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An electronic/magnetic order often turns into a different phase of matter when the temperature, pressure,
or magnetic field varies, and resulting changes in physical quantities form the basis of various switching
devices. By contrast, global phase changes triggered by electric current with minimal Joule heating often remain
elusive, although it may offer exotic possibilities for phase manipulation in micro/nanoscale materials. Here,
we report the experimental and numerical realizations of a nonthermal current-induced magnetic transition
for a spatially confined skyrmion-hosting system. In a microfabricated MnSi, the application of a DC current
triggers a nonvolatile suppression of the topological Hall effect, comparable in magnitude to that observed for
the skyrmion-to-nonskyrmion thermodynamic transition of the whole system. A similar current-induced global
transition is also found in numerical simulations with open boundaries. These phenomena are not seen either in
the corresponding bulk system or in the simulation with periodic boundaries, thus, indicating a key role of the
confined geometry in the nonthermodynamic phase change triggered by current.
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I. INTRODUCTION

Global phase control by external stimuli is one of the
promising directions for designing giant responses in solid-
state devices. Equilibrium thermodynamics, or thermody-
namic free energy, provides a firm basis for phase control by
environmental parameters, such as temperature, pressure, or
magnetic field. Phase control by electric current, if feasible,
may be an even more tantalizing direction when considering
the implementation of such phase-control devices in modern
or next-generation nanoscale electronics. From an academic
point of view, however, a material with current flowing is in a
nonequilibrium state, and the general understanding of phase
control by nonthermodynamic pathways, such as current, is
quite challenging. The experimental realization of current-
induced phase changes, which may be called nonequilibrium
phase transition if it is not driven merely by a thermal effect
(Joule heating), have been extensively studied, for instance,
in insulator-to-metal transitions in correlated electron sys-
tems [1–9].

Recently, versatile current-induced spin dynamics in itin-
erant magnets have been demonstrated experimentally, such
as ferromagnetic domain-wall motion [10–12], magnetization
reversal [13–15], and precession of magnetization [16–18].
Theoretically, these nonlinear behaviors are well described
in terms of spin currents and their interactions with mag-
netism [19], and at present, numerical simulations have
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become a powerful method for studying nonequilibrium spin
dynamics under electric currents. Furthermore, some numer-
ical studies point to possibilities for current-induced phase
transitions in magnetic symmetry, for instance, from anti-
ferromagnetic to ferromagnetic phases in a heterostructured
system [20]. These recent advances indicate that spin systems
in itinerant magnets may provide another platform to explore
phase transitions driven by current.

In the present paper, we pursue the experimental realiza-
tion of current-induced global phase changes in magnetism
by targeting skyrmions, nanometer-sized magnetic vortices
characterized by integer topological numbers [21–25]. Pre-
vious studies have established that magnetic skyrmions
can exhibit translational motion under a DC electric cur-
rent [26–30], and a steady skyrmion flow is indeed realized
in bulk [31,32] or periodic-boundary systems [29,33,34].
Whereas such skyrmion translational motion is not accompa-
nied by a change in the macroscopic magnetic symmetry, such
as a neutron-diffraction pattern [31], magnetic phase changes
from helimagnetic/ferromagnetic to skyrmionic states are
also found numerically in periodic-boundary systems at a
current density much higher than that required for the transla-
tional motion [29,35]. However, nonequilibrium states under
a steady current may further be different in small-sized or
open-boundary systems. To sustain a steady skyrmion flow,
the skyrmion creation rate on one boundary of the sample, and
the skyrmion annihilation rate on the opposite boundary must
be balanced, whereas a continuous change in the magnetic
texture is not allowed for topological reasons. This seemingly
incompatible situation would be a stringent constraint in a
system with a large surface-to-volume ratio, leading us to
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FIG. 1. Suppression of the topological Hall effect under a DC electric current in microfabricated MnSi. (a) Schematic of the experimental
configuration. An external magnetic field was applied along the [001] axis, perpendicular to the CaF2 substrate. An electric current was
applied along the long axis of the device. The longitudinal and Hall voltages (Vx and Vy, respectively) were measured at the two different
sets of electrodes. (b) Scanning electron microscope image of the microfabricated MnSi used in this paper. The scale bar represents 5 μm.
(c) Equilibrium magnetic phase diagram of the present specimen. The skyrmion phase boundaries were determined from the ρyx–H profiles
as the midpoint of the hysteresis that was observed during the field-increasing and field-decreasing processes. (d) Hall resistivity as a function
of magnetic field with/without a DC electric current bias (7.7×108 A/m2) at selected temperatures. The topological Hall effect (THE), which
signifies the skyrmion phase, is highlighted by yellow shading. The data were recorded during the field-decreasing process. The magnitude
of the THE is consistent with that observed in bulk MnSi at a similar temperature [42]. (e) Color plot of the current-induced change in the
Hall resistivity. Red open circles delimit the region in which the THE is appreciable during the field-decreasing process under no DC current.
(f) Typical variations in the Hall resistivity as a function of the DC current bias at μ0H = 0.22 T. The yellow shaded region represents the
contribution of the THE shown in (d). The measurements were performed at μ0H = 0.22 T.

