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Finite-frequency spin conductance of the interface between a ferro- or ferrimagnetic insulator
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The interface between a ferro- or ferrimagnetic insulator and a normal metal can support spin currents
polarized collinear with and perpendicular to the magnetization direction. The flow of angular momentum
perpendicular to the magnetization direction (“transverse” spin current) takes place via spin torque and spin
pumping. The flow of angular momentum collinear with the magnetization (“longitudinal” spin current) requires
the excitation of magnons. In this article we extend the existing theory of longitudinal spin transport [Bender and
Tserkovnyak, Phys. Rev. B 91, 140402(R) (2015)] in the zero-frequency weak-coupling limit in two directions:
We calculate the longitudinal spin conductance nonperturbatively (but in the low-frequency limit) and at finite
frequency (but in the limit of low interface transparency). For the paradigmatic spintronic material system
YIG|Pt, we find that nonperturbative effects lead to a longitudinal spin conductance that is ca. 40% smaller
than the perturbative limit, whereas finite-frequency corrections are relevant at low temperatures �100 K only,
when only few magnon modes are thermally occupied.

DOI: 10.1103/PhysRevB.106.144423

I. INTRODUCTION

In magnetic insulators, transport of angular momentum
is possible via spin waves, collective wave-like excursions
of the magnetization from its equilibrium direction [1–3]. A
spin wave—or its quantized counterpart, a “magnon”—carries
both an oscillating angular momentum current with polariza-
tion perpendicular (transverse) to and a nonoscillating angular
momentum current with polarization parallel (longitudinal) to
the magnetization direction. The magnitude of the transverse
spin current is proportional to the amplitude of the spin wave;
the magnitude of the longitudinal spin current is quadratic
in the spin wave amplitude, i.e., it scales proportional to the
number of excited magnons [4–6].

Both components of the spin current couple to conduction
electrons at the interface between a ferro- or ferrimagnetic
insulator (F) and a normal metal (N). Microscopically, the
coupling of the transverse component can be understood
in terms of the interfacial spin torque and spin pumping
[7–11], which both give an angular momentum current per-
pendicular to the magnetization direction, see Fig. 1 (left).
A longitudinal spin current across the interface is obtained
from the spin torque acting on or spin pumped by the small
thermally-induced transverse magnetization component [12].
Alternatively and equivalently, a longitudinal interfacial spin
current results from magnon-emitting or -absorbing scat-
tering at the interface, as shown schematically in Fig. 1
(right). The transverse component of the interfacial spin cur-
rent is relevant for coherent effects, such as the spin-torque
diode effect [13,14] or the spin-torque induced ferromagnetic
resonance [15–17]. The longitudinal component governs in-
coherent effects, such as the interfacial contribution to the
spin-Seebeck effect [18–21], the spin-Peltier effect [22], or

nonlocal magnonic spin-transport effects [23–25]. The spin-
Hall magnetoresistance [26–31] depends on a competition
between both components of the spin current [32,33].

In the linear-response regime and barring effects related
to interfacial spin-orbit coupling, the transverse spin current
density jx

s⊥ through the F|N interface (directed from N to F)
is proportional to the difference of the transverse spin accu-
mulation μs⊥ in N and the time derivative of the transverse
magnetization amplitude m⊥ at the interface [11],

jx
s⊥(ω) = g↑↓

4π
[μs⊥(ω) + h̄ωm⊥(ω)]. (1)

The coefficient of proportionality g↑↓ is complex and known
as the “spin-mixing conductance” per unit area [34]. Omitting
Seebeck-type contributions that depend on the temperature
difference across the F|N interface, the longitudinal spin
current density jx

s‖ is proportional to the difference of the
longitudinal spin accumulation μs‖ in N and the “magnon
chemical potential” μm [35],

jx
s‖(ω) = gs‖

4π
[μs‖(ω) − μm(ω)]. (2)

In the limit of weak coupling across the F|N interface the
longitudinal interfacial spin conductance is proportional to the
real part of the spin-mixing conductance [12,35,36],

gs‖ = 4 Re g↑↓
s

∫
d�νm(�)�

(
−dfT (�)

d�

)
. (3)

Here s is the spin per volume in F, νm(�) the density of
states (DOS) of magnon modes at frequency �, and fT (�)
the Planck distribution at temperature T of the magnons.

The availability of high-quality THz sources, combined
with spin-orbit-mediated conversion of electric into magnetic
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FIG. 1. Illustration of the microscopic mechanisms underlying
the transverse (left) and longitudinal (right) components of the spin
current through the interface between a ferro- or ferrimagnetic insu-
lator F and a normal metal N. The transverse spin current is mediated
by the spin torque and spin pumping involving electrons (red) with
spins perpendicular to the magnetization and spin waves (blue) with
frequency ω equal to the frequency at which the spin accumulation
μs in N is driven. The longitudinal component arises from spin-flip
scattering of conduction electrons (red), combined with the creation
or absorption of thermal magnons of frequency � (blue). (The ther-
mal magnon frequency � is not related to the driving frequency ω.)
Alternatively, the longitudinal component can be seen as arising from
the spin torque exerted on/spin pumped by the transverse magneti-
zation component induced by thermal fluctuations in F (not shown
schematically).

driving, as well as of femtosecond laser pulses for pump-probe
spectroscopy has made it possible to experimentally access
spin transport across F|N interfaces on ultrafast timescales
[37–43]. Whereas Eq. (1) is valid for frequencies small in
comparison to the frequencies of acoustic magnons at the zone
boundary [10], which reach well into the THz regime, Eq. (3)
requires driving frequencies much smaller than the frequen-
cies of thermal magnons, i.e., ω/2π � kBT/h ≈ 6.3 THz for
300 K [12]. At room temperature, the two conditions roughly
coincide for the magnetic insulator YIG, which is the mate-
rial of choice for many experiments, or for ferrites, such as
CoFe2O4 and NiFe2O4, see Refs. [44] and [45]. But at low
temperatures, the condition for the applicability of Eq. (3) is
stricter and may be violated for sufficiently fast driving for
these materials [46]. An example of a magnetic material for
which the two conditions do not coincide already at room
temperature is Fe3O4 (magnetite), for which the frequency
of acoustic magnons at the zone boundary is well above the
frequency of thermal magnons at room temperature [47].

In this article, we present two calculations of the longi-
tudinal interfacial spin conductance gs‖(ω) per area that go
beyond the low-frequency weak-coupling regime of validity
of Eq. (3): (i) We calculate gs‖ in the low-frequency limit,
but without the assumption of weak coupling across the F|N
interface, and (ii) we calculate the finite-frequency longitu-
dinal spin conductance gs‖(ω) per area in the weak-coupling
limit. The other conditions required for the application of
Eqs. (1)–(3) equally apply to our theory: Effects of interfacial
spin-orbit coupling are neglected, whereas spin-independent
disorder in the interface region can be accounted for by a

suitable renormalization of g↑↓ [48]. Furthermore, for the
finite-frequency theory we assume that interface scattering is
instantaneous, so that all frequency dependence has its origin
in the magnetization dynamics. Our finite-frequency result
is then applicable in the same frequency range as Eq. (1),
i.e., within the entire frequency range of acoustic magnons.
Additionally, the temperature T must be low enough such that
only acoustic magnons are thermally excited. For YIG this
condition amounts to the requirement that T � 300 K [49].
Comparing our nonperturbative low-frequency calculation to
the weak-coupling result in Eq. (3), we find that the latter is
a good order-of-magnitude estimate for most material combi-
nations, whereas quantitative deviations are possible.

This article is organized as follows: In Sec. II we report
our nonperturbative calculation of the longitudinal spin con-
ductance gs‖ at zero frequency, using scattering theory for the
reflection of spin waves from the F|N interface. In Sec. III
we present our perturbative calculation of the finite-frequency
longitudinal spin conductance gs‖(ω), using the method of
nonequilibrium Green functions. We give numerical estimates
for material combinations involving the magnetic insulator
YIG in Sec. IV and we conclude in Sec. V. Appendices A
and B contain further details of the calculations.

