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Magnonic spin Joule heating and rectification effects
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Nonlinear devices, such as transistors, enable contemporary computing technologies. We theoretically investi-
gate nonlinear effects, bearing a high fundamental scientific and technical relevance, in magnonics with emphasis
on superconductor-ferromagnet hybrids. Accounting for a finite magnon chemical potential, we theoretically
demonstrate magnonic spin Joule heating, the spin analog of conventional electronic Joule heating. Besides
suggesting a key contribution to magnonic heat transport in a broad range of devices, it provides insights into the
thermal physics of nonconserved bosonic excitations. Considering a spin-split superconductor self-consistently,
we demonstrate its interface with a ferromagnetic insulator to harbor large tunability of spin and thermal
conductances. We further demonstrate hysteretic rectification I-V characteristics in this hybrid, where the
hysteresis results from the superconducting state bistability.

DOI: 10.1103/PhysRevB.106.144411

I. INTRODUCTION

The spin carriers in magnetic insulators—magnons—
constitute a fertile platform for science and technology due
to their nonconserved bosonic nature as well as a solid-state
host that admits strong interactions. For example, creating
nonequilibrium magnons, allowed due to their general lack of
conservation, together with strong magnon-magnon scattering
enables the formation of bosonic condensates [1–3], which
is not feasible with fermionic electrons. Since they trans-
port information without a movement of electrons and Joule
heating due to charge current flow, they are also touted as low-
dissipation alternatives to electrons as information carriers
[4–13]. While magnon chemical potential vanishes in equilib-
rium due to their nonconserved nature, it becomes nonzero in
nonequilibrium situations due to their almost conserved nature
at short timescales. This underlies a vast range of phenomena
such as Bose-Einstein condensation [1–3] and spin transport
[14–17], where the importance of nonzero chemical potential
in these phenomena has recently been, and continues to be,
recognized [14,18]. Overall, a broad range of magnonic de-
vices have already been demonstrated [17,19–26].

From the perspective of both devices and exciting physics,
nonlinearities are highly desired, whether for unconventional
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computing paradigms [27] or Maxwell’s demon-like switches
[28,29]. In this context, the high potential of synergy be-
tween magnonics and superconductors has just begun to be
realized [30–33]. The latter admit strong nonlinear effects
since a new and small energy scale—the superconducting
gap—determines properties such as quasiparticle density of
states [34–37]. Recent years have seen an upsurge of activity
in this context with several exciting phenomena discussed,
experimentally [33,38–46] as well as theoretically [35–37,
47–53]. The possibility of transport influencing, and even de-
stroying, the superconducting state may be considered as the
pinnacle of nonlinearity offered by a superconductor and has
been exploited successfully in various charge-transport-based
devices [54–56].

Here, we theoretically investigate spin and heat transport in
hybrids consisting of a superconductor (SC) interfaced with a
ferromagnetic insulator (FI). Our focus is on exploiting the
strong nonlinearities available in this hybrid for new device
concepts and fundamental physics. Hence, we evaluate the
superconducting state self-consistently. Our first key finding
is that magnonic spin current flow results in a spin Joule
heating given by I2

mRm, where Im is the magnon current and
Rm is the spin resistance. This finding is not specific to the
hybrids considered and bears relevance for magnon chemical-
potential-driven spin transport in general. In bulk magnets,
the spin Joule heating power per unit volume becomes j2

mρm.
Here, jm is the magnon current density and ρm, the spin
resistivity, is defined via jm = −∇μm/ρm, where μm is the
magnon chemical potential [14]. Furthermore, accounting for
dipolar interactions that do not conserve spin, we find new
contributions to spin Joule heating that are absent in conven-
tional Joule heating. Our second set of findings demonstrates
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FIG. 1. In panel (a) is shown a sketch of the system under con-
sideration. A Zeeman split superconductor is placed in contact with a
ferromagnetic insulator. Panel (b) illustrates the physical picture for a
case where a magnon is absorbed at the interface. Since the magnon
has a spin of −h̄, only a spin-flip process in which a spin-up (+h̄/2)
quasiparticle is converted to spin down (−h̄/2) is then allowed. Due
to the Zeeman splitting, the gap for such a process to occur is higher
when the exchange field h is parallel to the magnetization of the
ferromagnetic insulator, and vice versa.

a control over the transport coefficients, such as spin and
thermal conductances, in the SC-FI interface via spin-splitting
in the SC layer. Further, via self-consistent calculations, we
demonstrate a hysteretic rectification effect in the spin current
vs spin chemical potential difference. This is rooted in the
dependence of the superconducting state on the spin chemical
potential, as the latter results in the depairing of spin-singlet
Cooper pairs [30]. Besides the interesting directionality, such
an “I-V” characteristic could enable devices with inbuilt mem-
ory and threshold behavior, which are beneficial in some
unconventional computing architectures [27].

II. SPIN-JOULE HEATING

Considering an interface between an FI and an SC [Fig. 1
(a)], the heat generated per unit time in the FI and the SC
is given by Q̇FI = ĖFI − μmṄm and Q̇SC = ĖSC − μsṄs. Here,
ĖFI (ĖSC) is the rate of energy change in the FI (SC), μm

is the magnon chemical potential in the FI, μs is the spin
accumulation in the SC, Ṅm is the rate of magnon number
change in the FI, and Ṅs is the rate of electron-hole pair change
in the SC [3]. On account of energy and spin conservation, we
obtain ĖSC = −ĖFI ≡ Ė and Ṅs = −Ṅm ≡ Ṅ ≡ Is/h̄, with Is

being the spin current across the interface. Here, the inclusion
of μm,s terms in the definition of heat [57] is necessary when
considering effects, such as heat generation, up to second
order in μm,s. The physical justification of this contribution,
which is well-known for electrons [58,59], is as follows. A
particle added to an ensemble at an energy below the chemical
potential needs to absorb energy from other particles in order
to respect the statistical distribution enforced by a nonzero
chemical potential [58]. Thus, this causes a cooling of the
ensemble as a whole.

