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Variational quantum eigensolver ansatz for the J1-J2-model
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The ground state properties of the two-dimensional J1-J2-model are very challenging to analyze via classical
numerical methods due to the high level of frustration. This makes the model a promising candidate for which
quantum computers could be helpful to possibly explore regimes that classical computers cannot reach. The
J1-J2-model is a quantum spin model composed of Heisenberg interactions along the rectangular lattice edges
and along diagonal edges between next-nearest-neighbor spins. We propose an ansatz for the variational quantum
eigensolver to approximate the ground state of an antiferromagnetic J1-J2 Hamiltonian for different lattice sizes
and different ratios of J1 and J2. Moreover, we demonstrate that this ansatz can work without the need for gates
along the diagonal next-nearest-neighbor interactions. This simplification is of great importance for solid-state-
based hardware with qubits on a rectangular grid, where it eliminates the need for SWAP gates. In addition, we
provide an extrapolation for the number of gates and parameters needed for larger lattice sizes, showing that
these are expected to grow linearly in the qubit number up to lattice sizes which eventually can no longer be
treated with classical computers.
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I. INTRODUCTION

The development of quantum hardware has seen signif-
icant progress in recent years, and gate sequences that are
impossible or at least extremely challenging to simulate clas-
sically [1,2] have been realized. These gate sequences were
designed for benchmark experiments and do not directly lead
to “real-world” applications of interest. Yet these achieve-
ments started the era of noisy intermediate-scale quantum
(NISQ) computers which gave rise to the key question of
whether useful applications of quantum computers can be
possible without quantum error correction [3].

A class of algorithms that have been identified as suitable
for NISQ conditions is variational quantum algorithms [4–6].
These consist of a parametrized gate sequence for which the
gate parameters are optimized such that the energy expec-
tation value for a considered Hamiltonian is minimized for
the prepared quantum state. Two aspects make these algo-
rithms suitable for NISQ conditions. One is the fact that rather
short gate sequences can generate highly complex quantum
states [1,2]. The other is that the optimization uses an energy
expectation value as the cost function and thus involves an av-
erage over a lot of measurements, leading to some robustness
against errors.

Variational quantum algorithms have been considered for
applications in quantum chemistry [7], where the fermionic
degrees of freedom need to be mapped onto qubits via suit-
able transformations ensuring the anticommutation relations
of fermions. Spin lattice systems in turn allow for a more
direct representation on quantum computing hardware. Here,
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variational quantum eigensolver (VQE) algorithms have, for
example, been considered for spin models on kagome and
square-octagon lattices [8–11] as well as one-dimensional
chains [12].

A model that is particularly suited to being represented
on a rectangular grid of qubits but that at the same time
poses significant challenges to classical numerics is the
J1-J2-model [13–20]. Indeed, several developers of supercon-
ducting qubit architectures developed rectangular grids that
are forward compatible with the surface code architecture
for quantum error correction. These are particularly suited
to computations for spin lattice models on this type of lat-
tice. The J1-J2-model is a spin model on a rectangular lattice
that, however, features additional antiferromagnetic interac-
tions across the diagonals of each plaquette (see Fig. 1). It
can, for example, be used to describe CuO2 planes in high-
Tc cuprate superconductors [21] or layered materials such
as Li2VO(Si,GE)O4 [22] and VOMoO4 [23]. The model,
however, poses significant challenges to classical numeri-
cal approaches, and for a specific frustration strength, 0.4 �
J2/J1 � 0.6, its ground state remains the subject of intense
debate [24].

In this work we develop ansätze for variational algorithms
for the two-dimensional J1-J2-model, and we particularly fo-
cus on the classically hard parameter regime of 0.4 � J2/J1 �
0.6. In particular the model is not integrable in these regimes.
Nonetheless, we find that moderate-depth gate sequences are
able to provide good approximations for its ground states.
Importantly, we find that the diagonal interactions can well
be captured without executing two-qubit gates directly among
the next-nearest-neighbor qubits involved in these interac-
tions. Two-qubit gates along the edges of the rectangular grid,
which can be implemented in a hardware-efficient ansatz on
architectures with nearest-neighbor connectivity, suffice for
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FIG. 1. Interaction geometry for the J1-J2-model on a 16-qubit
lattice with open boundary conditions. The blue lines visualize the
next-nearest-neighbor interactions with a coupling J2, and the black
lines show the nearest-neighbor interactions with a coupling J1.