II. NONPERTURBATIVE CALCULATION
AT ZERO FREQUENCY

Central to our nonperturbative calculation is the ampli-
tude ρ(�) that a magnon with frequency � incident on the
F|N interface is reflected back into F. The “transmission co-
efficient” |τ (�)|2 = 1 − |ρ(�)|2 is the probability that the
magnon is not reflected and, instead, transfers its angular
momentum h̄ to the conduction electrons in N. As we show
below, knowledge of ρ(�) is sufficient for the calculation of
the longitudinal interfacial spin conductance gs‖(ω) per area
in the low-frequency limit.

A. Magnon reflection amplitude ρ

To keep the notation simple, we describe our calculation
for a one-dimensional geometry and switch to three dimen-
sions in the presentation of the final results. We consider
an F|N interface with coordinate x normal to the interface
and a magnetic insulator F for x > 0; see Fig. 1. Magne-
tization dynamics in F is described by the Landau-Lifshitz
equation

ṁ = ω0 e‖ × m + 1

h̄s

∂

∂x
jx
s , (4)

where m is a unit vector pointing along the direction of the
magnetization, ω0 is the ferromagnetic resonance frequency,
e‖ the equilibrium magnetization direction, and

jx
s = −h̄sDexm × ∂m

∂x
(5)

is the spin current density, with Dex the spin stiffness of
dimension length2× time−1. (We recall that the gyromagnetic
ratio is negative, so that the angular momentum density corre-
sponding to the magnetization direction m is −h̄sm.) The spin
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current density through the F|N interface is [10,11,34,50,51]

jx
s = − 1

4π
(Re g↑↓ m × + Im g↑↓)[(m × μs) + h̄ṁ]

+ h̄

√
Re g↑↓

2π
m × h′, (6)

where g↑↓ is the complex spin-mixing conductance [52] and
h′ is proportional to a stochastic magnetic field representing
the spin torque due to current fluctuations in N. If the normal
metal is in equilibrium at temperature TN, then the correlation
function of the stochastic term h′ is given by the fluctuation-
dissipation theorem [50],

〈h′
α (�′)∗h′

β (�)〉 = � fTN (�)δ(� − �′)δαβ, (7)

where fT (�) = 1/(eh̄�/kBT − 1) is the Planck function, and
the Fourier transform is defined as

h′(t ) = 1√
2π

∫ ∞

−∞
d� h′(�)e−i�t . (8)

We parametrize the magnetization direction m as

m(x, t ) =
√

1 − 2|m⊥(x, t )|2 e‖
+ m⊥(x, t )e⊥ + m⊥(x, t )∗e∗

⊥, (9)

where the complex unit vectors e⊥ and e∗
⊥ span the direc-

tions orthogonal to the equilibrium magnetization direction
e‖ and satisfy the condition e⊥ × e‖ = ie⊥. The solution of
the Landau-Lifshitz equation (4), up to linear order in the
magnetization amplitude m⊥, then reads

m⊥(x, t ) =
∫ ∞

−∞
d�

e−i�t

√
4πsDexkx

× [ain(�)e−ikxx + aout (�)eikxx], (10)

where

kx(�) =
√

� − ω0

Dex
, (11)

and ain(�) and aout (�) are flux-normalized amplitudes for
spin waves moving toward the F|N interface at x = 0 and
away from it, respectively. [The amplitudes ain(�) and
aout (�) may be interpreted as magnon annihilation operators
in a quantized formulation.] The spin current density jx

s can
be decomposed into transverse and longitudinal contributions
analogous to Eq. (9),

jx
s (x, t ) = jx

s‖(x, t )e‖ + jx
s⊥(x, t )e⊥ + jx

s⊥(x, t )∗e∗
⊥. (12)

In the same way, the spin accumulation μs and the stochastic
term h′ can be decomposed into transverse and longitudinal
contributions.

We first consider the transverse spin current density jx
s⊥ to

linear order in the magnetization amplitude m⊥. From Eqs. (5)
and (10), one finds that the magnonic transverse spin current
density jx

s⊥(0, t ) at the F|N interface x = 0 is

jx
s⊥(0, t ) = ih̄sDex

∂m⊥(x, t )

∂x

= h̄

4π

∫ ∞

−∞
d� e−i�t

√
4πsDexkx(�)

× [ain(�) − aout (�)]. (13)

Equation (6) implies that the transverse spin current density
through the interface is given by

jx
s⊥(0, t ) = g↑↓

4π
[μs⊥(t ) + ih̄ṁ⊥(0, t ) − μs‖(t )m⊥(0, t )]

− ih̄

√
Re g↑↓

2π
h′

⊥(t ). (14)

Imposing continuity of the transverse spin current at the F|N
interface allows us to express the amplitude aout of magnons
moving away from the interface in terms of the amplitude
ain of incident magnons and the stochastic field h′

⊥. Inserting
Eqs. (10) and (13) into the boundary condition (14), we get

aout (�) = ρ(�)ain(�) + ρ ′(�)h′
⊥(�), (15)

with

ρ(�) = 4πsDexkx(�) − (� − μs‖/h̄)g↑↓
4πsDexkx(�) + (� − μs‖/h̄)g↑↓

,

ρ ′(�) = 2
√

4πsDexkx(�) Re g↑↓
4πsDexkx(�) + (� − μs‖/h̄)g↑↓

. (16)

The coefficient ρ(�) is the amplitude that a magnon with
frequency � incident on the F|N interface is reflected. One
therefore may interpret

|τ (�)|2 = 1 − |ρ(�)|2

= (� − μs‖/h̄)|ρ ′(�)|2 (17)

as the probability that a magnon is annihilated at the F|N
interface while exciting a spinful excitation in N.

B. Longitudinal interfacial spin conductance

The longitudinal spin current is quadratic in the magneti-
zation amplitude. From Eqs. (5) and (12) one finds

jx
s‖(0, t ) = m⊥(0, t )∗ jx

s⊥(0, t ) + jx
s⊥(0, t )∗m⊥(0, t ), (18)

so that continuity of jx
s⊥ at the F|N interface to linear order

in m⊥ also ensures continuity of jx
s‖. In terms of the magnon

amplitudes, we find from Eqs. (5) and (10) that

jx
s‖(0, t ) = h̄

∫ ∞

−∞

dω

2π
e−iωt

∫ ∞

−∞
d� (19)

× [aout (�−)∗aout (�+) − ain(�−)∗ain(�+)],

where we abbreviated �± = � ± ω/2 and omitted terms that
drop out in the limit ω → 0. The correlation function of the
magnon amplitudes is given by the (quantum-mechanical)
fluctuation-dissipation theorem [53],

〈ain(�−)∗ain(�+)〉 = fTF (� − μm/h̄)δ(ω). (20)

Here TF is the (magnon) temperature of the magnetic in-
sulator and fTF (�) = 1/(eh̄�/kBTF − 1)�(� − ω0) the Planck
function, with � the Heaviside step function. To obtain the
correlation function of the stochastic field h′ in the presence of
a spin accumulation μs = μs‖e‖, we use the equilibrium result
in Eq. (7) and make use of the fact that a spin accumulation μs
can be shifted away by transforming to a spin reference frame
that rotates at angular frequency ω = μs/h̄, see Appendix A.
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Denoting the stochastic field in the rotating frame by h̃′, we
then have

h̃′
⊥(�) = h′

⊥(� + μs‖). (21)

In the rotating frame there is no spin accumulation in N, so
that the correlation function of h̃′

⊥ is given by Eq. (7). It
follows that

〈h′
⊥(�−)∗h′

⊥(�+)〉
= (� − μs‖/h̄) fTN (� − μs‖/h̄) δ(ω). (22)

Inserting this result as well as Eqs. (15), (17), and (20) into
Eq. (19), we find for the longitudinal spin current

jx
s‖ = h̄

2π

∫ ∞

ω0

d� |τ (�)|2

× [
fTN (� − μs‖/h̄) − fTF (� − μm/h̄)

]
. (23)

Equation (23), together with Eq. (17) for |τ (�)|2, illus-
trates the equivalence of the two pictures of longitudinal
spin transport mentioned in the introduction: as arising from
magnon-emitting/absorbing scattering at the F|N interface
[see first line in Eq. (17)] as well as from stochastic spin
torques due to thermal fluctuations [see second line in
Eq. (17)].

