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Sound attenuation in the hyperhoneycomb Kitaev spin liquid
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In recent years, it has been shown that the phonon dynamics may serve as an indirect probe of fractionalization
of spin degrees of freedom. Here we propose that the sound attenuation measurements allows for the characteri-
zation and identification of the Kitaev quantum spin liquid on the hyperhoneycomb lattice, which is particularly
interesting since the strong Kitaev interaction was observed in the the hyperhoneycomb magnet β-Li2IrO3. To
this end we consider the low-temperature scattering between acoustic phonons and gapless Majorana fermions
with nodal-line band structure. We find that the sound attenuation has a characteristic angular dependence, which
is explicitly shown for the high-symmetry planes at temperatures below the flux energy gap.
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I. INTRODUCTION

Quantum spin liquids (QSLs) are states of matter in which
no symmetry is broken. QSLs are interesting in general be-
cause they exhibit a remarkable set of collective phenomena
including topological ground-state degeneracy, long-range en-
tanglement, and fractionalized excitations [1–7]. In recent
years, much work has been done to understand the nature
of QSLs. However, this is not generically an easy task since
QSLs in realistic models are usually ensured by frustration,
either from a particular geometry of the lattice structure or
from competing spin interactions, even identifying the mod-
els, which host such states is challenging. In this sense, the
exactly solvable Kitaev model on the honeycomb lattice with
QSL ground state [8] and its possible realization in strongly
spin-orbit couple materials [9,10] helped us both with getting
a deeper insight in the nature of QSL state and developing
new approaches for detection of this exotic phase of mat-
ter in experiment. A promising route for searching for QSL
physics in real materials is to look for signatures of spin
fractionalizations in various types of dynamical probes, such
as inelastic neutron scattering, Raman scattering, resonant
inelastic x-ray scattering, ultrafast spectroscopy, and terahertz
nonlinear coherent spectroscopy [5–7,11]. A possibility to
compute the corresponding response functions analytically in
the Kitaev model provides a unique opportunity to explore
the characteristic fingerprints of the QSL physics in these
dynamical probes on a more quantitative level [12–21]. This is
highly significant, because it gives us an opportunity to learn
about generic behavior of other QSLs, which are much more
difficult to describe.

It was recently shown that a lot of information can be
obtained by studying the phonon dynamics in the QSL can-
didate materials [22–29], since the spin-lattice coupling is
inevitable and often rather strong in real materials [30–33].
The characteristic modifications of the phonon dynamics from
the Kitaev QSL compared with their nonmagnetic or magnet-

ically ordered analogs can be probed in various observables,
including the renormalization of the spectrum of acoustic
phonons [33], particular temperature dependence of the sound
attenuation pattern and the phonon Hall viscosity [26–28],
the Fano lineshapes in the optical phonon Raman spectrum
caused by the overlapping of the optical phonon peaks with
the continuum of the fractionalized excitations [29,34–39],
thermal conductivity and thermal Hall effect [31]. While the
presence of the exact solution of the Kitaev model helps to
understand the dynamics of the phonons coupled to the un-
derlying QSL qualitatively, first-principles studies highlighted
the importance of the magnetoelastic coupling for the de-
scription of the various experimental findings in the candidate
materials and, in particular, in α-RuCl3 [40–42].

The Kitaev model can be generalized and defined
for various three-coordinated three-dimensional lattices
[15,16,19,21,43–47], including the hyperhoneycomb, stripy-
honeycomb, hyperhexagon, and hyperoctagon lattices. As
a two-dimensional counterpart, these models are exactly
solvable and have QSL ground state with fractionalized ex-
citations that are gapless Majorana fermions and gapped Z2

gauge fluxes for the isotropic coupling parameters. Impor-
tantly, the Majorana fermions exhibit a rich variety of nodal
structures due to the different (projective) ways symmetries
can act on them [44,45]. These nodal structures include
nodal lines for the hyperhoneycomb and the stripyhoneycomb
models [43], Fermi surfaces for the hyperoctagon model [44],
and the Weyl points for the hyperhexagon model [45].

In this paper we performed a study of the phonon dynamics
in the Kitaev model on the hyperhoneycomb lattice, which is
particularly important among three-dimensional Kitaev mod-
els because of the existence of the Kitaev candidate material
β-Li2IrO3 [48–53], which is realized on the hyperhoneycomb
lattice. While we know that other interactions are present in
this compound in addition to the dominant Kitaev interaction,
here we assume that some good intuition can be obtained
by studying the limiting case of the pure Kitaev model. To
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this end, we derived the Majorana fermion-phonon coupling
vertices using the symmetry considerations and used them for
computation of the phonon attenuation.

The rest of the paper is organized as follows. In
Sec. II, we present the derivation of the spin-phonon Kitaev
Hamiltonian on the hyperhoneycomb lattice. We start by re-
viewing the Kitaev spin model on the hyperhoneycomb lattice
in Sec. II A. We obtain its fermionic band structure and show
that the fermions are gapless along the nodal line within the
�-X -Y plane, for which we obtain an analytical equation. In
Sec. II B, we introduce the lattice Hamiltonian for acoustic
phonons on the hyperhoneycomb lattice. We obtain the acous-
tic phonon spectrum for the D2h point group symmetry in
the long wavelength approximation. In Sec. II C, we present
the explicit microscopic derivation of the Majorana fermion-
phonon (MFPh) coupling vertices and show that there are
four symmetry channels, which contribute into them. The
knowledge of the MFPh couplings allows us to compute the
phonon dynamics, so we use the diagrammatic techniques and
in Sec. III compute the phonon polarization bubble. In Sec. IV,
we present our numerical results for the attenuation coefficient
for acoustic phonon modes. To this end, we first discuss the
kinematic constraints in Sec. IV A and then in Sec. IV B
analyze the angular dependence of the sound attenuation co-
efficient for acoustic phonons with different polarizations. In
Sec.V, we present a short summary and discuss the possibility
for the spin fractionalization in the Kitaev hyperhoneycomb
model to be seen in the sound attenuation measurements by
the ultrasound experiments.

II. THE SPIN-PHONON MODEL

In this section, we introduce the spin-phonon coupled
Kitaev model on the hyperhoneycomb lattice and discuss
its phonon dynamics. It is described by the following
Hamiltonian:

H = Hs + Hph + Hc. (1)

The first term in Eq. (1) is the spin Hamiltonian. The second
term is the bare Hamiltonian for the acoustic phonons. The
third term is the magnetoelastic coupling.

A. The Kitaev model on the hyperhoneycomb lattice

We start by revisiting the main features of the Kitaev
QSL realized on the hyperhoneycomb lattice previously dis-
cussed in Refs. [19,45]. The hyperhoneycomb lattice is a
face-centered orthorhombic lattice with four sites per primi-
tive unit cell. Apart from translational symmetry, the crystal
structure is invariant under the D2h point group symmetry.
The conventional orthorhombic unit cell is set by the crys-
tallographic axes {â, b̂, ĉ}, as shown in Fig. 1. The Cartesian
axes {x̂, ŷ, ẑ} used to write the spin vector field is expressed
as x̂ = (â + ĉ)/

√
2, ŷ = (ĉ − â)/

√
2, and ẑ = −b̂. Different

bond types x, y, and z are marked by red, green, and blue,
respectively. Note, however, that there are two nonequivalent
types of x and y bonds, and the hyperhoneycomb structure can
be viewed as a stacking of two types of zigzag chains formed
by x, y bonds and x′, y′ bonds, each pair running along a + b
and a − b directions, respectively. The two types of chains are

FIG. 1. The sketch of the hyperhoneycomb lattice. The conven-
tional orthorhombic unit cell is set by the crystallographic axes
â, b̂, and ĉ. The three lattice vectors of the primitive face-centered
orthorhombic lattice are given by a1 = (0,

√
2, 3), a2 = (1, 0, 3),

a3 = (1,
√

2, 0), which is written in the crystallographic basis. The
four sublattices A, B, C, and D are shown, and we set rA = (0, 0, 0).
Different bond types x, y, and z are marked by red, green, and blue,
respectively. The Cartesian axes {x̂, ŷ, ẑ} used to write the the spin
Hamiltonian Eq. (2) is related to the crystallographic orthorhombic
axes by x̂ = (â + ĉ)/

√
2, ŷ = (ĉ − â)/

√
2, and ẑ = −b̂. The shaded

region denotes a loop on the hyperhoneycomb lattice containing
10 sites.

interconnected with vertical z bonds. Thus, in total, there are
five types of nearest neighboring bonds: x, x′, y, y′, and z.