good accuracy of the ground state approximation. Our ansatz
is thus less demanding in terms of required qubit-qubit inter-
actions than, for example, adiabatic algorithms for preparing
desired ground states, which always require implementation
of all qubit-qubit interactions that are present in the con-
sidered model. The omission of the next-nearest-neighbor
gates along the diagonals of the lattice leads to a significant
reduction of the gate count, as these gates need to be sand-
wiched between two SWAP gates in standard architectures with
nearest-neighbor connectivity.

Furthermore, we explore the scaling of the numbers of
quantum gates required to reach a desired accuracy in the
ground state preparation with the number of spins or qubits
in the model. For our ansatz without the gates for the next-
nearest-neighbor interactions, we estimate here a scaling
proportional to the number of qubits. This scaling would
imply that 8 × 8 = 64 qubit lattices could be treated with
circuits containing ∼2200 two-qubit gates and ∼100 single-
qubit gates; we exclude single-qubit Z gates in this counting
since they can be done virtually.

II. THE J1-J2-MODEL

The J1-J2-model is an extension of the Heisenberg model
with additional Heisenberg interactions between next-nearest
neighbors [25,26]. The model is described by the Hamiltonian

H = −J1

∑
〈i, j〉

�Si · �S j − J2

∑
〈〈i, j〉〉

�Si · �S j, (1)

where J1 is the strength of nearest-neighbor interactions (〈i, j〉
indicates that the sum runs over pairs of nearest neighbors)
and J2 is the strength of next-nearest-neighbor interactions
(〈〈i, j〉〉 indicates that the sum runs over pairs of next-
nearest neighbors). The operators �S j are vectors containing
the three Pauli operators for spin-1/2 degrees of freedom,
�S j = (Xj,Yj, Zj )T . Figure 1 shows the geometry of the spin
lattice for 16 spins with open boundary conditions.

In this work the couplings J1 and J2 are chosen to be
negative and thus form antiferromagnetic interactions.

The J1-J2-model is a paradigm example for a highly
frustrated system, even for the square lattice. Its geomet-
ric frustration means that its ground states are typically not
formed by simple patterns [27] like the Néel state, but rather
form strongly correlated quantum states. The frustration can
be tuned by the ratio J2/J1. For the case of J2/J1 < 0.2, the
model can be described with a spin-wave approximation. For
J2/J1 > 0.4, however, this approximation breaks down [28],
and the magnetic order of the model disappears. The follow-
ing quantum phases of the system have so far been clearly
identified: For J2/J1 � 0.4, the classical (π, π ) Néel behavior
is observed. For J2/J1 � 0.6, two collinear Néel ordered states
with pitch vectors q = (π, 0) and q = (0, π ) are selected by
an order by disorder mechanism. Here, order by disorder
means that a soft Ising order parameter σ = n̂1n̂2 appears,
where n̂1 and n̂1 denote the independent staggered magnetiza-
tions of the two sublattices as written in [29]. The ground state
energy is here independent of the angle between the staggered
magnetizations [30].

In the highly frustrated case 0.4 � J2/J1 � 0.6, quantum
fluctuations destabilize the classical ordered ground state and
lead to a disordered singlet ground state with a gap to the
first magnetic excitation. Despite significant effort spent on
exploring classical methods the ground state of the model at
the maximally frustrated point J2/J1 ∼ 0.5 and its physical
properties remain the subject of intense debate [24,31–34].
So far there have been a few conflicting proposals for the
ground state candidate, for instance, the plaquette valence-
bond state [35], the columnar valence-bond state [36], and
a gapless spin liquid [37,38]. Here, the ability of quantum
computers to generate highly entangled states already via
short gate sequences may lead to an advantage provided the
experimental gate fidelities reach suitable values.