In three dimensions the calculation of the longitudinal spin
current density involves an integration over modes with trans-
verse wave numbers (ky, kz ). For each transverse mode the
previous calculation applies, but with kx(�) replaced by

kx(�, k⊥) =
√

� − ω0

Dex
− k2

⊥, (24)

with k2
⊥ = k2

y + k2
z . In particular, the mode-dependent re-

flection amplitude ρ(�, k⊥) and transmission coefficient
|τ (�, k⊥)|2 are found by substituting kx(�, k⊥) for kx(�) in
Eq. (16). For the steady-state longitudinal spin current density
we then find

jx
s‖ = h̄

2(2π )2

∫ ∞

ω0

d� kx(�)2Tm(�)

× [
fTN (� − μs‖/h̄) − fTF (� − μm/h̄)

]
, (25)

where kx(�) is given by Eq. (11) and Tm(�) is the mode-
averaged magnon transmission coefficient,

Tm(�) = 2

kx(�)2

∫ kx (�)

0
dk⊥ k⊥|τ (�, k⊥)|2. (26)

The validity of Eqs. (23) and (25) is not restricted to lin-
ear response or to weak coupling across the F|N interface.
For comparison with the literature and with the perturbative
calculation of the next section, it is nevertheless instructive
to expand Eqs. (23) and (25) to linear order in the interfacial
spin-mixing conductance, which gives

jx
s‖ = 1

πs
Re g↑↓

∫ ∞

ω0

d�νm(�)(h̄� − μs‖)

× [
fTN (� − μs‖/h̄) − fTF (� − μm/h̄)

]
, (27)

where νm(�) is the magnon density of states, which equals
ν1D

m (�) = 1/2πDexkx(�) in the one-dimensional case and

ν3D
m (�) = kx(�)/4π2Dex in the three-dimensional case. One

verifies that this expression is consistent with Eq. (3) to linear
order in μs‖ − μm.

III. PERTURBATIVE CALCULATION
AT FINITE FREQUENCIES

In this section we again consider the longitudinal spin
current density jx

s‖ through the interface between a ferro- or
ferrimagnetic insulator F and a normal metal N, but now with
a time-dependent spin accumulation μs‖(t ) in N. We calculate
jx
s‖ to leading order in the spin-mixing conductance per unit

area, g↑↓. To keep the notation simple, we present the calcula-
tion for a one-dimensional F|N junction. To generalize to the
three-dimensional case it is sufficient to replace the magnon
density of states νm(�) by ν3D

m (�).
Starting point of our calculation is the Hamiltonian cou-

pling conduction electrons in N and magnons in F,

Ĥ = Jψ̂
†
↑ψ̂↓â + J∗ψ̂†

↓ψ̂↑â†. (28)

Here ψ̂σ is the annihilation operator for a conduction elec-
tron with spin σ at the F|N interface, J is the (suitably
normalized) interfacial exchange (s-d) interaction strength,
and the raising and lowering operators â† and â describe
the transverse magnetization amplitude at the F|N interface
at x = 0. [They are the Fourier transforms of the second-
quantization counterparts of the amplitude ain(�) + aout (�)
of the previous section.] The spin current through the F|N
interface is

ĵx
s‖ = i[Jψ̂

†
↑ψ̂↓â − J∗ψ̂†

↓ψ̂↑â†]. (29)

Calculating the expectation value jx
s‖ to leading order in J

using Fermi’s Golden rule, one finds

jx
s‖ = 2π |J|2ν2

∫ ∞

−∞
dε

∫ ∞

ω0

d�νm(�)

× {
n↑(ε)

[
1 − n↓(ε − h̄�)][1 + fTF (� − μm/h̄)

]
− [1 − n↑(ε)]n↓(ε − h̄�) fTF (� − μm/h̄)

}
, (30)

where nσ is the distribution function of electrons with spin
σ in N, ν the electron density of states at the Fermi energy,
and νm(�) the magnon density of states at the interface.
(We assume that the electronic density of states is constant
within the energy window of interest.) Taking a Fermi-Dirac
distribution with chemical potential μσ and temperature TN

for the electron distribution function nσ and performing the
integration over the electron energy ε, one obtains

jx
s‖ = 2π |J|2ν2

∫ ∞

ω0

d�νm(�)(h̄� − μs‖)

× [
fTN (� − μs‖/h̄) − fTF (� − μm/h̄)

]
, (31)

where μs‖ = μ↑ − μ↓ and fT is the Planck distribution as
before. This result is identical to Eq. (27) if we identify [12]

|J|2ν2 = Re g↑↓
2π2s

. (32)
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To obtain the spin current density for an oscillating spin
accumulation, we set

μσ (t ) = μ̄σ +
∫ ∞

−∞
dω δμσ (ω)e−iωt , μm(t ) = μ̄m, (33)

with δμσ (ω) = δμσ (−ω)∗. Hence, we impose oscillating
chemical potentials δμσ on top of a time-independent back-
ground μ̄σ in N and a time-independent background μ̄m in
F. We use the method of nonequilibrium Green functions
to calculate the expectation value jx

s‖ in the presence of the
chemical potentials of Eq. (33). To linear order in δμs‖(ω) =
δμ↑(ω) − δμ↓(ω), we find (see Appendix B for details)

jx
s‖(t ) = j̄x

s‖ +
∫ ∞

−∞
dω δ jx

s‖(ω)e−iωt , (34)

with j̄x
s‖ equal to the steady-state spin current density of

Eq. (31) with μm = μ̄m, μs‖ = μ̄s‖ and

δ jx
s‖(ω) = gs‖(ω)

4π
δμs‖(ω). (35)

Here gs‖(ω) is the finite-frequency longitudinal spin conduc-
tance per unit area,

gs‖(ω) = i
2 Re g↑↓

πs

∫ ∞

−∞
d�

× {
D(�)

[
fTF (� − μ̄m/h̄) − FN(�,ω)

]
− D(�)∗

[
fTF (� − μ̄m/h̄) − FN(�,−ω)

]}
, (36)

where we defined

FN(�,ω) = 1

h̄ω

[
(h̄� − μ̄s‖) fTN (� − μ̄s‖/h̄)

− (h̄� − h̄ω − μ̄s‖) fTN (� − ω − μ̄s‖/h̄)
]
,

(37)

and where

D(�) =
∫ ∞

−∞
d�′ νm(�′)

� + iη − �′ (38)

is the (retarded) magnon Green function, with η a positive
infinitesimal. One verifies that Eq. (36) reproduces the pertur-
bative result in Eq. (27) for the limit ω → 0 and that it satisfies
the Kramers-Kronig relation

gs‖(ω) = 1

iπ

∫
dω′ Re gs‖(ω′)

ω′ − ω − iη
. (39)

IV. DISCUSSION

A. Zero-frequency limit

We evaluate the results of our calculations in Secs. II
and III for the paradigmatic spintronic material combination
YIG|Pt. Longitudinal spin transport through the F|N interface
is expected to play an important role for the ferrimagnetic
insulator YIG, since at room temperature the longitudinal
spin conductance gs‖ is comparable to the (transverse) spin-
mixing conductance g↑↓ for this material. (This leads, e.g.,
to a prediction of a remarkable frequency dependence of
the spin-Hall magnetoresistance for this material combination
[33].) To facilitate a comparison with the literature, we use the

TABLE I. Typical values for the relevant material parameters
of YIG and YIG|Pt interfaces considered in this article. The last
column states the references used for our estimates. The spin den-
sity s = S/a3

m, where S = 10 is the magnitude of the spin in each
magnetic unit cell with lattice constant am. The frequency of acous-
tic magnons at the zone boundary is �max/2π ≈ (12Dex/a2

m )/2π ≈
1.0 × 1013 Hz. The imaginary part of the spin-mixing conductance is
found from the estimate Im g↑↓/Re g↑↓ ≈ 0.05, see Refs. [31,55].

Material Experimental parameters Ref.

