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We study spin pumping into an anisotropic Dirac electron system induced by microwave irradiation to an
adjacent ferromagnetic insulator theoretically. We formulate the Gilbert damping enhancement due to the spin
current flowing into the Dirac electron system using second-order perturbation with respect to the interfacial
exchange coupling. As an illustration, we consider the anisotropic Dirac system realized in bismuth to show that
the Gilbert damping varies according to the magnetization direction in the ferromagnetic insulator. Our results
indicate that this setup can provide helpful information on the anisotropy of the Dirac electron system.
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I. INTRODUCTION

In spintronics, spin currents are crucial in using electrons’
charge and spin. Spin pumping, the spin current generation
of conduction electrons from nonequilibrium magnetization
dynamics at magnetic interfaces, is a popular method for
generating and manipulating spin currents. In previous exper-
imental reports on spin pumping, the enhancement of Gilbert
damping in ferromagnetic resonance (FMR) was observed
due to the loss of angular momentum associated with the
spin current injection into the nonmagnetic layer adjacent
to the ferromagnetic layer [1–9]. Mizukami et al. measured
the enhancement of the Gilbert damping associated with the
adjacent nonmagnetic metal. They reported that the strong
spin-orbit coupling in the nonmagnetic layer strictly affected
the enhancement of the Gilbert damping [3–5]. Consequently,
electric detection by inverse spin Hall effect, in which the
charge current is converted from the spin current, led to spin
pumping being used as an essential technique for studying
spin-related phenomena in nonmagnetic materials [10–24].
Saitoh et al. measured electric voltage in a bilayer of Py and
Pt under microwave application. They observed that charge
current converted because of inverse spin Hall effect from spin
current injected by spin pumping [11].

In the first theoretical report on spin pumping, Berger pre-
dicted an increase in Gilbert damping due to the spin current
flowing across the interface between the ferromagnetic and
nonmagnetic layers [25,26]. Tserkovnyak et al. calculated the
spin current flowing through the interface [27–29] based on
the scattering matrix theory and the picture of adiabatic spin
pumping [30–32]. They introduced a complex spin mixing
conductance that characterizes spin transport at the interfaces
based on spin conservation and no spin loss. The spin mixing
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conductance can represent the spin pumping-associated phe-
nomena and is quantitatively evaluated using the first principle
calculation [33]. Nevertheless, microscopic analysis is neces-
sary to understand the detailed mechanism of spin transport
at the interface [34–44]. It was clarified that spin pumping
depends on the anisotropy of the electron band structure and
spin texture. Spin pumping is expected to be one of the probes
of the electron states [41–44].

Bismuth has been extensively studied because of its attrac-
tive physical properties, such as large diamagnetism, large
g factor, high efficient Seebeck effect, Shubnikov–de Haas
effect, and de Haas–van Alphen effect [45,46]. The elec-
trons in the conduction and valence bands near the L points
in bismuth, which contribute mainly to the various physi-
cal phenomena, are expressed as effective Dirac electrons.
Thus, electrons in bismuth are called Dirac electrons [45–47].
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FIG. 1. Schematic illustration of a bilayer system composed of
the Dirac electron system and ferromagnetic insulator. The applied
microwave excited precession of the localized spin in the ferromag-
netic insulator and spin current is injected into the Dirac electron
system.
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Doping of antimony to bismuth is known to close the gap and
makes it a topological insulator [48,49]. Because of its strong
spin-orbit interaction, bismuth has attracted broad attention
in spintronics as a high efficient charge-to-spin conversion
material [50–55]. The spin current generation at the interface
between the bismuth oxide and metal has been studied since
a significant Rashba spin-orbit interaction appears at the in-
terface [56]. The spin injection into bismuth was observed
due to spin pumping from yttrium iron garnet or permalloy
[57–59]. Nevertheless, microscopic analysis of spin pumping
into bismuth has not been performed. The dependence of the
spin pumping on the crystal and band structure of bismuth
remains unclear.

This study aims at a microscopic analysis of spin injection
due to spin pumping into an anisotropic Dirac electron system,
such as bismuth, and investigates the dependence of spin
pumping on the band structure. We consider a bilayer system
comprising an anisotropic Dirac electron system and a ferro-
magnetic insulator where a microwave is applied (see Fig. 1).
The effect of the interface is treated by proximity exchange
coupling between the electron spins in the anisotropic Dirac
electron system and the localized spins of the ferromagnetic
insulator [34–44]. We calculate the Gilbert damping enhance-
ment due to spin pumping from the ferromagnetic insulator
into the Dirac electron system up to the second perturbation of
the interfacial exchange coupling. For illustration, we calcu-
late the enhancement of the Gilbert damping for an anisotropic
Dirac electron system in bismuth.