The average heat flow from the FI to the SC is obtained
as Q̇ ≡ (Q̇SC − Q̇FI)/2 = Ė − μ̄Is/h̄, with μ̄ ≡ (μm + μs)/2.
Before we evaluate the spin and heat flow across the interface

below, we pause to examine the total heat generation �Q̇ ≡
Q̇SC + Q̇FI in our system. Considering temperature to remain
uniform, the heat generation due to chemical-potential-driven
spin transport is simplified to

�Q̇ = Im�μ = I2
mRm, (1)

where Im ≡ Is/h̄, �μ ≡ μm − μs, and the linear response re-
lation Im = �μ/Rm is derived below. This is the spin analog
of the Joule heating expression for charge current flow across
an interface. However, unlike the charge current, the spin
current across the interface is not conserved in the presence of,
e.g., dipolar interaction, which becomes more relevant at low
temperatures. In that case, the spin current leaving the FI is not
the same as the spin current entering the SC. Hence, we need
to amend the spin Joule heating expression to account for this
lack of spin current conservation across the FI/SC interface.

Since the energy current across the interface is still con-
served, as there are no inelastic scattering processes, we obtain

�Q̇ = Q̇FI + Q̇SC, (2)

= −μmṄm − μsṄs, (3)

= μmIm − μs
ISC

h̄
, (4)

where we have defined Im ≡ −Ṅm as the number of magnons
disappearing from the FI per unit time, similar to the main
text, and ISC is the spin current entering the SC. In the absence
of dipolar interaction, we have spin conservation and h̄Im =
ISC. With dipolar interaction, as detailed in the Appendix, we
instead obtain the relation ISC = h̄Im − δISC that results in

�Q̇ = Im�μ + μs
δISC

h̄
. (5)

The second term on the right-hand side above is a new con-
tribution emerging from the lack of spin conservation across
the interface. Consequently, it is also unique to spin Joule
heating and is absent in conventional Joule heating owing to
conservation of charge currents.

While for realistic parameters this correction due to the
lack of spin current conservation is practically negligible and
the spin Joule heating remains positive, it is tempting to
imagine a situation where cooling can be achieved by accom-
plishing a desired large |μs| (using an external mechanism not
considered in the present work) that will allow �Q̇ to become
negative. Such a situation will necessarily entail an external
drive to maintain the desired μs and thereby fully respect the
laws of thermodynamics. It is yet another interesting feature
of spin physics due to a lack of spin conservation under certain
conditions. In the following considerations, we disregard the
dipolar interactions and the related lack of spin conservation,
taking them into account in the more detailed analysis pre-
sented in the Appendix.

A generalization of this result to an interface between two
FIs with different magnon chemical potentials leads to a sim-
ilar expression for the heating. In the continuum limit, this
leads to magnonic spin Joule heating power per unit volume
in the FI bulk:

P = j2
mρm, (6)

144411-2



MAGNONIC SPIN JOULE HEATING AND RECTIFICATION … PHYSICAL REVIEW B 106, 144411 (2022)

where jm = −∇μm/ρm is the magnon current density and ρm

is the magnon spin resistivity.
Equation (6) is a general result with broad consequences

for magnonic spin transport in different materials, hybrids,
and regimes. The charge conservation allows for relating elec-
tronic Joule heating directly to work done by the external
battery [59]. Such a straightforward identification does not
appear possible for magnonic spin transport. Nevertheless, the
spin Joule heating is also derived from the work done by ex-
ternal sources that maintain nonzero chemical potentials in the
system. Due to the high sensitivity of superconductor-based
thermometers [60], the FI/SC hybrids investigated below of-
fer a suitable platform for an experimental measurement of
the spin Joule heating.

III. SPIN AND HEAT CURRENTS

We consider the system shown in Fig. 1(a). A supercon-
ductor is placed in contact with a ferromagnetic insulator,
and a spin splitting field h is introduced to the former. This
system may be influenced by a spin chemical potential on
the superconductor side, a nonequilibrium magnon chemical
potential on the ferromagnetic insulator side, or a temperature
gradient across the system, all of which may result in the
flow of heat and spin currents due to exchange interactions
between electrons and magnons at the interface. We show
that the spin-splitting field leads to a significant asymmetry
in the transport properties of the heterostructure, with respect
to the orientation of h. The main physics behind this effect
is illustrated in Fig. 1(b). Spin can be transmitted between
the two materials when, e.g., a spin-down quasiparticle in
the superconductor experiences a spin flip upon reflection at
the interface, accompanied by the creation of a magnon in
the ferromagnetic insulator, or vice versa. At low tempera-
tures, this process is suppressed due to the presence of the
superconducting gap. However, the size of this gap can be
tuned by h. In a spin-split superconductor, the density of states
for the two spin species is shifted relative to each other by a
value of 2h [30,35,37]. This means that the effective gap that
must be overcome by a spin-down quasiparticle undergoing
a spin flip is increased if the spin-splitting field is parallel
to the magnetization in the ferromagnetic insulator (h > 0),
or it is reduced if it is antiparallel (h < 0). Hence, the latter
configuration is more amenable to the generation of transport
currents. Disregarding dipolar interactions in the main text,
we show that their inclusion does not change our key results
in the Appendix.

We study the interface between the superconductor and
the ferromagnetic insulator using a tunneling Hamiltonian
approach [3,15,47,48,61],

H = HSC + HFI + Hint, (7)

where HSC describes a Zeeman split superconductor,

HSC =
∑

ks

ξkc†
kscks −

∑
k

[�c†
k↑c†

−k↓ + �∗ck↓c−k↑]

−
∑

k

∑
ss′

hσ z
ss′c†

kscks′ , (8)

with ξk = h̄2k2/2m − μ, where μ is the chemical potential
and h is the exchange field, assumed to be directed along the z
axis. The Hamiltonian of the ferromagnetic insulator is given
within the Holstein-Primakoff approximation as [62]

HFI =
∑

k

h̄ωka†
kak, (9)

with magnon operators ak and a†
k . We assume a quadratic

dispersion of the form h̄ωk = �m + Jmk2 for simplicity. More
realistic models for the magnon dispersion, taking, e.g.,
the dipolar interaction into account (as discussed in the
Appendix), will modify our results quantitatively, but the
qualitative picture presented below remains the same. The two
materials may communicate by the exchange of spin, in which
a magnon on the ferromagnet side is either absorbed or created
by a quasiparticle spin flip on the superconductor side. This
process is captured by [48]

Hint =
∑
kk′

[Wkk′s−
−kak′ + W ∗

kk′s+
k a†

k′ ], (10)

with s±
k = sx

k ± sy
k and s j

k = h̄
2

∑
qss′ σ

j
ss′c

†
ksck+q,s′ .