YIG ω0/2π = 7.96 × 109 Hz [29]
am = 1.2 × 10−9m [35]
Dex = 8.0 × 10−6 m2 s−1 [35]
s = 5.3 × 1027m−3 [35]

YIG|Pt (e2/h)Re g↑↓ = 1.6 × 1014 �−1m−2 [29,54]
(e2/h)Im g↑↓ = 0.08 × 1014 �−1m−2

same material parameters as Cornelissen et al. in Ref. [35] (if
applicable). We summarize the material parameters in Table I.

Our nonperturbative calculation of the longitudinal spin
conductance uses the magnon dispersion of the Landau-
Lifshitz equation (4). This is a good approximation at long
wavelengths, for which the magnon dispersion is quadratic
as in Eq. (11). The use of the quadratic approximation to the
magnon dispersion is justified if kBT � h̄�max, where �max

is the frequency of acoustic magnons at the zone boundary,

�max ≈ ω0 + 12Dex

a2
m

, (40)

with am the size the of the magnetic unit cell. For YIG, one
has �max/2π ≈ 1013 Hz [49,56], so that the condition kBT �
h̄�max is only weakly obeyed at room temperature.

The result (26) for the mode-averaged transmission co-
efficient Tm(�), which is the probability that a magnon
is annihilated at the F|N interface and excites a spinful
excitation of the conduction electrons in N, is shown in
Fig. 2 for μs‖ = 0. At the lowest magnon frequency ω0, the
magnon wave vector k = 0 (i.e., kx = k⊥ = 0) and thus the
reflection coefficient ρ(ω0, k⊥) = −1, so that Tm(ω0) = 0.
However, upon increasing � above ω0, |ρ(�, k⊥)| first very
quickly drops to approximately 0 and then reaches a maxi-
mum; correspondingly, Tm(�) first features a maximum and
then reaches a minimum upon increasing the magnon fre-
quency � above ω0. The maximum is at a frequency (� −
ω0)/ω0 ≈ ω0|g↑↓|2/(4πs)2Dex � 1; the minimum is at � ≈
2ω0. Upon further increasing the frequency, Tm(�) increases
monotonously with �. In this frequency range, a good approx-
imation for Tm(�) is obtained by expanding |τ (�, k⊥)|2 to
first order in g↑↓, which gives

T (p)
m (�) = 8πRe g↑↓

s

(� − μs‖/h̄)ν3D
m (�)

kx(�)2
, (41)

as shown by the blue dashed curve in Fig. 2. The per-
turbative approximation for Tm(�) remains valid for � �
(4πs)2Dex/|g↑↓|2, a condition that is obeyed as long as � �
�max. (The condition � � (4πs)2Dex/|g↑↓|2 becomes equal
to the condition � � �max if one uses the Sharvin approx-
imation for the spin-mixing conductance [34,57] and takes
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FIG. 2. Mode-averaged magnon transmission coefficient Tm(�)
at a YIG|Pt-interface. The solid red curve shows the nonperturbative
result of Eq. (26) and the blue dashed curve the weak-coupling
approximation T (p)

m (�) of Eq. (41). Both curves are based on the
quadratic approximation to the magnon dispersion, which breaks
down for magnon frequencies � ≈ �max, which is the frequency of
acoustic magnons at the zone boundary. Parameter values are taken
from Table I.

the Fermi wavelength of electrons in N to be of the same
order of magnitude as the size am of the magnetic unit cell,
so that |g↑↓| ≈ 1/a2

m.) Nevertheless, since kBT is comparable
to h̄�max for YIG at room temperature, the discrepancy be-
tween the exact magnon transmission coefficient Tm(�) and
its perturbative approximation of Eq. (41) becomes sizable for
thermal magnon frequencies � ∼ kBT/h̄.

Now we are ready to discuss the differential longitudinal
spin conductance per unit area

gs‖ = 4π
∂ jx

s‖
∂μs‖

. (42)

From Eq. (25) we find for T = TN = TF and μ = μs‖ = μm,
that

gs‖ = 1

2π

∫ ∞

ω0

d� kx (�)2Tm(�)

[
−∂ fT (� − μ/h̄)

∂�

]
. (43)

In the perturbative limit of small g↑↓ this result simplifies to

g(p)
s‖ = 4Re g↑↓

s

∫ ∞

ω0

d�ν3D
m (�)(� − μ/h̄)

×
[
−∂ fT (� − μ/h̄)

∂�

]
. (44)

The perturbative result for the ratio gs‖/Re g↑↓ depends on the
magnetic properties of bulk YIG only and not on the choice
of the normal metal N or the transparency of the interface,
whereas the nonperturbative result shows a (quantitative, but
not qualitative) dependence on the interface properties. The
results of Eqs. (43) and (44) are shown in Fig. 3 as functions
of temperature T for the material parameters of a YIG|Pt
interface; see Table I. (We assume no temperature dependence
of the spin density s and the spin stiffness Dex.) The green
dashed straight line in Fig. 3 is the perturbative result with the

FIG. 3. Zero-frequency longitudinal spin conductance per unit
area, gs‖, at a YIG|Pt-interface as function of the temperature T =
TN = TF for μ = μs‖ = μm = 0. The red solid curve shows the non-
perturbative result gs‖/Re g↑↓ of Eq. (43), the blue dashed curve the
perturbative result g(p)

s‖ /Re g↑↓ of Eq. (44), and the thin green dot-

dashed curve the approximation g(p0)
s‖ /Re g↑↓ of Eq. (45). The upper

left inset shows the ratios gs‖/g(p0)
s‖ (red solid curve) and g(p)

s‖ /g(p0)
s‖

(blue dashed curve). The lower right inset shows the ratio g(pH)
s‖ /g(p)

s‖ ,

where g(pH)
s‖ is the result of Eq. (44) for the magnon density of states

obtained from a Heisenberg model, see Eq. (46), and g(p)
s‖ that of

Eq. (44) for the quadratic approximation of the magnon dispersion.
Parameter values are taken from Table I.

additional approximation h̄ω0 � kBT , which gives [35]

g(p0)
s‖ = c

Re g↑↓
s

[(
kBTF

π h̄Dex

)3/2

+ 1

2

(
kBTN

π h̄Dex

)3/2]
, (45)

with c = (1/2)ζ (3/2) ≈ 1.31. The difference between the
perturbative and nonperturbative results increases with tem-
perature and reaches a factor ≈1.7 at room temperature,
whereby the nonperturbative result for gs‖ is always below
the small-g↑↓ approximation; see Fig. 3 (upper left inset). The
origin of this quantitative difference can be traced back to
the difference between exact and perturbative mode-averaged
transmission coefficients at thermal frequencies for a YIG|Pt
interface; see Fig. 2.

Since the perturbative finite-frequency expression for the
longitudinal spin conductance, discussed below, can not be
evaluated using a magnon density of states νm(�) of a
continuum magnon model, we compare the zero-frequency
longitudinal spin conductance for a quadratic magnon disper-
sion (as is used in the main panel of Fig. 3) with that for a
magnon dispersion of a Heisenberg model on a simple cubic
lattice [see Eq. (46) below]. This comparison is shown in the
lower right inset of Fig. 3. Whereas the difference between
the two cases is small for low temperatures and near room
temperature, the Heisenberg model leads to a longitudinal spin
conductance that is up to a factor ≈1.45 larger than that of the
quadratic approximation at intermediate temperatures. This is
consistent with the absence of van Hove peaks in the magnon
density of states in the quadratic approximation.
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In principle, the differential longitudinal spin conductance
per unit area, gs‖, also depends on the chemical potentials
μs‖ and μm. Such dependence governs the interfacial spin
current beyond linear order in μs‖ − μm. Because the driving
potentials μs‖ and μm must remain below h̄ω0—otherwise the
magnon system is unstable—the range of admissible values
for μs‖ and μm remains well below kBT at most temperatures,
so that appreciable nonlinear effects can be found only for ex-
tremely low temperatures T � 1 K. At those low temperatures
thermal magnons are as good as absent, so that the longitu-
dinal spin conductance is negligibly small in comparison to
the transverse spin conductance. For a further discussion we
refer to the discussion of nonlinear effects in the context of the
finite-frequency longitudinal spin conductance below.