The Kitaev spin model on the hyperhoneycomb lattice
reads

Hs = −J

( ∑
〈rr′〉∈{x,x′}

σ x
r σ x

r′ +
∑

〈rr′〉∈{y,y′}
σ y

r σ
y
r′ +

∑
〈rr′〉∈{z}

σ z
r σ z

r′

)
,

(2)
where r and r′ are sites on the three-dimensional hyperhoney-
comb lattice, which we sketch in Fig. 1 and the summation is
done over five types of bonds. We also assumed the isotropic
case with Jx = Jy = Jz = J . The symmetry of the Hamilto-
nian (2) involves a combined lattice and spin transformations
[54,55] (for detailed mathematical description of the transfor-
mations, see Refs. [39,56]). The transformation of the spin
operators in Eq. (2) under the three π rotations around the
crystallographic axes a, b, and c are the following. Under C2a
rotation spins transform as [σ x, σ y, σ z] → [−σ y,−σ x,−σ z],
under C2b rotation [σ x, σ y, σ z] → [−σ x,−σ y, σ z], and un-
der C2c rotation [σ x, σ y, σ z] → [σ y, σ x,−σ z]. Additionally,
D2h group also contains the space inversion I at the middle
of x, x′, y, y′ bonds, which together with spin transformation
leads to [σ x, σ y, σ z] → [σ y, σ x, σ z]. The transformation C2c,
C2b, and I constitute the canonical generators that generate the
whole D2h group.

The exact solution of model (2) is based on the macro-
scopic number of local symmetries in the products of
particular components of the spin operators around every pla-
quette P, which on the hyperhoneycomb lattice consists of
ten sites (see shaded region in Fig. 1) and is defined by the
following plaquette operator Ŵp = ∏

r∈P σ
γ (r)
r , where the spin

component γ (r) is given by the label of the outgoing bond
direction. Since all plaquette operators Ŵp commute with the
Hamiltonian, [Ŵp,Hs] = 0, and take eigenvalues of ±1, the
Hilbert space of the spin Hamiltonian Hs can be divided into
eigenspaces of Ŵp. The ground state of the Kitaev model
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FIG. 2. (a) The dispersion of the lowest branch of the fermionic excitations in the hyperhoneycomb Kitaev model through the plane of the
nodal line K0 = (ka, kb, 0), whose position in the Brillouin zone is explicitly shown in panel (b). (c) One-fermion density of states (DOS) of
the isotropic Kitaev models on the honeycomb (red line) and the hyperhoneycomb (black line) lattices. In each case, the density of states is
normalized to unity.

on the hyperhoneycomb lattice is the zero-flux state with all
Ŵp = 1 [43,45]. This, however, can not be derived exactly
from the Lieb’s theorem [57] but is only based on the numer-
ical calculations [21,45]. Thus, strictly speaking, the Kitaev
model on hyperhoneycomb lattice is not exactly solvable. An-
other striking difference between the hyperhoneycomb Kitaev
spin liquid and its two-dimensional counterpart regards the
effect of the thermal fluctuations on the stability of the ground-
state zero-flux state. While in two-dimensional honeycomb
lattice thermal fluctuations immediately destroy the zero-flux
order of the Z2 gauge field [58,59], in three spatial dimensions
there is a finite-temperature transition separating it from a
high-temperature disordered flux state [21,60,61].

Using the Kitaev’s representation of spins in terms of
Majorana fermions [8], σ

γ
r = ibγ

r cr with γ = x, y, z [8], the
spin Hamiltonian Eq. (2) can be rewritten as

Hs =
∑

γ

∑
〈r,r′〉γ

iJγ η
γ

r,r′cr cr′ = 1

2

∑
r,r′

Hr,r′crcr′ , (3)

where η
γ

r,r′ ≡ ibγ
r bγ

r′ = ±1, Hr,r′ = iJγ η
γ

r,r′ if r and r′ are
neighboring sites connected by a γ bond and Hr,r′ = 0 oth-
erwise. In the ground-state flux sector, we choose the gauge
sector with all η

γ

r,r′ = 1, which corresponds to all Ŵp = 1. The
quadratic fermionic Hamiltonian in Eq. (3) can be diagonal-
ized via a standard procedure [8]. Since the hyperhoneycomb
lattice has four sites per unit cell, the resulting band structure
has four fermion bands, ξ = 1 ∼ 4 (ξ = 1, 2 are the two pos-
itive bands). The diagonal form of the Hamiltonian [19]

Hs =
∑

k

4∑
ξ=1

εk,ξ
[ψ†

k,ξψk,ξ
− 1/2] (4)

is then obtained by the unitary transformation H̃k = Wk · Ek ·
W†

k of the Hermitian matrix H̃k with elements (H̃k )νν ′ =
1
N

∑
r∈ν

∑
r′∈ν ′ Hr,r′ eik·(r′−r), where ν and ν ′ denote sublat-

tices a, b, c, d shown in Fig. 1, and εk,ξ = (Êk )ξξ are the
fermionic energies. The fermionic eigenmodes are given by

ψk,ξ
= 1√

2N

4∑
ν=1

(
W†

k

)
ξν

∑
r∈ν

cr e−ik·r. (5)

Note that only the fermions ψk,ξ with energies εk,ξ > 0 are
physical due to the particle-hole redundancy H̃−k = −H̃∗

k,
which implies ψ−k,ξ

= ψ
†
k,ξ and ε−k,ξ

= εk,ξ . Thus, only
two branches have positive spectrum. The lowest branch εk,1

[shown in Fig. 2(a)] exhibits the nodal line on the (ka, kb)
plane [Fig. 2(b)], which is protected by projective time-
reversal symmetry [45]. By solving the equation εk,1 = 0,
we obtained the functional form of the nodal line K0 =
(ka, kb, 0) with

kb = 1√
2

arg
(
1 − 2 cos ka ± i

√
1 + 4 cos ka − 2 cos 2ka

)
.

(6)

The energy dispersion is linear if expanded around the nodal
line, i.e., each point of the nodal line represents a Dirac
cone. Importantly, the Fermi velocity varies along the nodal
line and depends on the direction of the deviation from it,
i.e., vF = vF (K0, δk), where δk = (δka, δkb, δkc). As we will
see later, the spacial dependence of the Fermi velocity of
the low-energy Majorana fermions will lead to the qualitative
difference in the temperature dependence of the sound attenu-
ation coefficient between the hyperhoneycomb model and the
honeycomb Kitaev model [27,28].

