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Measurement-induced criticality as a data-structure transition
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We employ unsupervised learning tools to identify the dynamical phases and their measurement-induced
transitions in quantum systems subject to the combined action of unitary evolution and stochastic local mea-
surements. Specifically, we show that the principal component analysis and the intrinsic dimension estimation
provide order parameters that directly locate the transition and the critical exponents in the classical encoding
data space. Finally, we test our approach on stabilizer circuits as proof of principle, finding robust agreement
with previous studies.

DOI: 10.1103/PhysRevB.106.144313

I. INTRODUCTION

The advances in noisy intermediate scale quantum de-
vices [1–3] have motivated a renewed interest in monitored
quantum systems [4]—systems where the unitary dynamics
is interspersed by local measurements. The resulting nonuni-
tary evolution is described by stochastic quantum trajectories
stemming from the intrinsic randomness of the quantum mea-
surement operations that in the many-body framework leads
to measurement-induced transitions between unconventional
dynamical phases [5–9]. These critical phenomena are con-
trolled by the competition between the entangling power of
unitary dynamics, which drives the system toward thermal-
ization, and the disentangling effect of local measurements
that collapse the system wave-function in restricted manifolds
of the Hilbert space [10–18]. In the simplest setup of ran-
dom quantum circuits, these measurement-induced transitions
separate a quantum error correcting phase at low measure-
ment rate from a quantum Zeno phase at high measurement
rate [19–22], as shown by extensive numerical investiga-
tions [23–31] and analytical arguments [5,32–40] on the
entanglement properties of the system.

In this paper, we propose an alternative viewpoint by an-
alyzing the classical encoding configurations of the system
state and show that the measurement-induced criticality mani-
fests as a geometric transition in the data space (cf. Fig. 1). To
this end, we consider the principal component analysis (PCA)
and the intrinsic dimension estimation, which, as unsuper-
vised learning techniques, provide an ideal framework to seek
a pattern in unlabeled raw data [41–43]. PCA aims to detect
the most relevant directions in data space and to compress
(project) the data set toward the significant and restricted
manifold. Being a linear method, PCA is particularly effective
on linear problems but generally fails when dealing with non-
linear structures and complex data space topology [44]. On the
other hand, the intrinsic dimension estimation extrapolates the
effective dimension of the subspace of the data space where
the data lie and may be applied to nonlinear geometries as
well [42,43].

Using stabilizer circuits as a benchmark framework, we
argue that the first principal component and the intrinsic
dimension are natural order parameters for the measurement-
induced transition, in the same fashion as they are for classical
and quantum criticality in equilibrium systems [42,45–56].
(See also Refs. [41,57,58] for general reviews on machine-
learning methods in quantum physics). Furthermore, we find
that at the critical point the system develops a minimum in-
trinsic dimension, which reflects the parametrical simplicity
required to describe the system around the transition by virtue
of universality. Our numerical results perfectly agree with
previously reported values of the critical point and the corre-
lation length critical exponent and provide a viable alternative
to studying measurement-induced criticality in more general
setups.

The remaining of the paper is structured as follows. In
Sec. II, we discuss the unsupervised learning methods and
how these can be applied to the data space of quantum tra-
jectories. In Sec. III, we discuss the stabilizer circuits used
to benchmark our methods and review how these can be en-
coded and simulated in polynomial resources, and the relevant
results for (1+1)-dimensional systems which we will use for
comparison with our analysis. Section IV discusses our main
numerical findings on the PCA and the intrinsic dimension
estimation. Finally, our concluding remarks and outlooks are
presented in Sec. V.

II. DATA SPACE OF QUANTUM TRAJECTORIES

In this section, we introduce the PCA and the intrinsic
dimension estimation and discuss the effectiveness and lim-
itation when applied to the encoding data set of quantum
trajectories.