The transport properties of this system are most conve-
niently studied on the ferromagnetic insulator side, where the
tunneling spin current becomes Is = i〈[Nm, H]〉, with Nm =∑

k a†
kak . This gives

Is = i
∑
kk′

〈[Wkk′s†
kak′ − W ∗

kk′ska†
k′ ]〉. (11)

In a similar way, the average heat current is Q̇ =
i〈[HFI, H]〉/h̄ − μ̄Is/h̄, giving

Q̇ = i

h̄

∑
kk′

(h̄ωk′ − μ̄)〈[Wkk′s†
kak′ − W ∗

kk′ska†
k′ ]〉. (12)

These quantities are derived in the Appendix, resulting in

Is =4π |W |2h̄3VFIV
2

SCν2
0

∫
dω νm(h̄ω)χs(h̄ω)

× [nFI(h̄ω − μm) − nSC(h̄ω − μs)], (13)

Q̇ = − 4π |W |2h̄2VFIV
2

SCν2
0

∫
dω (h̄ω − μ̄)νm(h̄ω)χs(h̄ω)

× [nFI(h̄ω − μm) − nSC(h̄ω − μs)], (14)

under the approximation of Wkk′ 	 W . Here, VFI is the volume
of the FI, n j (ε) = [eε/kBTj − 1]−1 is the Bose-Einstein distri-
bution function in material j, νm(ε) = √

ε − �m/4π2J3/2
m is

the magnon density of states, and

χs(h̄ω) =
∫

dε F�ν(ε + h)ν(ε + h̄ω − h)

× [ f (ε + h̄ω − μs/2) − f (ε + μs/2)] (15)

is (proportional to) the transverse spin susceptibility of
the superconductor, with ν(ε) = Re[|ε|/

√
ε2 − |�|2] being

the superconducting density of states, F� = 1 + |�|2/(ε +
h)(ε + h̄ω − h) the coherence factor, and f (ε) = [eε/kBT +
1]−1 the Fermi-Dirac distribution function.

For small temperature differences across the tunnel junc-
tion, �T = TFI − TSC, or a small difference in chemical
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FIG. 2. The asymmetry of the linear-response coefficients with
respect to the direction of the exchange field h, as a function
of |h|, shown here for a selection of temperatures. Here Px =
(x↑ − x↓)/(x↑ + x↓), with the arrows indicating the sign of the ex-
change field, and x representing (a) the spin conductance G, (b) the
spin Seebeck coefficient, and (c) the heat conductance. The sharp
turns observed in the figure are due to the h crossing the critical value
hc at which superconductivity is destroyed.

potentials, �μ = μm − μs, Eqs. (13) and (14) may be lin-
earized to obtain(

Is

Q̇

)
=

(
G α

−α/h̄ κT

)(
�μ

�T/T

)
, (16)

with T = (TFI + TSC)/2. This defines the spin conductivity
G, the spin-dependent Seebeck coefficient α, and the heat
conductivity κ as

G = 4π h̄3|W |2VFIV
2

SCν2
0

∫
dω

χs(h̄ω)νm(h̄ω)

4kBT sinh2 h̄ω−μ̄

2kBT

, (17)

α = 4π h̄3|W |2VFIV
2

SCν2
0

∫
dω

(h̄ω − μ̄)χs(h̄ω)νm(h̄ω)

4kBT sinh2 h̄ω−μ̄

2kBT

,

(18)

κ = −4π h̄2|W |2VFIV
2

SCν2
0

∫
dω

(h̄ω − μ̄)2χs(h̄ω)νm(h̄ω)

4kBT 2 sinh2 h̄ω−μ̄

2kBT

.

(19)

In the following, we set �m = �0 for simplicity.

IV. CONTROL OVER THE INTERFACIAL
CONDUCTANCES AND RECTIFICATION

To investigate the effect of the spin-splitting field h on
the transport coefficients given in Eqs. 17–19, we define the
quantity Px = (x↑ − x↓)/(x↑ + x↓), which we refer to as the
polarization of x, for x ∈ {G, α, κ}, where ↑ (↓) indicates
h > 0 (h < 0). The result is shown in Fig. 2, for |h| ∈ [0, 0.6]

for a range of temperatures T . It is seen that for the lowest
temperature considered, T/Tc = 0.3, there is a significant
polarization. It is negative, indicating that larger currents are
to be expected for h < 0, consistent with the physical picture
presented in Fig. 1(b). We also see that the effect diminishes
as the temperature of the heterostructure approaches Tc, at
which point the superconductor transitions to a normal metal,
with no modulation of the density of states, and thus no
polarization.

The gap in the density of states, which is present in the
superconducting state, but not in the normal metal state, has
the potential for an interesting application. In the following,
we set the temperature of the superconductor to TSC = 0.1Tc,
and we set the temperature in the FI to TFI = 0.5Tc. Hence,
a temperature gradient is maintained across the interface, and
both spin and heat currents are flowing between the two ma-
terials. On the other hand, the magnitude of these currents
is largely reduced compared to a normal metal due to the
superconducting gap. Next, we set the spin-splitting field to
h = 0.7�0. This is close to the critical field at which the su-
perconductor transitions to the normal state, but the size of the
gap still remains close to the maximal value �0, as evidenced
by a self-consistent determination of �(h). We note that the
superconducting gap responds to a spin chemical potential as
[63] �(h) → �(heff ), with heff = h − μs/2. Hence, if μs < 0,
the two contributions will add up, which has the potential
of bringing the superconductor into the normal-state regime
at some critical field h−

eff. In the opposite case, μs partially
cancels h, and the normal-state system returns to the supercon-
ducting state at h+

eff. We note that due to the hysteresis caused
by the bistability of �(heff ) in the transition region [64–66],
h+

eff is generally not equal to h−
eff, as indicated in the inset of

Fig. 3. In any case, the point is that μs can cause supercon-
ductivity to either be destroyed or regained, which produces
an abrupt change in the size of the currents. To illustrate this
effect, we plot Is and Q̇, as given by Eqs. (13) and (14), in
Figs. 3(a) and 3(b), respectively, for �μ/�0 ∈ [−0.6,+0.6],
keeping μm = 0 fixed. We find that both Is and Q̇ jump in
magnitude on the order of 100 when a transition takes place,
for this parameter set. This abrupt jump in the characteristics
correspondingly leads to a huge change of the device’s linear
response conductivities, given by the slope of the character-
istic. This is reminiscent of the Zener diode around its peak
inverse voltage and embodies the device’s nonlinearity. Fur-
thermore, the characteristics depicted in Fig. 3 clearly show
the asymmetry with respect to reversing the sign of the drive
�μ, resulting in a rectification effect. To obtain an estimate of
the order of magnitude of the rectification effect, we consider
a typical sample size of VSC = VFI = t × Lx × Ly = 10 nm ×
1 μm × 1 μm. Using material parameters for aluminium for
the superconductor and yttrium iron garnet (YIG) for the
ferromagnetic insulator, we get �0 ∼ 150 μeV, ν0 ∼ 2 ×
1028 eV−1 m3 [67], and Jm ∼ 8 × 10−40 J m2 [23]. At room
temperature, the spin conductance on Al|YIG interfaces has
been measured to Ge2/h̄Lyt ∼ 1012–1013 S m−2 [68,69], and
by comparing with the room-temperature limit of Eq. (17),
G = 6πζ ( 3