This paper is organized as follows: Section II describes the
model. Section III shows the formulation of the Gilbert damp-
ing enhancement and discusses the effect of the interfacial
randomness on spin pumping. Section IV summarizes the re-
sults and demonstration of the Gilbert damping enhancement
in bismuth. Section V presents the conclusion. The Appen-
dices show the details of the calculation. Appendix A defines
the magnetic moment of electrons in a Dirac electron system,
Appendix B provides the detailed formulation of the Gilbert
damping modulation, and Appendix C presents the detailed
derivation of Gilbert damping modulation.

II. MODEL

We consider a bilayer system composed of an anisotropic
Dirac electron system and a ferromagnetic insulator under a
static magnetic field. We evaluate a microscopic model whose
Hamiltonian is given as

ĤT = ĤD + ĤFI + Ĥex, (1)

where ĤD, ĤFI, and Ĥex represent an anisotropic Dirac elec-
tron system, a ferromagnetic insulator, and an interfacial
exchange interaction, respectively.

A. Anisotropic Dirac system

The following Wolff Hamiltonian models the anisotropic
Dirac electron system [46,47,50]:

ĤD =
∑

k

c†
k(−h̄k · vρ2 + �ρ3)ck, (2)

FIG. 2. Schematic illustration of the band structure of the
anisotropic Dirac electron system. The red band represents the con-
duction band with λ = +, and the blue band represents the valence
band with λ = −. The chemical potential is in the conduction band.

where 2� ( �= 0) is the band gap, c†
k(ck) is the electrons’

four-component creation (annihilation) operator, and v is the
velocity operator given by vi = wiασα with wiα being the ma-
trix element of the velocity operator. σ = (σ x, σ y, σ z ) are the
Pauli matrices in the spin space and ρ = (ρ1, ρ2, ρ3) are the
Pauli matrices specifying the conduction and valence bands.
Hereafter, we assume the Einstein summation convention for
repeated Roman indices i, j, k denoting space direction and
Greek indices α, β, γ denoting Pauli matrices. Note that the
Zeeman energy in the anisotropic Dirac electron systems is
assumed to be negligible compared to the band gap energy.

For this anisotropic Dirac system, the Matsubara Green
function of the electrons is given by

gk(iεn) = iεn + μ − h̄k̃ · σρ2 + �ρ3

(iεn + μ)2 − ε2
k

, (3)

where εn = (2n + 1)π/β is the fermionic Matsubara fre-
quency with n being integers, μ (> �) is the chemical
potential in the conduction band, k̃ is defined by k̃ · σ =
k̃ασα = k · v, and εk is the eigenenergy given by

εk =
√

�2 + (h̄kiwiα )2 =
√

�2 + h̄2k̃2. (4)

The density of the state of the anisotropic Dirac electrons
per unit cell, per band and spin, is given by

ν(ε) = n−1
D

∑
k,λ

δ(ε − λεk), (5)

= |ε|
2π2h̄3

√
ε2 − �2

�3detαi j
θ (|ε| − �), (6)

where λ = ± is a band index (see Fig. 2), nD is the number of
unit cells in the Dirac electron system, and αi j is the inverse
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FIG. 3. Relation between the original coordinates (x, y, z) and
the magnetization-fixed coordinates (X,Y, Z ). The direction of the
ordered localized spin 〈S〉0 is fixed to the X axis. θ is the polar angle
and φ is the azimuthal angle.

mass tensor near the Dirac points, which characterize the band
structure of the anisotropic Dirac electron system:

αi j = 1

h̄2

∂2εk

∂ki∂k j

∣∣∣∣
k=0

= 1

�
wiαw jα. (7)

The spin operator can be defined as

ŝq =
∑

k

c†
k−q/2sck+q/2, (8)

si = m

�
Miαρ3σ

α (i = x, y, z), (9)

where Miα are the matrix elements of the spin magnetic
moment given as [50–52]

Miα = εαβγ εi jkwiβw jγ /2. (10)

The detailed derivation of the spin magnetic moment can be
found in Appendix A.

