Beff = hni jkχi jk/eS, where ni jk is
the normal vector to the spin triad plane and S is the area of
the spin triad, as exemplified by the magnetic skyrmion lattice
[8,9].
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Among a variety of non-coplanar magnets, pyrochlore
molybdates R2Mo2O7 (R being a trivalent rare-earth or Y ion)
offer an ideal platform to study the correlation between charge
transport and non-coplanar magnetism, because of a variety
of magnetic/electronic phases [10–12]. The pyrochlore lattice
consists of corner-linked tetrahedra with R ions and Mo ions,
each of which is displaced by half a unit cell [Fig. 1(a)].
The most well investigated is Nd2Mo2O7 with the largest-
size R ion possible and hence with relatively small electron
correlation. It is metallic in the whole temperature range and
undergoes the ferromagnetic transition at 90 K, presumably
due to the double-exchange-like mechanism of Mo 4d elec-
trons [13]. Additionally, the Nd 4 f magnetic moments, which
host Ising anisotropy along the local 〈111〉 direction, begin to
freeze below around 40 K. Therefore, the Mo spins are slightly
tilted (∼5◦–10◦) via the f -d magnetic interaction at low tem-
peratures, resulting in the Mo spins with finite SSC [Fig. 1(b)]
[4]. Because of such anisotropy for R 4 f moments, various
configurations are realized under the external magnetic field
[14,15]. For instance, as the field is applied along the [100]
direction, two of four magnetic moments point out of the
tetrahedron, while the other two point inwards, termed the 2-in
2-out configuration. On the other hand, the field along [111]
favors the 3-in 1-out state, as displayed in the bottom panel
in Fig. 1(b). The anisotropy of Hall response in Nd2Mo2O7

is understood in terms of the 2-in 2-out or 3-in 1-out like
habit of the Mo 4d spins transmitted from the corresponding
change of the Nd 4 f configuration [16]. Such a case where
the Mo 4d ferromagnetic orders are slightly modulated by the
R 4 f moments is termed the strong coupling, which has been
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FIG. 1. (a) Crystal structure of pyrochlore-type Tb2Mo2O7.
(b) Definition of the SSC χi jk = Si · (S j × Sk ) in a tetrahedron with
Tb spins Si, S j , and Sk on its vertices. The middle (bottom) fig-
ure shows χi jk in each triangle plane of a tetrahedron for the 2-in
2-out (3-in 1-out) state. The color of the plane corresponds to the
sign of χi jk when we take ni jk · H > 0. In these figures, the H ‖
[111] case is assumed. (c) Temperature dependence of resistivity for
(Tb1−xCax )2Mo2O7. (d) Optical conductivity spectra below 0.3 eV at
10 K for (Tb1−xCax )2Mo2O7.

extensively studied so far [4,17]. On the other hand, little is
known for the weak-coupling regime, where the Mo conduc-
tion electrons exhibit no spontaneous long-range orders but
are weakly influenced by the exchange fields from the R 4 f
moment configuration [18].

Previously, GHE in the weak-coupling regime was studied
for the (Tb1−xCdx )2Mo2O7 polycrystals [19]. It was demon-
strated that the Hall response systematically changes as a
function of the “density” of SSC in the real space tuned by
the doping level of magnetic Tb moments, in accord with
the theoretical prediction [18]. However, the exchange-field-
induced GHE should be dominated by the R 4 f moment
configuration; for instance, the SSC is expected to change its
sign and magnitude between the 2-in 2-out and the 3-in 1-out
configuration and, further, to diminish as the R 4 f moments
are forced to align in a collinear manner. Thus, to obtain a
deeper insight into the GHE, a field-directional study on the
single crystals is required.