2 )h̄2W 2ν2
0VFIV 2

SC/�3, with � = √
4πJm/kBT , we

obtain a rough estimate of W ∼ 103–104 s−1. This parameter
quantifies the interaction between the spins in the FI and the
electrons in S at the interface. It is expected and has been
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FIG. 3. The spin and heat current as a function of the chemical
potential difference, �μ, exhibiting a switching effect in which both
Is and Q̇ exhibit a jump in magnitude on the order of 100. Here,
an exchange field of h = 0.7�0 is applied, which is close to the
critical field at which superconductivity is destroyed. We have set
TSC = 0.1Tc, TFI = 0.5Tc, and μm = 0. The red (blue) curve describes
a situation in which superconductivity is regained (destroyed). These
two curves are different due to the hysteresis caused by the bista-
bility of the superconducting gap � as a function of the effective
spin-splitting heff = h − μs/2, as shown in the inset. Here, I0 =
h̄2|W |2VFIV 2

SCν2
0�

5/2
0 /πJ2/3

m and Q0 = I0�0/h̄.

found to be largely temperature independent [70,71]. Thus,
it allows us to reliably evaluate quantities at low temperatures
considered herein. With this, we estimate the size of the spin
and heat currents in Fig. 3 to be on the order of I0 	 1–10 μeV
and Q0 ∼ 0.1–0.01 pW. The hundredfold rectification effect
shown in Fig. 3 exploits the smallness of the superconducting
gap in accomplishing this feat at a low temperature, assumed
to be ∼ 1 K here. An estimation of the spin and heat currents
at higher temperatures, compared to our low-temperature es-
timates discussed here, can be obtained by recognizing [14]
G ∼ T 3/2 and κ ∼ T 5/2. For example, the estimated spin cur-
rent at 100 K would then become I0 ∼ 1003/2 (1–10) μeV =
1–10 meV. However, our demonstrated rectification works
only at temperatures comparable to the superconducting gap.
Achieving these good rectifications at high temperature could
be accomplished by employing high-Tc superconductors.

V. SUMMARY

Exploiting the weaker energy scale of the superconducting
gap, we have demonstrated a broad range of nonlinear effects
in the context of magnonic spin transport in superconductor–
ferromagnetic-insulator hybrids. The predicted control over
interfacial conductances and hysteretic rectification I-V char-
acteristics opens avenues for integrating magnonic devices
into unconventional computing architectures, for example.

Our theoretical demonstration of magnonic spin Joule heating
provides valuable insights into the wide range of studies and
devices involving chemical-potential-driven spin transport.
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APPENDIX: DERIVATION OF THE SPIN
AND HEAT CURRENTS

Here, we provide details of the calculation of the spin
and heat currents. We then proceed to evaluate the linear
response and spin Joule heating in the system under consid-
eration. We also include the effect of dipolar interaction. In
most previous studies [3,14,47,48], the dipolar interaction has
been disregarded. Here, we demonstrate that its inclusion in
the model leaves the linear response equations qualitatively
unchanged. Hence, the rectification results in the main text
remain essentially the same upon inclusion of dipolar interac-
tions. More importantly, we find small but novel contributions
to spin Joule heating that result because spin current is not
a conserved quantity in the presence of dipolar interactions.
Such a contribution is precluded in conventional Joule heating
since charge, unlike spin, is a conserved quantity.

In the presence of dipolar interactions, the Hamiltonian of
the ferromagnetic insulator is modified to [15]

HFI =
∑

k

Aka†
kak + Bkaka−k + B∗

k a†
ka†

−k, (A1)

which can be diagonalized by a Bogoliubov transformation,
giving

HFI =
∑

k

h̄�kα
†
k αk, (A2)

where αk is related to the magnon operators via ak = ukαk +
v∗

k α
†
−k , with uk = (Ak + h̄�k )/

√
(Ak + h̄�k )2 − 4|Bk|2 and

vk = −2Bk/
√

(Ak + h̄�k )2 − 4|Bk|2. The dispersion of these

quasiparticles is furthermore given as h̄�k =
√

A2
k − 4|Bk|2.

In the superconductor, it is convenient to transform
the electron operators to a basis which diagonalizes
the Hamiltonian, ck↑ = xkγk↑ + ykγ

†
−k↓ and ck↓ = xkγk↓ −

ykγ
†
−k↑, with x2

k = (1 + ξk/Ek )/2 and y2
k = (1 − ξk/Ek )/2,

and Ek =
√

ξ 2
k + �2, such that

HSC =
∑

ks

(Ek − sh)γ †
ksγks

= 1

2

∑
ks

(Ek − sh)γ †
ksγks − 1

2

∑
ks

(Ek − sh)γksγ
†
ks

≡ 1

2

∑
ksλ

(λEk − sh)γ †
ksλγksλ, (A3)
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where we employ the semiconductor picture, where λ = ±1
and γks+ = γ

†
−k,−s,−. For brevity, we derive the equations of

motion for λ = +1 only, and we reintroduce the sum over λ

at the crucial point.
The interaction Hamiltonian is obtained as

Hint = h̄
∑
k1k2q

Wk1k2qc†
k1,↓ck2,↑aq + H.c., (A4)

=h̄
∑
k1k2q

[Wk1k2quqc†
k1,↓ck2,↑αq

+ Wk1k2qv
∗
qc†

k1,↓ck2,↑α
†
−q] + H.c., (A5)

=h̄
∑
k1k2q

[Wk1k2quqc†
k1,↓ck2,↑αq

+ W ∗
k1k2(−q)vqc†

k2,↑ck1,↓αq] + H.c., (A6)