B. Ferromagnetic insulator

The bulk ferromagnetic insulator with simple cubic lattice
structure under a static magnetic field is described by the
quantum Heisenberg model as

ĤFI = −J
∑
〈i, j〉

Si · S j − gμBhdc

∑
i

SX
i , (11)

where J is an exchange interaction, g is g factor of the
electrons, μB is the Bohr magnetization, and 〈i, j〉 rep-
resents the pair of nearest neighbor sites. Here, we have
introduced a magnetization-fixed coordinate (X,Y, Z ), for
which the direction of the ordered localized spin 〈S〉0 is
fixed to the X axis (see Fig. 3). The localized spin operators
for the magnetization-fixed coordinates are related to the ones

for the original coordinates (x, y, z) as⎛
⎝Sx

Sy

Sz

⎞
⎠ = R(θ, φ)

⎛
⎝SX

SY

SZ

⎞
⎠, (12)

where R(θ, φ) = Rz(φ)Ry(θ ) is the rotation matrix combin-
ing the polar angle θ rotation around the y axis Ry(θ ) and the
azimuthal angle φ rotation around the z axis Rz(φ), given by

R(θ, φ) =
⎛
⎝cos θ cos φ − sin φ sin θ cos φ

cos θ sin φ cos φ sin θ sin φ

− sin θ 0 cos θ

⎞
⎠. (13)

By applying the spin-wave approximation, the spin operators
are written as S±

k = SY
k ± iSZ

k = √
2Sbk(b†

k) and SX
k = S −

b†
kbk using magnon creation (annihilation) operator, b†

k (bk).
Then, the Hamiltonian is rewritten as

ĤFI =
∑

k

h̄ωkb†
kbk, (14)

where h̄ωk = Dk2 + h̄ω0 with D = JSa2 being the spin stiff-
ness, and h̄ω0 = gμBhdc is the Zeeman energy.

C. Interfacial exchange interaction

The proximity exchange coupling between the electron
spin in the anisotropic Dirac electron system and the localized
spin in the ferromagnetic insulator is modeled by

Ĥex =
∑
q,k

(Tq,k ŝ+
q S−

k + H.c.), (15)

where Tq,k is a matrix element for spin transfer through the
interface and ŝ±

q = ŝY
q ± iŝZ

q are the spin ladder operators of
the Dirac electrons. According to the relation between the
original coordinate (x, y, z) and the magnetization-fixed coor-
dinate (X,Y, Z ), the spin operators of the Dirac electrons are
expressed as ⎛

⎝sX

sY

sZ

⎞
⎠ = R−1(θ, φ)

⎛
⎝sx

sy

sz

⎞
⎠, (16)

where R−1(θ, φ) = Ry(−θ )Rz(−φ) is given by

R−1(θ, φ) =
⎛
⎝cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0
sin θ cos φ sin θ sin φ cos θ

⎞
⎠. (17)

The spin ladder operators are given by

s+ = m

�
aiMiασα, s− = m

�
a∗

i Miασ α, (18)

where ai (i = x, y, z) are defined by⎛
⎝ax

ay

az

⎞
⎠ =

⎛
⎝− sin φ + i sin θ cos φ

cos φ + i sin θ sin φ

i cos θ

⎞
⎠. (19)

III. FORMULATION

Applying a microwave to the ferromagnetic insulator in-
cludes the localized spin’s precession. The Gilbert damping
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FIG. 4. FMR frequency dependence of the (a) local and (b) uni-
form spin susceptibilities. The local spin susceptibility is normalized
by πn2

Dν2
0 and scaled by 106, and the uniform spin susceptibility

is normalized by πnDν0 with ν0 ≡ 1/2π 2 h̄3
√

detαi j . Note that kB

is the Boltzmann constant. The line with kBT/� = 0.001 is absent
in (a) because the local spin susceptibility approaches zero at low
temperature.

constant can be read from the retarded magnon Green function
defined by

GR
k (ω) = − i

h̄

∫ ∞

0
dtei(ω+iδ)t 〈[S+

k (t ), S−
k ]〉, (20)

with S+
k (t ) = eiĤT t/h̄S+

k e−iĤT t/h̄ being the Heisenberg rep-
resentation of the localized spin, since one can prove that
the absorption rate of the microwave is proportional to
Im GR

k=0(ω) (see also Appendix B). By considering the
second-order perturbation with respect to the matrix element
for the spin transfer Tq,k, the magnon Green function is given
by [34–44]

GR
0 (ω) = 2S/h̄

(ω − ω0) + i(α + δα)ω
. (21)

Here, we introduced a term iαω in the denominator to ex-
press the spin relaxation within a bulk ferromagnetic insulator,
where α indicates the strength of the Gilbert damping. The
enhancement of the damping, δα, is due to the adjacent Dirac

electron system, calculated by

δα = 2S

h̄ω

∑
q

|Tq,0|2Im χR
q (ω), (22)

where χR
q (ω) is the retarded component of the spin sus-

ceptibility (defined below). We assume that the FMR peak
described by Im GR

k=0(ω) is sufficiently sharp, i.e., α + δα 	
1. Then, the enhancement of the Gilbert damping can be re-
garded as almost constant around the peak (ω 
 ω0), allowing
us to replace ω in δα with ω0.