III. VARIATIONAL QUANTUM ALGORITHM

Variational quantum algorithms [5,6] are based on the
variational principle in quantum mechanics, which is used to
approximate the ground state of a system. This principle reads

E0 � 〈ψ |H|ψ〉
〈ψ |ψ〉 (2)

and means that the smallest energy eigenvalue of the system
E0 is always smaller than or equal to any expectation value
of its Hamiltonian. This relation gives rise to an optimization
problem in which one seeks to minimize the expectation value
of H for a class of states to find a good approximation of the
ground state of H.

This principle is applied in the VQE [5,6] to approximate
the ground state energy of a given Hamiltonian. The resulting
algorithm is a hybrid algorithm that consists of two parts: a
classical parameter update and a quantum energy eigenvalue
evaluation. In the quantum part of the algorithm, the expecta-
tion value of the Hamiltonian is computed by sampling from
an ansatz state |ψ (�θ )〉, which is prepared on the quantum
processor via a gate sequence that depends on gate parame-
ters �θ [5,6]. The classical parameter update of the algorithm
consists of a classical optimizer, which computes the best set
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FIG. 2. The ansatz used for the J1-J2-model. Here, the first few gate layers for a four-qubit model are shown. The gates in the frame are
repeated, and we call this block a layer of gates. For the larger models, the ansatz follows the same scheme. The first four two-qubit gates in the
block (depicted by bold black frames) are the two-body gates on nearest-neighbor qubits. The last two two-qubit gates in the block (depicted
by bold blue frames) are the gates on next-nearest-neighbor qubits along the diagonal interactions. In our simulations, we found that the latter
can be omitted without changing the VQE convergence.

of parameters �θ by calling the quantum part, to approximate
the sought ground state. Thus, the quantum part evaluates the
expectation value which forms the objective function for the
classical optimizer. By optimizing for better and better sets
of parameters, one eventually trains the quantum computer to
prepare states that are very close to the ground state of the
Hamiltonian.

A. Choosing the ansatz

The ansatz we used for the J1-J2-model is sketched in
Fig. 2. It consists of a parametrized X gate and a parametrized
Y gate applied to every qubit at the beginning of the circuit.
Afterwards, a parametrized Z gate is applied to each qubit. All
these single-qubit gates are parametrized by an angle θ of the
rotation around the respective axis. This angle can vary from
qubit to qubit. For one qubit the gates read [39]

X (θ ) := X θ =
(

GC −iGS
−iGS GC

)
(3)

Y (θ ) := Y θ =
(

GC −GS
GS GC

)
(4)

Z (θ ) := Zθ =
(

1 0
0 G̃

)
(5)

where C = cos( πθ
2 ), S = sin( πθ

2 ), G = exp(i πθ
2 ), and G̃ =

exp(iπθ ).
The two-qubit gate, forming the entangling gate in the

ansatz, is an “XXYYZZ gate,” which is applied to every edge of
interactions. This gate consists of an XX gate, a YY gate, and
a ZZ gate, all taken to the same power θ (see Fig. 3). These
gates mutually commute with each other, and their matrix
representations read

XX(θ ) = (X ⊗ X )θ =

⎛
⎜⎝

c 0 0 s
0 c s 0
0 s c 0
s 0 0 c

⎞
⎟⎠, (6)

FIG. 3. The parametrized “XXYYZZ” gate is composed of a se-
quence of XX, YY, and ZZ gates with the same parameter.

YY(θ ) = (Y ⊗ Y )θ =

⎛
⎜⎝

c 0 0 −s
0 c s 0
0 s c 0

−s 0 0 c

⎞
⎟⎠, (7)

ZZ(θ ) = (Z ⊗ Z )θ =

⎛
⎜⎝

1 0 0 0
0 w 0 0
0 0 w 0
0 0 0 1

⎞
⎟⎠, (8)

with c = f cos( πθ
2 ), s = −i f sin( πθ

2 ), f = e
iπθ

2 , and w =
eiπθ . The block formed by a layer of Z gates and a layer of
XXYYZZ gates is then repeated until the desired convergence
of the optimizer is reached.

