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Rotatory power reversal induced by magnetic current in bi-isotropic media
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Bi-isotropic media constitute a proper scenario for scrutinizing optical effects stemming from magnetoelectric
parameters. Chiral magnetic current is a macroscopic effect arising from the chiral magnetic effect that enriches
the phenomenology of a classical dielectric medium. This paper examines the optical aspects of bi-isotropic
media in the presence of Ohmic and magnetic conductivity. The full isotropic scenario manifests circular
birefringence described by a dispersive rotatory power that changes sign at a given frequency. For a bi-isotropic
medium with antisymmetric magnetic conductivity, an intricate dispersive rotatory power is attained, supplied
with sign reversal as well. This scenario occurs in the absence or presence of Ohmic conductivity. It also indicates
a handedness reversion of the medium, an unusual property in dielectrics, which may work as a signature of
bi-isotropic media supporting chiral magnetic current.
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I. INTRODUCTION

The classical propagation of electromagnetic waves in con-
tinuous matter is ruled by the Maxwell equations and the
constitutive relations that enclose the response to applied elec-
tromagnetic fields [1,2]. In linear electrodynamics, a great
diversity of electromagnetic phenomena in continuous media
can be accounted for by general constitutive relations,

Di = εi jE
j + αi jB

j, (1a)

Hi = μ−1
i j B j + βi jE

j, (1b)

where εi j and μi j are the electric permittivity and magnetic
permeability tensors, while αi j and βi j are magnetoelectric
parameters that capture the electric (magnetic) response to
applied magnetic (electric) field, respectively. In the simplest
scenario, relations (1) read(

D
H

)
=

(
ε α

β μ−1

)(
E
B

)
, (2)

where ε, α, β, μ are parameters composing the bi-isotropic
linear connection between (D, H) and (E, B) for homogenous
nondispersive materials [3,4].

In the last decades, bi-isotropic relations have been ex-
tensively investigated [5–9], being also important to address
the properties of topological insulators [10–16] and ax-
ion electrodynamics [17–19]. In nonlinear electrodynamics,
the constitutive tensors usually depend on the electric and
magnetic fields, providing a way to describe well-known phe-
nomena, e.g., the Kerr and Cotton-Mouton effects [20]. Most
recently, nonlinear electrodynamics addressing axion-photon
couplings has been reported [21], where general nonlinear
permittivity and permeability tensors present a dependence
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on the frequency, wave vector, and axion mass. Other aspects
of nonlinearities in constitutive tensors, such as the descrip-
tion of ferrimagnetic materials and radiation produced by a
charged particle interacting with a nonlinear medium, have
also been examined [22], in the context of nonlinear electro-
dynamics [23].

For scenarios where the constitutive parameters in Eq. (1)
are complex tensors, they characterize bianisotropic media
[24,25], also known as chiral materials [26–29]. A medium
is named chiral when it lacks inversion symmetry, that is,
when it is parity-odd, or, in other words, when it is invari-
ant only under the L0 component of the Lorentz group [30].
A chiral scenario, realized by constitutive relations (2) with
complex parameters, was used to examine the Fresnel equa-
tions that describe reflection, refraction, and the Brewster
angle [30]. Right-handed (RCP) and left-handed circularly
polarized (LCP) waves are examples of electromagnetic chiral
phenomena, which in an achiral medium propagate at the
same phase velocity, yielding no anisotropy effect. In a chiral
medium, however, the LCP and RCP waves travel at dis-
tinct phase velocities (related to different refractive indices),
implying the birefringence (which causes optical rotation)1

[31–35]. It is known that the optical rotation stems from the
natural optical activity of the medium or can be induced by
external fields, as it occurs in the Faraday effect [36–38].
Magneto-optical effects constitute a useful probe to investi-
gate topological insulators [39–41] and new materials [42,43].

When the optical rotation depends on the frequency, there
occurs rotatory power (RP) dispersion. If it depends on

1It refers to the rotation of the plane of vibration of the electric
field which occurs while the linearly polarized wave propagates
through the chiral medium. This is a consequence of birefringence,
a phenomenon quantified or measured in terms of the rotation angle
per unit length (rotatory power).
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the frequency and undergoes reversion, it is called anoma-
lous RP dispersion [44,45]. Thus, the RP analysis is a
relevant tool to describe the optical properties of several sys-
tems, such as crystals [46,47], organic compounds [32,48],
rotating plasma and neutron stars [49,50], graphene tera-
hertz magneto-optical phenomena [51], gas of fast-spinning
molecules [52,53], entangled photons in quantum optics [54],
and chiral metamaterials [55,56]. In addition to birefringence,
circular dichroism, the difference in the absorption of LCP
and RCP light, is also used to probe the optical activity of
materials. Dichroism can work as a tool to distinguish be-
tween Dirac and Weyl semimetals [57], perform enantiomeric
discrimination [58,59], and for developing graphene-based
devices at terahertz frequencies [60].