For any given quantum trajectory |�(α, ξ )〉, with α some
control parameters and ξ a registry identifying the trajectory,
we define a feature Gi with i ≡ (α, ξ ) as the d-dimensional
classical encoding of a state. The space of the features is
denoted by G and is called data space. A few examples are
the following, where we consider states defined on a qubit
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FIG. 1. Pictorial representation of the phase transition. The
Hilbert space H explored by the quantum trajectories exhibit a
structural transition with the measurement rate p. This reflects in a
geometric transition on the encoding data space G.

lattice with R sites. (i) The computational basis representation
of a quantum state: the feature is the vector whose components
are the amplitude with respect to the computational basis, and
hence the dimension of the feature is d = 2R [59]. (ii) A Gaus-
sian quantum state with correlation matrix C: the feature is
the one-dimensional reshaping of the correlation matrix, with
d ∝ R2. (iii) The matrix product state (MPS) representation of
a quantum state with uniform bond dimension D: the feature is
the one-dimensional reshaping of the MPS with d ∝ RD2. (iv)
A stabilizer state: the feature is the one-dimensional reshaping
of the tableau representation and d = R(2R + 1) (See Sec. III
and Refs. [60,61]).

A data set is a rectangular matrix G(α̃, ξ̃ ) of dimension
N × d , where each row is a feature Gi and N is the total
number of features, which can include different values of α

and of ξ . We denote α̃ (ξ̃ ) the common parameters (postse-
lected trajectories) of the data set. Despite that from these data
sets one can, in principle, compute the physical properties of
the system (e.g., the entanglement entropy and the correlation
functions), here we argue that the measurement-induced crit-
icality emerges as a geometric transition in the data space G,
i.e., in the d-dimensional space of all the features (cf. Fig. 1).

A. Principal component analysis

PCA is a projective method based on a linear trans-
formation of the data space basis [41,44,45]. Following
Refs. [46,47], we consider as data set a collection of Nξ

quantum trajectory snapshots for each of the Nα values of the
parameter α. (In this case, there are no shared parameters α̃ or
ξ̃ among the features). These N = NαNξ features are identified
as vectors in a d-dimensional space. The PCA rotates the
framework of reference in such a way that the variance of the
data is the largest in the first transformed direction, the second
largest in the second direction, etc.

The method consists of three steps. (i) Define the centered
data set X , whose elements are Xi, j = Gi, j − (1/N )

∑
i Gi, j

and compute the matrix � = X T X/(N − 1). The centering
preprocess guarantees that this is the covariance matrix of
the data set, whose elements are the cross correlations �i, j

among features. (ii) Compute the eigendecomposition � =
V T KV , where K = diag(k1, . . . , kd ) is the diagonal matrix
of the eigenvalues ordered in descending order, and V =
(v1, . . . , vd ) is the rotation whose columns v j identify the jth
relevant directions. In the new reference frame defined by V ,

the transformed features have no cross correlations, and the
variance of the data along the jth direction is given by k j . (iii)
Rotate the original data set to W = GV . The vectors w j along
the direction v j are termed the jth principal component.

A normalized and relative weight of the relevance for the
principal components is the explained variance ratios λ j ≡
k j/(

∑
i ki ) [41]. By definition,

∑
n λn = 1, hence λn represent

the percentage of encoded information along the direction vn.
Interestingly, in many-body physics at equilibrium, the first

principal component acts as an order parameter [42,45–56].
In the following, we argue that the first principal component
plays the role of order parameter also on monitored quantum
systems.

B. Intrinsic dimension

The main limitation of the PCA is rooted in the linear
nature of the transformation. Hence, when the data space
is nonlinear and with complex geometry, the PCA needs
nontrivial preprocessing (e.g., kernel methods [41]) to give
meaningful information on the system.

We overcome this limitation by considering the intrinsic
dimension estimation [62,63], which aims to estimate the
effective dimension Id (α) of the subspace of the data space
where the data lie at varying values of the control parameter
(e.g., measurement rate) α. The data sets are given by G(α)
with N quantum trajectory snapshots sharing a fixed value
of α. For monitored quantum systems, we expect that sparse
measurements reflect in a large intrinsic dimension, as the
system state will explore arbitrary large regions of the Hilbert
space (cf. Fig. 1). On the other hand, frequent measurements
collapse the dynamics to a restricted manifold with a lower
intrinsic dimension, as the wave function will be strongly
localized around the measurement dark states [25].

We estimate the intrinsic dimension in a density-
independent fashion using the two nearest-neighboring tech-
nique (2NN) [42,43]. For completeness, here we present the
general ideas and the limitation of the method and refer to
Ref. [63] for an in-depth discussion. The method relies on
the assumption of locally uniform data manifolds. Here, the
locality is related to the scale at which we look at the data:
the larger the data set, the more resolved the distance between
points. (Empirically, a finer scale is inversely proportional to
the data set size N−1.). We assume a notion of distance in
the data space (e.g., the Hamming distance or the Euclidean
distance [41]). Under these hypotheses, we can locally repre-
sent neighboring features as a uniform hypersphere, and using
simple geometric arguments we can identify the intrinsic di-
mension as detailed below.