=h̄
∑
k1k2q

(Wk1k2quqc†
k1,↓ck2,↑ + W ∗

k1k2(−q)vqc†
k2,↑ck1,↓)αq

+ H.c., (A7)

where H.c. stands for Hermitian conjugate. Here, we have
employed the property v−q = vq. The interaction Hamilto-
nian can be expressed in terms of the eigenmode ladder
operators as

Hint = h̄
∑
k1k2q

αqZ + H.c., (A8)

where Z = Z1 + Z2 + Z3 + Z4, with

Z1 = Wk1k2quq(x∗
k1

xk2γ
†
k1,↓γk2,↑ − yk2 y∗

k1
γ−k1,↑γ

†
−k2,↓)

≡ uqMk1k2qγ
†
k1,↓γk2,↑, (A9)

Z2 = W ∗
k1k2(−q)vq(x∗

k2
xk1γ

†
k2,↑γk1,↓ − y∗

k2
yk1γ−k2,↓γ

†
−k1,↑)

≡ vqM∗
k1k2(−q)γ

†
k2,↑γk1,↓, (A10)

Z3 =Wk1k2quqx∗
k1

yk2γ
†
k1,↓γ

†
−k2,↓

− W ∗
k1k2(−q)vqx∗

k2
yk1γ

†
k2,↑γ

†
−k1,↑, (A11)

Z4 = − Wk1k2quqxk2 y∗
k1
γ−k1,↑γk2,↑

+ W ∗
k1k2(−q)vqy∗

k2
xk1γ−k2,↓γk1,↓, (A12)

where Mk1k2q = Wk1k2qx∗
k1

xk2 + W−k2(−k1 )qyk1 y∗
k2

.
The operator for spin current injected by the FI into the

superconductor is given by

ÎSC = Ṡz = 1

ih̄
[Sz, Hint], (A13)

where Sz ≡ (h̄/2)
∑

k c†
k↑ck↑ − c†

k↓ck↓. In order to evaluate
the spin current, we need to take the expectation value of the
spin current operator ISC = 〈ÎSC〉, obtained as

ISC = − i

2

∑
k

〈[c†
k↑ck↑ − c†

k↓ck↓, Hint]〉

=ih̄
∑
k1k2q

(Wk2k1quq〈c†
k1,↓ck2,↑αq〉

− W ∗
k1k2(−q)vq〈c†

k2,↑ck1,↓αq〉) − H.c.

= − 2h̄
∑
k1k2q

Im[〈Wk2k1quqc†
k1,↓ck2,↑αq〉

− W ∗
k1k2(−q)vq〈c†

k2,↑ck1,↓αq〉]. (A14)

In terms of the eigenmode ladder operators of the supercon-
ductor, this becomes

ISC = −2h̄
∑
k1k2q

Im[〈αq(Z1 − Z2 + Z̄3 − Z̄4)〉]

≡ I (1)
SC + I (2)

SC + I (3)
SC + I (4)

SC , (A15)

where

Z̄3 = Wk1k2quqx∗
k1

yk2γ
†
k1,↓γ

†
−k2,↓ + W ∗

k1k2(−q)vqx∗
k2

yk1γ
†
k2,↑γ

†
−k1,↑,

(A16)

Z̄4 = Wk1k2quqxk2 y∗
k1
γ−k1,↑γk2,↑ + W ∗

k1k2(−q)vqy∗
k2

xk1γ−k2,↓γk1,↓.

(A17)

On the ferromagnetic insulator side, due to the spin-
nonconserving terms arising due to the dipolar interaction,
the spin current traversing the interface is not the same as
what finally flows in the FI. We know that carrying out the
expectation value has to be done in the eigenbasis of the FI.
Thus, the appropriate operator for the spin current injected
into the FI is obtained as

ÎFI = −h̄
∑

k

(1 + 2|vk|2)Ṅk =
∑

k

i(1 + 2|vk|2)[Nk, Hint],

(A18)

where Nk ≡ α
†
k αk . Hence, its expectation value becomes

IFI = −ih̄
∑
k1k2q

〈(1 + 2|vq|2)αqZ − H.c.〉

= 2h̄
∑
k1k2q

Im[〈(1 + 2|vq|2)αqZ〉] ≡ I (1)
FI + I (2)

FI + I (3)
FI + I (4)

FI .

(A19)

The time evolution of γk↑ is found from the Heisenberg
equation as

ih̄∂tγk↑ =[γk↑, H] = Ek,↑γk,↑

+ h̄
∑
k1q

[uqM∗
k1kqα

†
q + vqM∗

k1k(−q)αq]γk1,↓

− h̄
∑
k1q

[uqN∗
k1kqα

†
q + vqN∗

k1k(−q)αq]γ †
−k1,↑, (A20)

with Ek,↑ = Ek − h and Nk1k2q = Wk1k2qx∗
k1

yk2 −
W−k2(−k1 )qx∗

k2
yk1 . Its solution is given as

γk,↑(t ) =e−iEk,↑(t−t0 )/h̄γk,↑(t0)

− i
∑
k1q

∫ t

t0

dt ′ e−iEk,↑(t−t ′ )/h̄[uqM∗
k1kqα

†
q (t ′)

+ vqM∗
k1k(−q)αq(t ′)]γk1,↓(t ′)

+ [uqN∗
k1kqα

†
q (t ′) + vqN∗

k1k(−q)αq(t ′)]γ †
−k1,↑(t ′).