Another phenomenon that has caught attention in the con-
text of continuous media is the chiral magnetic effect (CME),
which involves a macroscopic generation of an electric current
in the presence of a magnetic field as the result of an asym-
metry between the number density of left- and right-handed
chiral fermions [61–65]. In condensed-matter systems, the
CME plays a relevant role in Weyl semimetals, where it is
usually connected to the chiral anomaly associated with Weyl
nodal points [66], but also takes place in the absence of Weyl
nodes [67]. We mention other investigations on this subject,
for instance, the anisotropic effects stemming from tilted
Weyl cones [68], the CME and anomalous transport in Weyl
semimetals [69], quantum oscillations arising from the CME
[70], the determination of electromagnetic fields produced by
an electric charge near a topological Weyl semimetal with two
Weyl nodes [71], solutions of axion electrodynamics [72], and
renormalization evaluations for Weyl semimetals and Dirac
materials [73].

Weyl semimetals also present CME, whose classical de-
scription stems from an axion term Lagrangian [17,72,74–76]

L = θ (E · B), (3)

which implies corrections to the Maxwell nonhomogeneous
equations,

∇ · E = ρ − ∇θ · B,

∇ × B − ∂t E = j + (∂tθ )B + ∇θ × E, (4)

where ∇θ · B is an anomalous charge density, ∇θ × B is a
kind of anomalous Hall effect, and (∂tθ )B plays the role of
the chiral magnetic current. Such terms were also examined in
Ref. [76], where stationary classical solutions for chiral matter
were also carried out.

In the case the axion coupling does not depend on space
coordinates, ∇θ = 0, the Maxwell equations (4) simplify as

∇ · E = ρ, ∇ × B − ∂t E = j + (∂tθ )B, (5)

providing an electrodynamics with chiral magnetic current,
(∂tθ )B, but deprived of the anomalous charge and anomalous
Hall terms. This is the case to be considered in the present
paper.

In an effective approach, the magnetic current can be in-
troduced using a general constitutive relation for the current
density

Ji = σEi + σ B
i j B

j, (6)

where σ is the Ohmic conductivity and σ B
i j is the chiral

magnetic-conductivity general tensor. A dielectric medium
supporting such a magnetic current has been recently exam-
ined for symmetric and antisymmetric conductivity tensors
[77], with the determination of the refractive indices, propa-
gating modes, and some optical properties. The antisymmetric
scenario for σ B was realized in some Weyl semimetals [78].
The interplay between Lorentz-violating electrodynamics, op-
tical effects, and condensed-matter physics [79,80] has also
been explored.

Considering the relevance of optical effects for describing
material properties, in this paper we investigate the propaga-
tion of electromagnetic waves in bi-isotropic media endowed
with magnetic conductivity, a type of chiral scenario. We first
address a bi-isotropic dielectric with an isotropic current con-
stitutive relation, focusing on the birefringence and rotatory
power. We obtain a linearly dispersive RP with sign reversion.
Afterwards, we develop the same analysis for an antisymmet-
ric conductivity tensor, attaining an involved dispersive RP
which also exhibits a sign change. These results may also
cause handedness reversal of the medium. This paper is out-
lined as follows: In Sec. II we present the general framework
to obtain the dispersion relations, refractive indices, and prop-
agating modes. In Sec. III, we address a bi-isotropic medium
in the presence of isotropic and antisymmetric magnetic con-
ductivity and examine the results. Finally, we summarize our
results in Sec. IV.

II. DISPERSION RELATION FOR BI-ISOTROPIC MEDIUM
ENDOWED WITH OHMIC AND CHIRAL CURRENT

We take as a starting point the Maxwell equations for a
homogeneous and linear chiral medium, here written in ac-
cordance with a plane-wave ansatz,

k · D = ρ, k × H + ωD = −iJ, (7a)

k · B = 0, ωB = k × E, (7b)

where ρ is the charge density and the constitutive relation
for the current density is given in Eq. (6). Here, we sup-
pose the magnetic current is the only chiral contribution in
this medium, being associated with the axion term (∂tθ )B of
Eq. (5). In some Weyl semimetal, the carrier density is very
low [72] so that one can consider ρ = 0 and σ = 0, and the
current density reads

Ji = σ B
i j B

j . (8)

However, when the carrier density is relatively large, one
needs to consider ρ �= 0 and the Ohmic current σ �= 0 (see
Sec. II B of Ref. [72]). In this case, the current density is the
one of Eq. (6).