envisage that another form of a nonequilibrium state, such
as a global phase transition that has not been found either
experimentally or numerically, may emerge in such a spatially
confined system.

II. RESULTS AND DISCUSSION

A. Sample preparations

Given this working hypothesis, we first performed exper-
iments on a microfabricated system. A MnSi bulk crystal,
a chiral magnet exhibiting a skyrmion lattice phase with
a skyrmion spacing of ∼20 nm [23,36,37] was fabricated
with micrometer dimensions (18.0×1.3×1.2 μm3) using a
focused ion beam (FIB) and transferred onto a CaF2 substrate
[Figs. 1(a) and 1(b)]. We found that the overall transport
characteristics, such as the longitudinal, ordinary Hall, and
anomalous Hall resistivities including their sign (Fig. S1 in

the Supplemental Material [38]), are qualitatively similar to
those in a bulk MnSi specimen [39], and we, thus, constructed
the thermodynamic phase diagram of the present specimen as
shown in Fig. 1(c). Figure 1(d) displays the Hall resistivity ρyx

at selected temperatures T as a function of the magnetic-field
H . The Hall resistivity was measured with a lock-in tech-
nique (see Materials and Methods), and the presence of the
skyrmion phase was confirmed from the emergence of a top-
hat-shaped increase in the Hall voltage [the THE [36,40,41];
see the solid curve measured at 22.5 K in Fig. 1(d)]. The mag-
nitude of the THE is 13 to 14 n� cm at 22.5 K, which is nearly
the same with the value of the (quenched) skyrmion phase in
bulk MnSi at the same temperature [42]. In the obtained phase
diagram, the skyrmion phase is observed in 19–24 K, which
is appreciably lower than the case of the bulk phase diagram
27–29 K [23]. This difference is attributable to the fact that
the microfabricated MnSi is fixed to the CaF2 substrate and,
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thus, at low temperatures the present specimen is under the
in-plane compressive stress as a result of the difference of
the thermal contraction between MnSi and CaF2 (Fig. S2
of the Supplemental Material [38]). In fact, it is known that
the skyrmion phase enlarges toward low temperatures when
a compressive stress is applied perpendicular to a magnetic-
field direction [43].

B. Hall resistivity under current

We then measured ρyx under a DC electric current bias
jdc, particularly, focusing on the resulting changes in the THE
signal. The results are displayed as broken curves in Fig. 1(d).
We found that under jDC = 7.7×108 A/m2, the top-hat-
shaped signal almost disappears, and, accordingly, ρyx varies
smoothly with the magnetic field, whereas the other pro-
files remain nearly unchanged. This feature is also captured
by a color map of �ρyx ≡ ρyx( jDC = 7.7×108 A/m2) −
ρyx( jDC = 0) as shown in Fig. 1(e) where the red open cir-
cles delimit the region in which the THE signal is observed
during the field-decreasing process when the DC current bias
is off. These observations indicate that the application of a
DC current bias exclusively affects the skyrmion phase. The
detailed jdc dependence further reveals that ρyx changes at
jDC = 2.5–4×108 A/m2, above which the ρyx value depends
on jDC only weakly [Fig. 1(f)]; hence, the absence of the THE
is not a property that manifests only at a certain current density
but rather can be viewed as a characteristic of the high-current
regime.