To further characterized the spectrum of Majorana
fermions, in Fig. 2(c) we plot the density of states DOS(E ) =∑

ξ=1,2

∫
BZ δ(E − εk,ξ )d3k for the hyperhoneycomb Kitaev

model (shown by the black line) where the contributions from
both branches of Majorana fermions are summed up. The
low-energy DOS is linear in energy, which follows directly
from the linear low-energy dispersion and the dimension of
the Fermi surface [15]. For comparison, in Fig. 2(c) we also
plot the DOS for the honeycomb model (shown by the red
line). The differences between the DOS for these two lat-
tices can be understood in terms of the number of fermionic
bands, one for the honeycomb lattice and two for the hy-
perhoneycomb lattices, and their nodal structure—two Dirac
points for the honeycomb lattice and the closed line of Dirac
points for the hyperhoneycomb lattice. The former leads to
the absence of the Van Hove singularities and overall more
flatten DOS for the hyperhoneycomb lattice. The latter is
responsible for a faster growth of the hyperhoneycomb DOS
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FIG. 3. Angular dependence of the sound velocities [in the unit of 104 m/s] for (a) longitudinal mode (v‖
s (θ, φ)) and (b) in-plane transverse

mode (v⊥1
s (θ, φ)) and (c) out-of-plane transverse mode (v⊥2

s (θ, φ)) computed, for the elastic modulus coefficients close to those computed for
β-Li2IrO3 [64].

at low energies, which is consistent with higher dimension-
ality of the nodal line and enlarged number of low-energy
states.

B. Acoustic phonons on the hyperhoneycomb lattice

Next we find the spectrum of the acoustic phonons on the
hyperhoneycomb lattice. The bare Hamiltonian for the acous-
tic phonons contains the kinetic and elastic energy, Hph =
Hph

kinetic + Hph
elastic, where Hph

kinetic = ∑
q,μ

P−q,μ·Pq,μ

2ρδV
with Pq,μ

denoting the momentum of the phonon with polarization μ,
δV is the area enclosed in one unit cell and ρ is the mass
density of the lattice ions. The elastic contribution Hph

elastic can
be expressed in terms of the strain tensor εi j = 1

2 (∂iu j + ∂ jui ),
where u = {ua, ub, uc} describes the displacement of an atom
from its original location.

In order to describe the dynamics of the low-energy
acoustic phonons, it is convenient to move away from
the Hamiltonian formulation and employ instead the long-
wavelength effective action S approach. To lowest order, it

reads [62]

S (s)
ph =

∫
d2xdτ [ρ (∂τ u)2 + F ], F = 1

2
Ci jlkεi jεlk, (7)

where F is the elastic free energy and Ci jlk denote the
elements of the elastic modulus tensor. The number of
independent nonzero Ci jlk is dictated by symmetry. The
hyperhoneycomb lattice has Fddd space group [55], which is
generated by three glide planes, which are passing through the
bond center of either of x, x′, y, y′ bonds and are orthogonal
to the a, b, c axes, respectively. The hyperhoneycomb
lattice also has inversion symmetry with respect to the
bond center of x, x′, y, y′ bonds. The inversion thus can
be generated by the product of glide mirrors, e.g., the
inversion on the x bond can be generated by d−1

1 d2d−1
3 ,

where each di glide is accompanied by a half of lattice
translation along the primitive lattice vector ai [63]. Thus
the point group is isomorphic to the D2h, for which there
are nine independent nonzero components of the elastic
modulus tensor Ciiii,Ci ji j,Cii j j , where i and j denote a, b, c.
Performing the Fourier transform, u(r) = 1√

N

∑
q eiq·ruq, the

elastic free energy can be explicitly written as

F = 1

2

⎛
⎝Caaaaq2

a + Cacacq2
c + Cababq2

b qbqa (Caabb + Cabab) qaqc (Caacc + Cacac)
qbqa(Caabb + Cabab) Cababq2

a + Cbcbcq2
c + Cbbbbq2

b qbqc (Cbbcc + Cbcbc)
qaqc (Caacc + Cacac) qbqc (Cbbcc + Cbcbc) Cacacq2

a + Cccccq2
c + Cbcbcq2

b

⎞
⎠, (8)

where qa = q sin θq cos φq, qb = q sin θq sin φq, and qc =
q cos θq are the components of the acoustic vector q in the or-
thorhombic reference frame. By diagonalizing the matrix (8),
we compute eigenmodes, one longitudinal and two transverse
acoustic modes, and the corresponding eigenenergies: the lon-
gitudinal and transverse acoustic phonons are then given by⎛

⎜⎝
uq,a

uq,b

uq,c

⎞
⎟⎠ =

⎛
⎝R11 R12 R13

R21 R22 R23

R31 R32 R33

⎞
⎠

⎛
⎝ ũ‖

q

ũ⊥1
q

ũ⊥2
q

⎞
⎠, (9)

where R̂ ≡ R̂(θq, φq) is the transformation matrix, ũ‖
q, ũ⊥1

q and
ũ⊥2

q are the longitudinal and transverse acoustic eigenmodes,
respectively. The energies of the longitudinal and transverse

acoustic phonons are

�ν
q = vν

s (θq, φq)q, (10)

where the sound velocities vν
s for the longitudinal acoustic

mode, v‖
s (θq, φq), and two transverse modes, v⊥1

s (θq, φq) and
v⊥2

s (θq, φq) are anisotropic in space.
In Fig. 3, we plot the angular dependence of these

velocities computed for the elastic modulus tensor coeffi-
cients close to those computed for β-Li2IrO3: we set Ciiii =
2800 kbar, i = a, b, c, Caacc = Cbbcc = 1300 kbar, Caabb =
Cabab = Cacac = Cbcbc = 900 kbar [64]. We see that the an-
gular dependence of the sound velocities is not that strong.
In the plot, the maximum sound velocity is estimated to
be 2 × 104 m/s, which is in the middle of the sound ve-
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FIG. 4. A, B,C, D denote four sublattices of the hyperhoney-
comb lattice. M1 = 1

2 (1,
√

2, −1), M2 = 1
2 (1,−√

2, −1), M3 =
1
2 (−1,−√

2, −1), M4 = 1
2 (−1,

√
2,−1), and M5 = (0, 0, 1) are

five nearest-neighboring vectors, corresponding to y, y′, x, x′, z
bonds, respectively (all the vectors are given in the crystallographic
axes â, b̂, and ĉ). We use the following convention: An arrow point-
ing from site r to r′ means ur,r′ on the corresponding bond is positive.

locities reported for different directions in α-RuCl3 [65].
For the elastic modulus tensor given above, and restrict-
ing phonon modes to ab, bc and ac crystallographic planes,
we numerically checked that the first column of the ro-
tation matrix R̂ corresponding to the longitudinal mode
indeed gives the vector parallel to q, i.e., (R11, R21, R31)T =
(sin θq cos φq, sin θq sin φq, cos θq)T, while the second and the
third columns are perpendicular to q (the second column with
label ⊥1 corresponds to the in-plane transverse mode, and the
third column with label ⊥2 corresponds to the out-of-plane
transverse mode).

Knowing the acoustic phonon dispersion relations (10), we
can now determine the free phonon propagator in terms of
lattice displacement field ũν

q as

D(0) νν ′
q (t ) = −i

〈
T ũν

−q(t )ũν ′
q (0)

〉(0)
, (11)

where T is time ordering operator, the superscript (0) denotes
the bare propagator, ν =‖,⊥1,⊥2 labels the polarization, and
ũν

q are phonon eigenmodes in the corresponding polarization,
which in the second quantized form can be written as

ũν
q(t ) = i

(
h̄

2ρ δV �ν
q

)1/2

(ãqe−i�ν
qt + ã†

−qei�ν
qt ), (12)

where δV is the area enclosed in one unit cell and ρ is the mass
density of the lattice ions. In the momentum and frequency
space, the bare phonon propagator is then given by

D(0)νν (q,�) = − h̄

ρ δV

1

�2 − (�ν
q)2 + i0+ . (13)

The dynamics of phonons will be thus described by the decay
and scattering of these eigenmodes on low-energy fractional-
ized excitations of the Kitaev model, which can be accounted
for by the phonon self-energy �ph(q,�) [27], which for this
case we will discuss later in Sec. III. The renormalized phonon
propagator is then given by the Dyson equation D(q,�) =
[(D(0)(q,�))−1 − �ph(q,�)]−1.