We now suppose the validity of isotropic-anisotropic con-
stitutive relations, in which the anisotropy is constrained into
the magnetoelectric parameters, that is, the electric permittiv-
ity and magnetic permeability are written as

μ−1
ka = μ−1δka, εi j = εδi j, (9)
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so that the constitutive relations (1) take the form

Di = εδi jE
j + αi jB

j, (10a)

Hi = βi jE
j + μ−1δi jB

j . (10b)

For obtaining wave equations that describe the propagation
of electromagnetic waves in such a dielectric medium, we
replace the constitutive relation (10a) in the second relation of
Eq. (7a) with the current density of Eq. (6). We also employ
the Faraday’s law, ωB = k × E, writing

1

μω
[k × (k × E)]i + ωεδi jE

j + βkaεi jkk jEa

+ αi jε jmnkmEn = −iσEi − iσ B
i j B

j . (11)

Using again the Faraday’s law, Eq. (11) is rewritten as

[k × (k × E)]i + ω2με̄i jE
j = 0, (12)

where the frequency-dependent extended permittivity tensor,

ε̄in(ω) = ε̃δin + 1

ω

(
βknεimk + αi jε jmn + i

σ B
i j

ω
ε jmn

)
km, (13)

carries the electric and magnetic response of the medium and
also comprises the permittivity of a usual conductor,

ε̃ = ε + i
σ

ω
. (14)

Equation (12) can be cast in the form

Mi jE
j = 0, (15)

where the tensor Mi j is given in terms of the refractive index
n as

Mi j = n2δi j − nin j − c2με̄i j . (16)

We have used k = ωn/c, with c being the vacuum light speed.
Here, we consider that the index Re[n] is non-negative, so that
we adopt n = +

√
n2, instead of |n|, in order to permit com-

plex refractive indices. The refractive indices with negative
real parts, related to metamaterials, are not considered here.
To find the nontrivial solution for the electric field of Eq. (15),
we impose the condition det[Mi j] = 0 in order to attain the
dispersion relations that govern the wave propagation in the
medium.

III. DISPERSION RELATIONS, REFRACTIVE INDICES,
AND PROPAGATING MODES

In this section, we examine the propagation of electromag-
netic waves in a dielectric medium under the validity of the
relations (12) and (13) for two configurations of magnetic con-
ductivity: the symmetric isotropic one and the antisymmetric
one.

A. Full isotropic case

In the context of the constitutive relations (10), we begin by
considering the total symmetric isotropic configuration for the
quantities αi j , βi j , and σ B

i j , in which these tensors are written
as diagonal tensors, namely

αi j = αδi j, βi j = βδi j, σ B
i j = �δi j, (17)

with α, β ∈ C, and � ∈ R. The condition αi j = −β
†
i j for

electromagnetic energy conservation [28], when applied on
the parametrization of Eq. (17), yields

β∗ = −α. (18)

In this case, the constitutive relations take on the typical bi-
isotropic form,

D = εE + αB, (19a)

H = 1

μ
B + βE, (19b)

J = σE + �B, (19c)

the last one being the isotropic magnetic current. As already
mentioned, such relations play a relevant role in topological
insulators [10–16] and axion systems [17–19].

Inserting relations (17) in Eq. (13), one obtains

cε̄i j = cε̃δi j −
(

α + β + i
�

ω

)
εi jmnm, (20)

where the last term on the right-hand side represents the
“magnetic-electric” contribution to the medium permittivity.
In this case, the tensor Mi j (16) has the form

[Mi j] = M + μc

(
α + β + i

�

ω

)
S, (21a)

where

M = (n2 − c2με̃)13 −
⎛
⎝ n2

1 n1n2 n1n3

n1n2 n2
2 n2n3

n1n3 n2n3 n2
3

⎞
⎠, (21b)

and

S =
⎛
⎝ 0 −n3 n2

n3 0 −n1

−n2 n1 0

⎞
⎠. (21c)

Requiring det[Mi j] = 0, one gets

n4 − n2c2

[
2με̃ − μ2

(
α + β + i

�

ω

)2]
+ μ2ε̃2c4 = 0.

(22)
Solving for n, we obtain the following refractive indices,

n± = c
√

με̃ − Z ± ic
√

Z, (23)

with

Z = μ2

4

(
α + β + i

�

ω

)2

. (24)

As we have started with isotropic tensors, εδi j , μ−1δi j ,
αδi j , βδi j , any arising anisotropy effects stem from the way
magnetoelectric and magnetic conductivity are coupled to the
fields in the constitutive relations (19).