In this study, we investigate the magnetotransport proper-
ties of (Tb1−xCax )2Mo2O7 single crystals to see the role of
the real-space SSC in the Hall effect. We successfully synthe-
size high-quality samples by using the state-of-the-art floating
zone furnace equipped with high-power lasers and measure
the transport and magnetization at high magnetic fields up to
31 T, which allows us to access a wide range of Tb magnetic
states from non-coplanar spin textures to the fully spin-
aligned state. We observe the large anisotropy of GHE be-
tween the [100] and [111] field directions in the intermediate-

FIG. 2. (a) Measurement setup for magnetic transport properties.
Magnetic field dependence of (b) resistivity for both H ‖ [100] and
H ‖ [111], (c) Hall resistivity for H ‖ [100], (d) Hall resistivity for
H ‖ [111], (e) anisotropic ratio of Hall resistivity between H ‖ [100]
and H ‖ [111], and (f) magnetization for both H ‖ [100] and H ‖
[111] at several temperatures.

field range, which gradually diminishes at high fields. It
can be reasonably explained in terms of the magnitude
and sign change of the SSC of localized Tb moments that
impose the f-d exchange field on the conductive Mo sublattice.

II. EXPERIMENTAL DETAILS

Single crystals were synthesized at ∼1880 ◦C under an
argon atmosphere of 0.99 MPa in the laser floating zone
furnace [20]. All of them were well characterized by x-ray
powder diffraction and energy dispersive x-ray spectroscopy
to check the lattice structure and composition. The transport
measurement setup is shown in Fig. 2(a). The electric current
flows along the [110] crystalline direction. The magnetic field
was rotated around the current direction, so that the transport
measurements for different orientations could be performed
on the same sample. θ = 0◦, which is perpendicular to the
sample plane, is along the [100] crystalline direction, while
θ = ±54.7◦ is along the [111] direction and its equivalent
direction. We obtained the Hall resistivity ρyx by normal-
izing the measured Hall signal ρH for θ = ±54.7◦ divided
by cos θ . We confirm that the deduced ρyx shows almost
the same behavior as another sample with the [111] plane
measured under the normal [111] field (see the Appendix,
Fig. 5). The transport properties and magnetization up to 14 T
were measured by using dc magnets in the Physical Prop-
erty Measurement System, Quantum Design. Higher-field
measurements of magnetotransport and magnetization were
performed by using nondestructive pulse magnets energized
by capacitor banks and a flywheel dc generator installed at
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III. RESULTS AND DISCUSSION

Figure 1(c) shows the temperature dependence of re-
sistivity for three compositions (x = 0, 0.08, and 0.14).
The resistivity of x = 0 rapidly increases as the tempera-
ture decreases. Above x = 0.08, the resistivity significantly
decreases down to the order of 10−3 � cm. The weak tem-
perature dependence for higher doping reminds us of the
high-pressure effect on Nd2Mo2O7, which yields the anoma-
lously diffusive metallic state as a result of the strong
competition between an antiferromagnetic (spin glass) in-
sulator and ferromagnetic metal states [11]. The optical
conductivity spectra at 10 K for several x are displayed in
Fig. 1(d). The optical conductivity for x = 0 gradually de-
creases below 0.2 eV, forming a clear charge gap of ∼0.05 eV.
The observed magnitude of the charge gap is slightly differ-
ent from the previous one [21], possibly due to the oxygen
nonstoichiometry depending on the crystal-growth condition.
With increasing x, the optical conductivity gradually increases
below ωC ∼ 1.5 eV (see Fig. 5 in the Appendix) accompanied
by the closing of the charge gap, in good accordance with the
dc conductivity. The absence of the clear Drude peak confirms
the diffusive metal state at x = 0.08 and 0.14. It is to be noted
that the sharp peaks below 0.1 eV are infrared-active phonon
modes allowed for cubic pyrochlore lattice [22–24], indicative
of a good crystal quality even for the doped metallic samples.