(A21)
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To lowest order in Wk1k2q we obtain

γk,↑(t ) =e−iEk,↑(t−t0 )/h̄

[
γk,↑(t0) − iπ

∑
k1q

uqM∗
k1kqα

†
q (t0)γk1,↓(t0)δ

(Ek,↑ − Ek1,↓
h̄

+ �q

)

− iπ
∑
k1q

vqM∗
k1k(−q)αq(t0)γk1,↓(t0)δ

(Ek,↑ − Ek1,↓
h̄

− �q

)
+ iπ

∑
k1q

uqN∗
kk1qα

†
q (t0)γ †

−k1,↑(t0)δ
(Ek,↑ + Ek1,↑

h̄
+ �q

)

+ iπ
∑
k1q

vqN∗
kk1(−q)αq(t0)γ †

−k1,↑(t0)δ
(Ek,↑ + Ek1,↑

h̄
− �q

)]
. (A22)

Similarly, γk,↓ is found to be

γk,↓(t ) =e−iEk,↓(t−t0 )/h̄

[
γk,↓(t0) − iπ

∑
k1q

uqMkk1qαq(t0)γk1,↑(t0)δ
(Ek,↓ − Ek1,↑

h̄
− �q

)

− iπ
∑
k1q

v∗
qMkk1(−q)α

†
q (t0)γk1,↑(t0)δ

(Ek,↓ − Ek1,↑
h̄

+ �q

)
− iπ

∑
k1q

uqNkk1qαq(t0)γ †
−k1,↓(t0)δ

(Ek,↓ + Ek1,↓
h̄

− �q

)

− iπ
∑
k1q

v∗
qNkk1(−q)α

†
q (t0)γ †

−k1,↓(t0)δ
(Ek,↓ + Ek1,↓

h̄
+ �q

)]
. (A23)

Hence, the time evolution of Z1 becomes

Z1(t ) = − iπe−i(Ek2 ,↑−Ek1 ,↓)(t−t0 )/h̄
∑

q1

[
uquq1 Mk1k2qM∗

k1k2q1
α†

q1
(t0)γ †

k1,↓(t0)γk1,↓(t0)δ
(Ek2,↑ − Ek1,↓

h̄
+ �q1

)

+ uqvq1 Mk1k2qM∗
k1k2(−q1 )αq1 (t0)γ †

k1,↓(t0)γk1,↓(t0)δ
(Ek2,↑ − Ek1,↓

h̄
− �q1

)

− uquq1 Mk1k2qM∗
k1k2q1

α†
q1

(t0)γ †
k2,↑(t0)γk2,↑(t0)δ

(Ek1,↓ − Ek2,↑
h̄

− �q1

)

− uqvq1 Mk1k2qM∗
k1k2(−q1 )αq1 (t0)γ †

k2,↑(t0)γk2,↑(t0)δ
(Ek1,↓ − Ek2,↑

h̄
+ �q1

)
, (A24)

where we have anticipated that only the averages of γ
†
k,σ

(t0)γk,σ (t0) will survive. In a similar vein, with

αq(t ) =e−i�q (t−t0 )

[
αq(t0) − iπ

∑
k1k2

uqM∗
k1k2qγ

†
k2↑γk1↓δ

(Ek2,↑ − Ek1,↓
h̄

+ �q

)
+ v∗

qMk1k2(−q)γ
†
k1,↓γk2,↑δ

(Ek2,↑ − Ek1,↓
h̄

− �q

)

+ uqW ∗
k1k2qxk1 y∗

k2
γ−k2↓γk1↓δ

(Ek1,↓ + Ek2,↓
h̄

− �q

)
− v∗

qWk1k2qxk2 y∗
k1
γ−k1↑γk2↑δ

(Ek2,↑ + Ek2,↑
h̄

− �q

)

− uqW ∗
k1k2qx∗

k2
yk1γ

†
k2↑γ

†
−k1↑δ

(Ek2,↑ + Ek1,↑
h̄

+ �q

)
+ v∗

qWk1k2qx∗
k1

yk2γ
†
k1↓γ

†
−k2↓δ

(Ek2,↓ + Ek1,↓
h̄

+ �q

)
, (A25)

we can compute

Z1(t )αq(t ) = − iπu2
q|Mk1k2q|2[α†

q (t0)αq(t0)

× (
γ

†
k1,↓(t0)γk1,↓(t0) − γ

†
k2,↑(t0)γk2,↑(t0)

)

+ γ
†
k1,↓γk2,↑γ

†
k2,↑γk1,↓]δ

(Ek2,↑ − Ek1,↓
h̄

+ �q1

)
.

(A26)

By a similar analysis one finds

Z2(t )αq(t ) = + iπ |vq|2|Mk1k2q|2[α†
q (t0)αq(t0)

× (
γ

†
k1,↓(t0)γk1,↓(t0) − γ

†
k2,↑(t0)γk2,↑(t0)

)

− γ
†
k2,↑γk1,↓γ

†
k1,↓γk2,↑]δ(

Ek2,↑ − Ek1,↓
h̄

− �q1 ).

(A27)

In the following, we introduce the approximation Wk1k2q = W ,
in which case we find

|Mk1k2q|2 = |W |2
[

1

2
+ ξk1ξk2 + |�|2

2Ek1 Ek2

]
≡ |W |2Fk1k2 ,

|Nk1k2q|2 = |W |2
[

1

2
− ξk1ξk2 + |�|2

2Ek1 Ek2

]
≡ |W |2Gk1k2 .

Next, we use

〈γ †
k,σ

(t0)γk,σ (t0)〉 = f (Ekσ − μσ ), (A28)

〈α†
q (t0)αq〉 = n(h̄�q − μm), (A29)
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〈γ †
k1,↓γk2,↑γ

†
k2,↑γk1,↓〉 = − [ f (Ek1↓ − μ↓) − f (Ek2↑ − μ↑)]

× n(+Ek1↓ − Ek2↑ − μ↓ + μ↑),
(A30)

〈γ †
k2,↑γk1,↓γ

†
k1,↓γk2,↑〉 = + [ f (Ek1↓ − μ↓) − f (Ek2↑ − μ↑)]

× n(−Ek1↓ + Ek2↑ + μ↓ − μ↑),
(A31)

with f (x) = (eβx + 1)−1 and n(x) = (eβx − 1)−1, to get

I (1)
SC =2π h̄2|W |2

∑
k1k2q

u2
qFk1k2 [ f (Ek1↓ − μ↓) − f (Ek2↑ − μ↑)]

× [nFI(h̄�q − μm) − nSC(h̄�q − μs)]

× δ(Ek1↓ − Ek2↑ − h̄�q), (A32)

I (2)
SC =2π h̄2|W |2

∑
k1k2q

|vq|2Fk1k2

× [ f (Ek1↓ − μ↓) − f (Ek2↑ − μ↑)]

× [nFI(h̄�q − μm) − nSC(h̄�q + μs)]

× δ(Ek1↓ − Ek2↑ + h̄�q), (A33)

and

I (1)
FI = − 2π h̄2|W |2

∑
k1k2q

(1 + 2|vq|2)u2
qFk1k2

× [ f (Ek1↓ − μ↓) − f (Ek2↑ − μ↑)]

× [nFI(h̄�q − μm) − nSC(h̄�q − μs)]

× δ(Ek1↓ − Ek2↑ − h̄�q), (A34)