C. The Majorana fermion-phonon coupling vertices

In order to study the phonon dynamics in the Kitaev spin
liquid, it remains to compute the Majorana fermion-phonon
(MFPh) coupling vertices, which we will do in this section.
We recall that the magneto-elastic coupling Hc arises from
the change in the Kitaev coupling due to the lattice vibrations.
In the long wavelength limit for acoustic phonons, the cou-
pling Hamiltonian on the bond can be written in a differential
form as

Hc
r,r+Mα

= λMα · [u(r + Mα ) − u(r)]σα
r σα

r+Mα

= λMα · [(Mα · ∇ )u(r)]σα
r σα

r+Mα
, (14)

where λ ∼ ( dJ
dr ) eq �a is the strength of the spin-phonon inter-

action and �a is the lattice constant, and Mα = M1, ...M5 are
five nearest-neighboring vectors corresponding, respectively,
to y, y′, x, x′, z bonds shown in Fig. 4. Note that this is a
simplified form of the coupling, since it only takes into ac-
count the dependence of the Kitaev interaction between two
nearest-neighbor pseudospins on the Ir-Ir distance but not on
the Ir-O-Ir bond angle. Using Mα vectors, we can write the
spin-phonon coupling Hamiltonian explicitly [66],

Hc = 1

4
λ

[∑
rA

(
4σ z

rA
σ z

rA+M5
εcc + σ y

rA
σ

y
rA+M2

(εaa + 2εbb + εcc − 2
√

2(εab − εbc) − 2εac)

+ σ x
rA

σ x
ra+M4

(εaa + 2εbb + εcc − 2
√

2(εab + εbc) + 2εac)
) +

∑
rB

(
σ y

rB
σ

y
rB+M1

(εaa + 2εbb + εcc + 2
√

2(εab − εbc) − 2εac)

+ σ x
rB

σ x
rB+M3

(εaa + 2εbb + εcc + 2
√

2(εab + εbc) + 2εac)
)]

, (15)

where we use a short notation εi j ≡ εi j (r) with r = rA or rB depending on the bond and i, j one of the orthorhombic
directions a, b, c.

Under the D2h point group symmetry, the spin-phonon Hamiltonian has four independent symmetry channels, Ag, B1g, B2g,
and B3g, which are inversion-symmetric irreducible representations (IRRs) of this group. The linear combinations of the strain
tensors that transform as the D2h are εaa, εbb, and εcc, in the Ag channel, and εab, εac, and εbc in B1g, B2g, and B3g, respectively. By
writing the linear combinations of the Kitaev interactions that transform according to these IRRs, we express the spin-phonon
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coupling Hamiltonian (15) as a sum of four independent contributions, Hc = Hc
Ag

+ Hc
B1g

+ Hc
B2g

+ Hc
B3g

with

Hc
Ag

= λAg

∑
rA,rB

[
4εccσ

z
rA

σ z
rA+M5

+ (εaa + 2εbb + εcc)
(
σ y

rB
σ

y
rB+M1

+ σ y
rA

σ
y
rA+M2

+ σ x
rB

σ x
rB+M3

+ σ x
rA

σ x
rA+M4

)]
,

Hc
B1g

= λB1g

∑
rA,rB

εab
(
σ y

rB
σ

y
rB+M1

− σ y
rA

σ
y
rA+M2

+ σ x
rB

σ x
rB+M3

− σ x
rA

σ x
rA+M4

)
,

Hc
B2g

= λB2g

∑
rA,rB

εac
( − σ y

rB
σ

y
rB+M1

− σ y
rA

σ
y
rA+M2

+ σ x
rB

σ x
rB+M3

+ σ x
rA

σ x
rA+M4

)
,

Hc
B3g

= λB3g

∑
rA,rB

εbc
( − σ y

rB
σ

y
rB+M1

+ σ y
rA

σ
y
rA+M2

+ σ x
rB

σ x
rB+M3

− σ x
rA

σ x
rA+M4

)
, (16)

where we absorbed numerical prefactors into the definitions
of the coupling constants λAg, λB1g, λB2g , and λB3g .

Next, we express the spin operators in terms of the
Majorana fermions and assume the ground state flux sec-
tor. Then we perform the Fourier transformation on both
the strain tensor, εi j (r) = 1√

N

∑
q

i
2 (qiuq, j + q juq,i )eiq·r, and

the Majorana fermions, cr,α =
√

2
N

∑
k ck,αeik·rα , where α =

A, B, C, D is the sublattice label (see Fig. 4). Now the prod-
ucts of the spin variables on all nonequivalent bonds can be
written as (with the long wavelength approximation q → 0
applied)

σ y
r σ

y
r+M1

→ AT
−q−kS†

k

⎛
⎜⎜⎝

0 −ieik·a3 0 0
ie−ik·a3 0 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠SkAk,

σ y
r σ

y
r+M2

→ AT
−q−kS†

k

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 ieik·a1

0 0 −ie−ik·a1 0

⎞
⎟⎟⎠SkAk,

σ x
r σ x

r+M3
→ AT

−q−kS†
k

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠SkAk,

σ x
r σ x

r+M4
→ AT

−q−kS†
k

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 ieik·a2

0 0 −ie−ik·a2 0

⎞
⎟⎟⎠SkAk,

σ z
r σ z

r+M5
→ AT

−q−kS†
k

⎛
⎜⎝

0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

⎞
⎟⎠SkAk,

where ai are the primitive unit vectors, Sk =
diag{eik·rα }α=C,B,D,A is the diagonal matrix in the sublattice
basis, and the vector Ak = (ck,C, ck,B, ck,D, ck,A)T. The
Majorana-phonon coupling Hamiltonian in the momentum

space is now can be written as Hc =
√

2
N

∑
q,k Hq,k, where

each contribution Hq,k can be decomposed into the irreducible
representations Ag, B1g, B2g and B3g (see Appendix A for
explicit expressions). Note also that Ak is written in this
particular permuted basis of the Majorana fermions in order
to use the convenience of the auxiliary Pauli matrices in the

representation of the coupling Hamiltonians as shown in
Eq. (A2).

Next we express the phonon modes in terms of the trans-
verse and longitudinal eigenmodes defined in Eq. (9). Then
Hq,k terms in the corresponding polarizations are given by

H‖
q,k = ũ‖

q AT
−q−k S†

k λ̂
‖
q,k Sk Ak,

H⊥1
q,k = ũ⊥1

q AT
−q−k S†

k λ̂
⊥1
q,k Sk Ak, (17)

H⊥2
q,k = ũ⊥1

q AT
−q−k S†

k λ̂
⊥2
q,k Sk Ak.

The explicit expressions for the MFPh coupling vertices λ̂
μ

q,k
are given by Eq. (A4) in Appendix A. Note also that since we
are using the long wavelength limit for the phonons, we only
kept the leading in q terms in all λ̂

μ

q,k.