In the following, we focus on the magnetotransport prop-
erties of the barely metallic x = 0.14 crystal. Figure 2(b)
shows the magnetic field dependence of resistivity at several
temperatures for H ‖ [111] and [100]. The resistivity is almost
independent of the magnetic field at 100 K. Below 20 K,
the resistivity gradually decreases with increasing field, likely
due to the suppression of spin glass or antiferromagnetic spin
fluctuation. Figures 2(c) and 2(d) show the Hall resistivity
ρyx for H ‖ [100] and H ‖ [111], respectively. ρyx at 100 K
is nearly proportional to the magnetic field with little dif-
ference between ρyx for H ‖ [100] and H ‖ [111]. However,
the anisotropy becomes evident at low temperatures. At 2 K,
as the field increases, ρyx for H ‖ [100] abruptly increases,
reaches a maximum value of ∼9 μ� cm at around 8 T, and
then slightly decreases. On the other hand, ρyx for H ‖ [111]
shows a hump at around 2 T and gradually increases as the
field is further increased. As can be seen in Fig. 2(e), the
anisotropy ratio of ρyx between H ‖ [100] and H ‖ [111] at
2 K exceeds 2 in the intermediate-field region and gradually
decreases as the field increases. Figure 2(f) shows the mag-
netization curves for H ‖ [100] and H ‖ [111]. At 100 K, the
magnetization shows H-linear dependence and no anisotropy
is observed as in ρyx. With lowering temperature, the magne-
tization for H ‖ [100] becomes larger than that for H ‖ [111].
Such an anisotropy can be attributed to the different magnetic
arrangement of Tb moments.

In canonical spin-ice systems such as Ho2Ti2O7 and its
nonmagnetic-ion-doped analogs, the sufficiently large, but not
too large, magnetic field along [100] ([111]) favors the 2-
in 2-out (3-in 1-out) state [see Fig. 1(b)] [25,26]. Because
of the single-ion anisotropy of Tb 4 f moments along the

FIG. 3. Magnetic field dependence of magnetization up to 34 T
for (a) H ‖ [100] and (b) H ‖ [111]. Magnetic field dependence of
Hall resistivity as well as resistivity for (c) H ‖ [100] and (d) H ‖
[111]. The black curves indicate the results of dc field measurements
up to 14 T. The red and blue curves show the results of high field
measurements using pulsed fields up to 31 T.

local 〈111〉 orientation, a similar magnetic arrangement can
be realized in each field direction. In fact, the expected net
moment of the 2-in 2-out state is larger than that of the 3-in
1-out state by ∼1.2 μB/f.u., which is consistent with the
magnetization observed in Fig. 2(f). Such a small difference of
the net magnetization between H ‖ [100] and H ‖ [111] can-
not explain the strong anisotropy in Hall resistivity. Instead,
the non-coplaner magnetic arrangement, or equivalently the
scalar spin chirality, is likely to play a key role in the observed
Hall effect.

In order to elucidate the origin of the Hall effect, we em-
ploy the higher magnetic field measurement which allows us
to fully control the Tb moment configurations. Figure 3(a)
[Fig. 3(b)] shows the magnetic field dependence of magne-
tization up to above 34 T at 2 K for H ‖ [100] ([111]). The
magnetization measured by the pulse magnet (red solid curve)
perfectly overlaps with the one measured by the dc magnet
(black curve). Remarkably, the magnetization for H ‖ [100]
monotonically increases, exceeds the expected value for the
2-in 2-out state (8.9 μB/f.u.) at 4 T, and nearly reaches
15.5 μB/f.u. at 34 T, which is expected for fully polarized Tb
4 f moments, likely stemming from the competition between
the magnetic anisotropy and the Zeeman effect. Thus, we can
examine the magnetotransport properties for both collinear
and noncollinear magnetic states on one sample. We also
plot the magnetization for x = 0 in Figs. 3(a) and 3(b). To
compare with that for x = 0.14, we normalize it by the density
of Tb moments; namely, we multiply it by 1 − x = 0.86.
Notably, the normalized curve for x = 0 falls onto the same
curve for x = 0.14 above 10 T, indicating that the Mo con-
tribution to the whole magnetization is almost negligible not
only for the spin-glass insulating x = 0 crystal but also for
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FIG. 4. (a) Magnetization dependence of the Hall resistivity. The
solid lines denote the data obtained with the dc field, and the circles
are the values at the maximum pulse field. The dotted lines are the
smoothed data taken by the pulse field measurement. (b) Magneti-
zation dependence of the GHE and the simulated spin chirality. Red
and blue dashed lines represent the simulated SSC of the single Tb
tetrahedron based on the magnetization curves (see the Appendix,
Sec. 3). (c) Possible magnetic structure and SSC at each point in
panel (b).