The retarded component of the spin susceptibility for the
Dirac electrons:

χR
q (ω) = i

h̄

∫ ∞

0
dtei(ω+iδ)t 〈[s+

q (t ), s−
−q]〉. (23)

The retarded component of the spin susceptibility is derived
from the following Matsubara Green function through ana-
lytic continuation iωl → h̄ω + iδ:

χq(iωl ) =
∫ β

0
dτeiωl τ 〈ŝ+

q (τ )ŝ−
−q〉, (24)

where ωl = 2π l/β is the bosonic Matsubara frequency with l
being integers. According to Wick’s theorem, the Matsubara
representation of the spin susceptibility is given by

χq(iωl )

= −β−1
∑
k,iεn

tr[s+gk+q(iεn + iωl )s
−gk(iεn)], (25)

where
∑

iεn
indicates the sum with respect to the fermionic

Matsubara frequency. The imaginary part of the spin suscep-
tibility is given by

Im χR
q (ω) = −πF (θ, φ)

∑
k

∑
λ,λ′=±

[
1

2
+ λλ′

6

2�2 + ε2
k

εkεk+q

]

×
[

f (λ′εk+q) − f (λεk)
]
δ(h̄ω − λ′εk+q + λεk), (26)

where f (ε) = (eβ(ε−μ) + 1)−1 is the Fermi distribution func-
tion, and F (θ, φ) is the dimensionless function which
depends on the direction of the ordered localized spin, defined
by

F (θ, φ) =
(

2m

�

)2 ∑
α

aiMiαa∗
jM jα. (27)

For detailed derivation, see Appendix C.
In this paper, we model the interfacial spin transfer as a

combination of the clean and dirty processes. The former
corresponds to the momentum-conserved spin transfer and the
latter to the momentum-nonconserved one [41,44]. By averag-
ing over the position of the localized spin at the interface, we
can derive the matrix elements of the interfacial spin-transfer
process as

|Tq,0|2 = T 2
1 δq,0 + T 2

2 , (28)

where T1 and T2 are the averaged matrix elements contribut-
ing to the clean and dirty processes, respectively. Then, the
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enhancement of the Gilbert damping is given by

δα = 2S

h̄ω
F (θ, φ)

{
T 2

1 Im χ̃R
uni(ω0) + T 2

2 Im χ̃R
loc(ω0)

}
, (29)

where χ̃R
uni(ω0) and χ̃R

loc(ω0) are the local and uniform spin
susceptibilities defined by

χ̃R
loc(ω0) = F−1(θ, φ)

∑
q

χR
q (ω0), (30)

χ̃R
uni(ω0) = F−1(θ, φ)χR

0 (ω0), (31)

respectively. From Eq. (26), their imaginary parts are calcu-
lated as

Im χ̃R
loc(ω0) = −πn2

D

∫
dεν(ε)ν(ε + h̄ω0)

×
[

1

2
+ 2�2 + ε2

6ε(ε + h̄ω0)

][
f (ε + h̄ω0) − f (ε)

]
,

(32)

Im χ̃R
uni(ω0) = −πnDν

( h̄ω0
2

) h̄2ω2
0 − 4�2

3h̄2ω2
0

×
[

f ( h̄ω0
2 ) − f (− h̄ω0

2 )
]
. (33)

The enhancement of the Gilbert damping, δα, depends on
the direction of the ordered localized spin through the di-
mensionless function F (θ, φ) regardless of the interfacial
condition.

By contrast, the FMR frequency dependence of δα reflects
the interfacial condition; for a clean interface, it is determined
mainly by Im χR

uni(ω0), whereas for a dirty interface, it is
determined by Im χR

loc(ω0). The FMR frequency dependence
of the local and uniform spin susceptibilities, Im χR

loc(ω0) and
Im χR

uni(ω0), are plotted in Figs. 4(a) and 4(b), respectively.
The local and uniform spin susceptibilities are normalized by
πn2