III. PHONON POLARIZATION BUBBLE

At the lowest order, the phonon self-energy is given by the
polarization bubble [27]

�
μν
ph (q,�) = iTr[λ̃μ

q,kG(k, ω + �)λ̃ν
q,kG(k + q, ω)], (18)

where λ̃
μ(ν)
q,k = Wkλ̂

μ(ν)
q,k W†

k are the MFPh coupling ver-
tices, expressed in the basis of the fermion eigenmodes,
and Wk is the unitary transformation matrix. G(k, ω)ξξ ′ =
−i

∫ +∞
−∞ dt〈T ψk,ξ (t )ψ†

−k,ξ ′ (0)〉eiωt is the fermion Green’s
function, where ξ indexes the energy branches, making G a
4 × 4 matrix. Since we focus on the low-temperature physics,
hereafter, we will keep only the lower-positive-energy branch
along with its counterpart negative-energy branch. We will
also omit the branch index and simply write ψk ≡ ψk,1. So the
fermion Green’s function becomes a 2 × 2 matrix: G(k, ω) =( g(k,ω) 0

0 ḡ(k,ω)

)
, where

g(k, ω) = −i
∫

dt
〈
T ψk(t )ψ†

k (0)
〉
eiωt = 1

ω − εk + i0+ ,

ḡ(k, ω) = −i
∫

dt
〈
T ψ

†
k (t )ψk(0)

〉
eiωt = 1

ω + εk − i0+ .

(19)

Correspondingly, the MFPh coupling λ̃
μ(ν)
q,k is also truncated to

be 2 × 2 matrix.
Since we are interested in the phonon decay and scattering

at finite temperature, it is convenient to express Eq. (18) in
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terms of Matsubara frequency representation,

�
μν
ph (q, i�n) =

∫
BZ

dk Tr
[
λ̃

μ

q,kG(k, iωm + i�n)λ̃ν
q,k

× G
(
k + q, iωm

)]
=

∫
BZ

dk
∑

i j

∑
l

[
λ̃

μ

q,kÊiλ̃
ν
q,kÊ j

]
ll

Pk,i j (20)

where Tr[. . .] in the first two lines sums over the Matsubara
frequencies iωm, and Êi = (

δi1 0
0 δi2

)
serves to pick up a specific

entry of a matrix. The summation over the Matsubara frequen-
cies gives the dynamic part of the matrix entries

Pk,i j = T
∑
iωm

[
G(k, iωm + i�n)iiG(k + q, iωm) j j

]
. (21)

Their explicit expressions are given in Appendix C.

IV. ANGULAR DEPENDENCE OF THE ATTENUATION
COEFFICIENT

In this section, we will compute the attenuation coefficient
for the lossy acoustic wave function, which decays with dis-
tance away from the driving source as

u(x, t ) = u0e−αs (q)xei(�qt−q·x), (22)

where u(x, t ) is the lattice displacement vector, u0 = u(x =
0, t = 0), �q is the acoustic wave frequency and q =
q(sin θq cos φq, sin θq sin φq, cos θq) is the propagation vector.
The attenuation coefficient αμ

s (q) for a given phonon polariza-
tion μ =‖,⊥1,⊥2, defined as the inverse of the phonon mean
free path, can be calculated from the diagonal component of
the imaginary part of the phonon self-energy as [27]

αμ
s (q) = − 1

2ρδV [vμ
s (θq, φq)]2q

Im �
μμ
ph (q,�)

∣∣
�=v

μ
s (θq,φq )q

.

(23)

A. Kinematic constraints and the estimates for the sound and
Fermi velocities in β-Li2IrO3

Before analyzing the angular dependence of the sound
attenuation coefficient, we need first discuss the kinematic
constraints determining type of the processes involved in
sound attenuation. In the zero-flux low-temperature phase,
both momentum and energy are conserved and kinematic
constrains are primarily determined by the relative strength
of acoustic phonon velocity vs(θq, φq) and Fermi velocity
vF (K0, θδk, φδk ) (the slope of the Dirac cone at each point
of the nodal line), which in the most general case are both
angular dependent. These constraints determine whether the
decay of the acoustic phonon happens in the particle-hole
(ph) or in the particle-particle (pp) channel. Here, by particle
and hole, we mean if the state of the Majorana fermion at εk
(εk = εk,1) is occupied or empty. In other words, the particle
number refers to that of the complex fermion ψk (ψk = ψk,1)
in Eq. (4).

Here we assume that the angular dependence of vs(θq, φq)
in β-Li2IrO3 is weak (see the magnitude scale bars in Fig. 3)
and consider it to be equal to vs. However, the Fermi velocity

vF (K0, θδk, φδk ) varies strongly between vF = 0 along the
nodal line and max(vF ), which can be estimated from the
magnitude of the Kitaev coupling, which in β-Li2IrO3 is J �
20 mev [51–53,67]. Taking the lattice constant to be equal
to � = 0.23 nm [68], we estimate max(vF ) = 3 J� = 2.1 ×
104 m/s. According to the estimation of the sound velocity in
Sec. II B, v‖

s � 2.0 × 104 m/s � max(vF ), and v
⊥1,2
s � 1.1 ×

104 m/s < max(vF ). When vs < max(vF ), the ph processes
are allowed but since they require finite occupation number,
they scale with T at low temperatures. However, due to the
existence of the nodal line along which the Fermi velocity
vF = 0, the pp processes are always allowed [28]. Since they
do not require finite occupation number, they are nonzero even
at zero temperature. Therefore, both the pp processes and ph
processes should be included into consideration.

B. Numerical results

Considering the estimations above, we set v‖
s = 3 J� and

v
⊥1,2
s ≈ 1.6 J�. We also take T = 0.02 J , which is below the

flux energy gap. In the long wavelength limit, the angular
dependence of the sound attenuation coefficient is scale invari-
ant and is more experimentally relevant than the dependence
on the magnitude of the momentum q. Thus, we fix q =
0.005 �−1 and show the polar plots of the angular dependence
of the sound attenuation (where the radius represents the
magnitude of the sound attenuation coefficient). This angu-
lar dependence is a direct reflection of the Majorana-phonon
couplings (16) constructed based on symmetry.

We compute the sound attenuation coefficient in the four
symmetry channels, Ag, B1g, B2g, B3g, considering separately
the contributions from the pp- and ph-scattering processes. In
Figs. 5–7, we present our results for the sound attenuation’s
angular dependence patterns for the phonon modes in the
three crystallographic planes, correspondingly, ab, ac, and
bc, for three phonon’s polarizations, ‖,⊥1,⊥2. The explicit
expressions for the Majoarana-phonon coupling vertices in
these special geometries are presented in Appendix B. These
expressions show that for each of the phonon polarizations,
the coupling vertex has contributions from only two symmetry
channels and another two symmetry channels give exactly
zero contribution. Furthermore, we find that some symmetry
channels have higher order (dominant) contributions in the
long wavelength limit q → 0. So, below we will only show
the results from the leading order contributions into sound
attenuation for each crystallographic plane.

Phonon within the ab plane. The contributions from the
pp- and ph-scattering processes for the attenuation coefficient
for the phonon propagating in the ab plane are shown in
Figs. 5(a)–5(c) and 5(d), and 5(e), respectively. This plane
is special compared with bc and ac planes, because of the
presence of the nodal line in the fermionic spectrum [see
Fig. 2(a)] as well as the crystallographic structure shown in
Fig. 1. As such, there always exist zero Fermi velocities along
the nodal line and small Fermi velocities in the vicinity of
the nodal line. Therefore, the sound velocities along these
directions are larger than the Fermi velocities, which gives
rise to the nonzero pp processes. In this scattering geometry,
the pp processes contribute only in the attenuation of the
out-of-plane transverse phonon mode in the ⊥2 polarization
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FIG. 5. The angular dependence of sound attenuation coefficient αμ
s (θq = 90◦, φq ) in the ab plane. The pp processes contribute to the

attenuation of the out-of-plane transverse phonon mode (α⊥2
s ) in (a) B2g channel, (b) B3g channel, and (c) combined B2g and B3g channels. The

ph processes contribute to (d) the attenuation of the longitudinal phonon (α‖
s ) and to (e) the attenuation of the in-plane transverse phonon mode

(α⊥1
s ) in the Ag channel. The radius represents the magnitude of αμ

s in the units of 10−5ρδV . The calculation is performed at T = 0.02 J .