the carrier-doped metallic x = 0.14 one, in stark contrast to
the Mo-spin ferromagnetic Nd2Mo2O7 [4]. Figures 3(c) and
3(d) show the magnetic field dependence of resistivity and
Hall resistivity for H ‖ [100] and H ‖ [111], respectively. The
resistivity gradually decreases as the field increases up to
31 T for both field directions, as observed in the measure-
ment in the dc magnet. The Hall resistivity data measured
by the pulse magnet seem somewhat noisy, because of the
small Hall signals compared to the longitudinal resistivity.
Nevertheless, the overall field dependence and amplitude are
reconciled with the dc data, and moreover the signal appears
reliable again near the maximum field, since the data can be
integrated during the relatively long time at high fields in the
field pulse shape. As the field approaches 31 T, ρyx for H ‖
[100] gradually decreases down to ∼8 μ� cm, while that for
H ‖ [111] explicitly increases up to ∼7.5 μ� cm. Apparently,
the anisotropy of ρyx disappears at high magnetic fields.

In general, the Hall resistivity is expressed as

ρyx = R0μ0H + RSρ
n
xxMz + ρG

yx, (1)

where R0 is the ordinary Hall coefficient, RSρ
n
xx is the anoma-

lous Hall coefficient with the scaling factor n in the case of
diffusive metal [27], and ρG

yx is the geometrical contribution.
According to the previous study on Cd-doped Y2Mo2O7, the
ordinary Hall effect is quite small (less than 0.3 μ� cm at
14 T) [28]. Therefore, we neglect here the ordinary contri-
bution for simplicity. To extract the geometrical contribution,
we plot ρyx as a function of magnetization in Fig. 4(a). The
red and blue solid lines denote experimental data measured in

the dc magnetic field, red and blue circles are the data at the
highest field 31 T, and red and blue dashed lines indicate the
noise-smoothed connections between these two experimental
data. Since the magnetization for H ‖ [100] is almost satu-
rated at 31 T [Fig. 3(a)], we can assume that the geometrical
contribution is zero at 31 T. The black line in Fig. 4(a) in-
dicates the Karplus-Luttinger-type anomalous Hall resistivity,
ρKL

yx = RSρ
n
xxMz, where n = 0.4 in the carrier hopping regime,

as confirmed in the Appendix, Fig. 7 [27]. As can be seen, ρyx

for H ‖ [100] is larger than ρKL
yx in the whole magnetization

regime. Remarkably, for H ‖ [111], ρyx shows nonmonotonic
magnetization dependence as opposed to ρKL

yx . Especially, ρyx

crosses ρKL
yx at M ∼ 6 μB/f.u. and eventually merges to ρKL

yx
at the largest magnetization.

Figure 4(b) displays the extracted geometrical contribu-
tion, ρG

yx = ρyx − ρKL
yx , as a function of magnetization. As

the magnetization increases, ρG
yx for H ‖ [100] gradually in-

creases, reaches the maximum at ∼8 μB/f.u., and eventually
decreases towards zero at the full moment of 15.5 μB/f.u. This
envelope-shaped magnetization dependence of ρG

yx, which is
also observed in several materials [3,29], may reflect the
modulation of Tb magnetic states. Both Tb and Mo magnetic
moments are disordered at zero magnetic field. As the field
increases, the large Tb moments are getting aligned due to
the gain of Zeeman energy under the influence of the [111]
Ising anisotropy, and they eventually form a 2-in 2-out like
configuration at M ∼ 8.9 μB/f.u. [see panel (i) in Fig. 4(c)].
With further increasing field, the Zeeman energy gradually
overcomes the magnetic anisotropy energy, and finally the Tb
moments are fully aligned collinearly, as shown in panel (iv)
in Fig. 4(c). Here we simulate the average of SSC 〈χi jk〉 in
a single tetrahedron having four triangle planes, as shown in
Fig. 1(b) (see the Appendix, Sec. 3, for more detail). Assum-
ing that all Tb moments simply approach are aligning to the
field direction with increasing field, we can calculate the angle
between Tb moments and the external field from the magneti-
zation value and hence obtain 〈χi jk〉. Starting from the perfect
2-in 2-out state [panel (i) in Fig. 4(c)], 〈χi jk〉 monotonically
decreases towards zero [panel (iv)in Fig. 4(c)] as the magne-
tization is increased. This is intuitively understandable since
the solid angle subtended by Tb moments becomes smaller as
the applied field is increased.