1. Propagation modes

In order to achieve the propagating modes, we write the
refractive indices (23) as

n2
± = c2με̃ ± 2ic

√
Zn±, (25)
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and replace them in the matrix (21), so that Eq. (15) yields

E± = 1
√

2n
√

n2 − n2
1

⎛
⎝ n2 − n2

1±inn3 − n1n2

∓inn2 − n1n3

⎞
⎠. (26)

Now, we consider the specific case of propagation along
the z axis, n = (0, 0, n), in such a way that Eq. (26) provides
right-handed (Ê−) and left-handed circular (Ê+) polarization
vectors, respectively [1,2],

E± = 1√
2

⎛
⎝ 1

±i
0

⎞
⎠. (27)

As well known, the circular polarization modes (27) open the
possibility for the attainment of circular birefringence in this
system.

2. Optical effects of complex magnetoelectric parameters in
nonconducting dielectrics

As the modes (27) do not depend on the real or complex
character of the parameters α and β, we will examine both
situations. In this sense, we suppose α and β as complex
parameters,

α = α′ + iα′′, β = β ′ + iβ ′′, (28)

where α′ = Re[α], α′′ = Im[α], β ′ = Re[β], and β ′′ =
Im[β]. The condition (18) then implies

α′ = −β ′, α′′ = β ′′, (29)

so that

α + β = 2iα′′. (30)

In order to examine the physical behavior stemming from the
constitutive relations (19a)–(19c), we rewrite the refractive
index (23) using Eq. (30), that is,

n± = c

√
με̃ + μ2

(
α′′ + �

2ω

)2

∓ μc

(
α′′ + �

2ω

)
. (31)

Remembering the complex piece of ε̃ inside the root, the
refractive index can be rewritten as

n± = ϒ+ ∓ μc

(
α′′ + �

2ω

)
+ iϒ−, (32)

where

ϒ± = c

√
R

2

√√√√√
1 +

(
μσ

ωR

)2

± 1, (33)

R = με + μ2

(
α′′ + �

2ω

)2

. (34)

Equation (32) represents refractive indices with positive and
distinct real pieces, implying birefringence. Both isotropic
Ohmic and magnetic-conductivity � appear as frequency-
dependent contributions, which bring about a dispersive
behavior to the system. Since the propagating modes are
described by circularly polarized vectors [see Eq. (27)], the

FIG. 1. Polarization rotation angle per length unit, as given in
Eq. (37). Here, we have used μ = 1 H m−1, � = 3 −1 s−1, and
|α′′| = 2 F s−1. The vertical dashed line is given by ω′/(2π ) =
3/4 Hz, with ω′ of Eq. (38).

rotatory power can be evaluated in terms of the difference
between the refractive indices [33,36,79],

δ = − [Re(n+) − Re(n−)]ω

2c
, (35)

as a consequence of birefringence. With indices (31), it yields

δ = μ�

2
+ μωα′′. (36)

It displays a zeroth-order term in the frequency that recovers
the same rotatory power of isotropic case of Ref. [77] when
α′′ = 0. For a negative α′′, the rotatory power reads

δ = μ�

2
− μω|α′′|. (37)

From Eq. (37), one finds a cutoff frequency ω′,

ω′ = �

2|α′′| , (38)

defining the value at which the sign reversion of δ occurs.
Considering the usual RP sign convention [33] and Eq. (37),
one notices the following: (1) For 0 < ω < ω′, one has δ >

0, causing a clockwise rotation of the linear electric field
polarization. (2) For ω > ω′, one finds δ < 0, implying a
counterclockwise rotation of the linear polarization.

As this RP inversion takes place at a positive frequency,
ω′ > 0, one needs to have either � < 0 or α′′ < 0. In the fol-
lowing we shall consider α′′ < 0. The RP reversion observed
here is not usual in ordinary linear dielectric nor in bi-isotropic
or bianisotropic dielectric media. It also does not appear in
media endowed with isotropic magnetic conductivity [77] [see
Eq. (39)]. However, it is reported in rotating plasmas [49] and
graphene systems [51]. Furthermore, as shown in Eq. (37),
such an effect also appears in a bi-isotropic dielectric under
the presence of the magnetic current (19c). The general be-
havior of the rotatory power (37) as a function of frequency is
illustrated in Fig. 1 for some values of �, α′′, and μ. Finally,
for ω = ω′, the birefringence does not occur (δ = 0).