Dν2
0 and πnDν0, respectively, where ν0 ≡ 1/2π2 h̄3√detαi j

is defined. In the calculation, the ratio of the chemical poten-
tial to the energy gap was set to μ/� 
 4.61, which is the
value in the bismuth [46]. According to Fig. 4(a), the local
spin susceptibility increases linearly with the frequency ω0
in the low-frequency region. This ω0 linear behavior can be
reproduced analytically for low temperatures and h̄ω0 	 μ:

Im χ̃loc(ω0) 
 h̄ω0
π

2
n2

D[ν(μ)]2

[
1 + 2�2 + μ2

3μ2

]
. (34)

Figure 4(b) indicates a strong suppression of the uniform spin
susceptibility below a spin excitation gap (ω0 < 2μ). This fea-
ture can be checked by its analytic form at zero temperature:

Im χ̃R
uni(ω0) = πnDν

( h̄ω0
2

) h̄2ω2
0 − 4�2

3h̄2ω2
0

θ (h̄ω0 − 2μ). (35)

Thus, the FMR frequency dependence of the enhancement of
the Gilbert damping depends on the interfacial condition. This
indicates that the measurement of the FMR frequency depen-
dence may provide helpful information on the randomness of
the junction.

FIG. 5. (a) The rhombohedral lattice structure of bismuth. The
x axis, y axis, and z axis are chosen as the binary axis with C2

symmetry, the bisectrix axis, and the trigonal axis with C3 symmetry,
respectively. The yellow lines represent the unit cell of the rhom-
bohedral lattice. (b) The rhombohedral structure viewed from the
trigonal axis. (c) Schematic illustration of the band structure at the
Fermi surface. The three electron ellispoids at L points are dominant
contributions to the spin transport.

IV. RESULT

We consider bismuth, which is one of the anisotropic Dirac
electron systems [45,46,52,60,61]. The crystalline structure of
pure bismuth is a rhombohedral lattice with the space group
of R3̄m symmetry, see Figs. 5(a) and 5(b). It is reasonable to
determine the Cartesian coordinate system in the rhombohe-
dral structure using the trigonal axis with C3 symmetry, the
binary axis with C2 symmetry, and the bisectrix axis, which
is perpendicular to the trigonal and binary axes. Hereafter, we
choose the x axis as the binary axis, the y axis as the bisectrix
axis, and the z axis as the trigonal axis. Note that the trigo-
nal, binary, and bisectrix axes are denoted as [0001], [12̄10],
and [101̄0], respectively, where the Miller-Bravais indices are
used. The bismuth’s band structure around the Fermi surface
consists of three electron ellipsoids at L points and one hole
ellipsoid at the T point. It is well known that the electron
ellipsoids are the dominant contribution to the transport phe-
nomena since the electron’s mass is much smaller than that of
the hole, see Fig. 5(c). Therefore, the present study considers
only the electron systems at the L points. The electron ellip-
soids are significantly elongated, with the ratio of the major
to minor axes being approximately 15:1. Each of the three
electron ellipsoids can be converted to one another with 2π/3
rotation around the trigonal axis. The electron ellipsoid along
the bisectrix axis is labeled as e1, and the other two-electron
ellipsoids are labeled e2 and e3. The inverse mass tensor for
the e1 electron ellipsoids is given by

α
↔

e1 =
⎛
⎝α1 0 0

0 α2 α4

0 α4 α3

⎞
⎠. (36)
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The inverse mass tensor of the electron ellipsoids e2 and e3
are obtained by rotating that of e1 by 2π/3 rotation as below:

α
↔

e2,e3 = 1

4

⎛
⎝ α1 + 3α2 ±√

3(α1 − α2) ±2
√

3α4

±√
3(α1 − α2) 3α1 + α2 −2α4

±2
√

3α4 −2α4 4α3

⎞
⎠.

(37)

Let us express the dimensionless function F (θ, φ) rep-
resenting the localized spin direction dependence of the
damping enhancement on the inverse mass tensors.

F (θ, φ) =
(

2m

�

)2 ∑
α

[
(sin2 φ + sin2 θ cos2 φ)M2

xα

+ (cos2 φ + sin2 θ sin2 φ)M2
yα

+ cos2 θ (M2
zα − sin 2φMxαMyα )

+ sin 2θMzα (Mxα cos φ + Myα sin φ)
]
. (38)

Here, we use the following calculations:

∑
α

M2
xα = �2

4
(αyyαzz − α2

yz )total = �2

4m2
κ̄⊥, (39)

∑
α

M2
yα = �2

4
(αzzαxx − α2

zx )total = �2

4m2
κ̄⊥, (40)

∑
α

M2
zα = �2

4
(αxxαyy − α2

xy)total = �2

4m2
κ̄‖, (41)