The two-qubit XXYYZZ gate, forming the entangling gate in
our ansatz, is identical to a fSim gate for a specific choice φ =
2θ of its angles [1,40] and additional single-qubit Z rotations,

XXYYZZ(θ ) = e−i θ
2 (X⊗X+Y ⊗Y +Z⊗Z )

= ei θ
2 fSim(θ, 2θ )e−i θ

2 (Z⊗I+I⊗Z ). (9)

The fSim gate can also be decomposed into a controlled-phase
gate and additional single qubit rotations [1]. This in turn can
be rewritten as two controlled NOT (CNOT) gates with addi-
tional single-qubit Z rotations. Note that on superconducting
devices, any single-qubit Z rotation will be executed as virtual
gates Z gates [41] without cost.

The proposed ansatz consists of the two-qubit gates that
correspond to the spin-spin interactions in the Hamilto-
nian [12,42,43] (except for the fact that the gates on the
diagonals can be left out). Using these gates has the benefit
that they mutually commute. The X and Y single-qubit gates
at the beginning are chosen to mimic the unordered spin-
liquid behavior and generate the correct number of excitations
〈∑ j Z j〉, which is conserved by the subsequent gates. In spin
liquids the spins are unordered due to competing interactions;
hence, their ground state has a high degeneracy. The spins
fluctuate heavily; at low temperatures the system can “freeze”
to a spin glass state [44,45]. The Hamiltonian is invariant
under the exchange of the X , Y , and Z directions. In between
the two-qubit gates we, however, use only Z gates since they
can be implemented as virtual Z gates [41] without cost.

Importantly, we found in our simulations that it is possible
to omit the gates for the diagonal interactions with strengths
J2 (see the green lines in Fig. 1). This is very useful for
implementation on superconducting quantum hardware due
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to the fact that superconducting qubits are coupled to only
their nearest neighbors and some superconducting circuit ar-
chitectures are ordered in a rectangular grid. Thus, if one aims
to simulate the diagonal J2 interactions directly via gates,
SWAP gates are needed before and after the XXYYZZ gates.
Our ansatz in turn shows that these SWAP gates can be omit-
ted, leading to shorter circuit depth. Our approach thus also
has lower hardware connectivity requirements than adiabatic
ground state preparation, in which all interactions in the model
need to be implemented [46].

The number of two-qubit gates in our ansatz thus depends
on the considered lattice and the number of gate layers. For
an nx × ny lattice, we find the number of two-qubit gates per
layer is

n2q-wo = (nx − 1)ny + nx(ny − 1) (10)

for the ansatz without diagonal gates, whereas the ansatz with
diagonal gates requires 2(nx − 1)(ny − 1) two-qubit gates
more per layer,

n2q-w = n2q-wo + 2(nx − 1)(ny − 1). (11)

The number of variational parameters nθ of the ansatz is then
given by nθ = (n2q-wo + nxny)nlayers + 2nxny for the ansatz
without diagonal gates and nθ = (n2q-w + nxny)nlayers + 2nxny

for the ansatz with diagonal gates, showing that the ansatz
without diagonal gates is more cost-efficient than the ansatz
without diagonal gates.

B. Classical optimizer

For the classical optimization, the optimizer Constrained
Optimization By Linear Approximation (COBYLA) was used
with randomly chosen initial values for the variational pa-
rameters, −π � θ j � π . This optimizing algorithm is a
trust-region algorithm that aims to maintain a regular simplex
during the iteration steps [47]. This method is, nonetheless,
susceptible to getting stuck in local minima in the energy
landscape due to the difficulty of the problem. Thus, for a few
cases, BASINHOPPING as implemented in SCIPY was used to
enhance the application of COBYLA. BASINHOPPING explores
various initial values for the optimization parameters, in a
random walk, and runs a COBYLA optimization for each set
of initial values. A new set of initial values is accepted if the
COBYLA optimization meets a specified criterion [48]. The use
of BASINHOPPING thus helps to avoid the optimization getting
stuck in local minima that are far from the optimal solution.

An aspect that often hampers the parameter optimization is
barren plateaus that appear in variational quantum algorithms
as the number of qubits is increased [49]. Our investiga-
tions are less affected by this problem since we compute the
gradients exactly and can thus resolve very small gradients.
Moreover, we find that we can mitigate the problem for the
lattice sizes we simulate by employing the BASINHOPPING

algorithm. This indicates that the gradients we encounter de-
pend not only on the chosen optimizer but also on the choice
of the initial values of the optimization parameters. As our
main interest here is to explore the suitability of the ansatz,
we leave detailed explorations of further suitable classical
optimizers for future work.