For a given feature Gi, we compute the first- and second-
nearest-neighboring distances r1(Gi ) and r2(Gi ) in data space,
and the ratio μ(Gi ) = r2(Gi )/r1(Gi). The hypersphere distri-
bution of neighboring data Gi induce the distribution of the
ratios μ given by

f (μ) = Idμ
−Id −1. (1)

From the cumulative distribution P(μ) = ∫ μ

0 dμ′ f (μ′), we
obtain

Id = − ln(1 − P(μ))

ln μ
. (2)
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FIG. 2. Cartoon of the hybrid quantum evolution. The brick-wall
unitary is designed to let the qubits propagate correlations, while
the measurement gates are randomly peaked with probability p.
The measurement outcome ±1 determines the collapse operator P±

i

through the Born rule.

In practice, the cumulative distribution is numerically esti-
mated, and Id is obtained through a linear fit.

The 2NN intrinsic dimension estimation is not predictive
when the local uniformity of the data set fails. This is the case
when the number of features is too small but, for discrete data
sets, also when the number of features is too large. The latter
is understood based on the relationship between N and the
resolution of the data manifold: When the typical resolution
is finer than the typical distance between data points, the dis-
crete structure of a data set emerges and the local uniformity
assumption breaks down. Thus, the optimal choice for the
number of features N lies in a coarse-grain regime, that is,
in practice, empirically estimated.

The intrinsic dimension has been studied in many-body
physics in Refs. [42,43] where it was found to display a local
minimum at criticality, which is approached with a critical
finite-size collapse. This minimum has an intuitive explana-
tion: at criticality, physics is universal and controlled by a
few relevant fields. In the following, we show the intrinsic di-
mension provides a robust order parameter also for monitored
quantum systems.

For self-consistency and completeness, in the next section,
we review the monitored quantum system of interest and re-
call the numerical estimates in the literature which will serve
as benchmarks for our analysis.

III. STABILIZER CIRCUITS

We consider a one-dimensional qubit lattice of size L
which evolvs through the architecture represented in Fig. 2.
We assume periodic boundary conditions and L an even num-
ber. At each time step, the state evolves according to

|�t+1〉 = Ut M
mt
t |�t 〉, (3)

where Ut , mt and Mmt
t denote, respectively, the unitary layer,

the measurement outcomes, and the layer of projective mea-
surements at time t . We choose Ut to be a layer of two-body
unitary gates given by

Ut =
L/2∏

i=mod(t,2)

U2i−1,2i,t , (4)

with Ux,y,t independent random Clifford two-body gates. (A
Clifford gate is a unitary gate that map a Pauli string into a
single Pauli string). The measurement layer is a composition

of local measurement operations, which are stochastically
picked with probability (measurement rate) p. If a local mea-
surement is performed, the resulting qubit is projected onto
the measurement result through the Born rule. In summary,

Mmt
t |�〉 = Pmt

t |�̃〉∥∥Pmt
t |�̃〉∥∥ , Pmt

t |�̃〉 =
(

L∏
i=1

Pmi
t

i,t

)
|�〉,

Pmi
t

i,t =
{
1 mi

t = 0
1±Zi

2 mi
t = ±1.

(5)

In a compact fashion, using the time-ordering T opera-
tor, we can write the whole evolution in terms of Km =
T

∏T
t=0(Ut P

mt
t ) as

|�T 〉 = Km|�0〉
‖Km|�0〉‖ , (6)

where m is a shorthand for the measurement-results and for
the unitary gate chosen. The late time regime does not depend
on the initial condition, hence without loss of generality we
fix the initial state |�0〉 = |0 . . . 0〉. The rate of measurement
p controls the dynamical phases of the system [10]. When
the local measurements are suppressed p → 0, the dynamics
is governed by the unitary part, which leads the system to
explore large manifolds of the Hilbert space at long times. In
this regime, measurements are not able to resolve the state of
the system, which hence results in a quantum error-correcting
phase. In contrast, frequent measurements p → 1 prevent er-
godic behavior as the system is incessantly projected in a
reduced manifold (quantum Zeno phase) [64,65].