As a special case, we can address the case the system
possesses only chiral conductivity, � �= 0, σ = 0, for which
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the refractive index (31) is written replacing ε̃ → ε, yielding
an entirely real expression. The rotatory power (37) remains
unmodified as far as all the analysis about its reversion. In
this context, we can also consider the situation α, β ∈ R, for
which one has simply β = −α and β + α = 0, since α′′ = 0.
Hence, Eq. (31) (with ε̃ → ε) becomes

n± = c

√
με + μ2�2

4ω2
∓ μc�

2ω
, (39)

which also leads to birefringence, in this case stemming
entirely from the magnetic conductivity. The corresponding
rotatory power, δ = μ�/2, obviously does not undergo rever-
sion.

B. Bi-isotropic case with off-diagonal antisymmetric
magnetic-conductivity tensor

Let us now consider a substrate described by the bi-
isotropic constitutive parameters in the presence of a chiral
current written in terms of an antisymmetric magnetic con-
ductivity, that is,

αi j = αδi j, βi j = βδi j, σ B
i j = εi jkbk, (40)

for which the permittivity (13) is

cε̄i j =
[

cε̃ − i

ω
(b · n)

]
δi j + (α + β )εi jknk + i

ω
nib j . (41)

The matrix [Mi j] of Eq. (15) reads

[Mi j] = M + iμc

ω
(b · n)13 − iμc

ω
B, (42)

with M given by Eq. (21b) and

B =
⎛
⎝ n1b1 −iωγ n3 + n1b2 iωγ n2 + n1b3

iωγ n3 + n2b1 n2b2 −iωγ n1 + n2b3

−iωγ + n3b1 iωγ n1 + n3b2 n3b3

⎞
⎠,

(43a)

and γ = α + β. Evaluating det[Mi j] = 0, one attains the fol-
lowing dispersion equation:

n4 − 2n2

[
με̃c2 − μ2c2

2
(α + β )2 − iμc

ω
(b · n)

]

+ μ2c2

[
cε̃ − i

ω
(b · n)

]2

= 0. (44)

Implementing b · n = bn cos θ in Eq. (44), we have a fourth-
order equation in n. Searching for the solutions for n that
recover the refractive indices of an ordinary dielectric, n± 	→
c
√

με, in the limit of vanishing magnetoelectric and conduc-
tivity parameters, that is, γ 	→ 0 and b 	→ 0. We thus find

n± = c

√
με̃ − μ2

4

(
γ ∓ b cos θ

ω

)2

± iμc

2

(
γ ∓ b cos θ

ω

)
.

(45)

The other two solutions of Eq. (44) that provide n± 	→
−c

√
με in the limit of an ordinary dielectric will not be

considered here. Considering the relations (29), the refractive

indices are rewritten now as

n± = c

√
με̃ − μ2

4

(
2iα′′ ∓ b cos θ

ω

)2

∓ μcα′′ − iμc

2ω
b cos θ.

(46)

1. Propagation modes

Let us consider the coordinate system where propagation
is along the z axis, n = (0, 0, n), then Eq. (42) simplifies as

[Mi j] = (n2 − c2με̃)13

+ c

⎛
⎝+ iμnb

ω
cos θ −2iμα′′n 0

2iμα′′n + iμnb
ω

cos θ 0
−iμb1n/ω −iμb2n/ω −n2/c

⎞
⎠. (47)

Rewriting Eq. (46) as

n2
± = c2με̃ ± iμc

(
2iα′′ ∓ b

ω
cos θ

)
n±, (48)

and replacing it in Eq. (47), the condition (15) provides the
following electric fields for the propagating modes,

E± = E0

⎛
⎝ 1

±i
−in±(b1 ± ib2)/(ωε̃c)

⎞
⎠, (49)

with an appropriately chosen amplitude E0. Such fields stand
for “mixed modes,” composed of a circular polarization
transversal sector and an additional longitudinal component.
For the special case where the b vector is parallel or antiparal-
lel to the propagation direction n, we set b = (0, 0, b3), with
which Eq. (49) yields

E± = E0

⎛
⎝ 1

±i
0

⎞
⎠, (50)

representing left- and right-handed circularly polarized vec-
tors, respectively.