IV. RESULTS

Our main interest is to investigate achievable accuracy
as well as the feasibility of our ansatz for a VQE for the
simulation of spin glass models. To this end, we have simu-
lated our VQE algorithm for lattices up to 20 spins using a
classical computer. As our main interest was the suitability
of the ansatz, we computed the energy expectation value of
the Hamiltonian directly via the wave function and did not
emulate the sampling over measured bit strings that would
be necessary when running the algorithm on a real quantum
computer.

Throughout this section, if not stated otherwise, the cou-
pling constants are fixed to the values J1 = −1 and J2 = −0.5.
To compare the results, we investigate the achieved energy
expectation value Ē and

Ē − E0

spectral gap
= Ē − E0

E1 − E0
, (12)

which is the difference between the expectation value ob-
tained from the VQE Ē and the exact ground state energy E0,
divided by the spectral gap, which is the difference between
the energy of the first excited state E1 and the ground state
energy E0.

To further quantify the accuracy of our ansatz, we compute
the fidelity it achieves with the exact ground state for the
optimal parameters determined by the variational algorithm,

F = |〈ψe|ψv〉|2, (13)

where |ψe〉 denotes the exact ground state and |ψv〉 is the
best variational approximation of |ψe〉 that we found with our
ansatz.

A. Various lattice sizes

We tested our ansatz with the diagonal gates and without
the diagonal gates for different lattice sizes, choosing two-
dimensional rectangular lattices with 12, 16, and 20 qubits
with open boundary conditions. The results are shown in
Figs. 4 and 5. The results Ē that we obtained in these numer-
ical VQE experiments, together with the exact energies of the
ground states E0, the exact energies of the first excited states
E1, and the ratios (Ē − E0)/(E1 − E0) are reported in Table I.
Here, we first discuss the simulations that include the gates
corresponding to the diagonal J2 interactions.

a. Ansatz with diagonal gates. For the lattice with 12 qubits
with open boundary conditions, we achieve good convergence
within 105 iterations, using seven gate layers as defined by the
framed box in Fig. 2. The VQE optimization for this lattice
can be seen in Fig. 4. In this case, the ground state can be
approximated with Ē−E0

E1−E0
< 10%. For the 16-qubit lattice with

open boundary conditions, we found the optimization result
quoted in Table I with seven gate layers. Thus, the VQE ends
up in only the bottom 20% interval of the spectral gap, as
can be seen in Fig. 4. To achieve better results, the ansatz
can be extended to more gate layers. In the case of 16 qubits
with nearest-neighbor interaction gates we also did not use the
BASINHOPPING scheme, which might help us to achieve better
results.
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FIG. 4. VQE performance for the J1-J2-model for all lattice sizes (12, 16, and 20 qubits) without periodic boundary conditions and with
diagonal gates. The lower blue line marks the ground state energy E0, and the upper blue line indicates the energy of the first excited state E1.
The circuit employed in these simulations is as depicted in Fig. 2 with seven layers (framed block in Fig. 2) of two-qubit gates for 12 and 16
qubits and 12 layers for 20 qubits. The insets show the difference of the expectation value Ē from the VQE and the exact ground state energy E0

divided by the spectral gap, which is the difference of the energy of the first excited state E1 and the ground state energy. Horizontal axes show
iteration numbers (if BASINHOPPING was applied, the iteration number for the best initial condition is shown). Note that in the example with 20
qubits, a preoptimization with fewer gate layers was used, and the horizontal axis shows the iteration numbers for only the final optimization.

The largest lattice size we considered was a two-
dimensional grid with 20 qubits. Due to the large size of the
Hilbert space and the risk of running into local minima of
the energy landscape, a good guess for start values of the
variational parameters is beneficial. To achieve this, we first
ran the VQE with seven gate layers, which resulted in a value
for E that lies approximately in the middle of the spectral gap.
For higher accuracy we fed the obtained set of parameters as
an initial guess into our VQE ansatz with 12 ansatz layers,
where we set the θ values for the additional parametrized gates
to 10−5 [50]. With this approach we get a good approximation
of the ground state, albeit at the cost of doubling the number
of ansatz layers.