With the above specifications, the model is a stabilizer cir-
cuit, i.e., a random quantum circuit whose state is a stabilizer
at every time step. Stabilizer states on L qubits are states for
which there exists a subgroup of Pauli strings

g = eiπφX n1
1 Zm1

1 X n2
2 Zm2

2 . . . X nL
L ZmL

L , (7)

with φ, n j, mj ∈ {0, 1} such that g|�〉 = |�〉. (We denote X ,
Y , Z the Pauli matrices). This group, denoted throughout this
paper Q, is Abelian, and if it is generated by L independent
Pauli strings ĝ j , it uniquely specifies the system state as

|�〉〈�| =
L∏

j=1

(
1 + ĝi

2

)
= 1

2L

∑
g∈Q

g. (8)

Since a stabilizer state is encoded in the generating Pauli
strings ĝi [cf. Eq. (8)], a random Clifford gate U maps a
stabilizer state into a stabilizer, fixed by the new stabilizers
UĝiU †.

In a similar fashion, projective measurements on a Pauli
string map a stabilizer state into a stabilizer state. To see
this, consider the measurement on the Pauli string gs. If
[gs, ĝ j] = 0 for all the generators ĝ j of Q, the state of the
system is unaffected by the measurement and the measure-
ment result is deterministic [66]. If this is not the case, there
exists a set {gr1 , . . . , grl } that does not commute (but anti-
commute) with gs. The measurement result is random with
probability 1/2, and the projection onto the measurement re-
sult ±gs is added to the generators. The commuting generators
are left untouched, while the anticommuting set is reduced
to {gr1 · gr2 , gr2 · gr3 , . . . , grl −1 · grl } (this certifies that all the

144313-3



XHEK TURKESHI PHYSICAL REVIEW B 106, 144313 (2022)

FIG. 3. (a) Results for the principal components w1 and w2 at L = 32. The data are organized in separate regions for different measurement
rates. (b) Explained variance ratios λn for the most relevant components. (c) The relative relevance of the directions does not change upon
increasing the number of components NPCA = 2 ÷ 128.

generators commute, as it should be). The above observations
constitute the Gottesman-Knill theorem [60,61].

An important consequence is that stabilizer circuits are
encoded and simulated in polynomial resources. In particular,
a stabilizer state is fixed by the L × (2L + 1) matrix

Ĝ = ( 
φ MX MZ ), (9)

where φ j is the vector defining the phases, MX = [n j
i ] is the

matrix defining the X operators, and MZ = [m j
i ] the matrix of

Z operators of the generators ĝ j . In a similar fashion, random
Clifford gates and projective measurements represent maps in
the F2 field of the matrix Ĝ.

We note that the tableau representation is not unique. A
particular instance of Ĝ corresponds to fixing a basis on the
stabilizer group Q for the state |�〉, but any other choice of
independent generators Ĝ′ for the stabilizer group Q corre-
sponds to the same state |�〉. This redundancy is denoted
as gauge freedom of the tableau representation. With |�0〉 =
|0 . . . 0〉, we shall fix the gauge fixing the initial tableau
MZ = 1, MX = 0 and 
φ = 0, and update the stabilizer group
according to the measurement prescription discussed in this
section. However, in discussing physical results, we shall
compare our findings with randomized choices of the basis
for Q.

The stabilizer circuit in Fig. 2 exhibits a measurement-
induced phase transition at pc = 0.1599(1) with correlation
length critical exponent ν = 1.27(1) [22,67] between a quan-
tum error correcting phase at p < pc and a quantum Zeno
phase at p > pc. We shall use this model in the next section to
benchmark the methods discussed in Sec. II.

IV. NUMERICAL BENCHMARKS

We implement the stabilizer circuit in Sec. III using the
efficient library STIM [68] based on the algorithm introduced
in the Aaronson-Gottesman algorithm [69]. We evolve the
state at times t � 8L and store the encoding tableau every

t = L/2 time steps. From the L × (2L + 1) tableau repre-

sentation Ĝi, we obtain the feature Gi through reshaping to a
d = L(2L + 1) binary vector (cf. Sec. II).