∑
α

MiαM jα = �2

4
(αikα jk − αi jαkk )total = 0, (42)

where i, j, k are cyclic, (· · · )total represents the summation
of the contributions of the three electron ellipsoids, and κ̄‖,
κ̄⊥ (> 0) are the total Gaussian curvature of the three electron
ellipsoids normalized by the electron mass m, given by

κ̄‖ = 3m2α1α2, (43)

κ̄⊥ = 3
2 m2[(α1 + α2)α3 − α2

4]. (44)

Hence, the dimensionless function F is given by

F (θ ) = (1 + sin2 θ )κ̄⊥ + cos2 θκ̄‖. (45)

The results suggest that the variation of the damping
enhancement depends only on the polar angle θ , which is
determined by the angle between the direction of the ordered
localized spin 〈S〉0 and the trigonal axis. It is also found
that the θ dependence of the damping enhancement originates
from the anisotropy of the band structure. The dimensionless
function F (θ ) is plotted in Fig. 6 by varying the ratio of the
total Gaussian curvatures x = κ̄⊥/κ̄‖, which corresponds to
the anisotropy of the band structure. Figure 6 shows that the
θ dependence of the damping enhancement decreases with
smaller x and the angular dependence vanishes in an isotropic
Dirac electron system x = 1. Bismuth is known to have a
strongly anisotropic band structure. The magnitude of the
matrix elements of the inverse mass α1-α4 was experimen-
tally determined as mα1 = 806, mα2 = 7.95, mα3 = 349, and

FIG. 6. The θ dependence of the damping enhancement for
different x. The ratio of the total Gaussian curvatures x = κ̄⊥/κ̄‖ rep-
resents the anisotropy of the band structure. The blue line with x =
22.1 corresponds to the damping enhancement in single-crystalline
bismuth, and the other lines correspond to that in the weakly
anisotropic band structure. As can be seen from the graph, the θ

dependence of the damping enhancement decreases as the more
weakly anisotropic band structure, and the angular dependence turns
out to vanish in an isotropic Dirac electron system with x = 1.

mα4 = 37.6. The total Gaussian curvatures are evaluated as
[46]

κ̄‖ 
 1.92 × 104, (46)

κ̄⊥ 
 4.24 × 105. (47)

The ratio of the total Gaussian curvature is estimated as
x 
 22.1. Therefore, the damping enhancement is expected
to depend strongly on the polar angle θ in a bilayer system
composed of single-crystalline bismuth and ferromagnetic
insulator. Conversely, the θ dependence of the damping en-
hancement is considered to be suppressed for polycrystalline
bismuth.

The damping enhancement is independent of the azimuthal
angle φ. Therefore, it is invariant even on rotating the spin
orientation around the trigonal axis. The reason is that the
azimuthal angular dependence of the damping enhancement
cancels out when the contributions of the three electron ellip-
soids are summed over, although each contribution depends
on the azimuthal angle. The azimuthal angular dependence of
the damping enhancement is expected to remain when strain
breaks the in-plane symmetry. Additionally, suppose the spin
can be injected into each electron ellipsoid separately, e.g., by
interfacial manipulation of the bismuth atoms. In that case,
the damping enhancement depends on the azimuthal angle of
the spin orientation of the ferromagnetic insulator [39]. This
may be one of the probes of the electron ellipsoidal selective
transport phenomena.

It is also noteworthy that the damping enhancement
varies according to the ordered localized spin direction
with both clean and dirty interfaces, that is independent of
whether momentum is conserved in interfacial spin transport.
This property is a remarkable feature of spin pumping in
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anisotropic Dirac electron systems, which has not been found
in previous studies, where the anisotropy of the damping
enhancement due to spin pumping turned out to vanish by
interfacial inhomogeneity [41–43].

V. CONCLUSION

We theoretically studied spin pumping from a ferromag-
netic insulator to an anisotropic Dirac electron system. We
calculated the enhancement of the Gilbert damping in the
second perturbation concerning the proximity interfacial ex-
change interaction by considering the interfacial randomness.
For illustration, we calculated the enhancement of the Gilbert
damping for an anisotropic Dirac system realized in bismuth.
We showed that the Gilbert damping varies according to the
polar angle between the ordered localized spin 〈S〉0 and the
trigonal axis of the Dirac electron system, whereas it is in-
variant in its rotation around the trigonal axis. This anisotropy
of spin pumping occurs regardless of whether momentum is
conserved in the interfacial spin transport, which differs from
previous studies. Our results indicate that the spin pumping
experiment can provide helpful information on the anisotropic
band structure of the Dirac electron system.