Overall, we find that due to the parametrized X and Y gates
at the beginning of the ansatz, the spins in the J1-J2-model
can be prepared in the expected spin liquid order for the
ground state or a good approximation of it in most cases of
our simulations. In all configurations, we achieve an energy
result which is closer to the ground state than the first excited
state. The precision of the model could be increased with more
gate layers or with the use of a better suited optimizer that is
less susceptible to local energy minima and the initial state.

b. Ansatz without diagonal interaction gates. To show that
our ansatz works without using gates that mimic the diagonal

J2 interaction, we implemented the VQE without gates on
the diagonals for lattices of 12, 16, and 20 qubits with open
boundary conditions. The results of these simulations can also
be found in Table I. The ansatz here follows the same scheme
as above, except for not applying diagonal interactions via
gates on next-nearest-neighbor qubits (blue boxes in Fig. 2).
Leaving out these gates reduces the gate count in two ways.
First, the omitted gates need not be implemented, and second,
these gates would need to be sandwiched between SWAP gates
in architectures with only nearest-neighbor connectivity as
they cannot be implemented directly.

For this ansatz, we get slightly better results in the opti-
mization for all considered lattice sizes, as can be seen in
Fig. 5 and Table I. This could be due to the fact that fewer
parameters are used and the optimizer is more efficient in find-
ing a minimum and possibly less susceptible to getting stuck
in local minima. The only case where the value is slightly
worse than for the ansatz with diagonal gates is the 16-qubit
lattice, which might be due to the fact that a better initial
state for the optimization was found in the run that included
gates on the diagonals. In the cases of 12 and 16 qubits we
also needed fewer iterations. In turn, the slightly increased
number of iterations needed for the 20-qubit optimization is
caused by the fact that only five layers of gates were used

FIG. 5. VQE performance for the J1-J2-model for all lattice sizes (12, 16, and 20) without periodic boundary conditions and without
diagonal gates. The lower blue line marks the ground state energy E0, and the upper line shows the energy of the first excited state E1. The
circuit employed in these simulations is as depicted in Fig. 2 with seven layers of two-qubit gates for 12 and 16 qubits and 12 layers for
20 qubits. The insets show the difference of the expectation value Ē from the VQE and the exact ground state energy E0 divided by the
spectral gap, which is the difference of the energy of the first excited state E1 and the ground state energy. Horizontal axes show iteration
numbers (if BASINHOPPING was applied, the iteration number for the best initial condition is shown). Note that in the example with 20 qubits,
a preoptimization with fewer gate layers was used, and the horizontal axis shows the iteration numbers for only the final optimization.
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TABLE I. Summary of the results of the various simulations. PBC = periodic boundary conditions.

E0 E1 Ē Ē−E0
E1−E0

Final-state fidelity F

12 with diagonal gates, J2 = 0 −26.777 −24.879 −26.4375 16% 0.97
12 with diagonal gates, J2 = −0.5 −22.138 −20.1559 −21.980 7.9% 0.94
12 with diagonal gates, J2 = −2 −41.240 −40.479 −40.8734 48% 0.94
12 with diagonal gates, PBC −25.7220 −23.0742 −25.441 10.6% 0.96
12 without diagonal gates −22.1380 −20.1559 −21.995 7.2% 0.94
16 with diagonal gates −30.0222 −27.8223 −29.5856 19.9% 0.92
16 without diagonal gates −30.0222 −27.8223 −29.566 20.8% 0.88
20 with diagonal gates −37.7231 −35.9921 −37.416 17.7% 0.94
20 without diagonal gates −37.7231 −35.9921 −37.459 15.3% 0.95

in the “pretraining” stage (compared to seven layers in the
case with gates on the diagonals). Hence, the training of the
full 12-layer circuit in the second training stage required more
iterations. As in the case with the diagonal interaction gates,
the optimization becomes more difficult with a higher number
of parameters in the VQE. Therefore, larger lattices required
larger numbers of iterations for the optimizers we used. (Note
that in the examples with 20 qubits, a preoptimization with
fewer gate layers was used, and the plots in Figs. 4 and 5 show
only the iteration numbers for the final optimization.)