B. Finite-frequency longitudinal spin transport

For a discussion of the finite-frequency longitudinal spin
conductance per unit area, gs‖(ω), the quadratic approxi-
mation of the magnon dispersion is not sufficient even at
temperatures kBT � h̄�max. The reason is that at finite fre-
quencies, gs‖(ω) acquires a finite imaginary part, which
depends on the full magnon spectrum. (The real part of gs‖(ω),
which describes the dissipative response, can still be calcu-
lated within the quadratic approximation.) For temperatures of
the order of room temperature and below and for frequencies
ω � �max it is sufficient to consider the lowest-lying magnon
band and neglect higher magnon bands in YIG [49]. The low-
est magnon band can be described effectively by a Heisenberg
model of spins on a simple cubic lattice with nearest-neighbor
interactions [56,58]. The resulting dispersion relation is given
by

�(k) = ω0 + 2Dex

a2
m

∑
α=x,y,z

[1 − cos(kαam )], (46)

with maximal magnon frequency �max, given in Eq. (40), and
agrees with the quadratic approximation for � � �max. The
finite magnon bandwidth regularizes the integrations for the
imaginary part of gs‖(ω). In the numerical evaluations of the
real and imaginary parts of gs‖(ω) that are discussed below
we therefore use the magnon density of states corresponding
to the dispersion in Eq. (46). We verified that as long as ω,
kBT/h̄ � �max the results for real and imaginary parts of
gs‖(ω) depend only weakly on the precise form of the magnon
density of states at frequencies ω � kBT/h̄.

Figures 4 and 5 show the real and imaginary parts of the
finite-frequency spin conductance gs‖ at an F|N interface with
F=YIG as function of the driving frequency ω and for dif-
ferent temperatures T = TN = TF and μ̄s‖ = μ̄m = 0. In the
perturbative regime, the ratio gs‖/Re g↑↓ is independent of
the choice of the normal metal N or the quality of the F|N
interface.

For driving frequencies ω � kBT/h̄, the real part Re gs‖
approaches the zero-frequency limit discussed above. [Note
that there may be small deviations between the zero-frequency
limit obtained from the quadratic approximation of the
magnon dispersion and from the magnon dispersion of
Eq. (46); see Fig. 3, lower right inset.] For T = 300 K, the
real part Re gs‖ does not show an appreciable frequency de-
pendence. At this temperature, the Planck distribution fTN may

FIG. 4. Real part Re gs‖ of the finite-frequency longitudinal spin
conductance of an F|N interface in the perturbative regime of weak
coupling as a function of the driving frequency ω/2π for various
temperatures T = TN = TF (solid colored lines). Material parameters
are taken for an F|N interface with F=YIG and N an arbitrary
normal metal, see Table I. The black dashed curve shows the result
of the Rayleigh-Jeans approximation, see Eq. (47). The inset displays
the same curves. The time-independent background magnon chem-
ical potential and spin accumulation have been set to zero, μ̄m =
μ̄s‖ = 0.

be well approximated by the Rayleigh-Jeans distribution

fTN (�) = kBTN

h̄�
. (47)

In this limit one finds that FN(�,ω) = 0 in Eq. (36), so
that gs‖(ω) is independent of frequency ω, temperature TN,
and background spin accumulation μ̄s‖ in N. At lower tem-
peratures, Re gs‖ shows an increase with frequency for ω �
kBTN/h̄, followed by a saturation at ω ≈ �max. The frequency
range of the strongest dependence of Re gs‖ on the driving

FIG. 5. Same as Fig. 4, but for the imaginary part Im gs‖ of the
finite-frequency spin conductance. The black dashed lines show the
limiting behavior for small and large ω according to Eqs. (51) and
(53) for TN → 0.
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frequency ω is where ω is above the frequency of thermal
magnons, but still below the high-frequency cut-off �max. One
may obtain an analytical expression for Re gs‖(ω) in the limit
ω � kBTN/h̄ (setting μ̄s‖ = μ̄m = 0):

Re gs‖(ω) ≈ 2Re g↑↓
s

[
2

∫ ∞

ω0

d�νm(�) fTF (� − μ̄m )

+
∫ ω+μ̄s‖/h̄

ω0

d�νm(�)
ω − � − μ̄s‖

ω

]
. (48)

[To keep the notation simple, we drop the superscript “(p)”
because all finite-frequency spin conductances are obtained in
the perturbative limit of small g↑↓.] The first line in Eq. (48)
is a frequency-independent offset which depends on the tem-
perature TF and magnon chemical potential μ̄m of the ferro- or
ferrimagnetic insulator only. Using the quadratic approxima-
tion for the magnon dispersion and assuming ω0 � kBTF/h̄,
this term is found to be equal to the first term in Eq. (45).
For ω0, kBTN/h̄ � ω � �max we may also use the quadratic
approximation for the magnon dispersion in the second term
and find

Re gs‖(ω) ≈ Re g↑↓
s

[
c

(
kBTF

π h̄Dex

)3/2

+ 8

15

(
ω

Dex

)3/2]
, (49)

where c = (1/2)ζ (3/2) ≈ 1.31 as below Eq. (45). In the limit
ω � �max (but still kBT � h̄�max) we find similarly

Re gs‖(ω) ≈ Re g↑↓
s

[
c

(
kBTF

π h̄Dex

)3/2

+ 2

a3
m

]
, (50)

where am is the lattice constant of the magnetic unit cell. [Note
that, up to a numerical factor of order unity in the second
term, Eq. (50) is what one obtains when kBTN/h̄ in Eq. (45) is
replaced by �max.]

With respect to the high-frequency limit ω � �max and/or
the high-temperature limit kBT � h̄�max, it should be kept in
mind that our calculation only considers the contribution from
the lowest-lying magnon band. For such high frequencies,
other magnon bands are likely to contribute to gs‖(ω) as well
and such a contribution is not included in our theory. Hence,
Eq. (50) and analogously Eq. (53) for Im gs‖(ω) discussed
below should be interpreted as the contribution of the lowest-
lying magnon band to the longitudinal spin conductance only.

The imaginary part Im gs‖(ω) increases linearly with ω for
small frequencies, reaches a maximum at max(�max, kBT/h̄),
and decreases with ω in the high-frequency limit; see Fig. 5.
The linear increase with ω for frequencies ω � �max is given
by the expression

Im gs‖(ω) ≈ − ω
2Re g↑↓

πs

∫
d�

νm(� + μ̄s‖/h̄)

�
hTN (�),

(51)

with

hT (�) =
∫ ∞

−∞
d�′ �

� − �′
∂2

∂�′2 [�′ fT (�′)]. (52)

This function behaves as hT (�) → 1 for � � kBT/h̄ and
hT (�) → 0 for � � kBT/h̄. Hence, effectively only frequen-
cies � � kBT/h̄ contribute to the integration in Eq. (51),
which explains the decreasing slope of −Im gs‖(ω) versus

FIG. 6. Real part Re gs‖ of the finite-frequency spin conductance
of an F|N interface in the weak-coupling regime as function of the
driving frequency for two values of the temperature T = TN = TF.
Material parameters are taken for an F|N interface with F=YIG and
N is an arbitrary normal metal, see Table I. Curves are shown for
three combinations of the time-independent background potentials
μ̄m and μ̄s‖: The solid colored curves correspond to μ̄m = μ̄s‖ = 0;
the dashed curves correspond to μ̄m = μ̄s‖ = 0.5h̄ω0, and the dot-
dashed ones to μ̄m = μ̄s‖ = −0.5h̄ω0.

ω—i.e., the intercept with the vertical axis in Fig. 5—with
increasing temperature T . The decay of Im gs‖(ω) in the limit
of large frequencies ω � �max is described by

Im gs‖(ω) ≈ − 1

ω

4Re g↑↓
πs

∫
d�νm(� + μ̄s‖h̄)�

×
[

1 + ln
ω

�
+ h′

TN
(�)

]
, (53)

with

h′
T (�) =

∫ ∞

−∞
d�′ �′

�(�′ − �)
[ fT (�′) + �(−�′)], (54)

where �(�′) is the Heaviside step function. The temperature-
dependent term proportional to h′

TN
is subleading for ω �

�max, so that Im gs‖(ω) becomes effectively temperature-
independent for sufficiently high frequency ω, as seen in
Fig. 5.