For any system size L, we construct a data set of N = NpNs

features for the PCA, with Np the number of values p ∈ [0, 1]
considered and Ns the number of snapshots for each value of
p [70]. For the intrinsic dimension estimation, we have Np

separate data sets each with Ns features obtained at a fixed p ∈
[0, 1]. Both the PCA and the intrinsic dimension estimation
are implemented using the library sklearn [71].

A. Principal component analysis

We begin by discussing the results of the PCA. We trun-
cate the PCA to NPCA principal components for efficiency.
In fact, from the centered data set X (cf. Sec. II), we can
obtain the principal directions and weight via singular value
decomposition, simplifying the computational complexity of
the problem.

As an illustrative example, we present the results of the
PCA for L = 32 in Fig. 3 varying the maximum number
of components NPCA. We see that the first principal direc-
tion alone captures around 16% of the data set, and within
the first four components the cumulative encoding reaches
20%. (A large portion considered that the dimension of the
feature space is d = L(2L + 1)). This fact is unaffected by
varying the number of directions required by the algorithm, as
the explained variance ratios remain qualitatively unchanged.
Conversely, λn distribute into the same curve over the range
of considered principal directions NPCA. We stress that the
data set considered in each case is different, and the small
fluctuations are related to the specific realizations. Finally, we
note the discrete binary nature of the data does not allow for
a neat clustering of the data points for p < pc and p > pc (for
some critical rate pc). The same would occur also consider-
ing various kernel methods, and stems from the equivalence
between different metrics for discrete binary data, including
Euclidean and Hamming distances. This phenomenon should
be contrasted with, e.g., Ref. [72], where different phases
clearly separate through a diffusion map algorithm. Finding a
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FIG. 4. (a) Quantified principal component w̄1 for different system sizes L and (b), (c) its data collapses. The results show the order
parameter nature of w̄1. (b) The estimated pc = 0.159(4), ν = 1.35(5), and ζ = 0.51(3) are in agreement with the results in literature. (c) Also,
the estimated pc = 0.165(6) and ν = 1.30(7). are in agreement with the results in the literature. In the insets, we magnify the data collapses
close to the critical point.

suitable clustering algorithm for discrete data is an open field
of investigation and is left for future investigation.

Although the principal components contain all the relevant
information of the data set, it is convenient to extract a mean-
ingful number depending on the value of the measurement rate
p. We consider the quantified principal components, defined
as the conditional averages

w̄ j = 1

Ns

∑
i(p)

w j (i). (10)

Here the mean is over the Ns configurations with the same
measurement rate p. We present the numerical data in Fig. 4(a)
for various L and p that suggest the presence of a finite-size
scaling.

We choose two finite-size scaling hypotheses. First, we
consider the generic finite-size scaling hypothesis

w̄1(p, L) = Lζ/ν f1((p − pc)L1/ν ) (11)

in the spirit of statistical mechanics order parameters. This
ansatz is a starting point for models where we do not have ab
initio knowledge.

Furthermore, we also consider an a fortiori finite-size scal-
ing hypothesis. It is motivated by the logarithmic corrections
present for the entanglement entropy for the measurement-
induced criticality of (1+1)D stabilizer circuits [11]:

|w̄1(p, L) − w̄1(pc, L)| = f̃1((p − pc)L1/ν ). (12)

We neglect the smallest system sizes and consider L �
64. Performing the finite-size scaling with standard tech-
niques [23], we find an excellent data collapse for both
hypotheses, as demonstrated in Fig. 4. For Eq. (11), our es-
timate for the critical point and exponents are pc = 0.159(4),
ν = 1.35(5), and ζ = 0.51(3). Instead, for Eq. (12), we have
pc = 0.165(6) and ν = 1.30(7). Given our numerical data,
we cannot differentiate which scaling is the correct one as
their estimates for pc and ν are compatible. Nevertheless, the
analysis demonstrates that w̄1 is an effective order parameter
for the measurement-induced phase transition.

Importantly, w̄1 does not have a straightforward physical
interpretation. In general, it is a nonlocal order parameter, as
it depends nontrivially on the full correlation pattern in the

data space. The advantage compared to physically motivated
observables (e.g., correlation functions) is that it can be suc-
cessfully applied also in problems which lack a local order
parameter, such as Berezinskii-Kosterlitz-Thouless transitions
or lattice gauge theories [73,74].