FIG. 6. The angular dependence of sound attenuation coefficient αμ
s (θq, φq = 0◦) in the ac plane. The pp processes contribute to (a) the

attenuation of the longitudinal phonon (α‖
s ) in B2g channel, (b) the attenuation of the in-plane transverse phonon (α⊥1

s ) in the B2g channel, and
(c) the attenuation of the out-of-plane transverse phonon (α⊥2

s ) in the B3g channel. The ph processes contribute to (d) the attenuation of the
longitudinal phonon (α‖

s ) and (e) of the in-plane transverse phonon (α⊥1
s ) in the Ag channel. The radius represents the magnitude of αμ

s in the
units of 10−5ρδV . The calculation is performed at T = 0.02 J .
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FIG. 7. The angular dependence of sound attenuation coefficient αμ
s (θq, φq = 90◦) in the bc plane. The pp processes contribute to (a) the

attenuation of the longitudinal phonon (α‖
s ) in B3g channel, (b) the attenuation of the in-plane transverse phonon (α⊥1

s ) in the B3g channel, and
(c) the attenuation of the out-of-plane transverse phonon (α⊥2

s ) in the B2g channel. The ph processes contribute to (d) the attenuation of the
longitudinal phonon (α‖

s ) and (e) of the in-plane transverse phonon (α⊥1
s ) in the Ag channel. The radius represents the magnitude of αμ

s in the
units of 10−5ρδV . The calculation is performed at T = 0.02 J .

α⊥2
s (q). As follows from Eq. (B3), α⊥2

s (q) has two contribu-
tions, one from the B2g channel [Fig. 5(a)], describing the
attenuation of lattice vibrations in the ac plane, and from
the B3g channel [Fig. 5(b)], describing the attenuation of
lattice vibrations in the bc plane, with the former being a
bit stronger. The total sound attenuation of the out-of-plane
transverse phonon mode α⊥2

s (q) shown in Fig. 5(c) is the sum
of these two contributions, and its angular dependence looks
like twofold symmetric four-petal pattern.

Since v‖
s � max(vF ) and v

⊥1,2
s < max(vF ), the ph pro-

cesses are also allowed. They contribute to the attenuation of
the longitudinal phonon mode α‖

s (q) shown in Fig. 5(d) and
of the in-plane transverse mode α⊥1

s (q) shown in Fig. 5(e).
According to the form of Majorana-phonon coupling vertices
in this geometry given by Eq. (B1) and Eq. (B2), the atten-
uation of both the longitudinal and the in-plane transverse
phonons comes from the dominant Ag and subdominant B1g

channels. However, at T = 0.02 J both contributions are very
small compared with the one from the pp proecesses. Thus in
Figs. 5(d) and 5(e) we only show the angular dependence of
the attenuation computed from the Ag contribution, which dis-
plays a vertical dumbbell pattern for α‖

s (q), and the diagonal
four-petal pattern for α⊥1

s (q).
Note, however, that the comparison of the magnitude of

the sound attenuation coefficients between ph and pp pro-
cesses needs to take into consideration the temperature effect
[28]. Since the pp processes do not require finite particle
number, the low-temperature scaling behavior of its contri-
bution to the sound attenuation coefficient does not depend
on temperature, i.e., αpp

s ∼ T 0. The ph processes require finite
particle occupation, and its low-temperature scaling behavior

is α
ph
s ∼ T 1 same as in the 2D Kitaev model [27]. This is a

direct result of the fact that the low-energy DOS(E ) ∼ E1 as
shown in Fig. 5(c). This low-energy scaling behavior of DOS
can also be analytically obtained by evaluating DOS(E ) =∫

BZ d3k δ(E − εk ). Then at low energy, if we expand the
fermionic spectrum around the nodal line, then

DOS(E ) =
∫

BZ
d3k δ(E − vF (kφ, δkθ ) δkr ), (24)

where kφ uniquely specifies a point on the nodal line by
its orientation φ. Around this nodal point, on a neighbor-
ing disk locally perpendicular to the nodal line, (δkθ , δkr )
uniquely specifies the k point that contributes to the DOS.
Then the integration Eq. (24) is equivalent to stringing the
local disks together along the nodal line. So it is easy to see
that the low-energy scaling behavior of DOS(E ) is decided
by the co-dimension, i.e., the dimension of the BZ space
minus the nodal dimension. Thus, the low-energy behavior of
DOS(E ) ∼ E1 is the same for both 2D plane model and 3D
hyperhoneycomb model, so is the low-temperature behavior
of the sound attenuation coefficient.

The low-temperature behaviours of both pp- and ph pro-
cesses distinguish themselves from the attenuation of other
interaction channels, such as the channel due to phonon-
phonon interactions, which scales as as ∼T 3 in 2D and ∼T 5

in 3D, so they are promising for experimental detection at low
enough temperature.

Our numerical calculation shows that, even though the tem-
perature dependence of attenuation from ph process has larger
power than that from pp process, pp process still dominates at
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high temperatures. The main reason is that Fermi velocities
range from 0 to max(vF ) = 3J�, so the sound velocities v‖

s =
3 J� and v

⊥1,2
s ≈ 1.6 J�, which we use to describe the phonons

in β-Li2IrO3 compound, are still larger than a significant por-
tion of Fermi velocities, which is consistent with an existence
of the nearly-zero Fermi velocities along the nodal line. If we
use fictitious smaller sound velocities, the contribution from
the ph processes will become larger [28].

Phonon within the ac or bc planes. As shown in Fig. 6 and
Fig. 7, the attenuation of the phonons propagating in the ac
and bc planes are similar, which is consistent with the crys-
tallographic structure displayed in Fig. 1. Because the Fermi
velocities for small deviations k from the nodal line K0 =
(ka, kb, 0) either into the ac or into the bc planes are small,
at low temperatures the pp processes dominate over the ph
processes and thus define the angular dependence of the sound
attenuation. In both geometries, the pp processes contribute to
the attenuation of the phonons with all three different polar-
izations angular, with similar angular patters. However, while
for the phonon in the ac plane, the strongest attenuation is for
the in-plane transverse phonon (α⊥1

s ), for the phonon in the bc
plane, the strongest attenuation is for out-of-plane transverse
polarization (α⊥2

s ). In both geometries, attenuation of phonons
with out-of-plane transverse polarization only happen through
pp processes and displays the vertical dumbbell pattern. The
four-petal angular patterns of attenuation of the longitudinal
and the in-plane transverse phonons are rotated by 45◦ with
respect to each other. As mentioned before, these distinct pat-
terns directly reflect the spin-phonon couplings from different
symmetry channels, probed by different phonon polarization
modes. The temperature dependence of the sound attenuation
of the phonons propagating in ac or bc planes is similar to that
in ab plane.

V. SUMMARY

In this paper, we studied the three-dimensional Kitaev spin-
phonon model on the hyperhoneycomb lattice. In this model,
the sound attenuation is determined by the decay of a phonon
into a pair of Majorana fermions and can be calculated from
the imaginary part of the phonon self-energy, which at the
lowest order is given by the polarization bubble. Thus, we
argued that the phonon attenuation, measurable by the ultra-
sound experiments, can serve as an effective indirect probe of
the spin fractionalization.