2. Optical effects for case σB
i j �= 0 and σ = 0

At first, we examine the particular case in which the
medium has non-null magnetic conductivity and null Ohmic
conductivity. With ε̃ → ε the refractive indices of Eq. (46)
become

n± = c

√
με − μ2

4

(
2iα′′ ∓ b cos θ

ω

)2

∓ μcα′′ − iμc

2ω
b cos θ,

(51)

which can be expressed by separating the real and complex
pieces,

n± = UA+ ∓ μcα′′ + i
(
±UA− − μc

2ω
b cos θ

)
, (52a)
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with

U = c√
2

√
με + μ2α′′2 − μ2

4ω2
b2 cos2 θ, (52b)

A± =

√√√√√
√√√√1 +

(
μ2α′′b cos θ

ω(με + μ2α′′2) − μ2b2

4ω
cos2 θ

)2

± 1.

(52c)

We point out that there is a frequency window at which U
is purely imaginary, i.e., for 0 < ω < ω0, where ω0 is

ω0 = 1

2

√
μb2 cos2 θ

ε + μα′′2 , (53)

while A± remains real. In this range, the refractive indices are
given by

n± = ∓U ′A− ∓ μcα′′ + i
(
U ′A+ − μc

2ω
b cos θ

)
, (54)

with

U ′ = c√
2

√
μ2

4ω2
b2 cos2 θ − με − μ2α′′2. (55)

Therefore, two main scenarios arise: (i) For 0 < ω < ω0,
the refractive indices are given by Eq. (54), and (ii) for
ω > ω0, they are described by Eq. (52a). The physical con-
sequences of this feature will be examined later, with a focus
on the rotatory power.

Considering the circular polarization of the propagating
modes (50), the rotatory power (35) represents properly the
birefringence effects. Thus, for the refractive indices given in
Eq. (52), one achieves

δ = μωα′′, (56)

defined for the regime ω > ω0, where U is real. Differently
from the previous scenario of Sec. III A, the rotatory power
(56) cannot undergo a sign reversion. Furthermore, the result
in Eq. (56) recovers the same result obtained in Ref. [28],
so that the magnetic conductivity does not contribute in this
frequency range.

On the other hand, for the frequency window 0 < ω < ω0,
the refractive indices are the ones of Eq. (54), yielding the
following rotatory:

δ = ωA−√
2

√
μ2

4ω2
b2 cos2 θ − με − μ2α′′2 + μωα′′. (57)

It is worth mentioning that δ > 0 for α′′ < 0 or α′′ > 0 and
that Eq. (57) holds only in the frequency range 0 < ω < ω0.

The behavior of the rotatory power for the entire frequency
domain is obtained by plotting Eq. (57) at 0 < ω < ω0 and
Eq. (56) at ω > ω0, with a discontinuity at ω = ω0, as illus-
trated in Fig. 2. In more detail, we highlight the following:
(1) For α′′ > 0, the rotatory power is always positive, with
a discontinuity at ω = ω0, indicating clockwise rotation of
a linear polarization wave, and (2) for α′′ < 0, the rotatory
power is positive for 0 < ω < ω0, and negative for ω > ω0,
with discontinuity and sign reversal at the frequency ω = ω0.

FIG. 2. Rotatory power of Eqs. (56) and (57). The solid lines in-
dicate the rotatory power (57) defined in the region 0 < ω < ω0. The
dashed curves represent the rotatory power (56) in the region ω > ω0.
The vertical dashed line is given by ω0/(2π ) = 1/(4π

√
6) Hz, with

ω0 of Eq. (53). Here, we have used μ = 1 H m−1, ε = 2 F m−1,
b = 1 −1 s−1, cos2 θ = 1, and α′′ = 2 F s−1 (red lines) and α′′ =
−2 F s−1 (blue curves). The inset plot highlights the behavior of δ

(57) in the regime 0 < ω < ω0.

The RP (57) exhibits a sign reversal (when α′′ < 0) and
also discontinuity at the frequency ω = ω0. This happens
because δ assumes different functional forms for the two fre-
quency intervals under examination. Indeed, for 0 < ω < ω0,
δ is defined by Eq. (57), while for ω > ω0 it is given by
Eq. (56).

Another relevant point is that the modes are absorbed to
a different degree when ω > ω0. This difference is character-
ized by the dichroism coefficient, defined as

δd = − ω

2c
[Im(n+) − Im(n−)], (58)

which for Eq. (52) yields

δd = −ωU

c

√√√√√
1 +

(
μ2c2α′′b cos θ

2ωU 2

)2

− 1. (59)

The behavior of δd for cos θ = ±1 in terms of the frequency
ω/(2π ) is depicted in Fig. 3, which reveals the absence and
presence of dichroism for ω < ω0 and ω > ω0, respectively.
For ω > ω0, the LCR mode, E+, is more absorbed than the
RCP mode, E−, that is, δd < 0. Furthermore, it does not occur
δd sign reversal.