Next, we consider the subsequent (less relevant) compo-
nents and compute the quantified principal components w̄k

with k � 2. We find these exhibit a nonmonotonic behavior
with measurement rate p, with oscillations appearing in the
error-correcting phase (p < pc), while saturating at a O(1)
value in the quantum Zeno phase (p > pc) (see Fig. 5). These
oscillations are due to the choice of gauge fixing of the tableau
representation we have considered in Sec. III.

To test the gauge dependence of our results, we con-
sider a choice of random generators for the stabilizer group
Q fixing the state. This is obtained through random linear
rank-preserving linear combinations of the rows of Ĝi on the
field F2.

As anticipated, the secondary quantified principal com-
ponent exhibits a qualitative change of behavior at a low-
measurement rate, with an O(L) nonmonotonic value in the
quantum error-correcting phase. At a high measurement rate,
the quantified principal components w̄k�2 is O(L) saturate to
a constant value. (See w̄2 in Fig. 6 (right), although similar
features are present for the subsequent principal components).

FIG. 5. Secondary quantified principal component for different
system sizes L. The oscillatory behavior is due to the choice of gauge
fixing for the stabilizer tableau representation.
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FIG. 6. First (left) and second (right) quantified principal com-
ponent obtained through a random choice of tableau. Inset:
Data collapse w̄1 = Lζ/ν f ((p − pc )L1/ν ) with pc = 0.159(7), ν =
1.35(8), and ζ = 0.52(4). These results are compatible with the anal-
ysis of w̄1 for the specific choice of gauge induced by the algorithm
in Sec. III.

On the other hand, the first quantified principal compo-
nent exhibits the same qualitative behavior as in Fig. 4 [cf.
Fig. 6 (left)]. Performing the finite-size scaling under the
hypothesis Eq. (11), we find pc = 0.159(7), ν = 1.35(8), and
ζ = 0.52(4), in agreement with the estimates in Fig. 6. As
a result, the first principal component accesses the universal
content of the monitored quantum system within the classical
encoding space without prior knowledge or choice of the
specific observable.

B. Intrinsic dimension

We next consider how the intrinsic dimension, which is
a density-independent quantity applicable to nonlinear data
spaces, can locate the measurement-induced criticality. Given
the binary nature of our data points, we consider the Hamming
distance defined for two N-dimensional vectors x and y as

d (x, y) =
N∑

i=1

δxi,yi . (13)

With this metric, we perform the 2NN algorithm on the sta-
bilizer configurations. For each data point, we compute the
(next)-nearest-neighboring distances [r2(Gi )] r1(Gi ) by com-
puting and sorting d (Gi, Gj ) for j �= i.

To obtain a robust estimate of the intrinsic dimension, we
collect Ndata = 30 data sets of Ns = 5000 for each value of
L and p considered, computing the intrinsic dimension over
each data set. Averaging over the Ndata data sets, we obtain the
final estimate Id [75].

The results are plotted in Fig. 7. We find a linear growth
of the intrinsic dimension for p � 0.16, while a logarithmic
one at p � 0.16. The physical interpretation of these results
is based on the dimensionality of the Hilbert space. Since
the quantum state ρ is obtained by summing over all the
stabilizer Pauli strings Q [cf. Eq. (8)], we have dimH ∝ eγ Id

for some constant γ . When Id scales linearly with system
size, the Hilbert space explored is exponentially large and
the stationary state is a random stabilizer state. Conversely,
deep in the Zeno phase, the Hilbert space explored is poly-
nomial in system size. In particular, in the thermodynamic

FIG. 7. (a) Intrinsic dimension for different system sizes L. No-
tice the nonmonotonic behavior, with a minimum close to criticality.
(b) Scaling of the intrinsic dimension with the system size for various
values of the measurement rate. We distinguish a linear region for
p < pc, and a logarithmic one for p > pc. (c) Data collapse after a
finite-size scaling analysis. The estimated ν = 1.3(1), pc = 0.16(2),
and α = 0.3(1) are in agreement with the previous analysis (Figs. 4
and 6). (d) Estimation of the critical point through the minimum of
the intrinsic dimension. The points are obtained by fitting a third-
order polynomial and locating the minimum. The dashed line is the
optimal linear fit in 1/L1/ν , where we excluded small system sizes.
The intersection pc(L → ∞) = 0.16(2) is in agreement with the data
collapse.

limit, the system is localized in a zero-measure manifold.
As remarked before, these considerations are consistent with
the results obtained using the entanglement measures [10].
Let us stress an important difference: while the entanglement
entropy in the Zeno phase saturates, the intrinsic dimension
scales logarithmically. This is because the intrinsic dimension
is not a measure of entanglement but also includes classical
correlations of the encoding data set.