The Gilbert damping is invariant in the rotation around
the trigonal axis because the contributions of each electron
ellipsoid depend on the in-plane direction of the ordered lo-
calized spin 〈S〉0. Nevertheless, the total contribution becomes
independent of the rotation of the trigonal axis after summing
up the contributions from the three electron ellipsoids that
are related to each other by the C3 symmetry of the bismuth
crystalline structure. If the spin could be injected into each
electron ellipsoid separately, it is expected that the in-plane
direction of the ordered localized spin would influence the
damping enhancement. This may be one of the electron ellip-
soid selective spin injection probes. The in-plane direction’s
dependence will also appear when a static strain is applied. A
detailed discussion of these effects is left as a future problem.
Our results may lead to the characteristic spin pumping in
other electron systems with Dirac dispersion, e.g., Cd3As2 and
Na3Bi, and their elucidation is also future work [62,63].
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APPENDIX A: MAGNETIC MOMENT OF ELECTRONS IN
DIRAC ELECTRON SYSTEM

In this section, we define the spin operators in the Dirac
electron systems. The Wolff Hamiltonian around the L point
is given by HD = ρ3� − ρ2π · v, where vi = wiασα with
wiα being the matrix component of the velocity vectors and

π = p + e
c A is the momentum operator including the vector

potential. It is reasonable to determine the magnetic moment
of electrons in an effective Dirac system as the coefficient of
the Zeeman term. The Wolff Hamiltonian is diagonalized by
the Schrieffer-Wolff transformation up to v/� as follows:

eiξHDe−iξ 

[
� + 1

2�
(π · v)2

]
ρ3, (A1)

where ξ = ρ1

2�
π · v is chosen to erase the off-diagonal matrix

for the particle-hole space. We can proceed calculation as
follows:

(π · v)2 = πiπ jwiαw jβ (δαβ + iεαβγ σ γ ),

= (πiwiα )2 + i

2
εαβγ σ γ [π × π]iεi jkw jαwkβ,

= �

(
π · α · π + h̄e

c�
MiασαBi

)
, (A2)

where we used (π × π) = eh̄
ci ∇ × A and Miα is defined as

Miα = 1
2εαβγ εi jkw jβwkγ . (A3)

Finally, we obtain

eiξHDe−iξ 

[
� + π · α

↔ · π

2

]
− Biμs,i, (A4)

where μs,i is a magnetic moment of the Dirac electrons de-
fined as

μs,i = − h̄e

2c�
Miαρ3σ

α = − h̄e

2c�
Miα

(
σα 0
0 −σα

)
. (A5)

In the main text, we defined the spin operator s as the magnetic
moment μs divided by the Bohr magnetization μB = h̄e/2mc,
i.e.,

si = −μs,i

μB
= m

�
Miα

(
σα 0
0 −σα

)
. (A6)

For an isotropic Dirac system, the matrix component is given
by wiα = vδiα and Eq. (A6) reproduces the well-known form
of the spin operator

s = g∗

2

(
σ 0
0 −σ

)
, (A7)

where g∗ = 2m/m∗ is the effective g factor with m∗ = �/v2

being effective mass.

APPENDIX B: LINEAR RESPONSE THEORY

In this section, we briefly explain how the microwave ab-
sorption rate is written in terms of the uniform spin correlation
function. The Hamiltonian of an external circular polarized
microwave is written as

Ĥrf = −gμBhrf

2

∑
i

(S−
i e−iωt + S+

i eiωt ),

= −gμBhrf
√

nF

2
(S−

0 e−iωt + S+
0 eiωt ), (B1)

where hrf is an amplitude of the magnetic field of the the
microwave, nF is the number of sites in the ferromagnetic
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insulator, and S±
k are the Fourier transformations defined as

S±
k = 1√

nF

∑
i

S±
i e−ik·Ri , (B2)

and Ri is the position of the i-th localization spin Si. Using
the linear response theory with respect to Ĥrf, the expectation
value of the localized spin is calculated as

〈S+
0 〉ω = GR

0 (ω) × gμBhrf
√

nF

2
, (B3)

where GR
k (ω) is the spin correlation function defined in

Eq. (20). Since the microwave absorption is determined by the
dissipative part of the response function, it is proportional to
Im GR

0 (ω), that reproduces a Lorentzian-type FMR lineshape.
As explained in the main text, the change of the linewidth
of the microwave absorption, δα, gives information on spin
excitation in the anisotropic Dirac electron system via the spin
susceptibility as shown in Eq. (22).