In considering these current-induced phenomena, we will
first show that the suppression of the THE is not due to a
(hypothetical) Joule-heating-driven thermodynamic transition
from the skyrmion phase to a topologically trivial mag-
netic phase at a higher temperature, such as a conical or
ferromagnetic phase (below, we collectively refer to these
phases as nonskyrmionic phases for simplicity). The follow-
ing two experimental results should be highlighted. First, we
did not observe a current-induced THE signal. If a Joule-
heating-driven thermodynamic transition were present, the
current-induced transition in the opposite direction (that is,
from the nonskyrmionic conical phase to the skyrmion phase
at a higher temperature) would also occur, which would be
signified in blue in Fig. 1(e). This is clearly not the case in
these experiments. Second, the sample-temperature increase
estimated from the resistivity data is only ∼0.2–0.3 K (Fig. S3
of the Supplemental Material [38]), too small to explain
the THE suppression observed over the wide temperature
range of 19–24 K. Moreover, our finite-element simulation on
the Joule heating reveals that even if the local temperature
increase due to the Joule heating is considered, a current-
heating-induced transition is still unlikely (for more details,
see the Supplemental Material and Fig. S4 [38]). These exper-
imental and numerical observations, thus, lead us to conclude
that the Joule heating plays a minor role in the present exper-
iment.

We, thus, consider a nonthermal mechanism for the sup-
pression of the THE. As mentioned, two possibilities can be
conceived as the nonequilibrium steady state that emerges
from the original skyrmion phase by applying current: a
steady skyrmion flow, as previously reported for bulk [31,32]

and periodic-boundary systems [33,34], or a different mag-
netic state as a result of a current-induced phase change.
To gain more insight into this issue, we measured the time
evolution of the Hall resistivity ρyx(t ) [Fig. 2(a)]. Note that
the experiments were performed for the thermal equilibrium
skyrmion phase, which was prepared by a field cooling from
a temperature higher than the magnetic ordering to a target
temperature. As expected from the ρyx-H profile shown in
Fig. 1(d), when jDC = 8.3×108 A/m2 is applied (for clarity,
the pulse width was intentionally set to be long, 100 s), |ρyx|
begins to be suppressed and reasonably settles to a value
corresponding to no THE. We note that due to the measure-
ment time constant and the abrupt switching of the electric
circuit in the present experiment, the Hall resistivity was not
measured correctly during the ∼ 30 s after the DC current
was switched on or off (the data in the time duration are,
therefore, shaded in gray. See also Fig. S5 in the Supplemental
Material [38]). What is noteworthy here is that even after the
current is switched off, the reduced |ρyx| remains at a similar
level, thus, excluding the scenario in which the suppression of
the THE signal is due to a steady skyrmion flow, which should
cease when the DC current supply is stopped. By contrast,
this observation is reasonably accounted for by the alternative
scenario in which the application of the current triggers a non-
thermal phase change from the skyrmion phase into another
magnetic phase, in the present case, in a nonvolatile manner.

The latter scenario can also be tested by checking whether a
characteristic found in other nonequilibrium phase transitions
is observed in this current-induced phenomenon. We note that
numerical studies on various types of nonequilibrium phase
transitions including photoinduced phase transitions often ob-
serve that a stronger excitation results in a shorter timescale
to complete the transition [44–46]. In the present experiment,
the low time resolution prevented real-time observation of
the intrinsic phase-evolution dynamics during the current ap-
plication; nevertheless, because of the nonvolatile nature of
the current-induced phenomenon, we could still probe the
time evolution of the suppression of the THE signal simply
by measuring the postpulse ρyx value. We, thus, investigated
the THE suppression while varying the pulse amplitude and
width (Fig. 2(b), the raw data of which are shown in Fig. S6
of the Supplemental Material [38]) and found that the pulse
width required to completely suppress the THE becomes
shorter as the applied current density increases. This obser-
vation highlights the strong correlation between the driving
force and the phase-evolution dynamics, confirming that the
present current-induced phenomenon exhibits a characteristic
of nonequilibrium phase transitions.