The role of the time-independent background magnon
chemical potential μ̄m and spin accumulation μ̄s‖ is addressed
in Fig. 6. The figure shows Re gs‖(ω) as function of ω, as in
Fig. 4, but for different values of μ̄m and μ̄s‖, while satisfying
the bound μ̄m, μ̄s‖ < h̄ω0. As the magnon chemical potential
and spin accumulation appear in Eq. (36) only in the combina-
tions μ̄m/kBTF and μ̄s‖/kBTN and since h̄ω0 is much smaller
than kBT for most temperatures considered, we only show
results for T = TN = TF = 0.03 K and T = TN = TF = 3 K.
As can be seen in Fig. 6, the dependence of Re gs‖(ω) on
μ̄m and μ̄s‖ disappears, when h̄ω0 � kBT (as for T = 3 K
in Fig. 6) or when h̄ω becomes large in comparison to μ̄m

and μ̄s‖. The imaginary part of gs‖(ω) does not show any
appreciable dependence on μ̄s‖ in the full parameter range
considered (not shown) and is independent of μ̄m.
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FIG. 7. Spin-Seebeck coefficient LSSE at a YIG|Pt-interface in
the linear-response regime as function of the temperature T = T̄N =
T̄F. All three curves in the main panel are obtained using the parabolic
approximation of the magnon dispersion. The red solid curve shows
LSSE according to the nonperturbative theory, see Eq. (56), the blue
dashed curve the perturbative result L(p)

SSE of Eq. (57), and the thin
green dot-dashed curve includes the approximation L(p0)

SSE of Eq. (58).
The upper left inset shows the ratios LSSE/L(p0)

SSE (red solid curve)
and L(p)

SSE/L(p0)
SSE (blue dashed curve). The lower right inset shows the

ratio L(pH)
SSE /L(p)

SSE, where L(pH)
SSE is the result of Eq. (57) for the magnon

density of states obtained from a Heisenberg model, see Eq. (46), and
L(p)

SSE that of Eq. (57) for the quadratic approximation of the magnon
dispersion. Parameter values are taken from Table I.

C. Spin-Seebeck coefficient

Our nonperturbative calculation of the longitudinal spin
current through the F|N interface also describes the longitu-
dinal spin current in response to a temperature difference δT
across the interface. We set TF = T + δT , TN = T , μm = μs‖,
and expand jx

s‖ in Eq. (25) to linear order in δT , resulting in

jx
s‖ = LSSE

T
δT, (55)

with the spin-Seebeck coefficient LSSE [59],

LSSE = h̄

2(2π )2

∫ ∞

ω0

d� kx (�)2Tm(�)(� − μs‖/h̄)

×
[
−∂ fT (� − μs‖/h̄)

∂�

]
. (56)

In the weak-coupling limit of Eq. (27), one recovers the spin-
Seebeck coefficient obtained by Cornelissen et al. [35],

L(p)
SSE = h̄Re g↑↓

πs

∫
d�ν3D

m (�)(� − μs‖/h̄)2

×
[
−∂ fT (� − μs‖/h̄)

∂�

]
. (57)

In the limit ω0 � kBT/h̄ the frequency integration may be
performed and one finds [35]

L(p0)
SSE = c′ Re g↑↓kBT

πs

(
kBT

π h̄Dex

)3/2

, (58)

with c′ = 15 ζ (5/2)/32 ≈ 0.63. All three expressions are
evaluated in Fig. 7 as a function of T for material parameters
of a YIG|Pt interface. Like in the case of the longitudinal
spin conductance, we observe that there are small quantitative
differences between the nonperturbative and perturbative re-
sults. These differences are small at low temperatures, but the
perturbative weak-coupling result deviates from the nonper-
turbative one at higher temperatures, the difference reaching
a factor ≈2.3 at room temperature; see the upper left inset of
Fig. 7.

V. CONCLUSIONS AND OUTLOOK

The spin angular momentum current from a normal metal
N into a ferro- or ferrimagnetic insulator F in general has a
component collinear with the magnetization, which is carried
by thermal magnons in F. In this article, we presented two
calculations of the longitudinal interfacial spin conductance:
At zero frequency, but for arbitrary transparency of the in-
terface, and at finite frequencies, but to leading order in the
interface transparency. In general, one expects the longitudi-
nal interfacial spin conductance to acquire a dependence on
the driving frequency ω, when ω exceeds kBT/h̄. In the case of
typical parameters for the material combination YIG|Pt and at
room temperature, we find that the resulting frequency depen-
dence of the interfacial spin conductance is rather weak, not
more than a factor ≈1.1 between the low- and high-frequency
limits. Also, we find that (at zero frequency) the difference
between the spin conductance in a nonperturbative treatment
of the coupling across the F|N interface and the perturbative
result to leading order in the spin-mixing conductance g↑↓
is not more than a factor ≈1.7 at room temperature, despite
the fact that g↑↓ of a good YIG|Pt interface (see Table I) is
only slightly below the Sharvin limit (e2/h)g↑↓ = πe2/hλ2

e ≈
6.8 × 1014 �−1m−2 [57], where λe is the Fermi wavelength
of Pt [60–62]. In that sense, for F|N interfaces involving the
ferrimagnetic insulator YIG, our two calculations may seen as
a confirmation of the existing low-frequency weak-coupling
theory [12,23,35]. A similar conclusion applies to the inter-
facial spin-Seebeck coefficient, for which we compared the
existing weak-coupling zero-frequency theory [35,36,63] with
a calculation nonperturbative in the interface transparency.

Of course, one may turn the question around and ask,
under which experimental conditions or for which material
combinations a frequency dependence of the interfacial longi-
tudinal spin conductance or a deviation from the perturbative
weak-coupling approximation will become significant. To see
an appreciable frequency dependence of gs‖, it is necessary
that the temperature is significantly below the maximum en-
ergy h̄�max of acoustic magnons. For YIG, this means that
the temperature must be well below room temperature. Our
numerical estimates based on material parameters for YIG in-
dicate that gs‖(ω) may increase by a factor �10 between low-
and high-frequency regimes if T � 30 K and that the effect
can be larger at lower temperatures, whereas the frequency
dependence of gs‖(ω) is small for T � 100 K.

An experimental technique to measure these effects is the
spin-Hall magnetoresistance, which depends on the compe-
tition of longitudinal and transversal spin transport across
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the F|N interface. Measurements of the spin-Hall magne-
toresistance up to the lower GHz range [64] have already
been performed. Since the longitudinal and transversal in-
terfacial spin conductances are of comparable magnitude in
the high-frequency limit, one may thus expect a visible fre-
quency dependence of the spin-Hall magnetoresistance effect
for frequencies in the THz range, if the temperature is low
enough that not all magnon modes are thermally excited.
(This effect is additional to a frequency dependence of the
spin-Hall magnetoresistance in the GHz range predicted in
Ref. [33].) However, since the spin-Hall magnetoresistance
effect involves the difference of two contributions of compa-
rable magnitude, a more precise material-specific modeling is
required to reach a firm prediction.

Another experimental platform in which the longitudinal
interfacial spin conductance plays a role is that of nonlocal
magnonic spin transport [23–25]. In this case, the interfacial
spin conductance directly determines the coupling between
the magnon system in a ferro- or ferrimagnetic insulator
and the electrical currents in adjacent normal-metal con-
tacts used to excite and detect the magnon currents. Our
predictions directly translate to a frequency dependence of
the electron-to-magnon and magnon-to-electron conversion in
such experiments. Furthermore, the difference between the
weak-coupling and strong-coupling predictions may quantita-
tively affect estimates of the spin-mixing conductance based
on a measurement of the longitudinal spin conductance or the
spin-Seebeck coefficient [28–31,54,65,66].

We predict that the longitudinal spin conductance depends
on the temperatures TF and TN of the ferro- or ferrimagnetic
insulator and the normal metal in different ways; see, e.g.,
Eqs. (45) and (50). Whereas the longitudinal spin current
in F is carried by thermal magnons if F and N are close
to equilibrium, the longitudinal spin conductance does not
vanish if TF = 0, as long as TN is nonzero. In this case, the
spin current is carried by magnons in F excited by spin-flip
scattering of thermally excited electrons at the F|N interface.
Apart from the difficulty that a large temperature difference
between F and N is difficult to realize experimentally, a large
temperature difference across an F|N interface also leads
to a large steady-state spin current via the interfacial spin-
Seebeck effect. However, this DC spin current can be easily
distinguished experimentally from the AC signal, which is
caused by time-dependent driving of the spin accumulation
in N.