APPENDIX C: SPIN SUSCEPTIBILITY OF DIRAC ELECTRONS

In this section, we give detailed derivation of Eq. (26). The trace part in Eq. (25) is calculated as

tr[s+gk+q(iεn + iωl )s
−gk(iεn)] = [(iεn + iωl + μ)(iεn + μ) + �2]tr[s+s−] − tr[s+h̄(k̃ + q̃) · σs−h̄k̃ · σ]

[(iεn + iωl + μ)2 − ε2
k+q][(iεn + μ)2 − ε2

k ]
, (C1)

where (k̃ + q̃) · σ = (k + q) · v. Using the following relations

tr[s+s−] =
(

2m

�

)2

aiMiαa∗
jM jα, (C2)

tr[s+h̄(k̃ + q̃) · σs−h̄k̃ · σ] =
(

2m

�

)2

(2aiMiα h̄k̃αa∗
jM jβ h̄k̃β − h̄2k̃2aiMiαa∗

jM jα ), (C3)

the spin susceptibility is given by

χq(iωl ) = −2F (θ, φ)
∑

k

β−1
∑
iεn

(iεn + iωl + μ)(iεn + μ) + �2 + h̄2k̃2/3

[(iεn + iωl + μ)2 − ε2
k+q][(iεn + μ)2 − ε2

k ]
, (C4)

where we dropped the terms proportional to k̃α k̃β (α �= β) because they vanish after the summation with respect to the wavenum-
ber k. Here, we introduced a dimensionless function, F (θ, φ) = (2m/�)2aiMiαa∗

jM jα , which depends on the direction of the
magnetization of the ferromagnetic insulator. Representing the Matsubara summation as the following contour integral, we
derive

χq(iωl ) = −2F (θ, φ)
∑

k

∮
dz

4π i
tanh

(
β(z − μ)

2

)
z(z + iωl ) + �2 + h̄2k̃2/3

[(z + iωl )2 − ε2
k+q][z2 − ε2

k ]
, (C5)

= 2F (θ, φ)
∑

k

∮
dz

2π i
f (z)

z(z + iωl ) + �2 + h̄2k̃2/3

[(z + iωl )2 − ε2
k+q][z2 − ε2

k ]
, (C6)

We note that tanh(β(z − μ)/2) has poles at z = iεn + μ and is related to the Fermi distribution function f (z) as tanh[β(z −
μ)/2] = 1 − 2 f (z). Using the following identities

1

z2 − ε2
k

= 1

2εk

∑
λ=±

λ

z − λεk
, (C7)

z

z2 − ε2
k

= 1

2

∑
λ=±

1

z − λεk
, (C8)

the spin susceptibility is given by

χq(iωl ) = F (θ, φ)
∑

k

∮
dz

2π i
f (z)

∑
λ,λ′=±

[
1

2
+ (�2 + h̄2k̃2/3)λλ′

2εkεk+q

]
1

z − λεk

1

z + iωl − λ′εk+q
, (C9)

= F (θ, φ)
∑

k

∑
λ,λ′=±

[
1

2
+ λλ′

6

2�2 + ε2
k

εkεk+q

]
f (λ′εk+q) − f (λεk)

iωl − λ′εk+q + λεk
. (C10)

By the analytic continuation iωl = h̄ω + iδ, we derive the retarded spin susceptibility as below:

χR
q (ω) = F (θ, φ)

∑
k

∑
λ,λ′=±

[
1

2
+ λλ′

6

2�2 + ε2
k

εkεk+q

]
f (λ′εk+q) − f (λεk)

h̄ω + iδ − λ′εk+q + λεk
. (C11)
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The imaginary part of the spin susceptibility is given by

ImχR
q (ω) = −πF (θ, φ)

∑
k

∑
λ,λ′=±

[
1

2
+ λλ′

6

2�2 + ε2
k

εkεk+q

][
f (λ′εk+q) − f (λεk)

]
δ(h̄ω − λ′εk+q + λεk). (C12)

From this expression, Eqs. (32) and (33) for the imaginary parts of the uniform and local spin susceptibilities can be obtained by
replacing the sum with respect to k and λ with an integral over the energy ε as follows:

n−1
D

∑
k,λ

A(λεk) →
∑
λ=±

∫
d3k̃

(2π )3
√

�3detαi j

A(λεk) =
∫ ∞

−∞
dεν(ε)A(ε), (C13)

where A is an arbitrary function. Note that the Jacobian of the transformation from k to k̃ is given by det(dki/dk̃ j ) =
1/

√
�3detαi j .
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