The experimental results demonstrate that the equilib-
rium skyrmion-lattice phase can be suppressed by applying
current in a nonvolatile manner to the extent that the
THE signal almost disappears. Previous studies on bulk
MnSi [42,47] and CoFeB [48] multilayer systems have
reported a current-induced global phase change from a ther-
modynamically stable nonskyrmionic state to a metastable
skyrmion-condensed state (thus, the phase transition is in the
opposite direction of the present result). These mechanisms
rely on a thermal effect; that is, the Joule-heating-induced
transition to a thermodynamically stable skyrmion phase at
a higher temperature, followed by thermal quenching. By
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FIG. 2. Current-induced nonvolatile nonequilibrium topological transition from the skyrmion phase to a nonskyrmionic phase. (a) Time
profile of ρyx under switching on/off of a DC current bias. The yellow-hatched region indicates the period of application of the DC current.
During the ∼30 s after the DC current was switched on or off, ρyx was not measured correctly due to the measurement time constant. The
measurement was performed at T = 19.0 K and μ0H = 0.22 T. (b) Contour plot of nonequilibrium phase-change evolution as a function of
the DC current bias and pulse width. The color represents the postpulse value of ρyx. The black dots represent the set of parameters at which
the measurements were performed. The measurements were performed at T = 20.4 K and μ0H = 0.22 T. The raw data are shown in Fig. S6
of the Supplemental Material [38].

contrast, the current-induced phase change addressed in this
paper occurs through a nonthermal mechanism, and it should,
therefore, be distinguished from Joule-heating-induced transi-
tions triggered by current.

C. Metastability of the current-induced state

Let us now discuss the nature of the current-induced state
in more detail. First, from the fact that the thermal equilib-
rium phase is the skyrmion phase, one can immediately see
that the current-induced state is metastable in the absence of
flowing current and, hence, should have a finite lifetime due
to the recovery to the equilibrium skyrmion phase, which is
the most likely final state of the relaxation. To characterize
the nature of such a metastable state from the ρyx(t ) profile,
it is convenient to consider a time-dependent volume frac-
tion of the skyrmion phase by introducing a quantity φ(t ) ≡
[ρyx(t ) − ρDC

yx ]/[ρbefore
yx − ρDC

yx ], where ρbefore
yx and ρDC

yx are the
equilibrium or steady-state values before and during the ap-
plication of a DC current, respectively. With this quantity, we
can compare the time profiles φ(t ) at different temperatures
as shown in Fig. 3(a) (the ρyx(t ) profiles are shown in Fig. S7
of the Supplemental Material [38]). A slow recovery from the
current-induced state with no THE (φ = 0) to the equilibrium
skyrmion phase (φ = 1) can be clearly seen especially at
high temperatures, indicating that the current-induced state
is not a true stable state in the absence of flowing current.
The full recovery of the true equilibrium state, namely, the
skyrmion phase, appears to require a length of time far beyond
104 s; furthermore, the initial relaxation process cannot be
correctly measured due to the measurement time constant
∼ 30 s (Fig. S5 of the Supplemental Material [38]). Because
of this limited time range over which relaxation phenom-
ena were observed, it was difficult to derive a quantitative
relaxation time by fitting to, for instance, an exponential

function. To experimentally characterize the stability of the
current-induced state at a qualitative level, we, therefore, used
the value 1 − φ(t ) after a long elapsed time t = 104 s. The
temperature dependence of this value demonstrates that the
stability of the current-induced state degrades as the tempera-
ture increases [Fig. 3(b)], consistent with the general tendency
that a metastable phase has a shorter lifetime at higher temper-
atures [42,49,50].

D. Magnetic structure of the current-induced state

The remaining issue of importance is the magnetic struc-
ture of the current-induced state. However, obtaining a clear
answer to this question is difficult due to the lack of operando
real-space observations. Nevertheless, important insights can
be derived from the following two observations. First, because
the emergent magnetic phase exhibits no THE, it is imme-
diately clear that it is a nonskyrmionic phase. Second, the
current-induced magnetic phase is metastable in the absence
of flowing current, implying that it is a competing order with
a free energy close to that of the skyrmion phase. According
to the bulk phase diagram [Fig. 1(c)], the second-lowest free-
energy phase after the thermodynamically stable skyrmion
phase should be the conical phase, which is, thus, considered
to be the most likely current-induced phase.