I (2)
FI =2π h̄2|W |2

∑
k1k2q

(1 + 2|vq|2)|vq|2Fk1k2

× [ f (Ek1↓ − μ↓) − f (Ek2↑ − μ↑)]

× [nFI(h̄�q − μm) − nSC(h̄�q + μs)]

× δ(Ek1↓ − Ek2↑ + h̄�q). (A35)

For the anomalous part of the currents we get

I (3)
SC =π h̄2|W |2

∑
k1k2q

u2
qGk1k2

× [ f (Ek1↓ − μ↓) − f (−Ek2↓ + μ↓)]

× [nFI(h̄� − μm) − nSC(h̄� − μs)]

× δ(Ek1↓ + Ek2↓ − h̄�)

− π h̄2|W |2
∑
k1k2q

|vq|2Gk1k2

× [ f (Ek1↑ − μ↑) − f (−Ek2↑ + μ↑)]

× [nFI(h̄� − μm) − nSC(h̄� + μs)]

× δ(Ek1↑ + Ek2↑ − h̄�), (A36)

I (4)
SC =π h̄2|W |2

∑
k1k2q

u2
qGk1k2

× [ f (Ek1↑ − μ↑) − f (−Ek2↑ + μ↑)]

× [nFI(h̄� − μm) − nSC(h̄� − μs)]

× δ(Ek1↑ + Ek2↑ + h̄�)

− π h̄2|W |2
∑
k1k2q

|vq|2Gk1k2

× [ f (Ek1↓ − μ↓) − f (−Ek2↓ + μ↓)]

× [nFI(h̄� − μm) − nSC(h̄� + μs)]

× δ(Ek1↓ + Ek2↓ + h̄�), (A37)

and

I (3)
FI = − π h̄2|W |2

∑
k1k2q

(1 + 2|vq|2)u2
qGk1k2

× [ f (Ek1↓ − μ↓) − f (−Ek2↓ + μ↓)]

× [nFI(h̄� − μm) − nSC(h̄� − μs)]

× δ(Ek1↓ + Ek2↓ − h̄�)

−π h̄2|W |2
∑
k1k2q

(1 + 2|vq|2)|vq|2Gk1k2

× [ f (Ek1↑ − μ↑) − f (−Ek2↑ + μ↑)]

[nFI(h̄� − μm) − nSC(h̄� + μs)]

× δ(Ek1↑ + Ek2↑ − h̄�), (A38)

I (4)
FI =π h̄2|W |2

∑
k1k2q

(1 + 2|vq|2)u2
qGk1k2

× [ f (Ek1↑ − μ↑) − f (−Ek2↑ + μ↑)]

× [nFI(h̄� − μm) − nSC(h̄� − μs)]

× δ(Ek1↑ + Ek2↑ + h̄�)

+π h̄2|W |2
∑
k1k2q

(1 + 2|vq|2)|vq|2Gk1k2

× [ f (Ek1↓ − μ↓) − f (−Ek2↓ + μ↓)]

× [nFI(h̄� − μm) − nSC(h̄� + μs)]

× δ(Ek1↓ + Ek2↓ + h̄�). (A39)

The next step is to convert the momentum sums into en-
ergy integrals, and we use

∑
k → ν0VSC

∫ ∞
−∞ dξk , where ν0 =

mkF/2π2h̄2 is the density of states at the Fermi level. Further-
more, to produce the correct expressions for the current in the
semiconductor picture, we make the substitutions Eki → λiEki

for i ∈ {1, 2}, and we sum over λ1 and λ2. For I (1)
SC we obtain

I (1)
SC =2π h̄2|W |2ν2

0V 2
SC

∑
qλ

u2
q

×
∫ ∞

−∞
dξk Re

[ |λEk + h̄�q − 2h|√
(λEk + h̄�q − 2h)2 − �2

]

×
(

1 + �2

λEk (λEk + h̄�q − 2h)

)

× [ f (λEk + h̄�q − h − μ↓) − f (λEk − h − μ↑)]

× [nFI(h̄�q − μm) − nSC(h̄�q − μs)]
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≡4π h̄2|W |2ν2
0V 2

SC

∑
q

u2
q

×
∫ ∞

−∞
dEk ν(Ek + h)ν(Ek + h̄�q − h)F (Ek,+h)

× [ f (Ek + h̄�q − μ↓) − f (Ek − μ↑)]

× [nFI(h̄�q − μm) − nSC(h̄�q − μs)], (A40)

where we have used that∑
λ

∫ ∞

−∞
dξk f (λEk ) =2

∑
λ

∫ ∞

0
dEkν(Ek ) f (λEk )

= 2
∫ ∞

−∞
dEkν(Ek ) f (Ek,+h),

with Ek =
√

ξ 2
k + �2, ν(x) = Re(|x|/√x2 − �2), and

F (x,±h) = 1 + �2/(Ek ± h)(x ∓ h). In the same way
we get

I (2)
SC = − 4π h̄2|W |2ν2

0V 2
SC

∑
q

|vq|2

×
∫ ∞

−∞
ν(Ek − h)ν(Ek + h̄�q + h)F (Ek,−h)

× [ f (Ek + h̄�q + μ↓) − f (Ek + μ↑)]

× [nFI(h̄�q − μm) − nSC(h̄�q + μs)]. (A41)

Consider next the part of I (3)
SC containing to u2

q. Here, we get

I (3)
SC,u = 2π h̄2|W |2ν2

0V 2
SC

∑
q

u2
q

∫ ∞

−∞
dEk

ν(Ek )ν(−Ek + h̄�q − 2h)G(−Ek + h̄�q − 2h)

× [ f (−Ek + h̄�q − h − μ↓) − f (−Ek − h + μ↓)]

× [nFI(h̄�q − μm) − nSC(h̄�q − μs)], (A42)

with G(x) = 1 − �2/Ekx. Similarly,

I (4)
SC,u = 2π h̄2|W |2ν2

0V 2
SC

∑
q

u2
q

∫ ∞

−∞
dEk

ν(Ek )ν(−Ek − h̄�q + 2h)G(−Ek − h̄�q + 2h)

× [ f (−Ek − h̄�q + h − μ↑) − f (−Ek + h + μ↑)]

× [nFI(h̄�q − μm) − nSC(h̄�q − μs)]. (A43)

Note that by using the identity μ↑ = −μ↓, it is seen that
I (4)
SC,u = −I (3)