3. Optical effects for non-null Ohmic and magnetic conductivity,
σB

i j �= 0, σ �= 0

Let us now address the bi-isotropic medium endowed with
both magnetic conductivity σ B

i j of Eq. (40) and Ohmic con-
ductivity σ as considered in Eq. (46). Remembering that
ε̃ = ε + iσ/ω, the refractive indices (40) are now cast at the
form

n± = U (A′
± ± iA′′

±) ∓ μcα′′ − i
μc

2ω
b cos θ, (60)
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FIG. 3. Dichroism coefficient of Eq. (59) in terms of ω/(2π ).
Here, we have used μ = 1 H m−1, ε = 2 F m−1, α′′ = 2 F s−1, b =
1 −1 s−1, and cos θ = ±1.

with

A′
± =

√√√√√
1 +

(
μ2α′′b cos θ ± μσ

ω(με + μ2α′′2) − μ2b2 cos2 θ/4ω

)2

+ 1,

(61)

A′′
± =

√√√√√
1 +

(
μ2α′′b cos θ ± μσ

ω(με + μ2α′′2) − μ2b2 cos2 θ/4ω

)2

− 1.

(62)

For the frequency range ω > ω0, U is real, so that the
refractive indices are given as presented in Eq. (60), with
which the rotatory power is

δ = μωα′′ − ωU

2c
(A′

+ − A′
−). (63)

For the frequency range 0 < ω < ω0, where U is purely
imaginary, the refractive indices are

n± = ∓U ′A′′
± ∓ μcα′′ + i

(
U ′A′

± − μc

2ω
b cos θ

)
, (64)

yielding the following rotatory power:

δ = μωα′′ + ωU ′

2c
(A′′

+ + A′′
−). (65)

To better understand the effect of the Ohmic conductivity
in this scenario, we illustrate in Fig. 4 the rotatory power for
the entire frequency domain, obtained by plotting Eq. (65) for
0 < ω < ω0 and Eq. (63) for ω > ω0.

Comparing Figs. 2 and 4, we remark on some aspects:
(1) In the region ω > ω0, the rotatory power exhibits linear

and slightly different behaviors for cos θ = 1 or cos θ = −1
(see the dotted and dashed lines, respectively). This is a conse-
quence of the linear factor cos θ that appears in the numerator
of expressions (61) and (62) and the minus relative sign be-
tween A′

+ and A′
− in expression (63).

(2) For 0 < ω < ω0 and α′′ > 0, the rotatory power in-
creases monotonically with ω, being quite similar to the one
obtained for σ = 0 (see the red continuous line in Fig. 2).

(3) For 0 < ω < ω0 and α′′ < 0, the rotatory power
possesses a small magnitude around zero and a nonlinear

FIG. 4. Rotatory power of Eqs. (63) and (63). The solid lines
indicate the rotatory power (65) defined in the region 0 < ω <

ω0. The dashed curves represent the rotatory power (63) defined
in the region ω > ω0 for cos θ = 1, and the dotted red lines rep-
resent (63) for cos θ = −1. The vertical dashed line is given by
ω0/(2π ) = 1/(4π

√
6) Hz, with ω0 of Eq. (53). Here, we have used

μ = 1 H m−1, ε = 2 F m−1, b = 1 −1 s−1, σ = 1 −1 m−1, α′′ =
2 F s−1 (red lines) and α′′ = −2 F s−1 (blue curves). The inset plot
highlights the behavior of δ (65) in the regime 0 < ω < ω0, in
which the vertical dashed line indicates the frequency ω′′/(2π ) ≈
0.0184 Hz, the root of (65) in this frequency regime.

behavior. Starting from zero, it first slightly diminishes, reach-
ing a negative minimum value. It then increases, becoming
positive at a special frequency ω′′, where δ changes sign. We
thus observe that the RP undergoes sign reversal inside the
range 0 < ω < ω0, a distinction in relation to the pattern of
Fig. 2.

Concerning the results of Fig. 4 we still mention that the
distinction observed in the propagation for cos θ = 1 and
cos θ = −1 does not appear in the range 0 < ω < ω0. The
reason is the relative plus sign in the sum A′′

+ + A′′
− that

composes the RP (65). Such a sign turns this term equal for
θ = 0 or θ = π . The propagation difference observed in the
region ω > ω0 may work as a tool to distinguish between
propagation parallel or antiparallel to the vector b and as a
measure of the relative magnitude of Ohmic conductivity in
relation to the magnetic conductivity.