On the other hand, ρG
yx for H ‖ [111] shows unique mag-

netization dependence. It is somewhat similar to that for
H ‖ [100] below 2 μB/f.u., but ρG

yx decreases towards the
negative value as the magnetization is further increased. It
takes the minimum value (negative maximum) at ∼9 μB/f.u.
and then approaches zero at the large magnetization value.
To understand this behavior, we consider the magnetic ar-
rangement and 〈χi jk〉. According to the neutron diffraction
experiments [30], Tb-Tb interaction in Tb2Mo2O7 is ferro-
magnetic and hence favors the 2-in 2-out magnetic structure
at weak magnetic fields, similar to canonical spin-ice systems
Dy2Ti2O7 and Ho2Ti2O7 [14,31], and spin-ice-like ordered
semimetal Pr2Ir2O7 [32,33]. At the intermediate field applied
along [111], the apical spins, whose easy axes are along the
field direction, are fixed while the other three spins obey the
ice rule, forming the so-called kagomé ice state [see panel (ii)
in Fig. 4(c)]. Moreover, R moments with the strong Ising char-
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FIG. 5. Expanded energy dependence of optical conductivity
spectra up to 2 eV for three compounds (x = 0, 0.08, and 0.14).

acter undergo the liquid-gas-type magnetic transition from the
kagomé ice state to the 3-in 1-out state [panel (iii) in Fig. 4(c)]
at higher fields. We speculate that the crossover between these
magnetic states occurs in the present system as well, leading
to the remarkable sign change of 〈χi jk〉 and hence of ρG

yx,
as shown in Fig. 4(b). In fact, the sign of 〈χi jk〉 changes at
M ∼ 6 μB/f.u., consistent with the experimental observation
of the sign change of the GHE. While the magnetization value
exceeds that for the 3-in 1-out state, we anticipate that the
3-in Tb moments in the 3-in 1-out state are forcedly aligned
toward the collinear state. 〈χi jk〉 slightly decreases and forms
a broad dip centered at ∼10 μB/f.u., and then quickly in-
creases towards zero at 15.5 μB/f.u.. Despite such a simplified
simulation of 〈χi jk〉, the overall magnetization dependence
of ρyx can be well explained. The present experimental data
clearly indicate that the GHE is controlled by the exchange
fields from the configuration of the local Tb moments in the
weak-coupling regime.

In conclusion, we observe the geometrical Hall effects in
the pyrochlore-type (Tb1−xCax )2Mo2O7 single crystal, whose
conduction electrons are interacting with local magnetic mo-
ments in the weak-coupling region and thus represent the ideal
platform to study the correlation between electronic transport
and noncollinear magnetism. The highly field-anisotropic ge-
ometrical Hall effect can be well explained by the real-space
SSC arising from the non-coplanar Tb magnetic arrangement.
We clearly demonstrate that there is one-to-one correspon-
dence between the geometrical Hall effect and the SSC, both
of which vary for the occurring local magnetic states, e.g., 2-in
2-out, 3-in 1-out, and fully aligned collinear states.
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APPENDIX

1. Optical conductivity spectra

Figure 5 shows the optical conductivity spectra up to
4 eV for three compounds (x = 0, 0.08, and 0.14). All com-

FIG. 6. Measurement setups for (a) sample A, which is mainly
used for the anisotropic measurement, and (b) sample B for compar-
ison. Each out-of-plane axis is along the [100] and [111] crystalline
orientations, respectively. (c) Magnetization dependence of Hall re-
sistivity for sample A (a) and sample B (b) setups. The red and
blue curves are for sample A, and the green curve is for sample B.
The black curve is the Karplus-Luttinger term of Hall resistivity. For
more detail, see the main text.

pounds show the humplike structure centered at 0.4 eV which
corresponds to the residue of the Mott-gap transition of the
Mo 4d electrons [21]. The large increase of optical conduc-
tivity above 3 eV can be attributed to the charge transfer
excitation.