This insight gained from free-energy considerations can
be further verified by checking whether the magnetic-field
dependence of the stability of the current-induced state is
consistent with that would be expected for the conical phase.
In general, when considering the stability of a metastable
state, the free-energy difference between the equilibrium and
the metastable states is an important factor because it is the
driving force for the system to reach the equilibrium state. The
free-energy difference between the conical and the skyrmion
phases is, thus, of interest, and we note that this quantity
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are also represented by referring to Fig. 1(c). The measurements
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vanishes on the phase boundary by definition (Fig. S8 of the
Supplemental Material [38]). The magnetic-field dependence
of 1 − φ(t = 104 s), which is an indicator of the stability of
the current-induced state, is plotted in Fig. 3(c). It can be seen
that the stability is weakest at the center of the skyrmion phase
and strongest at the upper- and lower-field phase boundaries
between the skyrmion and the conical phases. Such nonmono-
tonic metastability is indeed consistent with what would be
expected for the conical phase (for a more detailed explana-
tion, see the Supplemental Material [38]), thereby supporting
the scenario in which the current-induced phase is the conical
phase. Conversely, if we assume that the current-induced state
is a ferromagnetic or helical phase, it is difficult to explain
the nonmonotonic stability profile, which is aligned with the
skyrmion/conical phase boundaries.

E. Numerical simulations

Finally, let us discuss how ubiquitous such current-induced
nonvolatile magnetic phase transitions are. For this purpose, it
would be instructive to see whether such a phase transition
can occur even in the simplest two-dimensional square-lattice
spin model that exhibits a skyrmion phase (see Materials and
Methods). Figure 4(a) shows the ground-state phase diagram
of this model with respect to a magnetic-field h that is nor-
mal to the plane [33,51]. In this model, the skyrmion phase
competes with the helical phase in the low-field regime and
with the ferromagnetic phase in the high-field regime. Thus,
it should be noted that the phase diagram of this numerical
model is different from that of the microfabricated MnSi in
which the skyrmion phase is surrounded by the conical phase
[Fig. 1(c)]. If a similar current-induced nonvolatile phase tran-
sition is also observed in the minimal model, it means that the
presence of this phenomenon does not depend on the details
of the equilibrium magnetic phase diagram. It may, therefore,
be useful to study the minimal model even if the phase dia-
gram is different from that of the microfabricated MnSi. The
behavior under a DC spin current js has been well studied
within the framework of the standard Landau-Lifshitz-Gilbert
equation and established for the corresponding model with
periodic boundaries [29,32]; for instance, the skyrmion lattice
state at equilibrium exhibits a steady flow at js = 0.01 while
maintaining its lattice structure.

In contrast, we found that the model with open boundaries
does not exhibit a steady skyrmion flow but instead under-
goes a current-induced nonvolatile change from the skyrmion
phase to a nonskyrmionic phase. Figures 4(b) and 4(c) display
the time evolution under the same magnitude of js(= 0.01)
at h = 0.02 and 0.025, respectively. As time progresses, the
skyrmions exit the system from the right boundary, whereas
no new skyrmions are supplied from the left; as a result, the
number of skyrmions remaining in the system decreases with
time [Figs. 4(b) and 4(c)], and after a sufficiently long elapsed
time, only a small number of skyrmions remain. Interestingly,
the emergent magnetic order that replaces the initial skyrmion
phase varies with h: It is helical for h = 0.02 [Fig. 4(b)]
and ferromagnetic for h = 0.025 [Fig. 4(c)]. We also found
that these emergent magnetic orders persist even after the
current injection ceases; that is, the current-induced phase is
nonvolatile.

The h-dependent current-induced magnetic order deserves
further discussion. We consider this issue from an energy
perspective as before and, thus, analyze the energy hierarchy
of this model. The results shown in Fig. 4(d) demonstrate that
the phase competing with the skyrmion phase is helical in the
low-field regime (h � 0.025) and ferromagnetic in the high-
field regime (h > 0.025). Intriguingly, this overall tendency is
in line with the h-dependent current-induced magnetic order
[Figs. 4(b) and 4(c)]. We note that this agreement holds only
at a qualitative level, such as whether the current-induced
phase is a helical-like spin-winding state or a ferromagneti-
clike spin-polarized state; to be precise, the current-induced
phase is neither ideally helical nor ideally ferromagnetic as
found at equilibrium. Nevertheless, this qualitative agreement
suggests that there exists an intimate correlation between
the emergent magnetic state under a current and the energy
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hierarchy at equilibrium. We also note that this energy
perspective is the same as the approach that we used
to understand the magnetic-field-dependent stability of the
current-induced phase observed in the microfabricated MnSi.