In our paper we considered only low temperatures below
the flux disordering transition [60], in which only Majorana
fermions contribute to the phonon self-energy. We showed

that Majorana semimetal with nodal line band structure leaves
distinct characteristic fingerprints in the temperature depen-
dence of the phonon attenuation coefficient as a function of
incident phonon momentum. First, it allows the presence of
the pp processes of the phonon decay in all three considered
scattering geometries with the phonon propagating in one of
the three crystallographic planes. Second, since the pp pro-
cesses of the phonon decay is allowed at all temperatures,
the sound attenuation is nonzero even at zero temperature and
is almost temperature independent (∼T 0) at lowest temper-
atures. Combining both pp processes and ph processes that
are allowed by symmetry constraints for each scattering ge-
ometry and phonon polarization, the temperature dependence
of attenuation coefficient can be schematically described by
aT T 0 + bT T 1 with aT > bT . Thus, the sound attenuation con-
tributed from the decay into fractionalized excitations will be
the dominant one at low enough temperatures, distinguish-
ing itself from the contribution due to the phonon-phonon
interactions, which scales as ∝ T 5 in the three-dimensional
system. We anticipate that the Z2 fluxes will play an impor-
tant role on the phonon dynamics at temperatures above the
flux ordering transition temperature. We also obtained that
the sound attenuation shows a strong angular dependence at
the leading order in phonon momentum q. It is determined
by the anisotropic form of the MFPh coupling and the nodal
structure of the low-energy fermionic excitations.

Finally, we note that our study was performed for the pure
Kitaev model. Of course, real Kitaev materials feature ad-
ditional weak time-reversal-invariant non-Kitaev interactions,
which give rise to other magnetic phases competing with the
Kitaev spin liquid. In particular, the minimal spin Hamiltonian
for the β-Li2IrO3 compound in addition to the Kitaev coupling
has contains antiferromagnetic Heisenberg interaction and
off-diagonal � exchange term [69]. Nevertheless, we believe
that the temperature evolution of the sound attenuation will
remain similar to the one in the pure Kitaev model as long
as these perturbations do not break time reversal symmetry
protecting the nodal line [46] and are small enough that the
material is in the proximity to the spin liquid phase.
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APPENDIX A: DETAILS OF THE MFPH COUPLING’S DERIVATION

In this Appendix we present the technical details of the derivation of the Majorana fermion-phonon (MFPh) coupling. In the
momentum space, the Majorana-phonon coupling Hamiltonian is can be written as

Hc =
√

2

N

∑
q,k

(
HAg

q,k + HB1g

q,k + HB2g

q,k + HB3g

q,k

)
, (A1)
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where the explicit expressions for the contributions from different symmetry channels are given by

HAg

q,k = iλAg

(
4qcuq,cAT

−q−kS†
k

(
Ô −iσ̂3

iσ̂3 Ô

)
SkAk + (qcuq,c + 2qbuq,b + qauq,a)AT

−q−kS†
kQ̂k,1SkAk

)
,

HB1g

q,k = iλB1g

2
(qauq,b + qbuq,a) AT

−q−kS†
kQ̂k,2SkAk,

HB2g

q,k = iλB2g

2
(qauq,c + qcuq,a) AT

−q−kS†
kQ̂k,3SkAk,

HB3g

q,k = iλB3g

2
(qbuq,c + qcuq,b) AT

−q−kS†
kQ̂k,4SkAk. (A2)

Here Sk = diag{eik·rα }α=C,B,D,A is the diagonal matrix in the sublattice basis, Ô = ( 0 0
0 0

)
is the zero 2 by 2 matrix, σ̂i are the

auxiliary Pauli matrices, and the explicit expressions for Q̂k-matrices are given by

Q̂k,1 =
(

(1 + cos(k · a3))σ̂2 + sin(k · a3)σ̂1 Ô
Ô −( cos(k · a1) + cos(k · a2))σ̂2 − ( sin(k · a1) + sin(k · a2))σ̂1

)
,

Q̂k,2 =
(

(1 + cos(k · a3))σ̂2 + sin(k · a3)σ̂1 Ô
Ô ( cos(k · a1) + cos(k · a2))σ̂2 + ( sin(k · a1) + sin(k · a2))σ̂1

)
,

Q̂k,3 =
(

(1 − cos(k · a3))σ̂2 − sin(k · a3)σ̂1 Ô
Ô ( cos(k · a1) − cos(k · a2))σ̂2 + ( sin(k · a1) − sin(k · a2))σ̂1

)
,

Q̂k,4 =
(

(1 − cos(k · a3))σ̂2 − sin(k · a3)σ̂1 Ô
Ô ( cos(k · a2) − cos(k · a1))σ̂2 + ( sin(k · a2) − sin(k · a1))σ̂1

)
. (A3)

Next we rewrite Hc in terms of the transverse and longitudinal eigenmodes as in Eq. (17), where the corresponding MFPh
coupling vertices are given by

λ̂
‖
q,k = iλAg

(
4qcR31

(
Ô −iσ̂3

iσ̂3 Ô

)
+ (qcR31 + 2qbR21 + qaR11) Q̂k,1

)

+ iλB1g

2
(qaR21 + qbR11) Q̂k,2 + iλB2g

2
(qaR31 + qcR11) Q̂k,3 + iλB3g

2
(qbR31 + qcR21) Q̂k,4,

λ̂
⊥1
q,k = iλAg

(
4qcR32

(
Ô −iσ̂3

iσ̂3 Ô

)
+ (qcR32 + 2qbR22 + qaR12) Q̂k,1

)

+ iλB1g

2
(qaR22 + qbR12) Q̂k,2 + iλB2g

2
(qaR32 + qcR12) Q̂k,3 + iλB3g

2
(qbR32 + qcR22) Q̂k,4,

λ̂
⊥2
q,k = iλAg

(
4qcR33

(
Ô −iσ̂3

iσ̂3 Ô

)
+ (qcR33 + 2qbR23 + qaR13) Q̂k,1

)

+ iλB1g

2
(qaR23 + qbR13) Q̂k,2 + iλB2g

2
(qaR33 + qcR13) Q̂k,3 + iλB3g

2
(qbR33 + qcR23) Q̂k,4. (A4)

Note also that since we are using the long wavelength limit for the phonons, we only kept the leading in q terms in all the
expressions.

APPENDIX B: MFPH COUPLINGS IN VARIOUS POLARIZATIONS

For phonon in the ab plane, the rotation matrix is given by R̂ =
⎛
⎝cos φq − sin φq 0

sin φq cos φq 0
0 0 1

⎞
⎠, which simplifies the general

expressions for the MFPh coupling vertices to

λ̂
‖
q,k = iλAgqaR11Q̂k,1 + iλB1g

2
(qaR21 + qbR11)Q̂k,2, (B1)

λ̂
⊥1
q,k = iλAg (2qbR22 + qaR12)Q̂k,1 + iλB1g

2
(qaR22 + qbR12)Q̂k,2, (B2)

λ̂
⊥2
q,k = iλB2g

2
qaR33Q̂k,3 + iλB3g

2
qbR33Q̂k,4. (B3)

144424-11
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Similarly, for the phonon in the ac plane, the rotation matrix is given by R̂ =
⎛
⎝sin θq cos θq 0

0 0 1
cos θq − sin θq 0

⎞
⎠, so the MFPh coupling

vertices are given by

λ̂
‖
q,k = iλAg

(
4qcR31

(
Ô −iσ̂3

iσ̂3 Ô

)
+ (qcR31 + qaR11)Q̂k,1

)
+ iλB2g

2
(qaR31 + qcR11)Q̂k,3, (B4)

λ̂
⊥1
q,k = iλAg

(
4qcR32

(
Ô −iσ̂3

iσ̂3 Ô

)
+ (qcR32 + qaR12)Q̂k,1

)
+ iλB2g

2
(qaR32 + qcR12)Q̂k,3, (B5)

λ̂
⊥2
q,k = iλB1g

2
qaR23Q̂k,2 + iλB3g

2
qcR23Q̂k,4. (B6)

For the phonon in the bc plane, the rotation matrix is R̂ =
⎛
⎝ 0 0 1

sin θq cos θq 0
cos θq − sin θq 0

⎞
⎠, and the MFPh coupling vertices are

given by

λ̂
‖
q,k = iλAg

(
4qcR31

(
Ô −iσ̂3

iσ̂3 Ô

)
+ (qcR31 + 2qbR21)Q̂k,1

)
+ iλB3g

2
(qbR31 + qcR21)Q̂k,4, (B7)

λ̂
⊥1
q,k = iλAg

(
4qcR32

(
Ô −iσ̂3

iσ̂3 Ô

)
+ (qcR32 + 2qbR22)Q̂k,1

)
+ iλB3g

2
(qbR32 + qcR22)Q̂k,4, (B8)

λ̂
⊥2
q,k = iλB1g

2
qbR13Q̂k,2 + iλB2g

2
qcR13Q̂k,3. (B9)

So in each plane, only two of the fours symmetry channels are active. And as shown in the numerical calculations presented
in the main text, in the long wavelength limit, one of the two channels dominates over the other. Similar situation was observed
in the analysis of the 2D spin-phonon Kitaev model [27].