c. Further ground state properties With the wave function
output of our full wave function VQE simulation, we can also
calculate expectation values of other physical observables to
confirm that the prepared state captures well the properties
of the exact ground state. As an example, we calculated the
spin-spin correlation in the x direction 〈σ x

i σ x
j 〉 for the 12-qubit

lattice without diagonal gates and for open boundary condi-
tions. We compare the result with the spin-spin correlation
function of the exact result and calculate the difference, as can
be seen in Fig. 6. We can see very good agreement, showing
that the VQE approximation is, indeed, very accurate.

B. Variation of J2

To explore how well the ansatz performs for different
values of the ratio of the couplings J2/J1, and therefore for
different quantum phases of the model, we show results for a
fixed value of J1 = −1 and varying values of J2 (see Fig. 7).
We choose the range of J2 values such that the different quan-

tum phases of the J1-J2-model are covered. For the collinear
Néel ordered states we choose J2 = −2, and for the Néel
ordered ground state J2 = 0, which thus corresponds to the
Heisenberg model. The obtained values for the energies E can
be found in Table I.

For all choices of J2, our ansatz achieves a good conver-
gence to the respective ground state. For the ground state
energy for the VQE with J2 = 0, we achieve a value of
16% of the spectral gap. For J2 = −2 the VQE achieved a
value of only 48% of the spectral gap. We note that a good
convergence in terms of the spectral gap is, in this case,
difficult to achieve because the spectral gap is very small.
Nonetheless, the achieved energy is close to the ground state
energy. Our findings are thus in agreement with the generic
behavior that in cases where the spectral gap is narrow, more
gate layers have to be used to achieve higher accuracy. We
can thus see that the ansatz is rather versatile and yields good
approximations for all phases of the model. We attribute this
good performance to the choice of the ansatz, including the
parametrized X and Y gates at the beginning of the circuit.

C. Extrapolation of parameter numbers for larger lattice sizes

The effort of running a VQE algorithm is determined by the
number of gates that are needed, which determines the hard-
ware requirements, and the number of variational parameters
that are needed, which determines the number of optimization
steps and thus the number of required measurements.

FIG. 6. Spin-spin correlation in the x direction 〈σ x
i σ x

j 〉 for the 12-qubit lattice without diagonal gates computed from the final state of the
corresponding simulation reported in Table I and Fig. 5. The plot on the left shows the correlation function calculated with the VQE results.
The middle plot is the correlation function of the exact results, and on the right the difference of both can be seen. Subscript s indicates the
results of the VQE simulation, and e indicates the exact results.

144426-6



VARIATIONAL QUANTUM EIGENSOLVER ANSATZ FOR … PHYSICAL REVIEW B 106, 144426 (2022)

FIG. 7. VQE performance for the J1-J2-model with 12 qubits
without diagonal interaction gates. The lighter lines mark the ground
state energy E0 and energy of the first excited state E1. The circuit for
each value of J2 contains seven layers of two-qubit gates as depicted
in Fig. 2.

To estimate how many gates and how many variational
parameters are needed in our ansatz for larger systems, we
plotted the required number of gate layers for the system
sizes for which we did our simulations and extrapolated these
findings to larger system sizes. As a criterion for successful
convergence, we require the achieved expectation value E
to be lower than or equal to half of the spectral gap E �
E0 + (E1 − E0)/2. We then determine the minimal number of
gate layers for all lattice sizes for which we can simulate the
algorithm classically. By fitting a straight line to these data,
we extrapolate the expected required number of gate layers to
larger lattice sizes (see Fig. 8). Note that we found that the
same number of layers of gates were required for both ansätze
(with and without diagonal gates) that we explored. Via this
extrapolation method, we estimate the required number of
two-qubit gate layers for lattice sizes up to 8 × 8 qubits, as
they are beyond the size that could be exactly diagonalized
with classical numerics.