The intrinsic dimension develops a nonmonotonic univer-
sal behavior close to criticality. We identify the transition
using the data collapse under the finite-size scaling ansatz

Id = Lα/νh((p − pc)L1/ν ), (14)

adapting the analysis to values of p ∈ [pest
c − δp, pest

c + δp]
close to the empirically estimated critical point pest

c = 0.17,
δp = 0.15. We obtain pc = 0.16(2), ν = 1.3(1), and α =
0.3(1) compatibly with the literature and the PCA analysis in
Sec. II A (see Fig. 7). In turn, the critical point corresponds
to the thermodynamic limit L → ∞ of the local minimum
position p∗(L) ≡ arg minp Id (L). At finite size, this minimum
is estimated by fitting a cubic function around pest

c and find-
ing the local minimum. The phase transition is encoded in a
diverging correlation length that, in turns, translates to [42]

p∗(L) − pc ∝ 1

L1/ν
. (15)
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Therefore, we expect pc = limL→∞ p∗(L), that we obtain by
performing a linear fit of p∗(L) against 1/L1/ν . Our results
are given in Fig. 7, and our estimated critical point is pc =
0.16(2), in agreement with the previous analysis.

This local minimum can be understood by virtue of univer-
sality. The critical point is parametrically simpler to describe
compared to its vicinity, as irrelevant fields are negligible
in the renormalization group sense. However, they play an
important role in the off-critical region, which increases the
number of parameters close to the transition. This picture is
a fortiori confirmed in the present setup by the presence of a
conformal field theory [11,76], but holds on general ground
(i.e., for nonconformal critical points [42,43]).

The critical change of the intrinsic dimension is the hall-
mark of a geometric transition in the data space. It relates
the change in the dimensionality of the Hilbert manifold de-
scribing the late time state |�T 〉 to a change in the classical
encoding space.

Lastly, we stress that the intrinsic dimension captures the
gauge-independent content of the system. We have performed,
but not shown here for readability, the intrinsic dimension es-
timation for random gauge fixing on the tableau representation
Ĝ, and find qualitatively the same results and the same critical
value pc and exponents ν, α.

V. CONCLUSION AND OUTLOOKS

In this paper, we employed PCA and intrinsic dimension
estimation to characterize the measurement-induced phase
transition in monitored quantum systems as a geometric tran-
sition in the classical encoding data space.

In full analogy to equilibrium classical physics [45–47],
the PCA captures the critical behavior and structural change of
the phase for stabilizer circuits. This is exemplified by the first
quantified principal component w̄1, which develops a critical
finite-size scaling around the measurement-induced transition.

The structural transition is also manifest in the change of
the intrinsic dimension, which behaves linearly in the quan-
tum error-correcting phase and logarithmically in the quantum
Zeno phase. At criticality, the intrinsic dimension develops
a local minimum, which reflects the parametrical simplicity
of the underlying conformal field theory. Overall, our re-
sults show full compatibility with the numerical investigation
present in the literature, while giving a complementary view-
point on the nature of the measurement-induced transition.

The unsupervised character of the considered methods re-
quires no a priori knowledge of the phase space, making them
attractive tools in the investigation of monitored quantum
systems. In this paper, we have focused for simplicity on sta-
bilizer circuits, but the toolbox can be easily adapted to other
monitored frameworks, such as Gaussian systems [77–93],
many-body interacting models [94–98], or topological and
symmetry-protected topological models [99–104].

Furthermore, PCA can be used to preprocess large data sets
in reinforcement and supervised learning methods. We note
that such supervised techniques have been recently shown
to identify the measurement-induced phase transition as a
learnability problem [105,106], and may be suitably adapted
to experimental frameworks [2,3,8,25,107,108]. Similarly, it
would be interesting to extend the unsupervised toolbox
for measurement-induced criticality to variational autoen-
coders [59], which provide an unsupervised neural network
method that do not require prior knowledge of the phase
diagram.
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