APPENDIX C: EXPLICIT EXPRESSIONS FOR THE DYNAMICAL FACTORS IN (20)

The dynamic factors in Eq. (21) are evaluated as follows:

Pk,11 = T
∑
iωm

1

(i�n + iωm) − εk

1

iωm − εk+q
= nF (εk ) − nF (εk+q)

i�n − εk + εk+q
,

Pk,22 = T
∑
iωm

1

(i�n + iωm) + εk

1

iωm + εk+q
= nF (−εk ) − nF (−εk+q)

i�n + εk − εk+q
,

Pk,21 = T
∑
iωm

1

(i�n + iωm) + εk

1

iωm − εk+q
= nF (−εk ) − nF (εk+q)

i�n + εk + εk+q
,

Pk,12 = T
∑
iωm

1

(i�n + iωm) − εk

1

iωm + εk+q
= nF (εk ) − nF (−εk+q)

i�n − εk − εk+q
. (C1)

APPENDIX D: VEGAS+ MONTE CARLO INTEGRATION

In this paper, we applied an efficient Monte Carlo
algorithm for multidimensional integration Vegas+ [70,71] to
evaluate the phase space integration in the polarization bubble
Eq. (20). In this section, we will briefly discuss the technical
aspect of this algorithm.

Vegas+ is an adaptive stratified sampling algorithm, which
is very effective for the integrands with multiple peaks or diag-
onal nodal (significant) structures. In general, an importance
sampling (as in the original Vegas algorithm) is a basic vari-
ance reduction technique in Monte Carlo integration, where
the probability space is transformed, such that the sampling
is concentrated on the important region of the integrand. For
example, suppose we need to compute a 1D integral

I =
∫ b

a
f (x)dx. (D1)

Different from directly sampling x ∈ [a, b], as is done in a
standard Monte Carlo technique, importance sampling intro-
duces a measurable map from y to x, x = G−1(y), where
y ∈ [0, 1]. Then, the integration is equivalently written as

I =
∫ 1

0
f (x(y))

dx

dy
dy, (D2)

and, instead of uniformly sampling x ∈ [a, b], one uniformly
samples y ∈ [0, 1]. The result of this probability space trans-
formation is such that the distribution of x is described by
function g(x) = G′(x) (known from inverse transform sam-
pling). If g(x) is well designed to be of similar shape to f (x),
i.e., g(x) is large where f (x) is large, then the x samples will
be concentrated in the important region of f (x).

What the Vegas algorithm [72] does is to numerically
obtain the map G−1 : y → x, which gives the probability

144424-12



SOUND ATTENUATION IN THE HYPERHONEYCOMB … PHYSICAL REVIEW B 106, 144424 (2022)

distribution function g(x), in the following adaptive way. First
the x integration space is partitioned into Np intervals, and
�xi is the length of each interval (not necessarily uniform).
Then the functional form is chosen such that x monotonically
increases with y, and within each partition of x, the increase
is linear with a rate (Jacobian) Ji, i.e., �xi = Ji�yi, (again not
necessarily uniform). So the measurable map G−1 : y → x is
specified by the set of variables {�xi, Ji}, which are under the
constraints

∑Np

i=1 �xi = b − a,
∑Np

i=1 �yi = 1. The objective
of designing the distribution function g(x) is to minimize
the variation of the integrand (seen as a function of random
variable y),

σ 2
I =V ary∈[0,1]

[
f (x(y))

dx

dy

]

=
∫ 1

0

[
f (x(y))

dx

dy

]2

dy − I2

=
∑

i

Ji

∫ xi+�xi

xi

f (x)2dx − I2, (D3)

where xi is the left end of each interval partitioned from
x ∈ [a, b]. So now designing the map G−1 : y → x becomes
a constrained optimization problem

min
{�xi,Ji}

σ 2
I ({�xi, Ji}). (D4)

From here, it is easy to get the necessary optimal
condition [70]

1

�xi

∫ xi+�xi

xi

J2
i f (x)2dx = constant, (D5)

i.e., the optimal partition grid {xi} is such that the average of
J2

i f (x)2 over each interval �xi is uniform across the parti-
tions. Without loss of generality, we can introduce uniform
grid (partition) in y space, i.e., �yi = 1/Np. Then, Ji = �xi

�yi
=

�xi · Np. Then, the objective becomes finding the grid in x
space, such that the average of �x2

i f (x)2 over �xi is uniform,
the result of which leads to importance sampling.

The uniform �x2
i f (x)2 is achieved by an adaptive numeri-

cal algorithm, which can be intuitively understood as follows.
First, the average wi = 〈�x2

i f (x)2〉�xi on �xi is defined to
be the weight of the i-th partition. We also define the center
weight of all partitions to be c = 1

Np

∑
i wi. Then the uniform

weight {wi} condition is equivalent to requiring
∑

i |wi − c|2
to be minimized. In other words, we have the following opti-
mization problem:

L({xi}) = min
{xi}

min
c

∑
i

|wi − c|2. (D6)

We can easily verify that uniform {wi} is indeed the saddle
point solution, i.e., if {wi} is uniform, then L = 0. This prob-
lem is solved by an alternating optimization algorithm, which
alternatively updates {xi} and c in an adaptive procedure [70].
The optimal solution yields a grid of x, which is the most
dense in the importance region of the integrand. Thus Vegas
is considered an adaptive importance sampling method.

Next, we introduce Vegas+, the enhanced version of vegas
with stratified sampling. In the above algorithm, we have
obtained the the uniform grid of {yi = 1/Np}, so it is natural
to stratify the sampling according this partition. To obtain the
optimal number of samples allocated to each stratum {ni},
we can minimize the Monte Carlo standard deviation σ 2

MC =∑Np

i=1
σ 2

i ( f Ji )
ni

with the constraint
∑

i ni = Ntotal, where σi( f Ji )
is the variance of f (x)Ji in the ith partition. This gives that
the optimal stratification is ni ∝ σi( f Ji ). The same optimiza-
tion method was also applied in the stratified Monte Carlo
simulations in the 2D Kitaev QSL [28,56], except that there

σ 2
MC = ∑

i
p2

i σ
2
i

ni
, where pi is the normalized probability of the

ith partition, and the optimal stratification is ni ∝ piσi ≈ pi.
Finally, in this paper the integration was done in 3D k

space with the important region centered around the nodal
line. The Vegas algorithm was used to make sure that the
samples are concentrated near the 2D plane. But within that
2D plane, partition grid is basically uniform. At this point, the
adaptive stratified sampling of Vegas+ was used to assure that
the dominant contribution comes from the samples only in the
important hypercubes near the nodal line.
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