Finally, it remains to examine the dichroism coefficient,
which for the region 0 < ω < ω0 is given by

δd = − ω

2c
U ′(A′

+ − A′
−), (66)

while for the range ω > ω0 reads

δd = − ω

2c
U (A′′

+ + A′′
−). (67)

The behavior of the dichroism in the entire frequency domain
is depicted in Fig. 5.

IV. FINAL REMARKS

In this paper, we have examined the classical electromag-
netic propagation in bi-isotropic media supporting magnetic
current associated with the CME, describing optical effects of
the medium. For the full isotropic case of Sec. III A, defined
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FIG. 5. Dichroism coefficient. The red lines indicate dichroism
of Eq. (66) for cos θ = 1 (solid line) and cos θ = −1 (dashed curve).
The blue line illustrates the behavior of Eq. (67) for cos θ = ±1.
Here, we have used μ = 1 H m−1, ε = 2 F m−1, α′′ = 2 F s−1, and
b = 1 −1 s−1.

by bi-isotropic constitutive relations and isotropic magnetic
conductivity, we have found circularly polarized propagating
modes, yielding circular birefringence expressed in terms of
the linear dispersive RP (37). It experiences sign reversal at
the frequency ω = ω′, with ω′ given by Eq. (38). Such an
effect only occurs when � �= 0 and α′′ < 0.

In the scenario of Sec. III B, the bi-isotropic dielectric is en-
dowed with Ohmic conductivity and an asymmetric magnetic
current represented by the antisymmetric conductivity tensor
parametrized in terms of the constant 3-vector b, as pointed
out in Eq. (40). The propagating modes are composed of a
transversal sector, described by circular polarizations, and a
longitudinal component. For the b-longitudinal special case,
the electric fields recover left- and right-handed circularly
polarized vectors. The optical effects of this system were
discussed for two scenarios: σ B

i j �= 0 and σ = 0 and σ B
i j �= 0

and σ �= 0.
In Sec. III B 2, the bi-isotropic medium is considered only

under the effect of the chiral conductivity (and σ = 0). The
refractive indices were carried out and the birefringence was
examined in terms of the RP considering two frequency in-
tervals: (i) 0 < ω < ω0 and (ii) ω > ω0, with ω0 of Eq. (53).
We have obtained an involved dispersive RP, which exhibits a
discontinuity at ω = ω0 and changes sign whenever α′′ < 0.

In Sec. III B 3, the bi-isotropic dielectric was considered
under the presence of both Ohmic and chiral magnetic con-
ductivities. The RP was evaluated, exhibiting discontinuity
and reversion, the same main features observed in the case

of Sec. III B 2, but with some additional particularities scruti-
nized in Fig. 4. Dicrohism was also examined, being endowed
with discontinuity in both cases.

The RP reversal found here is not observed in usual di-
electrics, being reported in rotating plasmas [49], graphene
systems [51], and Weyl metals and semimetals with low
electron density endowed with chiral conductivity [81].
Comparing the latter chiral Weyl metal with the scenario
of Sec. III B 2, we observe some differences, however. In
Ref. [81] the RP presents sign reversal without undergo-
ing discontinuity. In the present bi-isotropic dielectric with
magnetic conductivity, the RP undergoes reversal with dis-
continuity. Furthermore, we still notice some additional
distinctions. While the RP magnitude of Eqs. (37) and (56)
increases linearly with ω for high frequencies, the RP of a di-
electric chiral medium [81] or Weyl semimetal [82] decreases
with 1/ω2 at this frequency domain. The unusual features here
reported may provide a channel to characterize bi-isotropic
media with chiral conductivity. Indeed, it may be used to
distinguish the bi-isotropic scenario with antisymmetric chiral
conductivity, described by constitutive relations (40), from the
bi-isotropic medium endowed with isotropic magnetic con-
ductivity (17).

When the rotatory power δ is positive (negative), the
medium is defined as right (left) handed, since it rotates the
plane of linear polarization light in the clockwise (counter-
clockwise) direction [33,34]. This definition characterizes the
handedness of the medium considering the optical rotation
of the linear polarization wave. Thus, the rotatory power in-
version reported here also reveals a handedness reversal of
the bi-isotropic dielectric (with α′′ < 0) under the presence
of the magnetic current. Concerning the results of Sec. III A,
as illustrated in Fig. 1 (blue line), for ω < ω′ the medium
is right handed, while for ω > ω′ it becomes left handed. In
the antisymmetric case of Sec. III B, Fig. 2 (blue line) shows
a right-handed medium for 0 < ω < ω0, and a left-handed
medium for ω > ω0. This can open an interesting connection
between electromagnetic chirality/helicity [35,83–86] and the
combined constitutive relations examined in this paper.
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