FIG. 8. Number of gate layers required in our numerical studies
to achieve E � 0.5(E1 − E0) + E0 (red dots) for different lattice
sizes and a fit to these data (blue line). The extrapolation of the
fit shows the expected number of gate layers for up to 64 qubits
(corresponding to an 8 × 8 qubit grid). This plot is valid for both
ansätze (with and without diagonal gates) since we found that the
same numbers of gate layers is needed in both cases.

FIG. 9. VQE performance for the J1-J2-model with 12 qubits
with periodic boundary conditions. The lower blue line marks the
ground state energy E0, and the upper line shows the energy of the
first excited state E1. The circuit consists of seven layers of gates plus
the additional X and Y layers at the beginning. The insets show the
difference of the expectation value Ē from the VQE and the exact
ground state energy E0 divided by the spectral gap, which is the
difference of the energy of the first excited state E1 and the ground
state energy. Horizontal axes show iteration numbers (if BASINHOP-
PING was applied, the iteration number for the best initial condition
is shown).

For these lattice sizes one could still compare the results
to those of approximate, classical, and variational meth-
ods [19,20,22] and check which method achieves the lowest
energies. Our estimates suggest that a VQE using our ansatz
without the diagonal gates would require ∼2200 two-qubit
gates and ∼100 single-qubit rotations. At currently available
gate fidelities, such algorithms would need to be improved via
error mitigation techniques [51–53].

V. CONCLUSIONS

We simulated and tested a variational quantum eigensolver
ansatz for the two-dimensional J1-J2-model. Using the pro-
posed ansatz, one can access the ground state energy of this
spin model. Moreover, our ansatz can be used without gates
that directly implement the diagonal next-nearest-neighbor
interactions. This feature allows us to avoid SWAP gates when
executing the gate sequence on hardware with qubits on a
rectangular grid that can only undergo gate operations with
their nearest neighbors. We also analyzed the different quan-
tum phases in the J1-J2-model by varying J2/J1 and saw that
our ansatz worked well for all the different configurations and
led to a sufficient accuracy in the ground state approximation.

To improve the performance, a better suited optimizer than
COBYLA or more BASINHOPPING iterations could be used to
avoid getting stuck in energy plateaus or local minima. An-
other option to improve the performance is greater circuit
depths with more parameters or a more suitable initial con-
figuration that already displays some information about the
system.

By fitting a straight line to the required number of two-
qubit gate layers versus the qubit number, we extrapolated
the growth of the required number of two-qubit gates and
parameters versus the number of qubits. While the required
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number of gates cannot yet be run with sufficient accuracy
on existing hardware, successful VQE implementations that
eventually may challenge the results of classical numerics thus
seem within reach in the near future.
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APPENDIX A: DETAILS OF THE SIMULATION

The simulation of the variational quantum eigensolver
for the J1-J2-model was done in PYTHON 3.8.5 with the
help of NUMPY 1.20.2 [54] using Cirq 0.10.0 [39]. For the
optimization, the built-in optimizers from SCIPY 1.6.3 [55]
were used. We used the gates Cirq.X(Q), Cirq.Y(q), Cirq.Z(q),
Cirq.XX(q1,q2), Cirq.YY(q1,q2) and Cirq.ZZ(q1,q2) built into

Cirq to a power of the respective parameter and defined the
Hamiltonian via Pauli operators in Cirq via CIRQ.PAULISUM.
After applying a sufficient number of gate repetitions, the
circuit is simulated. We used QSIMCIRQ, a full wave function
simulator written in C++ which is much faster than the nor-
mal simulator in Cirq.

The code used to produce the results reported here is avail-
able online [56].

APPENDIX B: RESULTS FOR PERIODIC BOUNDARY
CONDITIONS

For the 12-qubit model we also tested whether the ansatz
works for a lattice with periodic boundary conditions. (In
Fig. 1 periodic boundaries would mean, for example, a J1

interaction between qubits 1 and 4 and qubits 1 and 13, as
well as J2 interactions, e.g., of qubits 1 and 14 and qubits 2
and 13.)

For this lattice with periodic boundary conditions (Fig. 9),
the exact values for the ground and first excited state energies
can be found in Table I. We achieve a value for Ē for which
Ē−E0
E1−E0

< 10%. We thus conclude that our ansatz also works
with periodic boundary conditions and the same number of
gate layers as for the lattice with open boundaries.
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