2. Hall resistivity measurement

The magnetic anisotropy of the Hall effect was investigated
by rotating sample A against the applied magnetic field, so
that we could rule out the possibility of sample dependence.
Figure 6(a) shows the geometry of sample A. It was polished
into the platelike shape whose vertical direction is along the
[100] crystalline axis. The electric current flowed along
the [01̄1] axis, about which the magnetic field was rotated.
The transverse resistivity ρH was measured along the [011]
axis, which is perpendicular to both the [100] axis and the
[01̄1] axis.

Let us take the magnetic field direction as the z axis and
the current direction as the x axis, as depicted in Fig. 6(a).
When the field is tilted by θ off the [100] direction, the Hall
resistivity ρH is expressed as

ρH(θ ) = ρyx(θ ) cos θ − ρzx(θ ) sin θ. (A1)

The first term is the usual Hall effect perpendicular to both
the magnetic field and the current, which should be extracted
from the measured value ρH. Considering the symmetry of the
setup of Fig. 6(a), we obtain ρyx(θ ) = ρyx(−θ ) and ρzx(θ ) =
ρzx(−θ ), while sin θ is odd. Therefore, we can extract ρyx(θ )
by averaging ρH(+θ ) and ρH(−θ ) and then dividing by cos θ .
Figure 6(c) displays the magnetization dependence of ρyx for
both [100] and [111] field directions, in which one can clearly
see the anisotropy, as discussed in the main text.
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FIG. 7. Scaling plot of σxy versus σxx in the logarithmic scale.
The red (blue) marks denote the data for H‖[100] (H‖[111]). The
dashed line indicates the scaling relation σxy ∝ σxx1.71.

To double-check ρyx for H‖[111], we prepare another sam-
ple B, whose out-of-plane axis is along the [111] crystalline
direction while the current direction is the same as that in
sample A ([01̄1]). In this geometry, we can obtain ρyx = ρH

for H‖[111] without any calculation, as plotted in Fig. 6(c).
Although the chemical composition of sample B (x = 0.134)
is slightly different from that of sample A (x = 0.140), ρyx

of sample B is remarkably similar to that of sample A for
H‖[111]. Thus, the anisotropy discussed in the main text is
ubiquitous for the present system.

3. Scaling law for Hall conductivity

In the hopping region, the anomalous Hall conductivity σxy

is known to follow the empirical scaling relation σxy ∝ σ 1.6
xx ,

where σxx is the longitudinal conductivity [27]. Note that ρyx

is proportional to ρ0.4
xx when the Hall conductivity is much

smaller than longitudinal conductivity, since ρyx = σxy/(σ 2
xx +

σ 2
xy). Figure 7 shows σxy normalized by magnetization as a

function of σxx for several different samples at 2 K and 14 T,
at which the anomalous Hall contribution is dominant. One
can see σxy ∝ σ 1.71

xx in a wide range of σxx from 102 to 103

S/cm. Therefore, we use n = 0.4 in Eq. (1) in the main text to
estimate the Karplus-Luttinger term ρKL

yx .

4. Calculation of the scalar spin chirality

Since the Mo magnetization in (Tb1−xCax )2Mo2O7 is neg-
ligible, as demonstrated in Fig. 2 of the main text, we can
assume the magnetic structure of the Tb tetrahedra from the
magnetization and hence calculate the scalar spin chirality
χi jk .