At the interface between a normal metal and a ferro- or
ferrimagnetic metal, there are two contributions to the longi-
tudinal spin current: A contribution from conduction electrons
in the ferro- or ferrimagnetic metal and a magnonic con-
tribution. The results derived in this article also apply to
the magnonic contribution at such an interface. However, at
metal-metal interfaces, the magnonic contribution to the spin
current is typically much smaller than the electronic con-
tribution so that the frequency and temperature dependence
of the magnonic contribution is a subleading effect at such
interfaces.

We close with two remarks on possible further extensions
of our work. An important limitation of our theory is the
restriction to the lowest magnon band. On the one hand, this
limitation enters into our nonperturbative calculation for low

frequencies, because the calculation relies on the continuum
limit of the Landau-Lifshitz-Gilbert equation. On the other
hand, this limitation enters both calculations, because the
boundary condition at the F|N interface implicitly assumes
that the coupling between electronic degrees of freedom in
N and the magnonic degrees of freedom in F at the interface
is local. For acoustic magnons at the zone boundary and for
higher magnon bands, electrons in N reflecting off the ferro-
or ferrimagnetic insulator F penetrate F sufficiently deep such
that they are influenced by the nonuniformity of m, violat-
ing the assumption of a local coupling between magnonic
and electronic degrees of freedom. The first problem can
be partially addressed by replacing the quadratic magnon
dispersion by the dispersion of a Heisenberg model on a
simple cubic lattice, as we have done in Sec. IV, but this
replacement does not account for the nonuniformity of the
magnetization near the interface. A rough estimate for the
frequency at which the nonuniformity becomes relevant is the
maximum frequency �max of acoustic magnons, where for
YIG �max/2π ≈ 1013 Hz. It is an open task for the future to
extend our theory to appropriate couplings between electron
spins and short-wavelength magnons, optical magnons, and
antiferromagnons in antiferromagnets and ferrimagnets.

Another limitation of our theory is the assumption that
scattering from the interface itself is spin conserving and in-
stantaneous on timescales characteristic of the magnetization
dynamics and of the driving field. Interface scattering which
does not conserve spin may arise, e.g., as a result of spin-orbit
coupling at the interface [48,67,68]. Inclusion of spin-orbit
effects blurs the separation between longitudinal and trans-
verse spin transport and requires a more detailed modeling
of the interface than the exchange-based coupling used here
[51,69]. The intrinsic dynamics of interfacial scattering may
become important if the interface is strongly disordered or if
the metal and magnet are separated by an insulating layer, for
which transport takes place via long-lived resonances. In such
a case it is the interface itself, rather than the magnetization
dynamics, that determines the frequency dependence of the
spin conductance.

Our finite-frequency calculations assume that it is only the
electronic distribution in the normal metal N that is driven
out of equilibrium. Experiments exciting directly the phonons
of an insulating magnet F such as YIG, e.g., by an ultrashort
THz laser pulse, might also create a time-dependent magnon
chemical potential in F on ultrafast timescales [35]. Time-
dependent magnon chemical potentials may also appear in
ultrafast versions of nonlocal magnon transport experiments
or in the ultrafast spin-Hall magnetoresistance effect with an
ultrathin magnetic insulator F [33]. Investigating the ultrafast
response to a change of magnon chemical potential is another
interesting avenue for future research.
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APPENDIX A: TRANSFORMATION
TO A ROTATING FRAME

Here we consider the transformation to a reference system
for the spin degree of freedom that rotates with angular fre-
quency ω̄(t ) = ω̄(t )e‖. We discuss how the longitudinal spin
accumulation μs‖ in N, the magnetization amplitude m⊥, and
the stochastic transverse spin current js⊥ transform upon pass-
ing to the rotating frame. We restrict the discussion to linear
response in μs‖ and ω̄. We use a prime to denote creation
and annihilation operators and observables in the rotating
reference system.

We first consider the transformation to a frame rotating at
constant angular velocity ω̄ = ω̄e‖. The transformation rela-
tion for the electron annihilation operators in N is

ψ̂ ′(t ) = eiω̄·σt/2ψ̂ (t ), (A1)

where ψ (t ) is a two-component column spinor for the wave
function of the conduction electrons. Solving for the annihila-
tion operator c(ε) in energy representation, we have

ψ̂ ′(ε) = ψ̂ (ε + h̄ω̄ · σ/2) (A2)

and, similarly,

ψ̂ ′(ε)† = ψ̂ (ε + h̄ω̄ · σ/2)†. (A3)

It follows that the distribution function f ′(ε) in the rotating
frame is

f ′
TN

(ε) = fTN (ε + h̄ω̄ · σ/2), (A4)

where fTN is the distribution function in the original reference
frame. We thus conclude that, in linear response, upon trans-
forming to a rotating frame the spin accumulation changes as

μ′
s = μs − h̄ω̄. (A5)

APPENDIX B: WEAK-COUPLING SPIN CURRENT
AT FINITE FREQUENCY

We first discuss the expression (29) for the longitudinal
spin current through the F|N interface. From the Heisenberg
equation of motion, the spin current into the magnetic insula-
tor is

ĵx
s‖(t ) = − i

2
[Ĥ , N̂↑ − N̂↓], (B1)

where Ĥ is the Hamiltonian and N̂σ is the number of conduc-
tion electrons with spin σ , σ =↑, ↓. The only contribution to
Ĥ that does not commute with N̂σ is the term (28) describing
the coupling via the F|N interface. Inserting Eq. (28) into the
above expression gives Eq. (29) of the main text.

We next turn to the calculation of the expectation value
jx
s‖(t ) of the interfacial longitudinal spin current. Calculating

jx
s‖(t ) to leading order in perturbation theory in J gives

jx
s‖(t ) = i

|J|2
h̄

∫
c

dt ′[G↑(t ′, t )G↓(t, t ′)D(t, t ′)

− G↑(t, t ′)G↓(t ′, t )D(t ′, t )], (B2)

where t ′ is integrated along the Keldysh contour (i.e., forward
and backward integrations along the real time axis),

Gσ (t ′, t ) = −i〈Tcψ̂σ (t ′)ψ̂†
σ (t )〉 (B3)

is the contour-ordered Green function for the conduction elec-
trons, evaluated at the interface, and

D(t ′, t ) = −i〈Tcâ(t ′)â†(t )〉 (B4)

is the contour-ordered magnon Green function, again evalu-
ated at the interface. Equation (B2) may be written as

jx
s‖(t ) = i

|J|2
h̄

∫ ∞

−∞
dt ′{[GR

↑ (t ′, t ) + G<
↑ (t ′, t )][GR

↓ (t, t ′) + G<
↓ (t, t ′)][DR(t, t ′) + D<(t, t ′)]

− [GR
↑ (t, t ′) + G<

↑ (t, t ′)][GR
↓ (t ′, t ) + G<

↓ (t ′, t )][DR(t ′, t ) + D<(t ′, t )]

− G>
↑ (t ′, t )G<

↓ (t, t ′)D<(t, t ′) + G<
↑ (t, t ′)G>

↓ (t ′, t )D>(t ′, t )
}
. (B5)

In this expression, the integration variable t ′ is a time, not a contour time.
We first evaluate Eq. (B5) for the case that the three subsystems—conduction electrons with spin up, conduction electrons

with spin down, and magnons—are separately in equilibrium at chemical potentials μσ and μm and temperatures Tσ and Tm,
respectively. In this case, all Green functions depend on the time difference t − t ′ only. Changing to the integration variable
t ′ − t for the first term and third term and t − t ′ for the second and fourth term in Eq. (B5), one finds that the first and third terms
in Eq. (B5) cancel, whereas the second and fourth terms give, after Fourier transform,

jx
s‖ = −i

|J|2
h̄

∫
dε

2π

∫
d�

2π
[G>

↑ (ε)G<
↓ (ε − �)D<(�) − G<

↑ (ε)G>
↓ (ε − �)D>(�)]. (B6)

According to the fluctuation-dissipation theorem, one has

G>
σ (ε) = −2π ih̄[1 − nσ (ε)]νσ , G<

σ (ε) = 2π ih̄nσ (ε)νσ . (B7)

Similarly, for the magnon Green function, one has

D>(�) = −2π i[ fTF (� − μm/h̄) + 1]νm(�), D<(�) = −2π i fTF (� − μm/h̄)νm(�). (B8)

144423-11



DAVID A. REISS AND PIET W. BROUWER PHYSICAL REVIEW B 106, 144423 (2022)

Hence, we find that the spin current is

jx
s‖ = 2π |J|2ν↑ν↓

∫
dε

∫
d�νm(�){n↑(ε)[1 − n↓(ε − h̄�)][1 + fTF (�) − μm/h̄] − [1 − n↑(ε)]n↓(ε − h̄�) fTF (� − μm/h̄)}.