SC,u. Hence, these two terms cancel. The same

analysis gives similarly I (4)
SC,v

= −I (3)
SC,v

. Repeating the above

procedure on the FI side reveals that I (3)
FI and I (4)

FI also cancel.
Moreover, the expressions for I (1)

FI and I (2)
FI are given as

I (1)
FI = −4π h̄2|W |2ν2

0V 2
SC

∑
q

(1 + 2|vq|2)u2
q

×
∫ ∞

−∞
dEk ν(Ek + h)ν(Ek + h̄�q − h)F (Ek,+h)

× [ f (Ek + h̄�q − μ↓) − f (Ek − μ↑)]

× [nFI(h̄�q − μm) − nSC(h̄�q − μs)], (A44)

I (2)
FI = − 4π h̄2|W |2ν2

0V 2
SC

∑
q

(1 + 2|vq|2)|vq|2

×
∫ ∞

−∞
ν(Ek − h)ν(Ek + h̄�q + h)F (Ek,−h)

× [ f (Ek + h̄�q + μ↓) − f (Ek + μ↑)]

× [nFI(h̄�q − μm) − nSC(h̄�q + μs)]. (A45)

Notice that I (1)
FI and I (2)

FI have the same sign, as they both
correspond to a process in which a magnon is annihilated (or
created). On the other hand, I (1)

SC and I (2)
SC have opposite signs,

since the former corresponds to the addition of spin ↓, and
the latter of spin ↑ (or vice versa). We define the spin cur-
rent passing between the two materials as Is = (ISC − IFI)/2.
Doing so, we find that I (2)

s = I (2)
SC − I (2)

FI only gives a contri-
bution on the order of |vq|4, and as |vq| is typically a small
quantity, we neglect this contribution. We are thus left with
Is = I (1)

s = (I (1)
SC − I (1)

FI )/2, giving

Is =4π h̄2|W |2ν2
0V 2

SC

∑
q

(1 + |vq|2)u2
q

×
∫ ∞

−∞
dEk ν(Ek + h)ν(Ek + h̄�q − h)F (Ek,+h)

× [ f (Ek + h̄�q − μ↓) − f (Ek − μ↑)]

× [nFI(h̄�q − μm) − nSC(h̄�q − μs)],

≡ 4π h̄2|W |2ν2
0V 2

SC

∑
q

(1 + |vq|2)u2
qχ (h̄�q, h, μs)

× [nFI(h̄�q − μm) − nSC(h̄�q − μs)]. (A46)

The energy current operator on the superconductor side is
given by

ˆ̇ESC = 1

ih̄
[HSC, Hint], (A47)

whereas on the ferromagnet side it is given as

ˆ̇EFI = 1

ih̄
[HFI, Hint]. (A48)

Repeating the exact same steps as for the spin current, it is
found that

Ė (1)
SC = − Ė (1)

FI = −4π h̄|W |2ν2
0V 2

SC

∑
q

h̄�qu2
qχ (h̄�q, h, μs)

× [nFI(h̄�q − μm) − nSC(h̄�q − μs)]. (A49)

Similarly,

Ė (2)
SC = − Ė (2)

FI = −4π h̄|W |2ν2
0V 2

SC

∑
q

h̄�q|vq|2

× χ (h̄�q,−h,−μs)[nFI(h̄�q − μm)

− nSC(h̄�q + μs)]. (A50)

Hence, ĖSC + ĖFI = 0, meaning that the energy current re-
mains conserved, which is reasonable as we have introduced
no inelastic scattering processes.

The heat currents are found by making the replacements
h̄�q → h̄�q − μm in E ( j)

FI , h̄�q → h̄�q − μs in E (1)
SC , and

144411-9
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h̄�q → h̄�q + μs in E (2)
SC . As before, we define the average

heat current as Q̇ = (Q̇SC − Q̇FI)/2, giving

Q̇ = − 4π h̄|W |2ν2
0V 2

SC

∑
q

(h̄�q − μ̄)u2
qχ (h̄�q, h, μs)

× [nFI(h̄�q − μm) − nSC(h̄�q − μs)]

− 4π h̄|W |2ν2
0V 2

SC

∑
q

(
h̄�q + 1

2
�μ

)
|vq|2

× χ (h̄�q,−h,−μs)

× [nFI(h̄�q − μm) − nSC(h̄�q + μs)]. (A51)

In the linear-response regime, we get(
Is

Q̇

)
=

(
G αI

αQ κT

)(
�μ

�T/T

)
, (A52)

with

G =4π h̄2|W |2ν2
0V 2

SC

∑
q

(1 + |vq|2)u2
q

χ (h̄�q, h, μ̄)

4kBT sinh2 h̄�q−μ̄

2kBT

, (A53)

αI = 4π h̄2|W |2ν2
0V 2

SC

∑
q

(h̄�q − μ̄)(1 + |vq|2)u2
q

χ (h̄�q, h, μ̄)

4kBT sinh2 h̄�q−μ̄

2kBT

, (A54)

αQ = −4π h̄|W |2ν2
0V 2

SC

∑
q

(h̄�q − μ̄)u2
q

χ (h̄�q, h, μ̄)

4kBT sinh2 h̄�q−μ̄

2kBT

,

− 4π h̄|W |2ν2
0V 2

SC

∑
q

h̄�q|vq|2
χ (h̄�q,−h,−μ̄)

(
sinh2 h̄�q+μ̄

2kBT − sinh2 h̄�−μ̄

2kBT

)
8kBT sinh2 h̄�−μ̄

2kBT sinh2 h̄�q+μ̄

2kBT

, (A55)

κ = −4π h̄|W |2ν2
0V 2

SC

∑
q

(h̄�q − μ̄)2u2
q

χ (h̄�q, h, μ̄)

4kBT 2 sinh2 h̄�q−μ̄

2kBT

,

− 4π h̄|W |2ν2
0V 2

SC

∑
q

h̄�q|vq|2
χ (h̄�q,−h,−μ̄)

[
(h̄�q − μ̄) sinh2 h̄�q+μ̄

2kBT + (h̄�q + μ̄) sinh2 h̄�q−μ̄

2kBT

]
8kBT 2 sinh2 h̄�q−μ̄

2kBT sinh2 h̄�q+μ̄

2kBT

. (A56)

In the limit of no dipole-dipole interaction, uq = 1 and vq = 0, we see that these expressions reduce to the results presented in
the main text.
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