First we consider the case for H‖[100]. At zero magnetic
field, Tb magnetic moments are disordered but host 2-in
2-out (2I2O) like habit because of the ferromagnetic interac-
tion between nearest-neighbor Tb moments. As the magnetic
field increases, the number of 2I2O Tb tetrahedra, whose net
magnetizations are parallel to the field direction, increases
and hence the magnetization reaches the expected value of
M2I2O = 2(1 − x) × ( 4μTb√

3
)/4 = 10.4(1 − x) (μB/f.u.), where

μTb = 9 (μB/Tb) [state (i) in Fig. 4(c) of the main text].
With increasing field above 2 T, we speculate that the Zeeman

FIG. 8. Tb moment modulation for (a) H‖[100] at M � M2I2O

and (b) H‖[111] at M � M3I1O. (c) Schematic picture of the tetra-
hedron for the calculation of the scalar spin chirality. Red arrows
indicate the spins at each site (S1, S2, S3, and S4), and blue arrows
indicate the unit vectors parallel to the emergent field (n123, n234, n341,
and n412).

energy overcomes the single-ion anisotropy and hence the Tb
moments gradually approach the field direction. We define
θ as the angle between the Tb moments and the magnetic
field direction [Fig. 8(a)], so that the magnetization is given
as M100 = 2(1 − x)μTb cos θ . In this way, we estimate the tilt
angle of the Tb moment from the measured magnetization to
calculate χi jk as discussed later.

The magnetization process for H‖[111] is more complex.
Similar to spin-ice materials, the magnetization for the [111]
field direction increases with increasing field towards MKI =
2(1 − x) × (μTb + μTb

3 )/4 = 6(1 − x) (μB/f.u.), at which the
kagomé ice state is realized [state (ii) in Fig. 4(c) in the
main text]. In other words, the 2-in 2-out state is preserved
up to MKI, resulting in nearly the same curve as the case
for H‖[100]. Above MKI, the crossover occurs from (ii) 2-in
2-out state to (iii) 3-in 1-out state, at which the magnetization
becomes M3I1O = 2(1 − x) × (μTb + μTb

3 × 3)/4 = 9(1 − x)
(μB/f.u.). Eventually, as the field increases further, Tb mo-
ments deviate from the local 〈111〉 axes and get aligned
collinearly [state (iv) in Fig. 4(c) of the main text]. Between
(iii) and (iv) states, the magnetization is written as M111 =
2(1 − x) × (μTb + 3μTb cos θ )/4, where θ is the angle be-
tween Tb moments and the field, as shown in Fig. 8(b).

Making use of the information of configurations of Tb
magnetic moments as extracted above, we calculate the spin
chirality of the Tb tetrahedron averaged over four Tb sites on
the vertices of one tetrahedron. According to the theoretical
calculation in the weak-coupling region [18], the emergent
magnetic field Heff acting on the Mo-conducting electrons is
given as

Heff ∝ 〈χi jk〉

= 1

6N

∑

i, j,k∈all sites

Si · (S j × Sk )F(ri, r j, rk ) · ez, (A2)

where

F(ri, r j, rk) = (a × b/ab)I ′(a)I ′(b)I (c)

+ (b × c/bc)I (a)I ′(b)I ′(c)

+ (c × a/ca)I ′(a)I (b)I ′(c); (A3)

ez is the unit vector parallel to the field direction; ri, r j , and rk

are the positions of local spins at site i, j, and k; a = ri − r j ,
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b = r j − rk , and c = rk − ri are the distances between each
site; I (r) is the rapidly decreasing function of r; and I ′ = dI (r)

dr .
Thus we take into account only the nearest-neighbor sites 1,
2, 3, and 4 in a single tetrahedron shown in Fig. 8(c):

〈χi jk〉 ∝
∑

i, j,k∈1,2,3,4

Si · (S j × Sk )ni jk · ez, (A4)

where ni jk is the unit vector defined by the right-hand screw
rule when orbiting the sites i, j, and k. The calculated re-
sults are plotted in Fig. 4(c) in the main text. We note
that the spin chirality is not calculated but just a connect-
ing straight line drawn between MKI and M3I1O in H‖[111]
[states (ii) and (iii) in Figs. 4(b) and 4(c)], because the de-
tailed magnetic state is not trivial. The calculated curves
of the SSC based on the above simple assumption reason-
ably reproduce the experimental results of geometrical Hall
components.
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