III. CONCLUDING REMARKS

We have found current-induced nonvolatile magnetic tran-
sitions from the skyrmion phase to nonskyrmion phases in
two different skyrmion systems: Experimentally in microfab-
ricated MnSi and through simulations in a two-dimensional
system with open boundaries; remarkably, the current-induced
transitions are not fractional but involves a global change in
magnetism, comparable to that accompanies the correspond-
ing thermodynamic phase transition of the whole system. The
magnetic phase diagrams of the two systems are different, and
this fact, in turn, implies that current-induced global phase

transitions are inherent to various skyrmion-hosting systems.
As mentioned above, it is known that a steady skyrmion
flow is realized under a DC current in a bulk crystal of
MnSi [31,32] and in simulations of a two-dimensional system
with periodic boundaries [29,33,34]. Given this fact, it is safe
to say that the current-induced magnetic phase transitions
reported here are a characteristic of spatially confined small-
sized systems in which both the system boundaries and the
bulk are expected to play important roles; on the other hand,
the critical sample dimension, below which the skyrmion
steady flow is inhibited and instead the current-induced phase
transition occurs, remains to be clarified. From a broader
perspective, the present observations imply that even if small-
sized and bulk materials exhibit similar physical properties
at equilibrium, each system can exhibit qualitatively different
nonequilibrium phases of matter. Perhaps a tantalizing variety
of novel nonequilibrium phenomena and their applications in
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quantum materials should be explored with attention to the
system size.
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APPENDIX: MATERIALS AND METHODS

1. Sample preparations

A MnSi single crystal was grown via the Czochral-
ski method. The sample was fabricated using a FIB
into a microsized (approximately) bar-shaped specimen
(18.0×1.3×1.2 μm3) with axes along the three equivalent
[100] directions [Figs. 1(a) and 1(b)]. For the details of
the sample geometry, see Fig. S1 in the Supplemental
Material [38].

2. Transport measurements

The Hall resistivity ρyx was measured at 33 Hz with an AC
current excitation (≈7.7×107 A/m2) under a magnetic field
parallel to the 〈100〉 axis using lock-in amplifiers (Stanford
Research Systems SR830) with a lock-in time constant of 3 s
and a 24 dB/oct roll-off, equipped with a preamplifier (NF
Corporation SA410-F3). The DC+AC electric currents were
generated by a function generator (NF Corporation WF1947)
with/without a DC electric current bias jDC along the x direc-
tion. Hence, the Hall resistivity under a DC electric current is
defined as ρyx( jDC) ≡ dEy/d jDC| jDC . The transport properties
are reproducible, thereby, indicating that applying a current of
up to 8.3×108 A/m2 does not cause any detectable damage to
the specimen.

3. Micromagnetic simulation

Simulations were performed for a simple square lattice
consisting of 1000×580 magnetic moments with open bound-
ary conditions in the x and y directions. We considered the
following model Hamiltonian,

H = −J
∑

r

nr · (nr+x̂ + nr+ŷ) (A1)

+ D
∑

r

(nr × nr+x̂ · x̂ + nr × nr+ŷ · ŷ) (A2)

− h
∑

r

nz,r, (A3)

where J is the exchange interaction, D is the Dzyaloshinskii-
Moriya interaction energy, h is the magnetic field along the
z direction, x̂ (or ŷ) is the unit vector of the connection to
the nearest neighbor site along the x (or y) direction, nr is
the unit vector of the local magnetic moment at site r, and
nz,r is the z component of nr. When simulating the current-
induced dynamics of the skyrmions at zero temperature, we
inserted the Hamiltonian into the following Landau-Lifshitz-
Gilbert equation,

dnr

dt
= −γ

dH
dnr

× nr + αnr × dnr

dt

− (vs · ∇)nr + β[nr × (vs · ∇)nr], (A4)

where vs = vsx̂ represents the spin current density, which
is related to the electric current density through vs =
−(pd3/2e) j. The effect of the so-called nonlocal damp-
ing [52] was not taken into account because the previous
results to be compared also did not consider this effect. The
units of dimensionless time t , velocity v, and electric cur-
rent j are 1/(γ J) (≈6.5×1013 s), dγ J (≈7.7×102 m/s), and
2eγ J/pd2 (≈1.0×1013 A/m2), respectively, where e (> 0)
is the elementary charge, γ is the gyromagnetic ratio, p is
the polarization of the magnet, and d is the lattice constant
of the square lattice. We chose the following parameter set:
{J = 1.0, D = 0.2, α = β = 0.04, and j = 0.01}.
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