(B9)

Setting T↑ = T↓ = TN and performing the integration over ε, one reproduces Eqs. (29) and (30) of the main text, which was
derived from Fermi’s Golden Rule.

We now consider an additional oscillating component of the chemical potential as in Eq. (33) of the main text. In the presence
of the oscillating chemical potential the electron Green function G(t, t ′) reads

Gσ (t, t ′) = Gσ0(t, t ′) exp

[
−i

∫ t

t ′
dτ

δμσ (τ )

h̄

]
= Gσ0(t, t ′)

{
1 +

∫
dω

δμσ (ω)

h̄ω
e−iωt [1 − eiω(t−t ′ )]

}
+ · · · , (B10)

for the greater and lesser Green functions, where, in the second line, the subscript “0” indicates the equilibrium Green function
and the dots indicate terms of higher order in δμσ (ω). Similarly, one has

Gσ (t ′, t ) = Gσ0(t ′, t )

{
1 −

∫
dω

δμσ (ω)

h̄ω
e−iωt [1 − eiω(t−t ′ )]

}
+ · · · . (B11)

To find the spin current, we find it advantageous to cast the first two terms of Eq. (B5) into a different form, making repeated
use of the identities GR + G< = GA + G> and DR + D< = DA + D>,

δ jx
s‖(t ) = i

|J|2
h̄

∫
dt ′{[GA

↑ (t ′, t ) + G>
↑ (t ′, t )][GR

↓ (t, t ′) + G<
↓ (t, t ′)][DR(t, t ′) + D<(t, t ′)]

− [GR
↑ (t, t ′) + G<

↑ (t, t ′)][GA
↓ (t ′, t ) + G>

↓ (t ′, t )][DA(t ′, t ) + D>(t ′, t )]

− G>
↑ (t ′, t )G<

↓ (t, t ′)D<(t, t ′) + G<
↑ (t, t ′)G>

↓ (t ′, t )D>(t ′, t )}. (B12)

For the linear-response correction to the spin current, we then obtain

δ jx
s‖(ω) = i

|J|2
h̄2ω

∫
dt ′[eiω(t−t ′ ) − 1]

× {[G<
↑0(t ′ − t )GR

↓ (t − t ′)δμ↑(ω) − GA
↑ (t ′ − t )G<

↓0(t − t ′)δμ↓(ω)][DR(t − t ′) + D<(t − t ′)]

+ [GA
↓ (t ′ − t )G<

↑0(t − t ′)δμ↑(ω) − G<
↓0(t ′ − t )GR

↑ (t − t ′)δμ↓(ω)][DA(t ′ − t ) + D>(t ′ − t )]

+ G>
↑0(t ′ − t )G<

↓0(t − t ′)[δμ↑(ω) − δμ↓(ω)]DR(t − t ′)

+ G<
↑0(t − t ′)G>

↓0(t ′ − t )[δμ↑(ω) − δμ↓(ω)]DA(t ′ − t )}. (B13)

Writing the Green functions in terms of their Fourier representations, we write this as

δ jx
s‖(ω) = i

|J|2
h̄ω

∫
dε

2π

∫
d�

2π

× ({[G<
↑0(ε − ω) − G<

↑0(ε)]GR
↓ (ε − �)δμ↑(ω) − GA(ε + �)[G<

↓0(ε + ω) − G<
↓0(ε)]δμ↓(ω)}[DR(�) + D<(�)]

+ {G<
↑0(ε + ω) − G<

↑0(ε)]GA
↓ (ε − �)δμ↑(ω) − GR(ε + �)[G<

↓0(ε − ω) − G<
↓0(ε)]δμ↓(ω)}[DA(�) + D>(�)]

+ [G>
↑0(ε − ω) − G>

↑0(ε)]G<
↓0(ε − �)[δμ↑(ω) − δμ↓(ω)]DR(�)

+ [G<
↑0(ε + ω) − G<

↑0(ε)]G>
↓0(ε − �)[δμ↑(ω) − δμ↓(ω)]DA(�)). (B14)

Again we use the fluctuation-dissipation theorem, see Eqs. (B7) and (B8). For the electrons we assume that the spectral density
is independent of energy and we set GR

σ (ε) = −GA
σ (ε) = −iπ h̄νσ . For the magnons we use that

DR(�) + D<(�) = DA(�) + D>(�) = DR(�)[ fTF (� − μ̄m/h̄) + 1] − DA(�) fTF (� − μ̄m/h̄). (B15)

We then find

δ jx
s‖(ω) = i

|J|2
2h̄ω

∫
dε

∫
d�ν↑ν↓({[n↑(ε − h̄ω) − n↑(ε + h̄ω)]δμ↑(ω) − [n↓(ε − h̄ω) − n↓(ε + h̄ω)]δμ↓(ω)}

× {DR(�)[ fTF (� − μ̄m/h̄) + 1] − DA(�) fTF (� − μ̄m/h̄)} − 2[δμ↑(ω) − δμ↓(ω)]

× {[n↑(ε − h̄ω) − n↑(ε)]n↓(ε − h̄�)DR(�) − [n↑(ε + h̄ω) − n↑(ε)][1 − n↓(ε − h̄�)]DA(�)})
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= i
|J|2
h̄ω

δμs‖(ω)
∫

d�

(
DR(�)

{
ω[ fTF (� − μ̄m/h̄) + 1] −

∫
dε[n↑(ε − h̄ω) − n↑(ε)]n↓(ε − h̄�)

}

+ DA(�)

{
(−ω)[ fTF (� − μ̄m/h̄) + 1] −

∫
dε[n↑(ε + h̄ω) − n↑(ε)]n↓(ε − h̄�)

})
. (B16)

If T↑ = T↓ = T , then this may be further simplified as

δ jx
s‖(ω) = i

|J|2
h̄ω

ν↑ν↓δμs‖(ω)
∫

d�

× {DR(�)[(h̄� − μ̄s‖ − ω) fTN (� − ω − μ̄s‖/h̄) − (h̄� − μ̄s‖) fTN (� − μ̄s‖/h̄) + h̄ω fTF (� − μ̄m/h̄)]

+ DA(�)[(h̄� − μ̄s‖ + h̄ω) fTN (� + ω − μ̄s‖/h̄) − (h̄� − μ̄s‖) fTN (� − μ̄s‖/h̄) − h̄ω fTF (� − μ̄m/h̄)]
}
. (B17)

The retarded and advanced magnon Green functions can be obtained from the Kramers-Kronig relations,

DR(�) = DA(�)∗ =
∫

d�′ νm(�′)
� + iη − �′ , (B18)

where η is a positive infinitesimal. In the main text the superscript “R” for the retarded magnon Green function is omitted. In the
limit ω → 0, Eq. (B17) simplifies to

δ jx
s‖(0) = 2π |J|2ν↑ν↓δμs‖(0)

∫
d�νm(�)

[
fTF (� − μ̄m/h̄) − fTN (� − μ̄s‖/h̄) − (� − μ̄s‖/h̄)

dfTN

d�

∣∣∣∣
�−μ̄s‖/h̄

]
, (B19)

which is consistent with Eq. (31).
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